Journal of Ocean Engineering and Marine Energy (2023) 9:113-124
https://doi.org/10.1007/s40722-022-00247-w

REVIEW ARTICLE ")

Check for
updates

Research progress and prospects of gliding robots applied in ocean
observation

Baogiang Tian'(® - Jiawei Guo' - Yunbo Song? - Yaojian Zhou3 - Zhantang Xu* - Lijun Wang'

Received: 22 May 2021 / Accepted: 27 June 2022 / Published online: 15 July 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

Ocean observation is the prerequisite for the human to cognize and develop the ocean. Most autonomous ocean-observation
platforms (AOOPs), for their limited endurance, cannot cope with the further application in large range and long-term marine
operations. Gliding robots have become one category of the most powerful platforms in ocean observation for their super
endurance, with marine renewable energy acquisition or new driving modes. This paper starts with the comparation of the
performance characteristics of several typical AOOPs, and introduces the definition and classification of the gliding robots
according to their certain features. The research progresses of each gliding robot to date are discussed, including underwater
glider, wave glider and multifunction hybrid glider. The prospects for the future development of related technologies in gliding
robots are also represented in this paper, which will provide a reference for novel AOOPs’ construction and application selection
in ocean observation, based on carrying different sensors.

Keywords Autonomous ocean-observation platforms - Gliding robots - Ocean observation - Endurance - Marine renewable
energy

1 Introduction must have certain intelligence to complete the marine data

collection automatically following the given instructions, and
With the deepening of the marine scientific research, AOOPs send the data to offshore monitoring center through wireless
are required to have higher performance. On one hand, they = or satellite communication mode. On the other hand, for these
platforms, the strong endurances are principal elements in
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Table 1 Summary table of performance characteristics of different AOOPs

AOOPs Working time Working range

Measured water Cost Example pictures

Manned submersible Hours to days Few to tens of kms

AUV Hours to days Tens to hundreds kms

ROV Days to months Tens to hundreds kms

Underwater glider Weeks to years

Wave glider Months to years

kms

Hundreds to thousands kms

Thousands to tens of thousands

Surface and deep water Very high

TR

<
Deep water High
Deep water High
Deep water Low
Surface water Low

AOOQOPs (such as manned submersible, AUV, etc.), are gen-
erally equipped with the batteries as their power supply, so
their endurance is mainly significantly affected by the bat-
tery capacity. The power consumed by ROV, is provided by
the mother ship over the tether, so the length of the tether
greatly affects the operating range of the ROV. Meanwhile,
the adoption and logistics of mother ships will increase the
application costs.

However, underwater glider was driven by buoyancy
change, and can achieve zigzag movement in the ocean ver-
tical profile. Simultaneously, wave glider is a new type of
unmanned surface vehicle, obtaining the driving force from
the wave energy and supplying the electric energy through
the solar power. In addition, these two types of AOOPs have
become important ocean-observation platforms, due to their
advantages of strong endurance.

2 Definition and classification of the gliding
robots

Compared to the traditional propeller-driven ocean robots
(such as AUV and ROV, etc.), the gliding robots applied in
ocean observation are one category of ocean robots with no
external propeller, and get the driving force through the inter-
action between their own wing plates (or shell) and water.
When the gliding robots move at a velocity V relative to
the water (under the wave excitation or buoyancy change), a
certain attack angle « will be formed between the velocity
and water. So the wing plates (or shell) will be subjected to
hydrodynamic lift L and drag D, and the combined effect of
these two forces will always generate a horizontal forward
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force, called driving force F, as shown in Fig. 1. Under the
action of the driving force Fy, the gliding robots can keep
moving forward and computation formulas of each force can
be expressed as follows (Georgiades et al. 2009; Tian et al.
2014a, b):

L =05pV?S,CL(a), )
D =0.5pV28,Cp(a), ()
Fy = Dsinf + L cos 88, (3)

where, V is the water velocity relative to the wing plate (or
shell), B is the angle between the velocity V and the Z axis,
p is water density, Sy, is the area of wing plate or shell, « is
the attack angle, Cp, («), Cp () are the lift coefficient and
drag coefficient respectively.

