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Abstract

To examine the accuracy and sensitivity of tidal array performance assessment by numerical techniques applying goal-oriented
mesh adaptation. The goal-oriented framework is designed to give rise to adaptive meshes upon which a given diagnostic
quantity of interest (Qol) can be accurately captured, whilst maintaining a low overall computational cost. We seek to improve
the accuracy of the discontinuous Galerkin method applied to a depth-averaged shallow water model of a tidal energy farm,
where turbines are represented using a drag parametrisation and the energy output is specified as the Qol. Two goal-oriented
adaptation strategies are considered, which give rise to meshes with isotropic and anisotropic elements. We present both
fixed mesh and goal-oriented adaptive mesh simulations for an established test case involving an idealised tidal turbine array
positioned in a channel. With both the fixed meshes and the goal-oriented methodologies, we reproduce results from the
literature which demonstrate how a staggered array configuration extracts more energy than an aligned array. We also make
detailed qualitative and quantitative comparisons between the fixed mesh and adaptive outputs. The proposed goal-oriented
mesh adaptation strategies are validated for the purposes of tidal energy resource assessment. Using only a tenth of the number
of degrees of freedom as a high-resolution fixed mesh benchmark and lower overall runtime, they are shown to enable energy
output differences smaller than 2% for a tidal array test case with aligned rows of turbines and less than 10% for a staggered
array configuration.
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1 Introduction to apply mesh adaptation, whereby the spatial resolution is
varied over the spatial domain and time period of interest.

The tides represent a promising renewable energy source We consider idealised test cases in localised domains in

that benefits significantly from their high predictability. This
paper focuses on the numerical modelling of a tidal farm
comprised of an array of turbines and aims to find a dis-
cretisation method which allows for an accurate tidal energy
resource assessment with a low overall computational cost.
Our approach to arriving at such a discretisation method is

B Joseph G. Wallwork
j-wallwork 16 @imperial.ac.uk

Department of Earth Science and Engineering, Imperial
College London, Exhibition Road, London SW7 2AZ, UK

School of Engineering, Institute for Infrastructure and
Environment, University of Edinburgh, Edinburgh EH9 3FB,
UK

3 Inria, University of Bordeaux, CNRS, Bordeaux INP, IMB,
UMR 5251, 33400 Talence, France

this work. However, it should be noted that the domains of
interest for a realistic tidal array typically extend over a much
larger scale, containing physical features and processes that
exist on multiple spatial scales. Whilst capturing the evo-
lution of tides often requires models to extend hundreds of
kilometres away from a site of interest, specific modelling for
tidal stream energy extraction by turbines and arrays must
resolve smaller-scale features that relate to local blockage
and turbine wake effects within a single array. Subject to
the research objectives, robust modelling must account for
the device scale (1073-10% m), the array scale (109-10% m)
and the regional scale (10°~10°> m) (Adcock et al. 2021). For
an example, see Jordan et al. (2022), which features mesh
element sizes ranging from 10° to 10° m.
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The proposed approach to guide the mesh adaptation pro-
cess is goal-oriented mesh adaptation, which is formulated
in terms of accurately estimating the value of a diagnostic
quantity of interest (Qol). There are a number of candidate
Qols that would be relevant to the application at hand, includ-
ing power/energy output or financial performance, as well
as undesirable outcomes such as the impact on ecological
habitats (du Feu et al. 2019). For a given Qol, we make use
of goal-oriented error estimation techniques, which interpret
Qol evaluation errors in terms of PDE residuals and adjoint
sensitivity information. By restricting the error estimates to
individual mesh elements/timesteps, we are able to indicate
the associated local contributions to the overall Qol error.
These so-called ‘error indicators’ can then be used to guide
a mesh adaptation algorithm as to the resolution required at
a given time and location.

In traditional ‘h-adaptive’ methods, mesh elements or
patches thereof are ‘tagged’ for refinement or coarsening,
based on local error indicator values, and the adaptation
is performed in a hierarchical manner. This approach is
advantageous because its mesh-to-mesh data transfers induce
relatively little interpolation error and because there exist
efficient implementations, such as the space-filling curve
approach presented in Behrens and Zimmermann (2000).

An alternative approach is given by the Riemannian met-
ric framework, which was first introduced in George et al.
(1991). It encodes the desired mesh resolution across the
domain using a Riemannian metric space based on error indi-
cator data and updates the mesh so that its elements are ‘unit’
when viewed in that space. That is, they have edges of (near)
uniform length and consequently are appropriately multi-
scale in physical space. The metric-based approach differs
from traditional s-adaptive approaches because it allows for
the control of element orientation and shape, as well as size.
This can be particularly beneficial for strongly direction-
dependent flows, or applications with anisotropic features,
as demonstrated for steady-state ‘flow past turbines’ scenar-
ios in Wallwork et al. (2020), see also Piggott et al. (2009)
for wider oceanographic applications. The capability to con-
struct truly multi-scale meshes is provided by (for example)
Loseille and Alauzet (2011a,b).

Mesh adaptation—in the traditional #-adaptive form men-
tioned above—has already been applied to tidal farm mod-
elling test cases before, notably in Divett et al. (2013). The
authors of that work assess the impact of different config-
urations of an idealised tidal array on energy output, with
the finite volume mesh adapted based on the magnitude of
vorticity. Further investigation on the impact of the number
of array columns is made in Divett et al. (2016). In those
papers, the turbines comprising a tidal farm are parametrised
as patches of increased bottom friction in a depth-averaged
2D shallow water model (Draper et al. 2010). Such a model
is advantageous because it allows large, multi-scale coastal
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ocean modelling problems to be solved with higher compu-
tational efficiency than a 3D model with the same horizontal
resolution. The use of a shallow water-based model implies
a number of assumptions, such as limited vertical acceler-
ations, well-mixed water column and relatively negligible
vertical dimensions compared to the horizontal.

Metric-based mesh adaptation was first applied to tran-
sient tidal farm modelling in Abolghasemi et al. (2016),
although in that work metrics are not normalised in time. That
is, the mesh adaptation process is applied on an instantaneous
basis, rather than as a fixed point iteration with a total ‘vertex
count budget’ over all timesteps (Alauzet and Olivier 2010).
Metric-based, goal-oriented mesh adaptation was applied to
tidal array modelling for the first time in Wallwork et al.
(2020), albeit in the steady-state case. In that paper, it was
found to lead to a reduction in error accrued when estimating
array power output, for an equivalent number of DoFs. This
was later extended to the time-dependent case in Wallwork
etal. (2022), which revisited the test case introduced in Divett
etal. (2013), but with a different (metric-based) mesh adapta-
tion method and a more advanced (goal-oriented) method for
identifying where refinement should occur. Qualitative com-
parisons were made between a high-resolution fixed mesh
run and an adaptive simulation, both in terms of the adapted
meshes’ structure and in terms of power output curves. In that
work, only one tidal array configuration was used, wherein
the turbines were aligned into three rows and five columns.
This paper supersedes the work of Wallwork et al. (2022),
through additional quantitative comparisons related to energy
outputs and providing in-depth discussion, as well as con-
sidering both aligned and staggered array configurations.
Whilst Divett et al. (2013, 2016) and Wallwork et al. (2020,
2022) use different mesh adaptation approaches (hierarchi-
cal vs. metric-based; adaptation on vorticity vs. goal-oriented
error metrics), the underlying model remains the same, i.e. all
of them approximate tidal hydrodynamics using the shallow
water equations (although nonlinear terms are dropped in the
earlier works).

The organisation of this paper is as follows. Section?2 is
the methodology section. Within it, Sect. 2.1 describes the
depth-averaged tidal turbine modelling framework, includ-
ing details on the model parameters and discretisation used.
Section 2.2 then goes on to describe a goal-oriented metric-
based mesh adaptation method, which is framed around
minimising the error accrued when evaluating the energy
output of a tidal farm. Section 3 is the numerical experimen-
tation section, documenting results and providing discussion
thereof. Simulations focus on an idealised tidal array test
case, with two different configurations for its turbine posi-
tions. This mesh adaptation method of Sect. 2.2 is applied and
compared against equivalent outputs from high-resolution
fixed mesh runs. Detailed power/energy output and perfor-
mance comparisons are made both between the aligned and
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staggered configurations and between the fixed and adap-
tive mesh runs. From these, conclusions are drawn and
future work is proposed in Sect.4. Appendices 1 and 2
provide details on the derivative recovery procedure and
software used to conduct the numerical experiments in this
study.

2 Methods

2.1 Tidal farm modelling

2.1.1 Shallow water equations

As mentioned in Sect. 1, this paper uses the shallow water
equations to model coastal hydrodynamics. In particular,

we use the time-dependent, non-linear and non-conservative
form,

Ju cg+c
C tu-Vat g+ BT g — V- (wVu) = Fy,
ot H
an
§+V~(HU)ZF,;,

ey

the nomenclature for which is provided in Table 1.

The shallow water equations are defined on a two-
dimensional spatial domain, 2 C R2, and some time
interval. They are solved for the (depth-averaged) fluid
velocity, u, and free surface elevation, 1, which we often
collect as q := (u,n). Without a subscript, the norm
notation denotes fluid speed: ||u|| = /u-u. Given a tem-
porally fixed bathymetry field, b, the total water depth is
given by H = n + b. A quadratic drag representation
is used to represent bottom friction. This involves dimen-
sionless coefficients cg and ¢z, which convey the (global)
background drag and (local) resistance due to the tur-
bines in the tidal farm. The turbine drag contribution is
described in detail later in this subsection. We use a kine-
matic viscosity v which includes turbulent effects, i.e. eddy
turbulent viscosity. This is also described later in this sub-
section.

