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Abstract Forest growth and productivity are critically impor-
tant at a range of spatial scales, to better understand the terres-
trial carbon cycle globally to sustainably manage the forest
locally. Field measurements of forestry parameters to assess
productivity at any spatial scale consume substantial resources
in terms of both time and cost. Remote sensing enables a
highly accurate approach for observation of forested ecosys-
tems, providing the tools to estimate many biophysical param-
eters across a range of scales. There are a number of different
methods of measuring the productivity of forested ecosystems
using remote sensing. In this review, we summarize the three
general approaches—productivity via physiological measure-
ments, dimension analysis, or relationships of growth to fo-
liage concentrations and light—and provide specific examples
throughout on the use and application of remote sensing tech-
nologies. The paper concludes with some general statements
on future work and the way forward.
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Introduction

Information on forest production is critically important for a

wide range of environmental applications. At global scales,
information on the growth of forests is critical for calculations
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related to the terrestrial carbon cycle. Forests have been esti-
mated to absorb up to one quarter of carbon emissions from
fossil fuel combustion (2.8 Gt C year ') [1]; however, uncer-
tainties are large with significant variation both spatially and
temporally, in particular in photosynthesis with even small
differences in forest productivity across the globe likely to
have marked impacts on overall carbon sequestration rates
[2, 3]. Forest growth information is also critical for sustainable
management [4], allowing managers to assess both current
and future yields of forest stands. This, in turn, has economic
implications for regional and national forest-dependent econ-
omies and their associated industries. In addition to these
global climate and regional economic drivers, sustained forest
productivity supports a range of ecosystem goods and ser-
vices, such as the provision of clean water, carbon storage,
and biodiversity. This increasing need for information on the
growth and productivity of forest ecosystems globally has
resulted in high demands for accurate, timely, and comprehen-
sive information at global, regional, and local scales.

Field measurements of forestry parameters to assess pro-
ductivity at any spatial scale consume substantial resources in
terms of both time and cost. Over large spatial and temporal
scales, these field measurements are virtually impossible
[5-7]. Remote sensing enables a highly accurate approach
for observation of forested ecosystems, providing the tools
to estimate many biophysical parameters across a range of
scales. In fact, it could be argued that remote sensing is the
only technology able to offer repeatable and consistent obser-
vations on the role of vegetation and its productivity across the
globe [8]. Indeed, we may be today in the golden age of
remote sensing, with a panoply of satellite systems, sensor
types, and largely free and open data access policies that fa-
cilitate the widespread application of remote sensing, making
access easier than ever before. However, with this diversity of
data comes potential confusion: different types of sensors
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provide different indicators of forest productivity and com-
bined with a range of complex interpretation techniques re-
sults in many types of remote sensing products relevant to
forested landscapes [9]. Additionally, no single remote
sensing platform or system can meet the needs of all
researchers and managers interested in forestry produc-
tion, as each platform has specific limitations and capabil-
ities [10°]. As a result, it is important for remote sensing spe-
cialists and forest managers alike to have a thorough under-
standing both of different sensors’ capabilities and of the gen-
eral approaches used to test and assess the predictive strength
of the biophysical or forest inventory parameters under
consideration.

Traditionally, from an ecological perspective, forest pro-
ductivity can be viewed through a set of environmental con-
straints which, when overcome, allow productivity to be max-
imized. Factors such as climate, precipitation, soil chemistry,
and topographic position are all regarded as key vari-
ables placing environmental constraints on production
[11, 12]. Conversely, a forest stand may be categorized
by potential wood production through developing rela-
tionships between structural attributes, age (if known),
and dominant species. From this, growth rates from yield
tables and models can be derived [13, 14]. Despite these un-
derlying relationships, links between the environment and for-
est productivity, and growth and forest productivity, are gen-
erally site and species specific.

Measurements of Forest Productivity

There are a number of different methods of measuring
the productivity of forested ecosystems. These methods
can be segregated into three general approaches: produc-
tivity via physiological measurements, dimension analy-
sis, or relationships of growth to foliage concentrations
and light (Fig. 1). Each approach is explained in detail
below.

