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Abstract Extreme waves are studied in numerical simu-
lations of the so-called Draupner seas that resemble the
wave situation near the observation area of the Draupner
wave, an iconic example of a freak, rogue wave. Recent
new meteorological insights describe these seas as a sub-
stantial wind-generated wave system accompanied by two
low-frequency lobes. With the significant wave height Hy =
12 m above a depth of 70 m and the wide directional spread-
ing over 120° as design information, results are presented of
simulations of phase resolved waves. Quantitative data are
derived from 8000 waves over an area of 15 km?. Very high
waves with crest heights exceeding 1.5 Hs occur in average
in 20 min timespan over an area of 0.8 km?. Details will be
given for an isolated freak wave and a sequence of 3 freak
crest heights in a group of 2 high waves. In Part 2, van Groe-
sen and Wijaya (J Ocean Eng Mar Energy, 2017), it will be
shown that 60 s before their appearance freak waves can be
predicted from radar images on board of a ship that scans the
surrounding area over a distance of 2 km.
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1 Introduction

The study of multi-directional waves is an area of active
research, in particular the study of extreme waves, also called
freak or rogues waves, see for instance the overviews of
Kharif and Pelinovsky (2003), Dysthe et al. (2008), and
Kharif et al. (2009). In this paper, results will be presented
of numerical simulations of waves in high random seas with
a very wide spreading of directions. Specifically, we study
what will be called Draupner seas, because the seas are con-
structed from properties that are known of the sea at the place
and time of the measurement of the Draupner wave, Haver
(1995). Use is made of new findings that are based on more
accurate atmospheric simulations by Cavaleri et al. (2016)
about the wave circumstances in a neighbourhood at the time
of the observation of the Draupner wave. The present under-
standing is that under the influence of a polar low-pressure
disturbance that was not taken into account previously, the
severe storm sea changed considerably in a relatively short
time and in a restricted area. This resulted in a spectrum
that is described as a substantial wind-generated wave sys-
tem accompanied by the two newly recovered low-frequency
lobes. The lobes, one under 20 and the other under 40° angle
with the main wave system, lead to a spectrum with a direc-
tional spreading as large as 120° that covers all but 3% of
the energy. The other characteristic quantities are an approx-
imate significant wave height of H; = 12 m (measured at
the Draupner platform), period 7, = 12.5 s, and kD = 1.6
at the local depth of D = 70 m.

From the available 2D spectrum and the known physical
parameters, linear random Draupner seas can be constructed
analytically. To transform these linear seas into nonlinear
seas, numerical simulations are needed with a nonlinear code,
for which specific care is needed to take the wide directional
spreading into account.
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A third-order nonlinear numerical code will be used that
can deal with four-wave interaction and the Benjamin Feir
instability. Beforehand, it can be argued that the effect of
the Benjamin—Feir instability may be very mild, because
the value of kD = 1.6 of the sea is just above the critical
value 1.36, and the spreading is wide which could reduce the
steepness as observed in extensive laboratory experiments of
Latheef and Swan (2013). The steepness, which, for unidi-
rectional waves, would give kHs/2 = 0.14, turns out to be
much larger, up to a factor 5, in the simulations near high
crests.

The code to be used is a pseudo-spectral implementation
based on the Hamiltonian formulation of surface waves. The
dynamics is governed by equations for the surface elevation
and potential at the free surface only, without the necessity
to calculate the interior flow. To get explicit approximate
expressions in a consistent way, the kinetic energy functional
is approximated explicitly in the surface variables. Using, in
Dirichlet’s principle, a generalization of classical Airy func-
tions for which the constant depth is replaced by the total
depth, the kinetic energy is found as a positive definite func-
tional using Fourier integral operators. An approximation of
this functional up to fifth order in nonlinear terms is taken
and results in the third-order dynamics to be used here. The
spectral implementation will deal with the correct dispersion
properties for all frequencies in the broad spectrum.

Linear Draupner seas will be used as input for successive
nonlinear simulations. The very broad directional spreading
requires an influx scenario that assures that all directions
are present in the domain of investigation. Instead of using
a standard method to influx the waves from a straight line
perpendicular to the main propagation direction, we designed
a new influx scenario that also compensates the leaking of
waves through open boundaries. The domain to be used is
a semicircle of radius nearly 5 km, and the boundary area
is used as assimilation area where at discrete instances, the
updated linear sea is smoothly merged with the results of the
ongoing nonlinear simulation. In that way, an almost uniform
nonlinear sea is obtained away from the boundary.