The current types of gliding robots applied in ocean
observation generally consist of three categories: underwater
glider, wave glider and multifunction glider. On the structure,
the underwater glider is a monomer structure, while the wave
glider and multifunction glider is a couple or multi-body
structure. In the aspect of energy acquisition, underwater
glider has three types of electric-driven, solar-powered, and
thermal energy; wave glider only uses wave energy and
solar energy as its own energy source; and multifunctional
hybrid glider, as a new combination of the two gilders men-
tioned above, can make the comprehensive utilization of
wave energy, solar energy and buoyancy-driving mode. From
the perspective of technology maturity, the underwater glider
appeared first, followed by wave glider. These two robots
have been tested and verified by a large number of marine
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Fig. 1 Motion principle of
gliding robots: a force diagram
when gliding robots rises; b force
diagram when gliding robots falls
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experiments, and have been commercialized. Multifunction
glider, with more diverse functions, is still in the concep-
tual design stage in recent years, based on the technology of
underwater glider and wave glider.

3 Research progress of gliding robots
3.1 Underwater glider

The original concept of underwater glider was proposed by
Stommel in 1989, as a buoy gliding to investigate marine
environment (Stommel 1989). Its movement function is real-
ized by the cooperation of the internal buoyancy adjustment
subsystem and attitude control subsystem (including roll con-
trol subsystem and pitch control subsystem), with zigzag
and spiral motion trajectory. As shown in Fig. 2, when the
underwater glider receives diving instruction from ashore
monitoring center through the wireless or satellite commu-
nication, the motor in pitch control subsystem will drive the
internal mass (usually the battery) to move forward a cer-
tain distance, resulting in its center of gravity forward, with
the state of bow down and tail up. Meanwhile, the oil pump
in buoyancy adjustment subsystem will press oil from out-
side bladder to inside bladder, resulting in its displacement
volume becoming smaller, so its buoyancy will be less than
gravity and it will dive in the water. During the diving process,
hydrodynamic lift and drag force will be generated due to the
attack angle o between its wing plates (or shell) and water
flow, and the underwater glider will get a forward driving
force from the horizontal component of hydrodynamic lift
and drag force. When the underwater glider glides to a cer-
tain depth, the motor in pitch control subsystem will drive
the internal mass (usually the battery) to move backwards
a certain distance, with the state of bow up and tail down.
Meanwhile, the oil pump in buoyancy adjustment subsystem

Table 2 Main parameters of typical underwater glider (Rudnick et al.
2004; Wood and Mierzwa 2013)

Underwater Spray Seaglider Slocum

glider

Length (m) 2 1.8 2.15

Diameter (m) 0.2 0.3 0.22

Net weight (Kg)  51.8 52 52

Average 0.25-0.3 0.25 0.35
velocity (m/s)

Depth capacity 1500 200-6000 30-1500
(m)

Endurance 330 days, 10 months, 1 year,

4800 km 4600 km 6000 km

Carrying 35 5 4
capacity (Kg)

Cost $50,000 $70,000 $70,000

will press oil from inside bladder to outside bladder, making
the underwater glider come-up. During its come-up process,
the generation of driving force is similar to the diving pro-
cess above. It can been seen in Fig. 2, that no matter in the
come-up or diving process of underwater glider, the direction
of the driving force is always forward.