Fig. 1 Three general approaches 21
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Productivity via Physiology

The gross primary production (GPP) of vegetation is the
amount of organic matter synthesized and accumulated in tis-
sue per unit of time plus the amount used by plant respiration
or the product of the absorbed photosynthetically active radi-
ation (APAR) and the vegetation light-use efficiency (LUE).
LUE is often considered to represent the efficiency that the
foliage can use APAR to produce biomass [15¢¢]. The GPP,
less the respiration, is known as the net primary production
(NPP) [16, 17]. One of the most commonly applied methods
for measuring GPP is using eddy covariance (EC) techniques.
This technique exploits the covariance between fluctuations in
the CO, mixing ratio in the air column with the vertical wind
velocity above the canopy to predict the carbon fluxes [18]. A
number of limitations exist when using the EC method; first,
the underlying theory behind EC assumes uniform conditions
within the local environment, principally within radius of the
EC footprint (a few hundred square metres to a square
kilometre) specifically in the upwind direction [18], which is
known to be often violated in complex forest stands, particu-
larly over changing topography. Second, the size of the foot-
print is large making GPP estimates of a single tree or small
stand impossible. Finally, GPP can be derived from net eco-
system production (NEP) only if ecosystem respiration is
known. As a result, remote sensing opportunities to measure
and monitor GPP are numerous.

Productivity via Dimension Analysis

The most common approach to estimate forest growth is by
developing relationships between growth and direct measure-
ments of the size and weight of plants or plant parts [16, 17].
These relationships are often developed by dividing a forest
stand into components such as trees greater than 10-cm diam-
eter; understorey and shrubs; and ground cover, each of which
is considered separately. A sampling programme is then de-
signed typically involving one or more types of samples: non-
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destructive measurements (e.g. diameter, height), destructive
measurements which could involve the dissection of branches
and boles and partitioning them into leaves and small branches
and estimating their dry weight or volume, and measurements
of litter fall. Regression analysis is used to obtain correlations
between the field measured variables and the attributes of
interest such as total (or change in) biomass and volume. In
many cases, forest productivity is estimated using only the
direct measurement of boles themselves with indices such as
current annual increment (CAIj; i.e. the annual change in a
forest attribute); the increment for a given period of time or
periodic annual increment (PAI); and the mean annual incre-
ment (MAI), which will all vary according to the age and
growing conditions of the stand [19].

Productivity via Light and Foliar Concentration

Third, estimates of forest growth can be obtained through the
development of indices that relate to the individual plants’ fo-
liage properties which are assumed to correspond to the overall
functioning and plant condition. One of the most common
indices is the leaf area index (LAI), defined as the mean leaf
surface area above a square metre of ground surface [20]. Fora
given species or stand, there are strong relationships between
LAI and productivity. LAI has been shown to be a highly
effective expression of productivity and is more directly ex-
pressive of the photosynthesis of the vegetation. Leaf chloro-
phyll content and/or concentration has also been shown to be
an effective indicator of vegetation productivity, developmental
stage, and stress [21, 22]. In poor production vegetation, the
chlorophyll content of leaves decreases, thus changing the pro-
portion of light-absorbing pigments resulting in a reduction in
overall light absorption [23]. Like chlorophyll, foliar nutrient
content is also a key indicator of forest productivity with a
range of studies highlighting consistent and strong, generaliz-
able relationships between foliar nitrogen for example and the
rates of net photosynthesis and leaf respiration of forest vege-
tation. Foliar nitrogen has been shown to then link to canopy-
level nitrogen which at broader spatial and temporal scales is
related to annual net primary production and soil nitrogen min-
eralization [24-28]. As a result, estimates of foliar nitrogen can
provide insights into terrestrial carbon and nitrogen cycles and
can be a useful indicator and input variable into models of
forest and ecosystem productivity [27, 29ee].

Forest Productivity Estimates Using Remotely
Sensed Data

Each of these three approaches for assessing forest productivity
can be used in combination with remote sensing to provide esti-
mates over large spatial scales and at lower cost than field mea-

surements. A summary of these approaches is shown in Table 1.