The symbol Fy on the right-hand side of the momentum
equation denotes any additional forces to be included in the
model, such as the Coriolis force and wind shear stress. How-
ever, we do not consider such forces in this work and therefore
can assume F,, = 0 and drop this term henceforth. Similarly,
we do not include additional forcings on the continuity equa-
tion and so drop the F; term.

2.1.2 Discretisation

Shallow water dynamics are modelled using the Thetis
coastal ocean model (Kérni et al. 2018). Thetis is an unstruc-
tured mesh DG code, based on the Firedrake finite element
library (Rathgeber et al. 2016). We make use of its default 2D
setting, whereby fluid velocity and free surface elevation are
approximated in an equal order P1 pg —P1 pg space defined
on a given mesh. Whilst Thetis can be run on either triangular
or quadrilateral meshes, we use the former in this paper, since
they are well suited to representing irregular domains such as
those bounded by coastlines and because the applied mesh
adaptation toolkit assumes simplicial meshes. We also use
the default time integration scheme for Thetis 2D: Crank—
Nicolson method with implicitness 6 = %

Throughout this paper, we denote meshes using the sym-
bol H and interpret them as finite collections of elements,
K c Q.

2.1.3 Viscosity

Molecular viscosity is a physical property of a fluid. How-
ever, the viscosity term can be treated according to the
eddy viscosity approximation, whereby it becomes associ-
ated with turbulence-based momentum diffusion. It, thus,
becomes a tool for controlling turbulent effects in a fluids
simulation and for improving the stability of the associated
numerical scheme. In particular, artificially increasing vis-
cosity dissipates turbulent effects, whereby the flow becomes
increasingly well-mixed. This is undesirable in applications
which aim to capture vortices in the wake of tidal turbines,
since such features are inherently turbulent and therefore can-
not be resolved without an appropriately small viscosity. On
the other hand, the multi-scale nature of meshes sought in
this work mean that using a globally small (eddy) viscosity
value leads to systems of equations which are challenging to
solve over coarser regions of the mesh.

The above concerns are addressed by adopting a mesh-
dependent viscosity coefficient that is small enough to allow
vortices to develop in the wake of turbines, yet large enough
elsewhere to ensure stability of the spatial discretisation and
capture the large scale tidal dynamics. The adoption of a
mesh-dependent viscosity provides a route to vary the impor-
tance of different scales of motion by artificially controlling
the eddy diffusivity based on the resolution. This idea is not
new; a similar rationale is applied in the context of Large
Eddy Simulations (LES) (Pope 2000). LES approaches typ-
ically adopt subgrid-scale models to resolve the motion that
cannot be resolved by a given domain discretisation (Rodi
et al. 2013). Given that mesh adaptation often leads to sig-
nificantly variable resolution, it is instructive to connect the
flow scales resolved to a characteristic length-scale associ-
ated with the local discretisation.
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Table 1 A list of all physical

1(s
quantities and acronyms used in Symbol(s)

Meaning [unit]

this paper b
B
CcF
cT
Cr
Er
Fr
8
Pr
Reg
Tide
U
u = (u,v)
¢
n

v

P

Bathymetry [m]

Background drag coefficient [-]

Drag coefficient associated with tidal farm F [-]
Drag coefficient associated with turbine 7~ [—]
Thrust coefficient associated with turbine 7 [—]
Energy output of tidal farm F [J]

Drag force exerted by turbine 7 [N]
Gravitational acceleration [m s~2]

Power output of tidal farm F [W]

Mesh Reynolds number in element K [—]

Tidal cycle [s]

Characteristic velocity [m s

Horizontal fluid velocity [m s7hms™1]

Fluid vorticity [s~']

Free surface elevation [m]

Horizontal kinematic viscosity1 [m2s™1]

Fluid density kg m~>]

Acronym

Meaning

DG
DoFs
DWR
PDE
SIPG
SPD

Qol

Discontinuous Galerkin

Degrees of freedom

Dual weighted residual

Partial differential equation
Symmetric interior penalty Galerkin
Symmetric positive-definite?

Quantity of interest

SI units are provided for all physical quantities. Dimensionless parameters have unit ‘-
IThe kinematic viscosity includes turbulent effects, i.e. eddy turbulent viscosity. 2i.e. A symmetric matrix

whose eigenvalues are all positive.

Given a characteristic fluid speed U and the circumradius
hk of an isotropic mesh element K € H, the mesh Reynolds
number associated with viscosity coefficient v is defined by,

hgU
Reg 1= ——. (2)
v

Ideally, we would like to impose a sufficiently small viscosity
value vgger such that vortices can be accurately captured.
However, we are bound by the maximum mesh Reynolds
number Ren,x that the model can tolerate. By not exceeding
this value, we ensure that the discrete problem remains stable.
Together, these considerations lead us to the mesh-dependent
viscosity,

Vtarget Rex < Remax

VK = s
K hg U Rex > Remax
Remax

K eH. 3)

For simplicity, the characteristic speed is set to the con-
stant value of 4ms~!, which provides an upper bound for
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all velocity magnitudes observed in the numerical experi-
ments presented in Sect. 3. Consequently, the mesh Reynolds
number is overestimated. This is preferable to underestima-
tion because it puts more emphasis on stability, rather than
vortex capture. In practice, the element-wise quantity (3) is
projected into (vertex-wise) P1 space, which has an addi-
tional smoothing effect that can be beneficial for the shallow
water solver. Thetis applies additional stabilisation by treat-
ing the viscosity term using the SIPG method described in
Hillewaert (2013).

2.1.4 Tidal forcing

Coastal ocean dynamics are driven by tidal forcings, which
are comprised of a multitude of tidal constituents related to
the celestial bodies, the principal lunar and solar semi-diurnal
constituents being the most significant. It is a common prac-
tice to include tidal forcings in shallow water coastal ocean
models as boundary conditions for the free surface elevation
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on open ocean (i.e. non-coastal) boundary segments. That is,
the choice of tidal constituents is encapsulated in the defini-
tion of the prescribed elevation field n g (x, 1).

On coastal boundaries, we opt for free-slip conditions for
simplicity, amounting to treating the coasts as infinitely tall
and frictionless cliffs. Decomposing the boundary into the
disjoint union, 92 = I'r N Tfreestip, of forced and free-slip
boundary segments, our boundary condition choice is given
by

n=nr on I'p, u-n=0 on freeslip- “®

Note that these values are only weakly enforced in Thetis,
as is common practice in DG methods. The normal compo-
nent of the velocity is treated using a linear Riemann solver,
making the formulation consistent with so-called Flather
boundary conditions.

2.1.5 Tidal turbine parametrisation

Consider a tidal farm, F, as a collection of turbines, 7 € F.
Each turbine is identified with its ‘footprint’ region, so that
T C 2. Moreover, each turbine is meshed explicitly, so that
T C 'H. For example, the initial meshes used in Sect.3 use
5 m fine resolution to capture the turbine footprints.

‘We focus on horizontal axis tidal turbines, which extract
energy from the flow based on the area they sweep out in the
horizontal, ASY®P', or, more precisely, according to the force

1
Frw=3p CTA™ |[ufu. &)

In practice, the thrust coefficient, C7 = C7 (u), of turbine 7
is a function of fluid velocity, which may depend on a cut-in
speed, for example. However, we assume it to be constant
across all turbines for the purposes of this paper. Note that
we do not include turbine support structures in this model,
so the parametrisation is based on the turbine footprints and
their thrust coefficients alone.

We are not able to evaluate (5) in the shallow water frame-
work because area swept in the vertical has no meaning in a
depth-averaged model. As such, it must be scaled so that it
applies over the turbine footprint instead:

1 Aswept

T = 5 Afootprint

CrlT, (6)
giving the drag coefficient for turbine 7. Here 17 is an indi-
cator function which is unity within the footprint of turbine
7T and zero elsewhere. To obtain the drag coefficient cr
associated with the farm, we simply sum the turbine drag
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coefficients:
cF = Z cT. @)
TeF

Note that the thrust coefficients as described are based on
an upstream velocity, but the shallow water model makes
use of the depth-averaged velocity at a turbine. This can
be accounted for by applying the thrust correction recom-
mended in Kramer and Piggott (2016).

Given that the turbines are deployed in water of (assumed
constant) density p, a proxy for the power output of tidal
farm F based on (5)—(7) is given by

hmw=Lmvwmnmm. ®)

Further, a proxy for the energy output of the tidal farm gen-
erated over a time interval [fgart, fena] 1 given by

tend
Eﬂ®:/ Pr(q) dr. ©)

Istart

2.2 The goal-oriented framework

Mesh adaptation involves three components. First, the objec-
tive of the adaptation must be identified and either quantified
or estimated. In our case, the objective is to minimise the error
in the Qol, which we evaluate using goal-oriented error esti-
mation. The second step is to use this information to form an
‘optimal mesh concept’, i.e. provide a blueprint for a mesh
that would (approximately) satisfy the objective. For this,
we use the Riemannian metric framework. Finally comes the
adaptation step itself, where modifications are made to obtain
a new mesh. The three steps are described in more detail in
the following.