After decades of underwater glider’s development, many
research achievements have been made around the world.
The United States has developed Spray, Seaglider, Slocum,
and other types of underwater glider (Eriksen et al. 2001;
Sherman et al. 2001; Webb et al. 2001), with main parame-
ters as shown in Table 2. In addition, France, Canada, Japan,
and South Korea and China have also carried out research
work and made important progress related to underwater
glider (Yu et al. 2013; Zhang et al. 2013). With the differ-
ent sensors deployed on gliders, it has been widely applied
in many aspects of the marine scientific research, such as
marine climatology research (Rudnick et al. 2017), oceanic
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parameters measurement and marine data acquisition (Vin-
cent et al. 2018; Zhang et al. 2018), marine wind speed
estimation (Cauchy et al. 2018; Cazau et al. 2019), inter-
nal solitary waves observation (Todd 2017), kuroshio with
an anticyclonic eddy (Liu et al. 2019), observing irregularly
shaped warm eddy (Qiu et al. 2019), mapping the under-
side of an iceberg (Zhou et al. 2019), etc. According to the
different driving energy sources, underwater gliders can be
divided into three types of electric-driven, solar-powered and
thermal underwater glider, but their basic motion principles
are completely similar.

3.1.1 Electric-driven underwater glider

At present, electric-driven underwater gliders are the most
mature in the technology and market, and the most widely
used in ocean environment observation, such as Spray,
Seaglider etc. The high energy density batteries (most lithium
battery) was usually used as its power supply for the entire
system, including electronics and motors of the buoyancy
control system and attitude control system, electronic con-
trol system and communication system etc. Figure 3 shows
that seaglider has main battery pack and forward battery
pack as its electric energy supply, where the main battery
pack was also used as internal mass to adjust its center of
gravity to control its attitude (Osse and Eriksen 2007). With
the progress of battery technology, their endurance has got
improved, roughly in the weeks and months.

3.1.2 Solar-powered underwater glider

Solar energy is taken as the inexhaustible, renewable, green
and clean energy (Letcher 2008), which generally refers to
the radiant energy of sunlight. The solar energy applied in
underwater glider is helpful to solve the problem of the power
supply. Solar-powered underwater gliders can transform the
solar energy into electric energy through their own solar pho-
tovoltaic system, and store the electric energy in the battery,
which will significantly improve their endurance to success-
fully complete the large range and long-term ocean missions.
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Due to their unique driving principle and motion mode, Solar-
powered underwater gliders can only achieve the conversion
of solar energy to electric energy at the off working state.
Firstly, it is necessary to monitor the power status of the
gliders’ battery by the ashore monitoring center. Then when
their batteries are insufficient and need to charge, the solar-
powered underwater gliders will receive the order to stop
diving in the water again, and adjust their attitude to the level
state to achieve charging on the water surface.

Considering the influence of laboratory environment on
the solar power supply system, an experimental platform of
solar-powered underwater glider, SORA, was established by
Masakazu Arima, etc. from Osaka Prefecture University in
Japan, which can demonstrate the possibility of solar energy
application in the underwater glider (Arima et al. 2011;
Arima and Tonai 2012), as shown in Fig. 4a. Whereafter,
to monitor shallow coral reefs, a solar-powered underwater
glider, Tonai60, was developed by Arima’s team. This plat-
form is capable of diving 60 m and can able to obtain water
environment information (water depth, temperature, salin-
ity, etc.) and water quality parameters (chlorophyll, turbidity,
etc.), by the sensors on board, such as camera, compass and
an environmental data logger (Arima et al. 2014a, b; Arima
et al. 2014a, b).

3.1.3 Thermal underwater glider

The thermal energy refers to the thalassothermal energy
stored by the temperature difference between surface and
deep ocean water. The ocean is irradiated by the sun, with
the sea surface (20-30 °C) and the deep-sea (3—10 °C) (Cai
2016). The solar radiative energy rapidly decreases as the
ocean depth increases, where only 1% of radiative energy
can reach the water with depth of more than 10 m. Con-
sidering the glider moving in the ocean vertical profile, the
thermal energy can be used as one of the power sources for
underwater gliders.