Physiology
GPP/NPP

Global estimates of the incoming photosynthetically active
radiation (PAR) can be derived from satellite observation
using top-of-atmosphere measurements of solar radiance and
modelling approaches [31]. The fraction of PAR (fPAR) that is
absorbed by plants to provide the energy input depends on the
LAI of the vegetation, which can also be estimated from sat-
ellite observations (see later section). A large number of stud-
ies at a variety of scales [32-34] have demonstrated the rela-
tionship between APAR and the visible and near-infrared re-
gions of the electromagnetic spectrum using, for example, the
normalized difference vegetation index (NDVI [32]). Using
these relationships in the mid to late 1980’s, researchers ap-
plied NOAA AVHRR imagery to predict vegetation produc-
tivity for Africa [35], North America [36], and the entire world
[37]. Goward et al. [38] first related the NDVI to NPP and
developed LUE factors to convert the annual APAR energy to
NPP for different biome types. Box et al. [39] evaluated the
accuracy of AVHRR-derived vegetation indices as a predictor
of biomass, primary productivity, and net CO, flux. The
launch of MODIS on TERRA and AQUA led to the
MODIS GPP product (MOD17), described in detail by
Running et al. [30¢], which also relies on the LUE approach
to model productivity using fPAR and ground station
meteorological data. In this approach, the maximum LUE
is dependent on vegetation type and is reduced by multipliers
based on climate including cold temperatures and vapour
pressure deficit (VPD). Heinsch et al. [40] showed that
MOD17 GPP product had a relatively strong correlation to
EC estimates of GPP across North America (»=0.859+
0.173), but overestimated tower estimates at most sites (rela-
tive error=24 %). Global mosaics of monthly GPP and annual
NPP are now routinely available for analysis [41].

Building on the LUE principles, other models using
satellite observations have been developed that also predict
forest productivity. For example, the 3-PGS (Physiological
Principles Predicting Growth from Satellites) model [42] is a
simplified version of the original implementation of the 3-PG
model [43¢¢] and is driven primarily by vegetation light ab-
sorption, which determines the potential physiological rates.
3-PGS also estimates APAR as the product of PAR and fPAR,
estimated from satellite-derived indices. 3-PGS then calcu-
lates the utilized reduced portion of APAR by the most
constraining environmental modifiers which include (a) day-
time atmospheric VPD, (b) soil water availability, and (c) the
frequency of sub-freezing temperatures (<—2 °C). APAR is
also further reduced by non-optimal temperatures that reduce
the LUE. Availability of nutrients, specifically nitrogen, is
modelled using a soil fertility modifier. Unlike the MODIS
GPP algorithm, 3PGS utilizes a soil water balance model to
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Table 1 ~ Summary of approaches and remote sensing data used to derive forest productivity indices
Variable Spatial scale Typical sensor Cost (USD) Reference
Physiology
GPP/NPP Regional to global TERRA MODIS Free [30e, 42]
AQUA MODIS
SPOT VEGETATION
Dimension analysis
Height/diameter Regional to local Landsat TM Free [19]
LiDAR $3-$5 Ha [58-61, 62¢s, 63]
Volume/biomass Regional to local LiDAR $3-$5 Ha [67-69]
RADAR <$1 Ha [74]
Stocking/crown dimensions Local RapidEye, DigitalGlobe $1-$ 3 Ha [78, 79]
LIDAR
Productivity via light and foliar concentration [82, 83]
Chlorophyll Regional-local CASI, AVIRIS, HYPERION $3-85 Ha [97, 100]
Nitrogen Regional-local CASI, AVIRIS, HYPERION [28, 84]
LAI Global-local Landsat TM [104]
MODIS [105]

calculate water stress as the difference between total monthly
rainfall, plus available soil water stored from the previous
month, and transpiration, calculated using the Penman-
Monteith equation with canopy conductance modified by the
LAI of the forest [44].

Forest Dimensions
Diameter and Height

Large-scale aerial photography (1:200-1:3000) was the first
remote sensing technology to be used to estimate forest di-
mensions, principally height and volume, often in a fraction of
the time and cost of traditional field surveys. For example, in
the 1970s and 1980s, researchers in Canada established sam-
pling approaches using large-scale photography to predict vol-
ume. Hall et al. [45] utilized 12 diameter production models
and large-scale aerial photography (1:1000) to model relation-
ships between tree height, crown area, and diameter over a
variety of species including white spruce and lodgepole pine.
Results indicated that for all measured tree species, aerial
photography-derived tree heights were not significantly dif-
ferent from felled measurements. These results were similar to
those reported from Titus and Morgan [46] who investigated
height estimates from tree felling and large-scale aerial pho-
tography. Again using photography, in the Yukon, Canada,
measurements were found not to be significantly different
from felled heights. The standard deviations of field and photo
height errors were 0.95 and 1.17 m, respectively.