2.2.1 Goal-oriented error estimation

Recall that ¢ = (u, n) stands for the exact solution of the
shallow water problem. In addition, the DG discretisation
mentioned in Sect.2.1 gives rise to the approximating weak
solution, q; = (uy, ny), which lives in a Plpg — Plpg
space, V},. Given Qol (9) and a tidal farm F, goal-oriented
error estimation enables us to approximate the error

SEF = Ex(q) — Er(an)- (10)

This is achieved by solving an adjoint problem associated
with the shallow water equations (1). The adjoint problem
depends on the Qol—in this case the energy output—and
conveys how its sensitivities propagate across the space—time
domain. We refer to Funke et al. (2014) for a presentation of
the continuous formulation of the adjoint equation associated
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with the shallow water system. This can be derived using
a Lagrange multiplier approach, for example. Although a
continuous adjoint shallow water model has already been
derived, it must be modified or re-derived if any terms of the
PDE or the Qol are changed. In order to avoid such error-
prone manual calculations, we opt to use a discrete adjoint
formulation instead in this work. The discrete adjoint method
amounts to differentiating through the discretised model—a
process that can be more readily automated. See Wallwork
(2021)[Chapter 3] for an in-depth comparison of continuous
and discrete adjoint methods.

Let us temporarily restrict attention to the finite element
problem associated with a single timestep of the shallow
water model; the time-dependent case is treated subse-
quently. The associated weak form may be expressed as a
‘weak residual’,

r(qn, w) =0, Vwe V. (11)

In line with the notation above, let ¢* denote the exact adjoint
solution and q; € V}, denote the solution of the adjoint of the
discrete shallow water model. The first-order dual-weighted
residual (DWR) Becker and Rannacher (2001) uses these
ingredients to provide the following error estimate for the
energy output:

SEr ~ |r(qn, q* —qp)|. (12)

This means that the accuracy of the Qol evaluation on a given
mesh can be computed in terms of the weak residual of the
corresponding forward problem, but with the test function
replaced by the error in the corresponding adjoint solution.

Note that (12) is not computable in general, due to its
dependency on the exact adjoint solution.

Error indicator

Error estimate (12) is a global quantity, but mesh adap-
tation is an inherently local process, which modifies the
discretisation such that it has higher resolution in some
regions than others. As such, we must deduce local con-
tributions from (12) to obtain information related to error
distribution. The localisation approach used in this work is
to split the estimate into its contributions from each element:

r(qn. @* — gl = > _ Ir(an. ¢° — q})l1x. (13)
KeH

where 1 g is the indicator function for element K. We refer to
the associated piece-wise constant field as an error indicator.

Itis common practice to split the error indicator into strong
residual and flux term components on each element. That is, a
component conveying how well the shallow water equations
are solved locally and a component conveying how smooth
the solution field is. The details of this treatment are omitted
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for brevity; we refer to Wallwork et al. (2020) for details.
For the shallow water problem, this gives rise to three strong
residual components, (¥, ¥, ¥;), and three flux term com-
ponents, (Y, ¥y, ¥y). The flux terms include contributions
due to integrating by parts, weak enforcement of boundary
conditions and the fluxes used in the DG discretisation.

It remains to find an approximation that does not involve
the exact adjoint solution, q*. There are a number of ways of
doing this, such as substituting it with a higher order approxi-
mation (e.g. from a globally or locally enriched finite element
space), or by applying superconvergent patch recovery (see
Zienkiewicz and Zhu (1992) and Dolejsi and Solin (2016), for
example). In this work, we instead use the so-called difference
quotient method proposed in Becker and Rannacher (2001),
which has a much lower computational cost in general. It
was found to be effective when applied to time-dependent
tracer transport problems in Wallwork et al. (2021). Applied
to the shallow water problem at hand, it gives (Wallwork et al.
2022),

_1

Ek = (”"I"u(uh)”Lz(K) +h? Hl//u(uh)HLZ(aK)) IV2ujill 2 )
1

+ (”‘I/v(vh)”LZ([() + th ||¢’v(vh)||L2(aK)> ||V2U;;||L2(K)

_1
+ (II‘I’n(nh)lle(m + th ||1ﬁn(77h)||L2(aK)> ”VZUZ”LZ(K)s
(14)

where u, = (uj, v;) and with norms evaluated in the L?
sense, over K or its edge set d K. In practice, the Laplacians
of the adjoint solution components are constructed using a
recovery method (see Appendix 1 for details).

The formulation in (14) comes with a number of caveats,
as follows. First, it is not useful as an error estimator because
its sum over all elements consistently overestimates the true
Qol error, with the overestimation increasing with mesh size.
Nevertheless, its local contributions may still be used to guide
mesh adaptation because global scale factors are not impor-
tant. Second, (14) is not derived using rigorous error analysis
techniques; to the best of the authors’ knowledge, such esti-
mators have only currently been proved for elliptic problems.
Finally, an expression of this form (with adjoint solutions
appearing only in the weighting terms) cannot be arrived at
from the P1ps — P1pg formulation using integration by
parts alone. In particular, two terms which act to symmetrise
the viscosity operator in the SIPG method must be dropped
(see Wallwork (2021)[Subsection 7.2.2] for details), mean-
ing that we are not able to fully account for errors introduced
by the stabilisation approach. Despite these drawbacks, the
experiments in Sect. 3 show that it is possible to use the differ-
ence quotient approach described here to drive goal-oriented
mesh adaptation methods, with promising results.
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2.2.2 Riemannian metrics

Given an error indicator field, the next step is to form the
optimal mesh concept, which will guide the mesh adaptation
algorithm. As mentioned above, we use the Riemannian met-
ric framework, the key ingredient of which is a Riemannian
metric field, or ‘metric’, M = {M(x)}xeq. In 2D, this is a
tensor field, whose value at each point in the domainisa 2 x?2
SPD matrix.

The way that the metric guides the mesh adaptation pro-
cess is that mesh modifications are made inside the mesher
until a quasi-unit mesh is obtained w.r.t. the associated Rie-
mannian metric space. This means that each mesh element
is close to equilateral and has edges close to unit length
(Loseille and Alauzet 2011b). Consequently, an adapted
mesh will be rather regular when viewed in the Riemannian
metric space, but may be highly irregular and distorted in
(Euclidean) physical space.

One of the key tunable parameters for metric-based mesh
adaptation is the metric complexity. For steady-state prob-
lems, it is the analogue of the (inherently discrete) mesh
vertex count in (continuous) metric space, given by

C(M) =/ vM(x) dx. (15)
Q

As such, by increasing the target metric complexity, we allow
for heightened overall mesh resolution. Whilst this typically
implies a heightened computational cost, it should also imply
areduction in Qol error (provided the metric is chosen appro-
priately). In the time-dependent case, (15) becomes

[Eﬂ
C(M) =/ d/Q\/M(X) dx dr (16)

Tstart

and is the continuous analogue of the sum of all mesh ver-
tex counts over all timesteps. In this way, the target metric
complexity can be likened to a ‘vertex count budget’ for the
simulation.

See Loseille and Alauzet (2011a,b) for further details on
the Riemannian metric framework and the duality it shares
with the computational mesh.

Isotropic goal-oriented metric

When goal-oriented mesh adaptation was first applied to
time-dependent tidal array modelling in the preliminary work
of Wallwork et al. (2022), it was done using an isotropic
metric. In particular, an element-wise metric was obtained by
scaling the 2 x 2 identity matrix I by a scalar-valued function,
m, involving fractional powers of the error indicator (14) (see
Carpio et al. (2013) for details):

risotropic

M, =m(&g) I, K e H. (17)

Most metric-based mesh adaptation toolkits—including the
one used herein—assume P1 metric approximations, i.e. vertex-
wise data. As such, an element-wise formulation such as (17)
requires an additional projection step.

Anisotropic goal-oriented metric

One of the great advantages of metric-based mesh adap-
tation is that it allows for control of element shape and
orientation, as well as size. For example, the a posteriori
anisotropic metric due to Carpio et al. (2013) was applied to
asteady-state tidal farm modelling problem in Wallwork et al.
(2020) and is redeployed here. Again, it uses an element-wise
formulation, which is then projected to obtain a vertex-wise
metric. On element K we have,

< anisotropic

M =m(x) Vk Sk Vk'. K € H, (18)
where Vg and Sk are matrix-valued functions. The details
of each component are omitted here, but the essence of the
approach is that the identity matrix in (17) is replaced by the
matrix product, within which Vg controls element orienta-
tion and Sk controls element shape. These components are
normalised in such a way that m(E€g) then controls element
size.

Whilst the information in the sizing term is derived from
the error indicator, the information in the orientation and
shape terms come from the curvature of the forward solution.
That is, the Qol and the associated adjoint solution influence
the local element size, but elemental anisotropy is inherited
from features of the forward solution alone.

2.2.3 Adaptation

Given an isotropic or anisotropic metric defined upon some
mesh, a new mesh is constructed by applying local transfor-
mations. In the 2D case considered in this work, we make
use of four operations: vertex insertion, vertex removal, edge
swapping and local Laplacian smoothing. The first three
modify the mesh topology, whilst the fourth does not.

2.2.4 Time-dependent case

So far in this subsection, we have described an approach
to goal-oriented mesh adaptation in the steady-state case.
Moving to the time-dependent case typically involves the
added complication of solving the PDE and its adjoint across
a sequence of ‘adapted meshes’, which we often refer to
collectively as an ‘adaptive mesh’.

We begin by partitioning the simulated time period into
N subintervals,

[tstarh tend] = UlNzl [t(i_l)a t(i)],

tsart =10 <t <L o N=D () g (19)
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each of which is associated with a different mesh, i.e. there
are N meshes in the sequence. We adopt a fixed point iteration
approach inspired by that presented in Belme et al. (2012),
where the forward and adjoint problems are solved on each
mesh in reverse, metrics are constructed for each subinterval
and solution fields are transferred between subintervals using
mesh-to-mesh interpolation. The metrics are post-processed
using a space—time normalisation procedure, which controls
the space—time complexity (16)—i.e. vertex count budget—
as well as allowing the discretisation to be multi-scale in
space and distributing its DoFs appropriately over the tem-
poral domain so as to improve the Qol accuracy. This implies
that some subintervals may be associated with meshes that
are much finer or coarser than others.