The thermal underwater glider, first developed by Webb
Research, uses a thermal engine system to obtain propul-
sion from the ocean thermocline, which provides an adequate
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Fig. 3 Electric-driven underwater
glider, seaglider (Osse and
Eriksen 2007)
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Forward Battery

Fig. 4 Solar-powered underwater
glider: a SORA (Arima et al.
2011); b Tonai60 (Arima et al.
2014a, b)

change in buoyancy of the vehicle with constant mass to
enable it to ascend or descend (Webb et al. 2001). The heat
collected by the engine changes the solid—liquid state of the
working fluid, which will help the glider achieve a change
in volume (or buoyancy). The completion of the thermody-
namic cycle is divided into four stages, as shown in Fig. 5
As can be seen from Fig. 5a, the heat engine is in a sta-
ble thermal equilibrium state in warm surface water, and the
nitrogen gas is compressed. The buoyancy of the vehicle
is slightly greater than gravity, due to the expansion of the
outer bladder. As shown in Fig. 5b, after the three-way valve
is opened, the outer bladder and the inner bladder are con-
nected. The transfer fluid from the outer bladder flows into
the inner bladder, and the glider dives with the decrease of
buoyancy. When the vehicle reaches the cold water, the work-
ing fluid will begin to contract and the transfer fluid will flow
into the energy exchanger. As can be seen from Fig. 5c, when
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the three-way valve is opened again, the pressurized transfer
fluid will flow into the outer bladder and the vehicle will rise
with the buoyancy increasing. Figure 5d shows that when
the vehicle rises to warm surface water, the working fluid
melts and expands to absorbing heat, and the glycol flows to
replenish the accumulator. The vehicle returns to the initial
state in Fig. Sa.

3.2 Wave glider

As a new concept marine gliding robot, Wave Glider can
convert wave energy and solar energy into driving force and
electricity respectively, so the problem of its power supply
has been thoroughly solved. In 2005, the original concept
of wave glider, was firstly proposed by Liquid Robotics Inc
(Hine et al. 2009; Manley and Willcox 2010a, b), with multi-
body structure (float body, cable and underwater glider body).
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Fig.5 Thermodynamic cycle of
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Fig.6 The structure and motion principle of wave glider developed by
Liquid Robotics Inc

The movement principle and main parameters of wave
glider can be demonstrated in Fig. 6 and Table 3 respectively,
the wave glider’s upper float body rises or falls under the wave
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Table 3 Main parameters of wave glider developed by Liquid Robotics
Inc.

Float (m) Length: 2.1; width: 0.6
Cable (m) Length: 6

Underwater glider body (m) Length: 1.9; width: 0.4
Net weight (Kg) 90

Average velocity (m/s) 0.5 (SS1); 0.6 (SS4)
Endurance up to 1 year

Battery capacity (W h) 665

Solar panel power (W) 112

Carrying capacity (Kg) 18

action on the ocean surface. The wave will lift float body and
float body will pull the underwater glider through the cable,
when the wave crest arrives. Therefore, wave glider will move
up and simultaneously the wing plates will rotate downward
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under the hydrodynamic force. Then, the underwater glider
body will move downward because of its own gravity and
meanwhile the wing plates will rotate upward under hydro-
dynamic force, when the wave trough arrives. As a result, it
can be seen that the combined action of hydrodynamic force
will produce a forward driving force in horizontal direction
whether wave glider rises or falls, where the generation pro-
cess of driving force is similar with underwater glider above.

The application of Wave Glider has achieved a great suc-
cess in the PacX game from California to Australia, and
set a new world record for the longest distance traveled
by an autonomous vehicle (12,872 km), which attracts the
attention of experts around the world (Villareal and Wil-
son 2014). By equiping different sensors on wave glider,
a great many research work has been carried out in the
ocean biological monitoring (Wiggins and Manley 2010;
Meyer-Gutbrod et al. 2015; Manley and Hine 2016), water
measurement (Van Lancker and Baeye 2015; Amiruddin
2016; Morales Maqueda et al. 2016), marine ecological envi-
ronment research (Willcox et al. 2009; Frolov et al. 2011),
marine meteorology (Lenain and Melville 2014; Mitarai and
Mcwilliams 2016), etc. And many research institutes have
made great achievements in the research of wave glider
from different perspectives, such as Newcastle University
(Morales Maqueda et al. 2016), University of Hawaii (Kraus
and Bingham 2011; Foster et al. 2020), Ocean University of
China (Sun et al. 2020; Wang et al. 2020a, b, c), ShenyangIn-
stitute of Automation, Chinese Academy of Sciences (Tian
et al. 2014a, b; Tian et al. 2015), the National Ocean Tech-
nology Center (Qi et al. 2020a, b; Qi et al. 2020a, b), Harbin
Engineering University (Wang et al. 2019; Yiming et al.
2021), Shanghai Jiao Tong University (Wang et al. 2020a,
b, c; Wang et al. 2020a, b, c), etc.