With the availability of satellite imagery from the Landsat
series of satellites in 1972, mapping of forest productivity,
such as height and volume, significantly increased. Cook
et al. [19] investigated the usefulness of Landsat Thematic
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Mapper (TM) and biogeographical data to estimate productiv-
ity in three sites in the USA. Forest productivity was measured
by indices of productivity (e.g. bole increment). Results
showed that, in general, the regression and classification
models were highly significant; however, they left a consider-
able amount of the variance unexplained, with low correla-
tions ranging between 0.27 and 0.42. As a result, Cook et al.
[19] concluded that approach could be used to model produc-
tivity of a region (<1000 km?) with a high degree of confi-
dence using both spectral and biogeographical data (such as
soil productivity and solar insolation); however, the reliability
of single pixel estimates would be poor. This finding generally
remains true across many studies, due to the non-linear and
complex relationships between forest structure and reflectance
in the visible and infrared regions of the spectrum. A comple-
mentary approach to relating the spectral and spatial responses
from remotely sensed data to forest height and diameter is
through the development of numerical models that attempt
to model the tree geometry from the images themselves.
Strahler and Li [47, 48] proposed models that assume trees
are widely spaced cones, surmising that reflectance measured
by the satellite sensor is a mixture of shadow, understorey, and
tree crown. The model was used to estimate tree stocking and
height in sparse to moderately stocked ponderosa pine planta-
tions using Landsat imagery. The model was found to have
produced responses within 10 % of the true measured values.
In a related study, Franklin et al. [49] used a similar model to
simulate canopy reflectance of woodland and savannah in the
Sudan and Sahel. In this modified model, the trees were hemi-
spheres on sticks—not inverted cones as in Strahler and Li’s
[48] model. The results showed a correlation between the
observed and predicted values of tree density and height great-
er than 85 %. The approach continues to be used in a diverse
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range of locations such as Queensland, Australia [50], and
British Columbia [51].

Aerial photography and satellite imagery, both of which
rely on measuring the reflectance from the sun, are known
as passive remote sensing systems. In contrast, active remote
sensing approaches, such as Light Detection and Ranging
(LiDAR) and Radio Detection and Ranging (RADAR), send
light or radio wavelengths, respectively, to the Earth’s surface
and measure both the time taken for the emitted pulse to return
to the sensor and the backscatter of the emitted signal. LIDAR
uses pulsed lasers to measure the distance to objects on the
Earth and comprises three main components: the laser, an
inertial navigational measurement unit (IMU), and a global
positioning system (GPS) unit with airborne units using either
helicopter or airplane platforms [52, 53]. In the case of
LiDAR, the measurement of the return interval allows for
the direct detection of the three-dimensional distribution of
vegetation canopy components as well as sub-canopy topog-
raphy, providing both high spatial resolution topographical
information as well as highly accurate estimates of vegetation
height, cover, volume, biomass, and other aspects of forest
productivity.

LiDAR systems can record either discrete returns or the full
waveform of the return pulse. Discrete return LiDAR systems
typically record up to five returns per laser footprint [54] and
are optimized for the derivation of sub-metre accuracy terrain
surface heights [55, 56]. Full waveform LiDAR systems ac-
quire a fully digitized returned pulse providing sub-metre ver-
tical profiles. If the LiDAR data is acquired at a very high
density (dependent on the number of LiDAR pulses per
metre), individual tree crowns can be readily observed.
Computer-based algorithms can be applied to automatically
identify tree crowns and extract individual tree attributes such
as total height, crown height, and crown diameter [57¢]. With
respect to height, studies have demonstrated that the error for
individual tree heights of given species is <1.0 m [58] and
<0.5 m for plot-based estimates of maximum and mean can-
opy height (although this accuracy is also dependent on the
terrain, the density of canopies, and the mission parameters)
[59-61, 62, 63]. LiDAR estimates of height have been
shown to be more consistent than manual, field-based mea-
surements [61].

Volume

The use of satellite passive remote sensing data to predict
stand volume, like height, is limited. Accuracies are generally
too low to be of practical value for operational forest manage-
ment planning [64]. Horler and Ahern [65] examined Landsat
TM data to estimate volume in Canadian boreal forests. They
found the red, NIR, and SWIR spectral bands were most cor-
related with changes in stem volume. However, the approach
was limited to stands less than 60 years old. Trotter et al. [66]

also used Landsat TM imagery to predict volume of New
Zealand Pinus radiata plantations, reporting errors greater
than 25 %. In addition, many studies have highlighted the
issue with shadowing and its dominating effect on much of
the spectral response.