The fixed point iteration continues until either the Qol
value converges to within a pre-specified relative tolerance,
or the same occurs for the element counts of the adapted
meshes on each subinterval.

We refer to Belme et al. (2012) for details on the fixed
point iteration algorithm and note that the main difference
here is the use of goal-oriented metrics derived from an a
posteriori error result (12) rather than an a priori one. For
details on how metrics (17) and (18) in particular extend to
the time-dependent case, we refer to (Wallwork et al. 2021,
Section 5).

2.3 Problem specification

Numerical experiments presented in Wallwork et al. (2020)
involve an idealised array of two turbines. The shallow water
problem was solved to steady state, meaning there was no
tidal forcing and dynamic turbulent effects could not man-
ifest (the latter of which implying laminar flow). However,
the setup is useful for illustrating the impact that the loca-
tions of the turbines within the array can have upon the total
power output. In that paper, the power output was found to
be 15% lower when turbines were aligned in the flow, com-
pared with when they were offset by one turbine diameter
in opposite directions, orthogonal to the background flow.
In addition, it was illustrated that the application of goal-
oriented metric-based mesh adaptation can lead to more
accurate approximations of array power output for similar
numbers of DoFs.

In this paper, we consider the extension to a time-
dependent case of a larger tidal farm scale. The test case
was originally proposed in Divett et al. (2013) and consists
of an array of fifteen turbines arranged in three rows and
five columns. That work also demonstrated the importance
of array configuration in tidal farm design; a staggered tur-
bine layout was found to extract 54% more energy from the
flow than a centred, aligned configuration.! This is because a

! Note that, since both this study and the steady-state one mentioned
above involve idealised test cases, the differences in power/energy out-
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staggered array gives the turbine wakes more opportunity to
recover before interacting with downstream turbines, as well
as turbines being able to exploit accelerated bypass flow.
Tidal turbines act to extract energy from the flow, so their
wakes are effectively momentum deficits. The investigation
in Divett et al. (2013) also considered an array which is off-
set so that the turbines are closer to the channel boundary,
as well as an array with wider spacing between turbines. For
the purpose of the numerical experiments presented in this
paper, we just consider the (centred) aligned and (centred)
staggered configurations.

Initial meshes of the rectangular domain 2 = [—1500 m,
1500m] x [-500m, 500 m] were generated using gmsh
(Geuzaine and Remacle 2009). Figure 1 shows the spatial
domain for each configuration, including the forced and free-
slip boundary segments, the five columns of turbines and a
grey box indicating the ‘farm region’, Q. C . In addition
to the mesh-dependent viscosity treatment summarised by
(3), we apply additional stabilisation by increasing the vis-
cosity outside of the grey rectangle shown in the plots. That
is, we set

v(X)={vK XeQr

cEOy (20)

Vbase

recalling that vk stands for the mesh-dependent viscosity in
(3). A linear ‘viscosity sponge’ is used to smoothen out the
transition between the two values in (20). The farm region is
also used for zooms in subsequent plots.

A simple sinusoidal tidal forcing at the western and east-
ern boundaries is used to drive the hydrodynamics. The two
forcings are exactly out of phase:

x=— 1500 27
, W=
Tiide

0.5 cos (wt)
0.5 cos (wt + ) x=1500

nr(x, t):={ .21

The tidal period Tiiqe is specified in Table 2, along with all the
values used for parametrising the shallow water model and
representing tidal turbines within it. The resulting boundary
conditions are given by substitution of (21) in (4). Note that
the tidal period is 10% of the commonly dominant semi-
diurnal (M») tidal constituent; it was reduced in (Divett et al.
2013) to emphasise vorticity and accelerate the simulation.
We retain this value for consistency with that work.

The turbine thrust value ¢ = 2.985 shown in Table 2
was chosen so that the corresponding (corrected) turbine drag
coefficient is C7 = 12, to again be consistent with what was
used in Divett et al. (2013). It is worth noting that the thrust
coefficient is ordinarily in the range (0, 1), so it is likely that
power and energy output values reported in this paper are
unrealistically large.

put due to array configuration may not be representative of realistic tidal
farms.
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3 Results
3.1 Spinning up the tidal dynamics

Figure 2 shows the total power output from both array config-
urations, as computed on coarse fixed meshes with increased
mesh resolution in the farm region. On these meshes, we
observe that the total energy output fluctuates between each
flood and ebb tide. Whilst it continues to do so, it appears to
stabilise slightly after three or four tidal periods to 11 MW h
and 19 MW h, respectively. These preliminary coarse mesh
runs suggest that the tidal hydrodynamics eventually sta-
bilise. They also confirm that the staggered array is able to
extract more energy than the aligned array—something we
will return to in more detail.

For the subsequent numerical experiments in this paper,
we use finer meshes to generate the spun-up hydrodynamics
so that they are more reliable and can be used as bench-
marks. The meshes are very close to uniform over the whole
domain, except for some minor adjustments to ensure that
the turbines are explicitly meshed. These adjustments occur
outside the farm region and are where most of the deviations
in element area and aspect ratio occur. Both meshes have low
overall aspect ratio and therefore can be said to be isotropic.
Henceforth, we refer to these meshes as the ‘high-resolution
aligned mesh’ and ‘high-resolution staggered mesh’. Whilst
we could choose a spin-up period of three or four periods so
that the hydrodynamics have stabilised, this would be expen-
sive to perform on such high resolution meshes. Given that
one of the motivations of this paper is to improve computa-
tional efficiency, we opt for the shorter spin-up, noting that
the power/energy output of the third half-cycle is already a
reasonable approximation of the later ones.

a-coordinate [m]

3.2 Velocity and vorticity comparisons on fixed
meshes

Figure 3 shows snapshots of the fluid velocity field for both
the aligned configuration (left hand panels) and staggered
configuration (right-hand panels), as computed on the high-
resolution fixed meshes. A range of time levels from the half
tidal cycle [Tge, 1.5 Tiige] following spin-up are shown. The
snapshots at t = Tige show an initial state of low magni-
tude velocity, with a number of vortex features left over from
the spin-up phase, both to the west of and surrounding the
tidal farm. In subsequent snapshots, the flow speed acceler-
ates westward for the first quarter cycle, before decelerating
so that the velocity returns to a similar low magnitude state,
except with vortices to the east of and surrounding the tidal
farm. At intermediate time levels 1.125 Tiige, 1.25 Tiige and
1.375 Tijge for the aligned configuration, the west-most col-
umn of turbines experiences relatively laminar flow, whilst
the flow around the other turbines is much more turbulent.
In the right-hand panels, the array staggering means that
the west-most fwo columns experience quasi-laminar flow
at these time levels.

In addition, Fig.4 shows plots of the corresponding (2D
interpretation of) fluid horizontal vorticity,

n v Ju

(=V-u =——+ —, (22)
dx  dy

at t = 1.25Tige. That is, the top row of plots in Fig.4

corresponds to the middle row in Fig.3. In practice, we

approximate this quantity in P1 space using the derivative

recovery method described in Appendix 1. The correspond-
ing outputs from adaptive simulations are also shown in
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Table 2 Parameter values used
in the shallow water model and

its tidal turbine parametrisation
for all numerical experiments in
this paper

Parameter Value Parameter Value
Background drag, C 0.0025 Tidal period, Tige 1.24h

Base viscosity, Vpase 10m2s~! Timestep, At 2.232s
Characteristic velocity, U 4ms~! Turbine diameter 20m
(Constant) bathymetry, b 50m Turbine drag, Ct 12
Gravitational acceleration, g 9.81 ms—2 Turbine thrust, ¢z 2.985
Maximum Reynolds number, Repyax 1000 Turbine width 5m

Target viscosity, Virget 0.0l m?s~! Water density, p 1030 kgm—3

Fig.2 Total power output from .
. Aligned

the aligned and staggered arrays =007 §iammered
over four tidal cycles, as E 501
computed on coarse meshes .
with 35,784 and 33,314 2 401
elements, respectively. Text = 301
annotations indicate the total 2
ener; £ 201

gy output over the =
corresponding half-period. The £ 101 v o —
first vertical line indicates the 518 MWh 1185 NIWh

17.63 NIWL
10.30 N'Wh

8.22 NIWH
0.79 N'Wh

19.11 NIWH
10.82 N'Wh

19.37 NIWL 18.54 NIWh!
10.83 NIWL 11.43 N'Wh

end of the spin-up period and
the second indicates the end of
the half-period of interest

Fig.4, for ease of comparison with the fixed mesh results
when they are discussed later in Sects. 3.4.1 and 3.4.2.

In the aligned case, we observe that vortices do not form
until after the second column of turbines. These vortices hold
their structure within the turbine farm region and only begin
to disintegrate towards the end of the plot. Within the farm
region, there are fairly distinct gaps of low vorticity between
the rows of turbines. In the top right plot, the array staggering
means that there are no clear gaps with low vorticity and there
appears to be greater vorticity overall.

3.3 Power contributions by column

Before considering the application of mesh adaptation, we
first analyse the power output curves of each array column
over high-resolution fixed mesh runs, as shown by the top
row of plots in Fig.5. These outputs come from the same
high-resolution fixed mesh runs as the velocity plots in Fig. 3.
Moreover, the x-axis bounds and the vertical grey lines cor-
respond to the timesteps where the snapshots were taken.
The corresponding outputs from adaptive simulations are
also shown in Fig.5. Again, this is for ease of comparison
with the fixed mesh results when they are discussed later in
Sects. 3.4.1 and 3.4.2.