Quantitative and qualitative properties of the nonlinear
waves are investigated in a smaller rectangular area of 15
km? for an ensemble of 40 seas that were simulated over
200 wave periods each. Except for crest exceedance statis-
tics from a limited number of buoys, we also calculate the
elevation exceedance over the whole area. The simulations
provide a database for statistical investigation which indicate
that the Draupner wave height is not very exceptional. Study-
ing some freak wave appearances in detail will show that it is
mainly the constructive interference between oblique waves
that lead to the extreme heights.

Section 2 starts with the description of the 2D Draupner
spectrum, and the design of random linear Draupner seas.
In Sect. 3, details of the numerical code are given followed
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by a detailed description of the influx scenario. In Sect. 4,
results of the numerical investigations are reported, a mix of
statistical information and qualitative description of extreme
wave occurrences. The final section contains discussion and
conclusions.

2 Draupner spectrum and linear seas

In the first subsection, the Draupner spectrum is described,
after which the linear Draupner seas are constructed.

2.1 Details of the Draupner spectrum

New insights in meteorological circumstances mentioned
above lead to a spectrum that is very wide. Figure 1 shows the
2D spectrum obtained from data of the European Centre for
Medium-Range Weather Forecasts, Reading, UK, but rotated
over an angle of 13° in the western direction to have the mean
energy flux directed from North to South. The spreading of
the spectrum is restricted to 120°, neglecting 3.3% of the
energy under larger angles. The energy at the sides is sub-
stantial: cutting the spectrum to a spreading of 60° or 90°
reduces the energy content with 22.1 and 9.3%, respectively.
Integrating over all directions leads to a 1D point spectrum
that can be well approximated as a JONSWAP spectrum, with
a fourth power decay for high frequencies, see Fig. 1. The
explicit approximation is given by

—4
S () = / $5 (@, 6)d0 ~ aw* exp (—Z (g) ) "
P

w—Wwp
wpo

T, =14.455s, wp = 0.44 rad/s, y = 2.51, and o = 0.18 for
w < wp and o = 0.16 for w > wp; a has to be taken, such
that the correct value of Hy = 12 m for the nonlinear sea is
obtained, which should be somewhat higher than 12 m for
the linear sea as explained further on. It is to be noted that
using prescribed standard values, o = 0.07 and 0.09 leads to
optimal parameters with decay rate of power —5, but a much
less accurate approximation of the 1D Draupner spectrum,
see also Korotkevich and Zakharov (2015).

2
with v = exp (—% ( ) ) The parameters are given by

2.2 Analytic seas

The bottom of the sea in the simulations is taken to be flat
at a depth of 70 m. The seas that will provide the influx
data for seas to be simulated with the nonlinear code are lin-
ear; analytic seas are designed by taking a superposition of
regular wave components each having a distinct frequency
and propagation direction. For the actual construction, the



J. Ocean Eng. Mar. Energy (2017) 3:233-245

235

180

Fig. 1 At the left the 2D spectrum, rotated over an angle of 13° to the west to have the main energy propagation to the South. At the right, the

point spectrum (solid) with the approximated JONSWAP spectrum (dots)

wave spectrum S (w, ) is discretised on an equally spaced
set of frequencies w,, covering the significant energy con-
tributions. To assure that the sea is ergodic (Jefferys 1987),
for each frequency, only a single direction is chosen by ran-
domly drawing from the directional spreading which is used
as a probability density function as in Goda (2010).

In more detail, writing k& = |k| for the length of
the wave vector Kk, a linear sea has dispersion relation
between frequency and wave vector given by Q (k) =
sign (e -Kk)Qq (k). Here, Q (k) = +/gktanh (kD) is the
dispersion relation of unidirectional waves and e = (0, —1)
the vector that defines the half space for propagating all
waves towards the south. The analytic sea is then constructed
as

nx,y,t) = Zp/2S (wn) do cos (k,, (x cosb,, + ysinby,)

—wp,t +ay).