Estimation of volume from LiDAR data is best achieved
using the area-based approach [62¢¢], which has become the
standard procedure for processing LiDAR point cloud data. In
this approach, LiDAR hits are accumulated within a given
area (such as within the plot dimensions) and statistical prop-
erties of these point clouds derived and through empirical
relationships related to a range of plot-level attributes (e.g.
volume, basal area, biomass). This area-based approach has
been shown to be highly stable across many forest types, ages,
and structures due to LiDAR point clouds’ being a detailed
measurement of all reflecting surfaces within a canopy
(i.e. foliage, branches, and stems) [57]. Airborne LIDAR
was applied as early as 1980 to predict forest volume [67] and
has since been applied in diverse jurisdictions including
Scandinavia, Finland, USA, Canada, and Australia [62¢°,
68-70].

In addition to LIDAR, RADAR offers potential to map
forest volume and biomass from both space-borne and air-
borne platforms, especially at lower biomass sites. Early stud-
ies by Le Toan et al. [71] and Dobson [72] examined the
RADAR backscatter from various forests stands. To date,
the majority of studies investigating the use of RADAR data
for biomass estimation have focused largely on coniferous
forests particularly in North America, Eurasia, Australia, and
some tropical regions which have generally been found to be
successful due to the penetrative capacity of microwaves.
However, using single polarized data, C, L, and P-band data
has been shown to saturate at biomass levels of 2040, 60—
100, and 150 Mg ha ', respectively [73]. In Queensland,
Lucas et al. [74] evaluated the use of multi-frequency
RADAR data for quantifying open eucalypt forests and wood-
lands biomass. They concluded that L-band HV backscatter
data acquired at large incidence angles (45° or greater) was
best correlated with biomass up to 80-85 Mg ha ' [74].
Single-pass X-band InSAR data has also been used to volume
and biomass with Solberg et al. [75], utilizing InSAR stand
height estimates in the boreal regions of southern Norway to
predict biomass with no apparent saturation effect.

Stocking and Crown Dimensions

When the spatial resolution of optical imagery increases to the
point that multiple pixels are evident within single tree
crowns, individual tree detection allowing direct tree counting
is possible, as well as the estimation of individual crown attri-
butes. This type of information can be used by the forest
managers to estimate overall stand productivity and has been
demonstrated to be useful in forest management decisions,
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such as the timing of silviculture activities including pruning,
thinning, and harvesting, particularly in plantation forestry
[76]. With the advent of very high spatial resolution satellite
and airborne imagery, individual tree detection algorithms
have increased in number, complexity, and overall accuracy.
With nominal resolutions <4 m, the capacity now exists to
map and monitor forest patterns in greater detail [77]. A gen-
eral rule is that the spatial resolution of the imagery should be
much greater than the size of tree crowns (more than 9 pixels
per crown), with aerial or satellite imagery having spatial res-
olutions between 10 and 4 m preferred [78]. Tree crown de-
tection and delineation algorithms can broadly be categorized
as local maxima/minima, template matching, region growing,
and edge detection approaches, with each using different ap-
proaches to either delineate trees and/or delineate crowns [79,
80+]. Culvenor [80+] developed an individual tree detection
routine for aerial digital camera imagery and found the ap-
proach was best suited to trees which have well-defined
crown, noting that individual tree crown delineation from re-
motely sensed imagery is not a realistic expectation—even for
human interpreters—in structurally complex forests. The
study cited variations in viewing and sun angle which inhibit
the ability to achieve repeatable results. The widespread use of
LiDAR data today has allowed further improvements with the
apex of the crown being more easily assessed using LIDAR
data then passive imagery. As a result, the use of a LIDAR
canopy model as input to these existing routines has been
shown to improve tree detection and crown metrics markedly
[81-83].