3.3.1 Aligned configuration
The nonlinear interactions between turbines and the fact that

turbines act to remove momentum from the flow means that
the first (i.e. west-most) column of turbines (indicated by the

@ Springer

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

Time/Tiide

bright blue curve) extracts the most energy when the flow
is eastward. Turbine columns downstream do occasionally
extract similar amounts of energy, but they typically extract
less and the levels fluctuate more due to wake-induced tur-
bulence. For example, there is a spike in the final column’s
power output (indicated by the dark green curve) around
t = 1.15 Tijge, when the meandering bypass (i.e. acceler-
ated) flow from columns 2 and 4 first reaches it around
t = 1.125 Tijge- (See the patch of high magnitude velocity
near column 4 in the left-hand plot of Fig. 3).

In this study, the instantaneous power output values are
not of primary interest, but rather the sum of the integrated
areas under the curves—the total energy extracted over a half-
cycle. The largest area corresponds to the leading column of
turbines, meaning it contributes most to the energy output.
Columns 2—4 have smaller contributions to the overall energy
output. In particular, turbines in the second column generate
the least power. This is because the wakes of the first column
are quasi-steady and only become unstable upon reaching the
second column, implying a significant momentum deficit for
those turbines for much of the simulation. The fact that the
first column generates the most power and the second column
generates the least power is consistent with results reported
in Divett et al. (2013). This steady wake is a clear limitation
of the actuator disk approach to tidal turbine modelling, as
dynamic wake meandering due to the moving blades would
be expected even from the first column.
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Velocity Magnitude (m/s)
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t = 1.375T}ige

t = 1.5 Tiiqe

Fig. 3 Snapshots of fluid velocity for high-resolution fixed mesh simulations of the tidal array test case over the time interval [ Tide, 1.5 Tidel-
Left-hand panels show the aligned configuration, whilst right-hand panels show the staggered configuration. Turbine footprints are indicated by
grey rectangles
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Vorticity

025 -02 -0.15 -0.1 —0.05

Uniform mesh (aligned)

Isotropic adaptation (staggered)

0

005 0.1 0.15 02 025

Uniform mesh (staggered)

Anisotropic adaptation (staggered)

Fig.4 Snapshots of fluid vorticity in the staggered configuration at # = 1.25 T;ge, as computed on a high-resolution fixed mesh and under different
mesh adaptation techniques. Turbine footprints are indicated by grey rectangles

3.3.2 Staggered configuration

Interestingly, the column-wise power output curves take
rather different forms in the staggered configuration shown
in the top right panel of Fig.5. In the following, we discuss
some of the key differences.

First, the power output curve associated with the second
column is relatively smooth—Ilike for the first column—
because the flow it experiences is close to laminar. This is
not the case for the three downstream columns, where there
is much more turbulence. These observations are consistent
with those for Fig. 3.

Second, all columns are reported to have higher power
output in the staggered case. Where in the aligned case the
second column generates the lowest power output—due to
being fully obstructed—it generates the most power in the
staggered configuration. One explanation is that this is due
to accelerated bypass flow, as a result of the ‘funnelling’
effect of the first column. However, the first column also
experiences a small increase in power output, so this can-
not be the full explanation. An alternative explanation is that
more energy is extracted by the staggered configuration dur-
ing the spin-up cycle and so a greater flow rate is required
through the boundary to satisfy the pressure wave that has
been imposed. To investigate whether this is the case, Fig. 6
examines cross sections of both the velocity normal to the
inflow boundary (x = 0) at a selection of timesteps, as well
as the corresponding theoretical ambient power output due
to turbines experiencing the full inflow velocity and no drag
effects. The left-hand plot confirms that the tidal influx is
indeed greater at the start of the time period of interest in the
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staggered case. Due to the cube term, this is exaggerated in
the right-hand plot of theoretical power output. The increased
tidal influx observed here is notable because it contradicts the
common assumption that upstream flow remains unaffected
for CFD studies on tidal arrays positioned within confined
domains.

Interestingly, the inflow velocity appears to become rather
asymmetric at t = 1.25 Tjjge for both configurations. In the
staggered configuration, there is a significantly lower inflow
velocity to the south than the north. This can also be observed
in the right-hand # = 1.25 Tijge panel of Fig. 3.

3.4 Mesh adaptation based on farm energy output

Let us now consider the adaptive mesh case. Goal-oriented
metrics are applied, with the aim of minimising the error
in energy output. The simulated interval [Tige, 1.5 Tiige] is
divided into 40 subintervals of equal length and we construct
a different Riemannian metric for each subinterval.

Once the sequence of metrics has been constructed, they
are post-processed in two ways. First, a target value for the
space—time metric complexity (16) is imposed, to control the
overall DoF count of the simulation. The target complexity
is increased from a base value of 400,000 up to the target
value of 2,000,000 over the first three fixed point iterations.
Doing so does not usually hamper the effectiveness of the
adaptation algorithm, but can significantly improve its com-
putational efficiency in the early iterations (see Wallwork
et al. (2021), for example). The second post-processing step
is to impose minimum and maximum metric magnitudes, to
ensure that adapted mesh elements are not too small or too
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Fig.5 Power output as a
function of time in both farm
configurations, separated by
turbine column in the array. The
values in the top row were
computed using the same
high-resolution fixed meshes as
in Sect. 2.3, whereas the middle
and bottom rows use isotropic
and anisotropic goal-oriented
mesh adaptation, respectively

Fig.6 Cross sections of the
normal inflow velocity
component (left) and theoretical
ambient power output (right) at
a range of timesteps, for the
high-resolution fixed mesh runs.
Both plots consider slices along
the y-axis (at x = 0)
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large. Minimum and maximum values of 1 cm and 100 m are
imposed across most of the domain, but the metric is treated
differently inside the turbine footprint regions (where the
momentum sink is applied). There, a maximum magnitude
of 2m is used to ensure that the footprints are not under-
resolved, whilst a minimum magnitude of 10 cm ensures that
they are correctly defined when few DoFs are used overall.

3.4.1 Isotropic metric

First, consider the application of isotropic goal-oriented mesh
adaptation. Figure 7 shows snapshots of both fluid velocity
and the underlying isotropic adapted mesh for the staggered
configuration at a selection of time levels. We do not show
the corresponding plots for the aligned configuration because
they follow a similar pattern. Similar mesh and velocity snap-
shots have also already been presented in Wallwork et al.
(2022).

A first observation is that all of the presented meshes have
low maximum aspect ratios across their elements. This con-
firms that the isotropic metric formulation has indeed given
rise to isotropic meshes. Another is that all of the turbine foot-
prints are captured at all time levels, thanks to the increased
mesh resolution due to the spatially varying maximum metric
magnitude.

At t = Tige, there do not appear to be any regions of
notably high mesh resolution, except around the turbine foot-
prints. Zooming out, the left-hand plot in Fig. 8 shows that
there is also increased mesh resolution near to the domain
boundaries, particularly surrounding the western boundary.
This enables the weakly imposed inflow conditions to be
correctly treated.

Att = 1.125 Tijge and t = 1.25 Tijge, significant resolu-
tion is deployed upstream of the first column, especially its
middle turbine. One explanation for this is that the top two
turbines in the second columns experience greater acceler-
ated bypass flow than the bottom one, due to the ‘funnelling’
effect of the first column. Another is that accuracy of the
hydrodynamics in the centre of the array are more important
overall, since their wakes encounter more turbines during the
simulation. Interestingly, little mesh resolution is deployed
for the purposes of capturing vortices. As a consequence,
turbulent effects are largely smoothed out, especially in the
regions with coarser meshing. This effect is also visible in
the bottom left plot in Fig.4, where vortices do not take on
anything close to the complex structures resolved in the fixed
mesh case and vanish sooner after passing through the array.

The ‘arrow of time’ implies that dynamics at a particular
instant are only important from then onwards. At the start of
the simulation, the dynamics can potentially impact the entire
solution trajectory, whereas towards the end of the simulation
the impact is much more limited. This explains why slightly
more resolution is deployed at t = Tijge than at# = 1.5 Tiige,
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despite the low magnitude velocity (and hence the low energy
output contribution) in both cases. This highlights the strong
dependence of the adapted mesh sequence upon the simula-
tion period length in the goal-oriented framework; if the time
period were extended then these effects would likely have a
different manifestation.

Figure 5 suggests that the power curve is slightly out of
phase with the tidal forcing, with the outputs of all columns
becoming near-zero before the slack tide. This is likely due
to the significant drag forces inherent in the tidal farm. As
a consequence, the power outputs of all columns are sig-
nificantly larger at t = 1.125 Tijge than at 1 = 1.375 Tiige.
Combined with the above argument about the arrow of time,
this explains why the mesh used at time t = 1.375 Tijqe is S0
much coarser than that at t = 1.125 Tiige. At t = 1.375 Tiide
and t = 1.5 Tijge, the pre-specified maximum metric magni-
tude is being imposed within the turbine footprints.

One possible suggestion for much of the mesh resolution
being concentrated upstream of the first two columns of tur-
bines is that they may form the highest contributions to the
Qol, E r. However, we tested adaptation with respect to E 3
and Eps (i.e. the third and fifth columns being the only ones
that contribute to the Qol) and found the mesh patterns to
be similar to those of Fig. 7. (Results not shown due to their
similarity.) As such, the first two columns having the highest
contributions cannot be the main explanation for why res-
olution is distributed this way. A better explanation is that
we have a strongly advection-dominated problem, whereby
the accurate capture of upstream hydrodynamics evolution is
required to represent the operation of the entire farm.

3.4.2 Anisotropic metric

Now consider the application of anisotropic goal-oriented
mesh adaptation. Figure 9 shows the corresponding velocity
and adapted mesh snapshots. Again, we do not show the plots
for the aligned configuration because they follow a similar
pattern.