The summation is over frequencies w,, that determine the
wave numbers k,,, via 21 (k). The coefficients «,,, are random
phases in [—m, 7). The number of frequencies used to gener-
ate the influx signal is 36*20. First, 36 equidistant frequencies
wy are taken to cover the interval of relevant frequencies,
with grid size Aw say. At each of these 36 frequencies, the
functiond — S (wyy, 0) is taken after normalization as prob-
ability distribution function from which the angles 6,, are
obtained at 20 subfrequencies around and including wj; in
an interval of length 20dw = Aw.

For the influxing of waves in the numerical code, the cor-
responding surface potential is needed and will be obtained
from the linear evolution equation d;¢ = —gn.

3 Numerical simulations

In this section, we provide details of the numerical simula-
tions. In the first subsection, the essentials of the HAWASSI-
AB 3rd-order code used for the numerical simulations are
described; the acronym HAWASSI stands for Hamiltonian
WAve Ship—Structure Interactions, and AB for Analytic
Boussinesq, see the references for a link to the software.
Then, the choice of the numerical domain is described and
motivated by the wide directional spreading of the seas;
details of the assimilation method are given that uses the
linear analytic seas as boundary influx along a semicircle to
get nonlinear effects in the interior. Some other numerical
aspects are discussed in the last Sect. 3.3.

3.1 Third-order HAWASSI-AB code for wave
simulations

The phase resolved simulations are executed with the
HAWASSI-AB code that has been designed for the simu-
lation of realistic waves in wave tanks, coastal and oceanic
areas, and harbours. The underlying model is a set of Hamil-
tonian Boussinesq equations that has been discretised using
a pseudo-spectral implementation, Kurnia and Van Groesen
(2014,2015,2017). For linear waves, it has exact dispersion;
nonlinear extensions in second-, third-, and higher order use
Fourier integral operators to deal with the nonlinear phase
speed operator that determines the kinetic energy expression.
Simulations with the code have been tested for many cases
against experiments and theory in simple and complicated
geometries above flat and varying bottom, for harmonic and
random waves, possibly breaking waves, and showed very
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good performance in relatively short simulation times. Yet,
the code has not been tested against experimental data or
other simulations of Draupner-like seas in 2D.

The basis of the model is the Hamiltonian formulation of
surface waves, which is of Boussinesq type, i.e., it is dimen-
sion reduced using only the surface elevation 7 (x, ¢) and the
potential at the surface ¢ (x, f) as variables depending on
horizontal directions x = (x, y). Zakharov (1968 for infinite
depth) and Broer (1974 for flat bottom) discovered that the
full irrotational surface wave equations can be written as a
Hamilton system in 1, ¢ as

dn=308pH (P, ), 01 =—6,H (¢,n)

where 8, H and §, H denote the variational derivatives of the
Hamiltonian H (¢, n) with respect to ¢ and 7, respectively.

The Hamiltonian is, just as in Classical Mechanics, the
sum of kinetic and potential energy

1
H (¢, n) =K (¢,n) + P (n) with P () = 3 / gn’dx.

The main challenge in this formulation is to approximate the
kinetic energy in the surface variables explicitly. To achieve
this, Dirichlet’s principle is used, which expresses that for
irrotational flows, the potential that minimizes the kinetic
energy and has prescribed potential ¢ at the given surface ele-
vation 7 is obtained for the (unique) potential that describes
incompressible flow, i.e., satisfies the Laplace equation. With
Airy’s theory, an exact expression for linear waves above con-
stant bottom is possible and serves as a good starting point
to get approximations for nonlinear and spatially inhomoge-
neous problems. In the Analytic Boussinesq (AB) model of
HAWASSI software, Fourier expansions are used that lead
to exact dispersion for linear waves. Using generalized Airy
functions in which the constant depth D is replaced by the
total depth D + n (x, t), pseudo-differential operators are
extended to Fourier integral operators. The kinetic energy
functional can then be described as a quadratic functional in
u=Veo

1
K@om =5 [ (ICouP 180 7n-wi)ax

Here, B () and C (n) are symmetric operators depending
on 7 but not on its derivatives. Hence, the steepness enters
the functional only if the contribution with B () is taken
into account. The linear case is obtained for C = Cq and
B = 0, with Cy the linear operator which has the linear
phase velocity as symbol, leading to fully dispersive linear
wave theory. Taking B = 0 and a first-order expansion of
C () leads to the 2nd order equations; only in third order,
with C expanded in second order and B = By independent of
n, the steepness comes most pronounced into the equations.
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Explicit expansions for up to fifth-order equations are given
in Kurnia and Van Groesen (2014); for the special case of flat
bottom, the expansions lead to the same equations as in higher
order spectral methods, first developed by West et al. (1987)
and Dommermuth and Yue (1987), but the implementation
in the AB code is directly in surface variables only.