Leaf Properties

Progress in the past decade in imaging spectroscopy has
allowed high spectral resolution remote sensing to become a
viable approach to monitor canopy constituents. Hand-held,
airborne, or space-borne imaging spectrometers are able to
capture reflected light across the full electromagnetic spec-
trum at very fine spectral resolution, facilitating detailed anal-
ysis of narrow absorption features, in a more comprehensive
way than more conventional, broad-band sensors such as
Landsat and MODIS [84]. A range of techniques are available
to derive pigment and nutrient concentrations from foliage
including empirical approaches largely dependent on devel-
oping relationships between discrete spectral reflectance
bands while minimizing viewing angle and soil background
effects [85, 86]. More analytical techniques can use imaging
spectroscopy to infer biochemical properties using radiative
transfer models and estimates of leaf optical properties [87].
Among the most important biochemical compounds in terms
of forest productivity are chlorophyll and nitrogen, both of
which have been directly related to the photosynthetic capac-
ity in plants [84, 88].
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Chlorophyll

Variations in foliage chlorophyll content is a key indicator of
forest productivity [22, 89], as in less productive sites vegeta-
tion leaf chlorophyll content decreases. This in turn changes
the proportion of light-absorbing pigments and leads to less
overall absorption [23]. Chlorophyll concentration in fo-
liage absorbs red wavelengths (680 nm) while the place-
ment and shape of the transition between red absorption
and near-infrared reflectance (known as the “red edge”,
the region between 690 and 740 nm [89]) is also highly
sensitive to chlorophyll content [§89-91]. A number of
papers have developed indices that can be applied across a
range of forest structural and productivity gradients. For ex-
ample, Datt [92] developed a series of chlorophyll indices
suitable for eucalypt vegetation at both the leaf and
stand level, and Barry et al. [93] utilized hand-held spec-
tra to assess if reliable and robust methods of spectral
analysis can be developed for detecting chlorophyll of
plants under stress in commercially important forest pro-
duction species.

Nitrogen

Nitrogen, like chlorophyll, is a key indicator of forest produc-
tivity and an important limiting factor in many forested areas
of the globe. It is also a critical nutrient for crop monitoring
and yield estimation [94]. As compared with absorption fea-
tures in the visible and near-infrared spectrums, nitrogen con-
tent absorption features occur in the short-wave infrared
(SWIR) portion, and as a result, imaging spectroscopy
with capacity in the 1100-2500-nm range is often
viewed as important for detection of the nitrogen signal
in forested vegetation. However, vegetation with limited
nitrogen uptake will also have lower chlorophyll con-
tent, which stands as an indicator for non-optimal photosyn-
thesis [95]. Imagery from the (now decommissioned)
Earth-Observer-1 Hyperion sensor and AVIRIS, an air-
borne imaging spectrometer (research-based instrument
designed and managed by NASA), have both been used
to generate predictions of nitrogen content within 0.25 % of
ground estimates, meeting the needs for accurate spatial esti-
mates of nitrogen concentration for environmental studies in
the eastern USA [96]. Coops et al. [97] and Coops et al. [98]
demonstrated the use of Hyperion image data for mapping
nutrient concentrations in Eucalyptus and Pinus species.
These models initially focused on nitrogen, but Coops et al.
[97] also mapped the concentration of 11 macro- and
micronutrients in a pine stand. Similarly, Sims et al. [99]
mapped the concentration of 12 macro- and micronutrients
in a Queensland exotic pine estate using a variety of least
squares methods [100].
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Leaf Area Index

Rather than estimation of the pigment and nutrient concentra-
tion of the foliage itself, the amount of foliage (measured as
the leaf area index or LAI) of stands is also a key indicator of
forest productivity principally due to its importance for pho-
tosynthesis, transpiration, evapotranspiration [101], and, in
turn, GPP. LAl is also a key input in ecosystem models that
simulate carbon and hydrological cycles [102], with Running
et al. [103] being among the first to couple estimates of LAI
with extrapolation and simulation models that predict forest
productivity. Remote sensing estimation of LAI has been un-
dertaken using a number of approaches. The most widely used
relationship is that between LAI and NDVI. Curran et al.
[104] related Landsat TM NDVI data to seasonal LAI for
regions of slash pine in northern Florida. A number of forest
structural variables were collected for 16 plots, and biomass
for each plot was calculated by selectively felling a proportion
of trees within each DBH class. LAI was developed from the
biomass estimates. Linear relationships were developed be-
tween NDVI and LAI, with 7* values ranging from 0.35—
0.86. LAI is now routinely produced as a biophysical attribute
from MODIS, SPOT, and other remote sensing satellite sys-
tems, and as a result, algorithms have become more compre-
hensive and now include both red and near-infrared surface
reflectances, as well as information on view/illumination ge-
ometry and land cover [105]. This is supported by composit-
ing techniques developed to produce 8-day and monthly LAI
estimates.