Some of the features observed under isotropic adapta-
tion appear again under the anisotropic metric. For example,
significant resolution is focused upstream of the first two
columns at t = 1.125 Tijge. In addition, the metric appears to
be controlled purely by the minimum imposed magnitude at
t = 1.5 Tijge. Further, the bottom right plot in Fig.4 shows
that the anisotropic approach does not dedicate resolution
for the purpose of capturing the vortex structures that are
apparent in the fixed mesh simulation of the staggered con-
figuration. It is not surprising that the anisotropic adapted
meshes have some similarities to the isotropic ones, since
the metrics that they are constructed from are scaled by the
same error indicator. However, there are also some notable
differences, as described in the following.
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Isotropic adaptation

Anisotropic adaptation

Fig.8 Adapted meshes used at t = Tijqe in the staggered configuration (no zoom)

At t = Tide, the spun-up hydrodynamics are interpolated
as an ‘initial condition’. Accordingly, the mesh associated
with the first subinterval is adapted so that these hydrodynam-
ics may be accurately captured. Moderate mesh resolution is
also deployed over the domain at other timesteps, such as
at t = 1.375 Tiiqe, where there is more downstream resolu-
tion than in the isotropic case. These features are inherited
from the curvature of the forward solution, which does not
contribute to the isotropic metric.

Another key difference is that the meshes are more
anisotropic, as expected. Where high mesh resolution is
deployed, it typically comes with moderately anisotropic
elements. In particular, anisotropic elements are used in
alignment with the wakes of the first and second turbines.
The maximum aspect ratio is typically an order of magni-
tude greater than observed in the isotropic case.

Finally, whilst the isotropic mesh at + = 1.375 Tjjge is
effectively defined by the minimum imposed magnitude, the
corresponding anisotropic mesh retains much of the struc-
ture from previous meshes. Again, this is likely due to the
inclusion of the Hessian of the forward solution in the met-
ric formulation. As discussed in Appendix 1, the Hessian is
normalised in space. This means that minor variations in the
curvature of the velocity and free surface elevation fields get
picked up and in some cases result in structures within the
adapted meshes.

3.4.3 Computational cost comparison

There are a number of ways to measure the computational
cost of an adaptive simulation. Here, we focus on one that
is directly related to the sequence of adapted meshes (DoF
count statistics) and one related to a given simulation (run-
time).

DoF count

Figures 7 and 9 only provide a sample of snapshots and
do not show the aligned array case at all. To give a sense
of what the missing meshes are like, Fig. 10 presents DoF
counts for the meshes associated with each subinterval in
both configurations.

Interestingly, the left-hand plot shows how the DoF counts
of an isotropic adaptive simulation mimic the total power out-

@ Springer

put, to some extent, in the aligned configuration (c.f. Fig.2).
That s, the DoF count starts relatively low, increases to a peak
around ¢ = 1.15 Tj;qe and then decreases. The staggered case
is similar, but has a later peak, at around t = 1.2 Tijge. The
plot highlights that the coarse meshes used towards the end
of the isotropic adaptive simulation arise from metrics that
are effectively defined by the minimum tolerated magnitudes
(c.f. Fig. 7). These meshes reach a plateau of around 74,000
DoFs for both configurations.

The right-hand plot shows that the DoF counts in the
anisotropic adaptive simulation take a rather different form;
there is no clear pattern, except that the adaptive meshes
start off with around 300,000 DoFs and lose overall resolu-
tion at some point in the following eighth-cycle. DoFs are
more evenly distributed in time for the anisotropic metric
because resolution is dedicated to capturing flow features of
the forward solution, as well as prescribing element sizing
according to the goal-oriented error estimate.

Table 3 summarises some key statistics associated with the
DoF count patterns presented in Fig. 10, reiterating that the
isotropic adapted meshes have both wider ranges and vari-
ance in DoF count. Given that all of the simulations use the
same target space—time metric complexity, we would expect
the total DoF counts to be comparable. The values stated in
the table are indeed comparable across configurations, but
the isotropic runs have significantly more DoFs overall than
the anisotropic ones. The reason for this is that the minimum
and maximum metric magnitudes are applied after space—
time normalisation, so the last twelve or so isotropic meshes
in the sequences have more DoFs than would otherwise be
the case. The equivalent DoF counts for the fixed mesh sim-
ulations are also included in Table 3, for reference.

Runtime

Whilst the above DoF count statistics allow us to compare
the different ways in which the adaptive methods distribute
resolution in time and space, they do not account for any of the
fixed point iterations before convergence, nor do they account
for additional costs such as solving the adjoint equation or
recovering derivatives. In practice, application scientists are
often much more interested in the time taken to run the adap-
tive simulation.
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Fig. 10 Adaptive mesh DoF
counts as a function of time,

Isotropic adaptation

separated by configuration

1 Aligned

Anisotropic adaptation
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Z:?lllerzn D‘gz(ioigrtlsia;glcs for Fixed mesh Isotropic Anisotropic
‘standard deviation’ Aligned Staggered Aligned Staggered Aligned Staggered
Minimum 2,156,130 2,149,938 72,837 73,251 122,940 118,485
Maximum 2,156,130 2,149,938 719,838 647,001 326,412 304,254
Mean 2,156,130 2,149,938 238,463 237,526 216,345 217,696
Std 0 0 198,265 175,297 60,503 47,061
Total 2.156bn 2.150bn 0.238 bn 0.238 bn 0.216bn 0.218 bn

The ‘total’ DoF count is simply the sum over all meshes and all timesteps and is shown in billions, to three

decimal places

The mesh adaptation toolkit used in this work does not
support parallelism for 2D problems. As such, all of the
results presented in this work come from experiments run
in serial. A typical uniform mesh simulation was found to
take 15h to complete on a Intel® Core™ i7-10750H CPU
@ 2.60GHz. With isotropic adaptation, convergence was
achieved after five fixed point iterations in around 11h for
the staggered configuration. Note that each iteration involves
solving the shallow water equations over 40 subintervals
and then solving the equations and their adjoint over the
subintervals in reverse, plus the timing includes a final for-
ward run on the converged adapted meshes. As such, the
isotropic adaptive run contains a total of 11 forward solves
and five adjoint solves. The same is true under the anisotropic
approach, which also converges after five fixed point itera-
tions. In that case, the total runtime was around 13h. Of
course, the main reason that the adaptive simulations are
able to complete sooner than the fixed mesh approach is
because the dimensions of the underlying linear systems are
typically significantly smaller and are therefore amenable to
rapid numerical solution.

In terms of the relative costs of each component of one
typical fixed point iteration of the mesh adaptation routines,
we find that solving forward in time to generate checkpoints
takes around 28.6% and then the forward solves on each
subinterval to record the associated operations takes around
31.7% in total. The small increase is because the former skips
the final subinterval and there are some minor costs associ-
ated with the annotation for the latter. The adjoint solves are
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found to take 33.6% altogether. Finally, the metric construc-
tion takes 2.6% and the calls to the mesh adaptation toolkit
around 0.8%. As such, we find that the cost of the goal-
oriented mesh adaptation routine is dominated by the forward
and adjoint solves and the contributions from metric con-
struction and adaptation are minor. The costs associated with
forward and adjoint solves can be straightforwardly reduced
by introducing parallelism.

Note that the cost of the metric construction step would
not necessarily be so small if a different method were used
to evaluate error indicator (12) than the difference quotient
formulation (14). If the indicator were instead represented
by approximating the adjoint solution in an enriched finite
element space, for example, then it is likely that the met-
ric construction step would take a significant proportion of
the runtime, due to the computationally expensive nature of
solving auxiliary PDEs and using enriched spaces.

3.4.4 Power contribution comparison

Recall the columnar power output curves shown in Fig.5.
Below the row of fixed mesh results, there are curves due
to isotropic adaptation in the middle row and those due to
anisotropic adaptation in the bottom row.

First, consider the aligned configuration (middle left and
bottom left). Despite the fact that even the adapted meshes
with highest overall size have less than a third of the high-
resolution fixed mesh element count, the power output curve
for the first column agrees well with the high-resolution fixed



Journal of Ocean Engineering and Marine Energy (2024) 10:193-216 211
:I:able 4 .Relatlve discretisation Configuration Run el (%) 2 (%) 3 (%) c* (%) C5 (%) F (%)
errors” in power output over a
single flood tide for both aligned 4y, Isotropic 1.7 18.4 34.6 45.0 428 24.9
and staggered configurations, . .
separated by array column Anisotropic 1.4 9.5 29.8 43.7 37.1 21.6
Staggered Isotropic 3.0 3.7 26.3 28.5 38.6 18.7
Anisotropic 1.5 3.0 22.2 34.4 40.0 18.8

Both isotropic and anisotropic goal-oriented adaptive results are shown, with the high-resolution fixed mesh
result to be “truth”. “Errors” are measured using the temporal L' norm (23)

mesh benchmark. The general trend of the second column’s
power output curve is also well represented, even though it
contributes the least. This is partly because its upstream con-
ditions are well resolved and partly because its variability is
fairly small. The anisotropic metric appears to capture the
power output timeseries for column 2 slightly better than
the isotropic one, as the latter contains more variability. The
power curves for columns 3—5 do not appear to be well cap-
tured for either metric. This is for a number of reasons. First,
the power curves of these columns are much more difficult
to capture than the first two columns because of the turbu-
lent conditions there, of which the high variability in those
curves is a symptom. Second, the target complexity is rela-
tively small for a problem of this size; if it were increased,
then it is likely that the mesh adaptation algorithm would
deploy more DoFs for the purpose of capturing columns 3-5.