In this paper, the third-order code will be used to support
effects of four-wave interactions and effects on wave defor-
mation and interactions, as shown in Adcock et al. (2015).
AB has a wave-breaking mechanism with a kinematic ini-
tiation criterion based on the quotient of horizontal fluid
velocity U at the crest and the crest speed Ccrest; after initi-
ation, the breaking is modelled by the eddy-viscosity model
of Kennedy et al. (2000). Using the rather low value for
the kinematic breaking criterion of U/ Cerest = 0.8, none of
our simulations breaking took place, even though for several
waves, steep gradients of 0.6 and more were encountered.
Only for the highest crest wave, breaking was noticed for a
lower initiation value of U/ Ccrest = 0.7.

3.2 Numerical domain and influx scenario

In this subsection, we explain the choice for the numeri-
cal domain and how we use the constructed linear analytic
sea described in Sect. 2 as input for nonlinear simulations.
Clearly, the aim is to have an observation area that is large
enough to study peculiarities of the nonlinear sea, while prac-
tical restrictions on the size of the numerical domain have to
be taken into account. For the numerical spectral implemen-
tation of the AB code, a rectangular domain is required.

The motivation for the influx scenario is suggested from
the description of an initial value problem that starts with the
initial data for the elevation and the potential from a linear
sea. A successive nonlinear simulation will start to propa-
gate the waves in all wave directions present in the linear
sea, mainly southward. Oblique waves must be allowed to
pass the lateral and southern boundaries of the numerical
domain. On the other hand, without influx of waves from the
northern and lateral boundaries, the part of the rectangular
domain where each point gets information from all required
directions, i.e. from directions in an upward pointing triangle
with angle of 120° (the domain of dependence of the point),
becomes quickly smaller with increasing time, and after some
time, all waves will have left the numerical domain. Based
on these observations, for long time simulations, an influx
scenario has to be used that provides wave influx through the
boundaries into the domain, while the boundaries should be
transparent for outgoing waves. Wave influx from a straight
line is a common method, see Lie et al. (2014), but cannot be
used efficiently at the East and West boundaries, because the
main propagation direction is tangential there. Therefore, we
designed an alternative influx scenario as follows.
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A large semicircle is taken in the rectangular domain.
A merging area is constructed as the area in between the
boundary of the semicircle and a vertical shift upwards of
this boundary, the orange-coloured area illustrated in Fig.
2. The vertical shift is of the order of one-third of the peak
wave length, shown somewhat larger in the figure for bet-
ter visibility. Influx updates of the linear sea, consisting of
elevation and surface potential in the outer, ‘linear’, area of
the semicircle, are merged with the result of the nonlinear
simulation at times of the update, using a smooth partition
of unity of the data. Updates are given every one-third of the
peak period. The merging essentially let the nonlinear terms
grow from zero in the linear area to unity in the nonlinear
area. This space dependency does not change the conserva-
tion of the Hamiltonian. Outflow of waves in the South in
between updates will give some decrease of the Hamiltonian
over the whole area, but will preserve the Hamiltonian over
the nonlinear area in between updates, and also from one
update to another.

5000

OI ° ° ° I

3000

-3000 0
x

5000

Fig. 2 Layout of the numerical domain with damping zones at the
sides, the adjustment area for the influx scenario (shaded, orange), and
the rectangular observation domain with the position of 8 buoys

Fig. 3 Illustration of the wave
influx: left upper plot the initial
situation with the linear sea in
the North, right upper plot after
5 periods when nonlinear waves
started to develop southwards,
and in the lower plots, the
further development after 10 and
35 wave periods of time

-5000

-2500

0
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The process of wave invasion from the outer region into
the semicircle is illustrated in Fig. 3. Shown are the initial
situation at + = 0 with the linear sea in the outer region and
vanishing elevation in the interior, and at successive times 5,
10, and 30 peak periods later, showing the gradual filling of
the whole domain.