3.3 Multifunction hybrid glider

Due to their excellent endurance, underwater glider and wave
glider have been one of the most important AOOPs in ocean
observation. However, the disadvantages are obvious: the
underwater glider can only be used to collect the data in
the ocean vertical profile, with low carrying capacity and
poor ability to overcome strong current; simultaneously the
wave glider can only glide on the ocean surface, and prone
to be twined due to its complicated structure. In addition, the
wave glider has weak maneuverability, with turning radius
about 50 m on the ocean surface (Manley and Willcox 2010a,
2010b). Based on the deficiencies above, multifunctional
hybrid glider (MHG), as a new type of AOOPs, is put for-
ward, although it is still in the conceptual design or testing
stage.

Caiti et al., from University of Pisa in Italy, presented
a hybrid glider, called Underwater Wave Glider (UWG),
by integrating the concept of underwater glider and wave

glider, to autonomously accomplish both surface and under-
water missions, with an ideally unlimited endurance. UWG
can realize two gliding modes by changing its shape: Wave
Glider Mode (gliding on the ocean surface) and AUV/Glider
Mode (gliding under the water) (Caiti etal. 2011). In addition,
Caiti has established the vehicle dynamic model of UWG by
a non-standard Lagrangian approach and given some sim-
ulations results. Another multifunctional hybrid glider is a
robotic buoy system, mainly used for the fixed point ocean
observation, designed by Joe et al., from South Korea Pohang
University of Science and Technology (Joe et al. 2014). On
the basis of wave glider, this robotic buoy system has snorke-
ling function by adjusting its buoyancy through two water
pumps and can convert wave energy into electrical energy.

4 Recent advances in gliding robots
4.1 Deep sea underwater glider

With the development of underwater glider’s technology and
increasing demand for the deep-sea environment exploration,
deep-sea glider has been put on the agenda, and has become
the a hot spot around the world. University of Washington
has developed a long range and deep-sea underwater glider,
“Deepglider”, with length 1.8 m, weight 62 kg, diving depth
6000 m, crussing range 10,000 km and continuous working
time 18 months. Deepglider has successfully dived to 5920 m
in the Atlantic sea trials (Osse and Eriksen 2007).

Deep sea glider “sea-wing 7000”, developed by Shenyang
Institute of Automation, the Chinese Academy of Sciences
(STACAS), has been successful in achieving the dive depth of
6329 m in Feb 2017 (Yu et al. 2017). Subsequently, “Petrel-
X underwater glider, developed by Tianjin University, has
set a new world record for diving 8213 m in Mariana trench
in Apr 2018, refreshing the underwater glider maximum dive
depth (Li et al. 2019). The main parameters of the deep-sea
glider described above are shown in Table 4.