Now consider the staggered configuration (middle right
and bottom right). Again, the timeseries are well repre-
sented for the first two columns, despite the fact that even
the finest adaptive mesh instance has fewer than a third as
many elements as the mesh used throughout the fixed mesh,
high-resolution run. In this configuration, the second col-
umn is accurately modelled because of the close to laminar
flow which it experiences, meaning that the timeseries has
little variability. For the target metric complexity used in this
work, the timeseries associated with the downstream turbines
are less well captured. Like in the aligned case, there are a
number of reasons, including the smaller contribution to the
total energy output and the difficulty of representing turbu-
lent phenomena numerically.

Table 4 provides quantitative evidence to support the claim
that the trends of the first and second columns are better
captured by mesh adaptation than the downstream ones. It
also confirms that the anisotropic approach does a better job
of capturing the second column in the aligned configuration.
In the table, this is measured by the relative L' “error” for
the power output of each column, where the output of the
high-resolution fixed mesh run is held to be “truth”. That is,

H Por (g% H i

o Po (g — Por (™) dr

= - - , (23)
S| Pex (qfixed)| dr

Istart s fend 1)

where Ppi (q*9%PY) and P« (q*¢d) are the power outputs of
column C¥ C F generated in a given adaptive run and in the
corresponding fixed mesh benchmark, according to formula
(8). We use the L! norm because of its close relation to energy
output—the Qol—for strictly positive quantities.

The errors for the two array configurations follow a similar
pattern, in that the error is lowest in the first two columns
and increases downstream. It should be noted that the energy
outputs being higher in the staggered case means that the L'
norms on the denominators will be larger. This is at least part
of the reason why the errors over the whole farm are smaller
for that configuration.

3.4.5 Energy contribution comparison

The above assessment of the ability of adaptive methods to
accurately evaluate power output is interesting, but this is not
actually the goal of the adaptation approach. For the purposes
of this paper, it is the time integral—energy output—which is
of primary interest. Table 5 breaks down the contributions to
the energy output from each run column-wise. In this format,
the contributions from each column are clearer. Different
aspects of the comparison are discussed in the following.
Before comparing the adaptive methods, we note that
the final column of Table 5 shows clearly that array stag-
gering yields a significantly higher overall energy output
than an array whose rows are aligned both internally and
with the direction of flow. This occurs because the staggered
array blocks the flow more and—because the channel is rela-
tively narrow—there is more artificial blockage than with the
aligned array, leading to a heightened energy output. Stagger-
ing leads to increases of 81%, 68 % and 65% in the fixed mesh,
isotropic and anisotropic runs, respectively. This increase is
consistent with studies in the literature, such as Draper and
Nishino (2014). However, the proportions reported here are
higher than the 54% increase reported in Divett et al. (2013).
There are a number of possible reasons for this. First, the
increase is computed over [Tiige, 1.5 Tiige] here (not includ-
ing spin-up), whereas it was computed over [0, 2 Tijqe] in that
paper. Second, there are a number of differences in the model
configuration and discretisation between that work and the
present one. For example, in the previous work, the linearised
shallow water equations are solved numerically using a finite
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Table 5 Energy output by array

H 1 2 3 4 5
column over a single flood tide, Configuration Run c C C c C +
for both aligned and staggered Aligned Uniform mesh 2.75 0.82 1.76 127 1.48 8.07
configurations. High-resolution .
(fixed mesh) results are shown, Isotropic 2.73 0.79 1.39 1.52 1.52 7.93
alongside both isotropic and Anisotropic 2.72 0.80 1.51 1.58 1.46 8.07
anisotropic goal-oriented Staggered Uniform mesh 3.07 3.61 2.49 247 2.98 14.62
adaptive runs. .
Isotropic 3.06 3.54 2.23 2.19 2.30 13.33
Anisotropic 3.06 3.57 227 2.15 2.25 13.30
All values have units of MW h
Table 6 lefer.ences 1n energy Configuration ~ Run c! c? a ct e’ F
output over a single flood tide
for both aligned and staggered Aligned Iso. — Fixed —09%  —41% —21.1% 19.7% 29% 1%
configurations, separated by . )
array column Aniso. — Fixed —1.2% —2.1% —13.9% 24.5% —1.1% —0.0%
Iso. — Aniso. 0.3% —2.0% —7.3% —4.8% 4.0% —-1.7%
Staggered Iso. — Fixed —0.2% —1.8% —10.7% —11.3% —22.6% —8.8%
Aniso. — Fixed  —0.1% —1.0% —9.1%  —132%  —24.5% —9.0%
Iso. — Aniso. —0.1% —0.8% —1.6% 2.0% 2.0% 0.2%

Various comparisons are made between the high-resolution fixed mesh runs and the corresponding isotropic
and anisotropic goal-oriented adaptive results. In each case, the values are normalised by the energy output
value from the corresponding fixed mesh run. ‘Iso.” and ‘Aniso.” stand for isotropic and anisotropic adaptation,

respectively

volume method with an adaptive timestep, whilst here we
solve the nonlinear shallow water equations using a DG finite
element method with a fixed timestep.

The adaptive mesh energy output values appear to be
fairly consistent with those due to the fixed mesh, at least
for the first two columns. The differences are made clearer
in Table 6, which makes a number of comparisons. The
‘Iso. — Fixed’ and ‘Aniso. — Fixed’ rows comparing adap-
tive mesh energy outputs with the high-resolution fixed mesh
runs can be interpreted as “discretisation errors”, in the sense
that the fixed mesh runs can be viewed as benchmarks. These
rows reveal that, from the standpoint of accurately evaluating
energy output, both adaptive methods give consistent results
to using fixed meshes in both configurations. In particular,
despite having much lower DoF budgets, they are able to give
“errors” as low as 8.8-9.0% in the staggered case and 0.0-
1.7% in the aligned case. Remarkably, the anisotropic metric
is able to match the aligned array energy output calculation
using only a tenth of the DoFs overall (c.f. Table 3) and in
less CPU time.

The fact that both adaptive approaches are more consistent
with the benchmark run in the aligned case can be gleaned
from Fig.5; in the left-hand plots, at least the magnitudes of
the downstream power timeseries are well captured, whereas
in the right-hand plots they are largely underestimated. It is
not entirely surprising that the performance is worse for the
staggered array because the flow is more turbulent overall
(c.f. Fig.4) and, therefore, more difficult to model numeri-
cally.

@ Springer

Negative signs in the table indicate underestimates, whilst
positive signs indicate overestimates. Therefore, it appears
that the adaptive methods have a tendency to underestimate
the Qol. This is not surprising, because each adaptive mesh
simulation involves 40 mesh-to-mesh interpolation steps and
the method we use for this is known to have a diffusive effect
(Farrell et al. 2009).

It should be noted that all of the relative differences in
energy output presented in Table 6 are smaller in magni-
tude than the relative L! errors in power output presented
in Table 4. This is to be expected, because the former mea-
sures errors between two integrated quantities, whereas the
latter measures errors between two timeseries in an inte-
gral norm. The upshot is that—as has been observed—the
power output curves may not always be well matched by
the goal-oriented adaptation method, but the resulting energy
output approximations are still good. Under a different (hypo-
thetical) adaptation scheme, highly accurate power output
approximations would imply accurate energy output esti-
mates. However, achieving this would likely require the
deployment of many more DoFs, increasing the computa-
tional cost significantly. Goal-oriented mesh adaptation has
one objective: evaluate the energy output accurately at low
cost; we argue that this objective is achieved and that it
would be unreasonable to expect it to provide equally accu-
rate power output estimates as a by-product.

Table 6 also contains ‘Iso. — Aniso.” rows, which show
the difference between the two adaptive runs, normalised by
the corresponding fixed mesh value. The final column shows
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that, even though the two adaptive meshes distribute reso-
lution very differently across the space—time domain, they
are remarkably consistent in their energy output prediction,
especially for the staggered configuration. There are some
columns where they differ, but these differences are offset so
that the overall value is similar. Again, this highlights the fact
that the goal-oriented approach seeks to accurately estimate
the energy output of the whole farm, not some subset of it.

Recall Fig. 6, which shows differences in inflow velocities
between the aligned and staggered configurations. Table 7
accounts for these differences by normalising the power out-
put at each timestep by the ambient theoretical power that
would be generated by a single tidal turbine (using formulae
from Kramer and Piggott (2016)). The normalised energy
outputs for the first column are now more consistent. Lower
values are reported than the combined output of three individ-
ual turbines. This is because the ambient theoretical values
do not include the drag effects of the turbines, which are
of course significant. The overall agreement between fixed
mesh and adaptive runs remains similar after normalisation,
although the influence on individual columns varies.

After applying normalisation, the increases in energy out-
put going from the aligned configuration to the staggered
configuration become 23%, 15% and 21% for the fixed mesh,
isotropic and anisotropic runs, respectively—much smaller
than the 81%, 68% and 65% reported before normalisation.
Given that the increased tidal influx shown in Fig. 6 is largely
due to the constrained nature of the channel domain, we
expect that the effect of array staggering be less significant
in more open domains.

3.5 Potential extensions for the tidal array test case

The numerical experiments in this paper provide some key
extensions to the preliminary work in Wallwork et al. (2022),
which applied goal-oriented mesh adaptation techniques to
the idealised tidal array test case introduced in Divett et al.
(2013). These extensions include the consideration of array
staggering, the use of anisotropic metrics and the effect of
choosing Qols based on individual columns, as opposed to
the whole array. However, there are still a number of avenues
of investigation that would be beneficial for future research,
as detailed in the following.

Convergence analysis experiments would also be extremely
useful. By gaining an understanding of the relationship
between the accuracy of mesh adaptive methods and the asso-
ciated computational cost, we would be able to quantify the
improvement that is to be obtained by moving from the fixed
mesh case. We would hope to see improved accuracy, for a
similar computational cost.