The rectangle is the domain [—5200, 5200] x [—800,
5200]; along all sides, there is a damping zone with width of
200 m at the north, east, and west sides, and of 500 m at the
south. The semicircle has radius 4.75 km.

Although the simulation is performed over the whole
rectangle, we take a much smaller rectangle as observa-
tion domain where properties of the nonlinear sea will be
investigated. This observation domain is the gray rectan-
gle [—3000, 3000] x [0, 2500] in Fig. 2. Each point in this
domain will receive contributions from all wave directions
spread over 120°.

Eight buoys, also shown in the figure, are taken at posi-
tions B1 (—3000, 2500), B2 (0, 2500), B3 (3000, 2500), B4
(—1500, 1250), B5 (1500, 1250), B6 (—3000, 0), B7 (0, 0),
and B8 (3000, 0). The positions are such that each buoy is
almost out of the dependence area of the other buoys, except
buoys B6,7,8 which are below buoys B1,2,3 but 2500 m sep-
arated in the main propagation direction.

3.3 Other numerical aspects

For the case under consideration, bottom friction will be
small and has, therefore, been neglected.

Each single sea is simulated for 3400 s; subtracting 500 s to
allow waves to enter the initially empty interior of the semi-
circle, the last 2900 s containing approximately 200 wave
periods are used for analysing the sea.

2500 5000 -2500 0

x[m]

2500 5000
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Table 1 Sensitivity for

. . o Data source H T, Tmol MTC MTT Skew Asymm Kurt

time—space discretization and

nonlinearity from averaged data - geq 17m13 1190 1368 1153 1239 1015 081 00034  3.021

at 8 buoys

Y 17m13dr=1 11.90 13.68 11.53 12.32 —10.22 0.181 0.0343 3.022

17m13 coarse 11.56 13.68 12.30 11.68 —9.68 0.126 0.0039 3.032
17m13 linear 12.24 14.76 11.44 12.62 —11.10 0.180 —0.0097 2.968

Fig. 4 At the left, the plot of 2500

the point spectrum obtained 40

from data of the 8 buoys in the i

ensemble (red dotted) compared

to the design point spectrum 30

from the 2D Draupner spectrum _

(blue solid). At the right, the E

plot of the significant wave 20 = 1000

height calculated at each point

for the 8000 waves in the 10 )

ensemble E

82 04 06 08 1 12 14 a0 w0 o a0

The grid size used for the simulations and for the post-
processing is dx = 10.17 m,dy = 11.74 m, and for the time
step, dr = 0.5 s. Investigation of robustness and sensitivity
is quantified in Table 1 using data from the 8 buoys. In this
and in the following, we use abbreviations as follows: 7,01
is the inverse of the mean frequency of the spectrum, In this
table, MTC stands for the Maximal Temporal Crest height,
MTT for the Minimal Temporal Trough depth, Skew is the
Skewness, Asymm the Asymmetry, and Kurt the Kurtosis.
The simulation results show no relevant differences when
the time step is doubled. Making the grid size coarser by a
factor 2 in each direction does lead to a noticeable smaller
value for T,01. This may be explained from the fact that the
frequency cutoff for this coarser grid is at 0.82, compared
to 1.2 for the finer grid, see Fig. 4. The different value of
H; for the linear sea is almost as prescribed, as will now be
explained.

In the dynamic influx assimilation method, we use a lin-
ear sea that has to be taken, so that the required spreading
and the desired significant wave height are obtained for the
nonlinear sea. One effect of nonlinearity that was observed
is a difference between the significant wave height of a linear
sea and the significant wave height of the nonlinear sea that
is simulated using influx data from the same linear sea. Such
a difference can be explained as follows. For linear waves,
the equipartition of energy holds: averaged over time, the
potential energy is equal to the kinetic energy. However, for
nonlinear waves, the kinetic energy is larger than for linear
waves. Since the Hamiltonian, which is the sum of kinetic and
potential energy is exactly conserved in our Hamiltonian for-
mulation, in a confined domain without netto in- or outflow,
in the transition from linear to nonlinear waves, the poten-
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Table 2 Sensitivity in simulating the highest crest