4.2 Hybrid-driven underwater glider

Considering the underwater glider’s single motion mode and
its poor ability to resist current, some researchers tried to
combines the advantage of conventional buoyancy-driven
underwater glider with the propeller-driven AUV, and put
forward the concept of Hybrid-driven underwater glider
(HDUG) to realize a relatively higher endurance and a better
capability to overcome strong current. The main parameters
of some typical hybrid-drive underwater gliders are shown
in Table 5. HDUG can operate in AUV mode or glider mode
if necessary, which greatly improve its application prospect
in ocean observation.
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Table 4 Main parameters of deep-sea underwater glider

Deep sea Deepglider Sea-wing Petrel-X (Li
underwater (Osse and 7000 (Yu et al. 2019)
glider Eriksen 2007) et al. 2017)
Length (m) 1.8 33 4
Diameter (m) 0.3 0.3 0.63
Net weight 62 140 400
(Kg)
Depth 6000 6329 8213
capacity
(m)
Endurance 1 year, 2000kms 30 days,
thousands km thousands
km

Table 5 Main parameters of representative hybrid-driven underwater
glider

Hybrid-driven Folaga SeaExplorer Petrel-1I (Liu
underwater (Alvarez (Claustre et al. 2017)
glider et al. 2009; etal. 2014)
Caffaz et al.
2010)
Length (m) 2 2 2.17
Diameter (m) 0.14 0.25 0.22
Net weight 30 59 69
(Kg)
Depth capacity 50 700 1500
(m)
Average 1 1 1.5
velocity (m/s)
Carrying 8 8 5
capacity (Kg)
Motion mode Hybrid Hybrid Hybrid
glider/AUV glider/AUV glider/AUV

In 2010, Claus et al., from Memorial University of New-
foundland, have proposed a foldable propeller to reduce
the impact of drag of the propellers and improve the hori-
zontal flight performance, where the foldable propeller can
be opened and folded according to its operating condi-
tions (Claus et al. 2010). By introducing the pump-ejecting
propellers, Integrated Systems for the Marine Environment
(ISME), together with GraalTech (a spin-off company of
the University of Genova), NATO Undersea Research Cen-
ter (NURC) has designed a low-cost, small-weight HDUG
Folaga (Alvarez et al. 2009; Caffaz et al. 2010), as shown in
Fig. 7. Universiti Tun Hussein Onn Malaysia has developed a
HDUG with propeller in the tail, independent tail wings and
rudder, to increase its maneuverability (Isa et al. 2014; Isa
and Arshad 2015). ACSA, a French company, has teamed
up with a number of oceanographic institutes to develop
HDUG, called SeaExplorer, which does not have wings or
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Fig. 8 Prototype of multifunctional hybrid glider (MHG) in wave flume
(Tian et al. 2016)

external moving parts aiding launch and recovery opera-
tions to reduce the risk of entanglement. Its modular design
allows it to be quickly and conveniently replaced for differ-
ent tasks or missions. In 2013, the SeaExplorer completed
a two-month mission, which broke two world records for
endurance for multisensor Unmanned Underwater Vehicle
(UUVs) powered by rechargeable batteries. This fully veri-
fied the reliability and stability of the system, and it has been
commercialized (Claustre et al. 2014). In addition, Shenyang
Institute of Automation Chinese Academy of Sciences (SIA-
CAS) (Chen et al. 2016), and Tianjin University (Wang et al.
2011) also carried out the study on related technology of
HDUG.

4.3 Multifunctional hybrid glider with flexible wings

As a new type of platform, Multifunctional hybrid glider
(MHG) with flexible wings can glide on the ocean surface
or in the vertical profile, according to different observation
missions. By introducing the flexible wings, Tian et al. put
forward an scheme of MHG (Tian et al. 2016), as shown in
Fig. 8. The driving force is generated by the elastic deforma-
tion of flexible wings under hydrodynamics.
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Under the excitation of wave force, MHG has heave,
pitch and roll motion on the ocean surface. There is a two-
way fluid—structure coupling between the flexible fins and
the water body. As a result, the combined action of flu-
id—structure coupling will produce a forward driving force
in horizontal direction, where movement principle of MHG
with flexible wings is very similar with wave glider, as shown
in Fig. 9. Compared with wave glide, MHG with flexible
wings has significant advantages as below. Firstly, MHG
has more maneuverability because of its monomer structure,
while steering for wave glider requires a complex process
due to its multi-body structure, where torque of the steering
gear in MHG is more easily applied to the whole vehicle.
Moreover, MHG has higher energy absorption and conver-
sion efficiency. MHG can make use its various motion (heave,
pitch and roll) on water surface to generate driving force,
while only the heave of the float body of Wave Glider con-
tributes to its driving force. Finally, MHG has more functions,
achieving surface and underwater movement according to the
need, while Wave Glider has only surface gliding motion.