So far, goal-oriented mesh adaptation has only been
applied over a single flood tide. It would also be interest-
ing to see how the adaptation algorithms act to deploy mesh

resolution over a sequence of flood and ebb tides. In partic-
ular, would the DoF count become periodic in the same way
that the power output is?

4 Conclusion

This paper provides important extensions to Wallwork et al.
(2022), which was the first published work to use goal-
oriented mesh adaptation to simulate time-dependent hydro-
dynamics within a tidal array. In particular, we consider the
effects of array staggering on power and energy output, com-
pare the isotropic adaptation approach from that paper with
an alternative anisotropic one and make detailed investiga-
tions on the different ways in which mesh resolution is used
to capture important features of the flow.

4.1 Effects of array staggering

We focus on the same idealised fifteen turbine array test
case introduced in Divett et al. (2013), where four different
configurations of the turbines were considered. In addition
to the ‘aligned’ configuration considered in Wallwork et al.
(2022), we examine another configuration where the columns
of turbines are ‘staggered’. The results of our numerical
experiments indicate that this staggering is beneficial in terms
of yielding increased energy output, which is in agreement
with the literature (Divett et al. 2013; Draper and Nishino
2014). Within our investigation, we observe that this is at
least in part due to there being increased velocity across the
inflow boundary in the staggered configuration. We argue
that the constrained nature of the channel domain exacer-
bates the amount of energy that the staggered array is able
to extract from the flow, leading to there being a greater tidal
influx, so that the boundary conditions may be satisfied. If
the power output values are normalised by the theoretical
ambient power that would be generated by turbines experi-
encing the full inflow velocity then the increased output due
to array staggering is less significant. As such, we expect the
increased energy output due to array staggering to be smaller
for arrays positioned in more open domains.

4.2 Comparison of goal-oriented approaches

Section 2.2 describes a framework for goal-oriented error
estimation and mesh adaptation, including two approaches
that give rise to isotropic and anisotropic adapted meshes.
These methods are applied to the idealised tidal array sce-
nario in Sect. 3.4, with the aim of accurately assessing its
energy output. We investigate how each approach deploys
mesh resolution across space and time in order for this aim to
be achieved. We find that there is a tendency for the adaptive
methods to place resolution surrounding and upstream of the
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Table 7 Normalised energy

Configuration Run c! c? a ct o F
output by array column over a
single flood tide, for both Aligned Uniform mesh 1.18 0.68 1.03 091 0.82 461
aligned and staggered .
configurations Isotropic 1.18 0.65 0.93 0.87 0.84 4.47
Anisotropic 1.17 0.64 0.97 0.92 0.82 4.52
Staggered Uniform mesh 1.21 1.32 1.03 0.95 1.15 5.65
Isotropic 1.21 1.30 0.89 0.85 0.91 5.16
Anisotropic 1.21 1.33 0.94 0.97 1.04 5.49

High-resolution (fixed mesh) results are shown, alongside both isotropic and anisotropic goal-oriented adaptive
runs. Values from Table 5 are divided by the ambient theoretical power output of a single turbine experiencing
the full inflow velocity at the same y-coordinates

first two out of the five columns of turbines. This is believed
to be due to the advection-dominated nature of the problem,
meaning that accurate capture of downstream hydrodynam-
ics is predicated by that of the upstream conditions.

Using the high-resolution fixed mesh runs as benchmarks,
we make detailed comparisons between the power and energy
output estimates due to the adaptive methods, both over the
whole array and column-wise. Despite the fact that the adap-
tive simulations we present have only a tenth of the DoFs
overall compared with the fixed mesh benchmarks and ter-
minate in shorter overall runtime, they are found to give rise
to energy output errors smaller than 10% in the staggered
configuration and smaller than 2% in the aligned configu-
ration. The larger errors in the staggered configuration are
believed to be due to the difficulty of numerically modelling
its more turbulent dynamics. In addition, we find that, whilst
the isotropic and anisotropic goal-oriented mesh adaptation
methods often distribute resolution quite differently and the
latter uses elements with aspect ratios an order of magnitude
higher, the energy output estimates over the whole array are
highly consistent.

4.3 Outlook

A number of potential extensions for the specific test case
considered in this paper are suggested in Sect. 3.5. More gen-
erally, we plan to apply the goal-oriented metric-based mesh
adaptation framework to more complex problems. In partic-
ular, it would be beneficial to investigate to what extent the
results obtained in this work extend to real-world scenarios
with spatially varying bathymetry and realistic tidal forcings.
For example, it would be beneficial to apply adaptive meth-
ods to seek accurate energy output comparisons for proposed
tidal power infrastructure projects. In realistic applications,
additional physics will come into play such as the Coriolis
force, wind shear stress and vertical variations in fluid motion
(e.g. due to turbine rotation). Additional terms were omitted
in this study due to the confined nature of the domain and the
idealised structure of the case studies that aimed to showcase
the value of mesh adaptation.

@ Springer

Whilst the metric-based mesh adaptation approach is
motivated by its ability to produce truly multi-scale discreti-
sations, this feature is not used to its full extent in this work
due to the localised nature of the tidal array test case. For
realistic scenarios with tidal arrays positioned within greater
coastal ocean domains, there would be a more opportunity to
benefit from the generation of multi-scale adaptive meshes.

Finally, it is plausible that the integration of mesh adapta-
tion techniques such as those described in this paper could be
used to accelerate design optimisation calculations for tidal
turbine arrays (Funke et al. 2014; Culley et al. 2016; Piggott
et al. 2022). Moreover, in the case of goal-oriented mesh
adaptation methods and adjoint/gradient-based optimisation
methods, it is possible to improve computational efficiency
by only solving the adjoint equation once and then using the
result to compute both the error indicator (for mesh adapta-
tion) and Qol gradient (for optimisation).

Author Contributions Joseph G. Wallwork: Conceptualisation, Method-
ology, Formal Analysis, Investigation, Writing—Original Draft, Writing—
Review and Editing, Software, Visualisation. Athanasios Angeloudis:
Methodology, Writing—Review and Editing. Nicolas Barral: Resources,
Methodology, Writing—Review and Editing. Lucas Mackie: Method-
ology, Writing—Review Editing. Stephan C. Kramer: Methodology,
Writing—Review and Editing. Matthew D. Piggott: Methodology,
Writing—Review and Editing, Supervision, Funding Acquisition.

Funding This work received funds from the Engineering and Physical
Sciences Research Council [grant numbers EP/L0O16613/1, EP/R029423/1].
Support is also acknowledged from the embedded CSE programme
of the ARCHER?2 UK National Supercomputing Service (http://www.
archer2.ac.uk).

Availability of data and materials Data are available upon request.

Code availability The specific versions of Firedrake, Thetis and their
dependencies used are archived at Firedrake development team (2022)
and Thetis development team (2022). Simulation code used to perform

all numerical experiments and generate all plots is archived at Wallwork
(2022b).

Declarations

Conflict of interest The authors have no conflict of interests to declare.


http://www.archer2.ac.uk
http://www.archer2.ac.uk

Journal of Ocean Engineering and Marine Energy (2024) 10:193-216

215

Ethics approval Not applicable.

Consent to participate All authors have provided their consent to par-
ticipate in this study.

Consent for publication All authors provide consent for publication of
the present work.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A Derivative recovery

The goal-oriented error estimator (14) and anisotropic metric
(18) used in this work make use of second derivatives of
fields that are approximated in 1 pg space, i.e. are not twice
continuously differentiable. As such, this information must
be obtained in an approximate sense using a recovery method.

We opt to use two applications of L? projection, first
projecting the finite element gradient into vector-valued
L? space and then projecting the gradient of the result
into matrix-valued L2 space. In detail, let f € Plpg
denote the scalar field which we seek to recover second
derivatives for. Taking one finite element gradient gives
a (vector-valued) PO field. We apply L? projection such
that we recover a (vector-valued) Pl approximation to
the gradient of f. Taking another finite element gradient
gives a (matrix-valued) PO field. A final application of
L? projection then recovers a (matrix-valued) P1 approx-
imation to the Hessian of f, as required. In practice, we
perform the two projection steps simultaneously using a
mixed finite element method. Recovering the Laplacian
of f amounts to taking the trace of the recovered Hes-
sian.

Note that the Hessians of #, v and n computed using this
method do not necessarily have the same orders of magni-
tude. As such, we apply L° normalisation (see Loseille and
Alauzet (2011a)) to each of them before combining them
using metric intersection (see Pain et al. (2001)) to obtain a
single Hessian for the forward solution tuple.

For the purpose of recovering the first derivative required
for calculating fluid vorticity (22), we apply a single L? pro-
jection.

Appendix B Software

As mentioned in Sect. 2.1, the shallow water equations are
solved using the Thetis coastal ocean model (Kérni et al.
2018) in this work—a discontinuous Galerkin package, built
using the Firedrake finite element library (Rathgeber et al.
2016). Whilst Firedrake is a Python package, it automatically
generates C code and uses PETSc (Balay et al. 2019, 2021)
to solve linear and nonlinear systems. It also enables the
solution of adjoint problems in the discrete sense using dolfin-
adjoint (Farrell et al. 2013). Support for mesh-to-mesh solu-
tion transfer by conservative interpolation is provided by lib-
supermesh (Farrell and Maddison 2011). The Pyroteus goal-
oriented mesh adaptation toolkit (Wallwork 2022) is used to
handle the mesh adaptation fixed point iteration loop, includ-
ing the solution of forward and adjoint problems across mul-
tiple meshes, with the mesh adaptation step itself done using
Mmg (Dobrzynski and Frey 2008; Wallwork et al. 2022).
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