Data source mean Hy  Crest height X Y Time
sea 17m13 12.02 21.7 —-900 785.1 2497
17m13dr=1 12.02 21.7 —-900 785.1 2498
17m13 coarse  11.71 15.3 —967 1317.7 2460
17m13 linear ~ 12.37 16.4 -920 937.8 2508

tial energy must become less. Since the potential energy is
related to the variance of the surface elevation, the nonlinear
sea will have lower significant wave height than the linear
sea used for influxing. We observed this difference between
kinetic and potential energy for all seas, and actually also
for simulations of other cases. At this moment, we cannot
yet quantify this difference theoretically a priori, but with
a linear influx that is 2.5% higher, the nonlinear seas have
approximately the targeted value Hy = 12 m, as is shown in
the plot at the right in Fig. 4.

In Table 2, we show the sensitivity in finding the high-
est crest over the whole observation area. This shows more
severe differences for the coarse grid: the most extreme height
in the coarse simulation is almost one-third lower than for the
fine grid. Moreover, the highest crest appears some 40 s ear-
lier, leading to a difference of position in the propagation
direction of 530 m, which is quite consistent for propagation
with the group velocity. In the lateral direction, there is a
smaller difference of 67 m. Note that the data for the linear
simulation are even better than for the nonlinear simulation
with the coarse grid.
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Properties of 40 seas were investigated in the rectangular
observation domain with a total of more than 8000 waves
passing each point. Quantitative and statistical results are
reported in the first subsection, for the ensemble but also
for two seas, ensemble numbers 17m13 and 17m26, that are
considered in the next subsections.

All the seas in the ensemble show complex patterns and
dynamics leading to a variety of phenomena that cannot eas-
ily be described in a comprehensive way. Events like extreme
crests can be observed and studied locally, but the compli-
cated interactions that lead to such events seem to require
a global spatial view coupled to dynamical interactions.
Although nonlinearity deforms the wave patterns somewhat,
it seems quite well possible to explain the local processes as
superposition of waves of different amplitude, wave length
(speed), and directionality, so that at a specific position and
time coherent or destructive interference of the various waves
determines the elevation. Nonlinearity will mainly influence
the wave heights and local speeds of the waves.

The spatial and temporal processes will be described in
the next two subsections for two seas that contain the highest
waves encountered in the whole ensemble: a succession of
three freak crest heights found in 17m13 and a single freak
wave in 17m26.

4.1 Quantitative results

The point spectrum calculated from data at the 8 buoys of
all ensemble seas is compared to the design point spectrum
from the 2D Draupner spectrum in Fig. 4. This shows that the
target 1D spectrum is well recovered, but due to the restricted
mesh size, a cutoff at w = 1.2 rad/s appears. The directional
spectrum has been calculated at several points and agreed
well with the target spectrum.

The significant wave height, calculated at each point in
the domain over 8000 waves, is shown in Fig. 4 also. The
averaged value over the ensemble and the domain is Hy =
12.04 m, with variations within 11.8 and 12.4 m outside a
small area near the mid south of the domain.

An overview of the most extreme crest and trough val-
ues that were encountered in the ensemble is given in Fig. 5,
where for each of the 40 seas, the maximal and minimal ele-
vation are plotted together with the significant wave height of
the sea. The deviation in Hy of the 40 seas from the averaged
value Hy = 12.04 m is at most 0.1 m.

A well-known effect of nonlinearity is illustrated in Fig. 6
that shows the Maximal and Minimal Temporal Area Ampli-
tude, i.e., the maximal and the minimal elevation at each time
(horizontally) over the whole area, for a linear and nonlinear
simulation of the same input (sea 17m13 in the ensemble).

!
5 10 15 20 25 30 35 40
Seanr.