Summary and Future Research

The past decade has seen significant advancement in research
and applications in a wide suite of remote sensing technolo-
gies to assess forest productivity. Previously, the use of single
remote sensing scenes, such as Landsat TM imagery, or the
limited use of time series of coarser spatial resolution imagery
has hampered widespread use and adoption of remote sensing
indicators of forest growth at regional or global scales. More
recently, the widespread use of MODIS data and the ongoing
building of a long-term data archive, as well as the ready
availability and free access to Landsat imagery, have seen an
increased appreciation for the use of long-term data series in
predicting a range of forest attributes. As a result, we are
seeing a strong movement away from simple indicators of
forest growth (e.g. NDVI) towards more complete and analyt-
ical radiative transfer solutions, which allow issues such as
terrain, atmospheric effects, and sensor degradation to
be minimized. In addition, the use of complementary
spatial data, such as terrain, climate, and geographical
variables, with remotely sensed imagery has been shown
to significantly improve attribute prediction either directly or

through stratification approaches. Likewise, integration
with forest inventory data within forest management
systems will also improve long-term prediction of forest
growth and other attributes.

The increasing availability of different types of high spatial
resolution satellite and airborne imagery has facilitated novel
approaches to directly count trees and predict crown attributes,
both of which can be used to infer growth rates of key species.
Additionally, algorithms designed to detect individual trees
from optical and LiDAR data are more commonly capitalizing
on pattern recognition and data visualization techniques to
help remove some of the ambiguity associated with tradition-
ally exclusively spectral-based classification techniques.

The rapid advancement of LiDAR data has seen the deri-
vation of highly detailed individual tree-level and plot-scale
data, consequently revolutionizing forest stand characteriza-
tion and enhancing our capacity for acquiring biophysical and
ecological variables for forest planning and operations [106¢].
LiDAR technology and methods are now being implemented
in the world’s forests, providing critical information on tree
and stand volume, cover, height, and structure. Into the future
we may see satellite and other space-based LiIDAR missions
which will greatly expand the reach and use of LiDAR
globally.

Within the next 5 years, ongoing research remains critical
to continue to provide forest managers and scientists working
in environmental and natural resources fields with timely and
accurate estimates of forest productivity. Key challenges in-
clude the following.

Continuity with VIIRS

At the broad spatial scale, the MODIS sensor onboard
TERRA and AQUA will be nearing the end of their expected
lifetime within the next 5 years. The Visible Infrared Imaging
Radiometer Suite (VIIRS) instrument, launched in October
2011 on the Suomi National Polar S-NPP, is designed to pro-
vide observation continuity with many of the data products
from MODIS. As of 2014, however, there are no plans to
produce a number of the forest productivity products focused
on biophysical attributes such as LAI or NPP/GPP. More work
is required to achieve the stated goal of MODIS data continu-
ity through the use of VIIRS [107], thus ensuring it can pro-
vide the types and levels of detail required to meet the needs of
the vegetation modellers globally.

Direct Estimation of Forest Growth

As discussed in this review, when trying to predict forest pro-
ductivity, most studies estimate forest “stock” attributes such
as volume and biomass rather than “fluxes” like current and
mean annual or periodic growth increment. With the accuracy
of LiDAR data, it is now possible to refine these approaches to
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estimate the increment directly; however, few studies have
attempted to do so. For example, a number of potential ap-
proaches exist including the use of two spatially registered
LiDAR datasets acquired at different points in time; LIDAR
data acquired at one time step and photogrammetric stereo
matching at a second time step are possible. Each of these
options comes with different cost and accuracy considerations
[57°].

Recently, there has been an increased interest in the gener-
ation of canopy-height models from a combination of high
spatial resolution digital aerial photography and LiDAR.
Semi-Global Matching (SGM) is an approach that can be used
to generate high-density point clouds from a stereo pair of
digital images [106¢]. As a result, the combination of an initial
DEM derived from LiDAR data with a second later acquisi-
tion of digital photos may be a cost-effective way to derive
changes in forest height and is worthy of additional research.
It also offers the capacity to utilize historical aerial photogra-
phy to derive previous growth rates of forest stands.
Considerable research is required to determine the appropriate
design of repeat LiDAR surveys for measurement of tree
height growth [108—110]. Research is also needed to better
understand the amount of time needed for sufficient growth
to exceed noise and other uncertainties within LiDAR sys-
tems, as well as to better understand the impact of growth
increment of different species associations, canopy structure,
and site conditions on LiDAR change-in-height metrics.
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