5 Prospectives

As is represented in Sects. 2 and 3, gliding robots have
developed rapidly around the world and many excellent
achievements have been made in recent years. With the intro-
duction of more new technologies, it is certain that the gliding
robots will have a brighter future and more applications in
ocean observation.

5.1 Application of marine renewable energy

The marine renewable energy, is abundant, clean and
pollution-free, with a great variety (such as solar energy,
wave energy, tidal energy, salinity energy and thermal energy
etc.). It is worth mentioning that this provides an important
solution to solve the energy bottleneck for the endurance of
gliding robots. At present, the solar energy, thermal energy

Fig.9 The deformation of
flexible webbed wings when
MHG heaves, pitches and rolls
(Tian et al. 2016)

Qe(ascend)

heave(descend)

Q%roll(clockmse)

and wave energy have been successfully applied in the glid-
ing robots. It is believed that there will be more technology
and methods related to the application of marine renewable
energy in gliding robots in the future, and this will become
an important research topic.

5.2 Improvement of sensors carrying capability

The extensive application of gliding robots is largely depen-
dent on their carrying sensors. However, many sensors on
the gliding robots are restricted by their volume, weight, and
energy consumption, due to gliding robots’ finite carrying
capacity (such as underwater glider with general carrying
capacity only several kilograms), which impose restrictions
on the further application of gliding robots in the ocean oper-
ations. Therefore, it is significant to promote the carrying
capacity of the gliding robots to improve their function and
expand their application in ocean observation.

5.3 Intelligent level

With the development of big data analysis, image recogni-
tion, artificial intelligence etc., the intelligent level of gliding
robots will be gradually improved. Through the real-time
intelligent perception and deep learning of the marine envi-
ronment, gliding robots can obtain the information and data
of their own parameters and the surrounding marine envi-
ronment, so as to realize their intelligent operation and
autonomous decision-making ability in the complex marine
environment. The intelligence of gliding robots is of great
help to improve the efficiency of ocean observation, the emer-
gency treatment of ocean emergencies and the realization of
safe operation.

5.4 High stability and reliability
The stable and reliable performance of gliding robots is

closely related to their structural design, electronic system,
control algorithm and communication etc., which provides

pltch(antlcloclese)

l pitch(clockwise)
% roll(anticlockwise)

h\w
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the basic guarantee for their long-term and large-range
application in ocean observation. It is often fatal when
the gliding robots malfunction, resulting in the failure of
ocean-observation missions and even the risk of robot losing
contact and loss, especially in the harsh sea conditions. It
will improve the stability and reliability of gliding robots to
adopt existing mature technology, introduce latest research
achievements and multi-system optimization and integration
etc.

5.5 Functional diversity

With the development of marine scientific research, glid-
ing robots should be required to realize different observation
strategies, according to different requirements of ocean oper-
ations. Not only the endurance needs to be strong, but their
function should be diversified as well. For example, Mul-
tifunctional hybrid glider can glide on the ocean surface
and in the vertical profile, which can complete the large
range, multitasking, long-term and three-dimensional ocean
observation in the future comprehensive and complex ocean
environment.

6 Conclusion

As the activity processes for humans continue to progress
in exploitation and exploration of the ocean, gliding robots,
as important autonomous ocean-observation platforms, plays
an important role in this event with their excellent endurance
and satisfactory performance. This paper conducted a review
of the current gliding robot applied in ocean observation
and analyzed the research progress and development trend
of related technology in gliding robots, which will provide a
reference for AOOPs construction and application selection
in ocean observation. Believe that they will make a signif-
icant impact on the ocean research with further technical
difficulties conquered.
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