Fig. 5 For each of the 40 seas horizontally, the upper and middle plot
show the maximal temporal area crest height (MTAC) and the minimal
temporal area trough depth (MTAT) and the lower plot the significant
wave height Hg

2 I L 1 1 1
800 1000 1500 2000 2500 3000
time[s]

Fig. 6 Plot of the maximal and minimal temporal area amplitude for
sea 17m13. Data for the linear sea are in gray and for the nonlinear sea
in black

As expected, higher crests and higher troughs are found for
the nonlinear sea, despite the fact that the significant wave
height is higher for linear seas than for the corresponding
nonlinear sea as discussed in Sect. 3.3.

Data from the buoys are assembled in Table 3. Data in the
first row are for the ensemble, and below that the data are for
nonlinear and linear seas 17m13 and 17m?26.

The statistical crest and trough exceedance measured from
data at the 8 buoys over the total ensemble are shown in Fig.
7 at the left. To improve these buoy exceedance results, the
elevation exceedance at all grid points in the domain over
the whole ensemble has been calculated. This is motivated
by Cavaleri et al. (2016) in which the notion of encounter
probability was mentioned that should serve as an additional
indicator of extreme waves.

The elevation exceedance probability pgrea (@) is the frac-
tion of the area at which the elevation exceeds o Hg averaged
over time. Note that for « = 0, the fraction of positive area
can be found, which turns out to be 48% of the area, lower
than 50% that can be expected for linear seas. From the ele-
vation exceedance as cumulative probability, the probability
density is obtained by differentiation, from which crest and
through exceedance can be found. The elevation exceedance
and the density are given in Fig. 8; the crest probabilities are
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Table 3 Averaged data from the

8 buoys for the total ensemble Data source Hy T, Tmol MTC MTT Skew Asymm Kurt

and for two seas simulated Ensemble 1201 1423 1149 1376  —1071  0.190 0.0036  3.056

linearly and nonlinearly
Sea 17m13 11.90 13.68 11.53 12.39 —10.15 0.181 0.0340  3.021
17m13 linear 12.24 14.76 11.44 12.62 —11.10  0.180 —0.0097 2.968
Sea 17m26 11.95 14.89 11.61 15.90 —11.14  0.203 —0.0054  3.087
17m26 linear 12.31 15.05 11.49 13.42 —12.99  0.173 0.0189 2.990

.o’ ; ; : . . . : _
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Fig. 7 At the left, the plot of the crest exceedance (black) and trough exceedance (gray) calculated from 8 buoys for 8000 waves. At the right, the
crest exceedance obtained from the elevation exceedance (black) with the crest exceedance from 8 buoy data (gray) for comparison
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Fig. 8 Plot of the elevation exceedance: cumulative distribution (red)
and probability distribution (blue) obtained from all ensemble data

shown again in the right plot of Fig. 7 to compare the results
obtained from the 8 buoys and from all grid points.

In Table 4, explicit values are provided for the crest
exceedance on the interval where inaccurate values from
differentiation of the area exceedance are excluded; for com-
parison, also the values from buoy observations are given.

4.2 Three successive freak crests

Three successive crest heights larger than 1.5 H are present
in sea 17m13 and will be described in this subsection. These
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Table 4 Probabilities of crest exceedance from 8 buoys (second col-
umn) and as calculated from the elevation exceedance (third column)

Exc. value n/Hg Crest Exc. from Crest Exc. from

8 buoys elevation Exc.
1.0 1.8e—3 1.3e—3
1.1 7.1e—4 5.0e—4
1.2 2.4e—4 1.5e—4
1.3 2.2e—5 3.4e—5
1.4 X 6.8e—6
1.5 X 1.4e—6
1.6 X 2.2e—7

crest heights satisfy the criterion of a freak wave, but do not
fully satisfy the requirement that they come ‘unexpectedly’,
since one follows after the other. In fact, the crests are from
two waves, with the first wave travelling over a large distance
during almost 2 periods with large crest height, during which
two times the height exceeds 1.5 Hg; after this, the successive
wave achieves the largest height of 1.8 Hj. Since the crests
appear at three different positions, and only two waves are
involved, this seems somewhat different than a ‘three sisters’
phenomenon (Seyffert et al. 2016). This whole freak appear-
ance takes place in the time interval [2432, 2508] of 76 s
during which wave heights above 12 m are only found in the
area [—1300, —500] x [0, 2500].
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Fig. 9 Elevation plot at the 20 T J T ]
position of highest crest as
function of time over 1000 s and T 10 T
in the lower plot a zoom in near = 0 |
the time of the freak event |

- 1 1 1
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For this specific sea, data at the buoy positions were listed
in Table 3. In addition, over the whole area, the peak period
is 13.68 s, the significant wave height is H; = 12.02 m,
the maximal elevation 21.7 m, and the minimal trough depth
—14.4 m. The wave length at peak frequency is A, = 270 m
and phase and group velocity values are Cp, = 19.8 m/s and

Vp = 12.4 m/s.
The highest wave in this sea, and the highest one encoun-
tered in the whole ensemble, appears at X = —900,Y =

785, teyent = 2497.5 and has crest height 21.73 m =~ 1.8 H;.
The time trace at the extreme crest is given in Fig. 9. The sin-
gle high peak in this plot resembles the peak in the time trace
of the original Draupner wave. The wave height is approxi-
mately 30 m ~ 2.5H;.

The downstream propagation along a line in the y-
direction, which is the main propagation direction, in Fig. 10
shows three different snapshots in two plots. In these plots,
the Maximal and Minimal Temporal Amplitudes (MTA’s,
black and cyan dashed, respectively) are also shown: the max-
imal, resp. minimal, elevation during a time interval of 200 s,
approximately 14 periods centred around feyen¢. In the upper
plot, a very high wave (solid blue) with crest height 19.75 m
~ 1.65Hs is observed at time ¢ = 2442.5 X feyen —471p near
y = 1666 m. This wave propagates downstream (to lower
y-values) during which it retains a high value with another
peak value of 18.93m at time ¢t = 2466 ~ feyent — 2.3T, at
position y = 1161 (blue dashed). In that time, it traveled a
distance of 505 m. This crest defines the part of the Maximal
Temporal Amplitude in between the high points. This wave,
plotted again in the lower plot, then decreases in amplitude
and transfers its energy to its succeeding wave (red solid)
which after 2.37}, reaches the highest crest value at Y, a dis-
tance 375 m further downstream. Note that because this is a
plot on one vertical line, in a neighbourhood of the first two
high waves on this transect, there may be points with slightly
higher elevation.

The downstream propagation along the same vertical tran-
sect is now investigated by looking at the dynamics in the
main propagation direction along the whole transect trough

" |
oo 2450

1
2500 2550 2600
time [s]

1000 1500 2000 2500

y[m]
Fig. 10 Plot of the elevation as function of y at three successive times
showing the three high crests. In the upper plot, the first wave (solid
blue) and its evolution to the second extreme height (blue dashed). In

the lower plot, the same (blue dashed) second crest and the highest third
crest on the successive wave (solid red)

2350 2400 2450 2500 2550 2600
time [s]

Fig. 11 Plot of elevation at x = X as function of time (horizontal) in
the main propagation direction y (up to down)

x = X. The result is shown in Fig. 11 as plot of the elevation
as function of y and 7. The slope of the crest trajectories is
the component of the velocity in the y-direction at that posi-
tion and time. Near the three high crests described above, it
can be observed that the waves that contribute to the eleva-
tion at these events travel with the same y-component of the
velocity; and from the steepness of the trajectories, it can be
concluded that the speed is larger compared to the speed at
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other positions and times. This large speed is actually slightly
larger than the phase speed Cp, at peak frequency of the most
energy carrying waves, which implies that the wave direc-
tion must be almost southward, clearly visible in dynamic
simulations of the waves.

-3000 -2000 -1000 0

x[m]

1000 2000

Fig. 12 Plot of the nonlinear sea state at time 1 = 2497.5 looking from
south (bottom) to north over the whole observation area. The highest
crest, with white cap, is at the intersection of two oblique crests, at
x = =900,y =785

1200 1000

x[m]

ylm]

-1.800

-1.350  -900 -450 0 -1.800 -1.350

Fig. 13 In the upper plot, the three successive freak crests are shown
in one area but at different times: in the northern part at t = 2442.5s
the wave of height 19.57 m, in the middle part the crest height 18.22
m at time 1 = 2466s, and in the southern part the highest freak wave at
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-800

A broader spatial-temporal view of the sea near the
appearance of the three successive freak crests is now given
using several snapshots in different ways of presentation. A
snapshot of the sea over the whole observation area is given
in Fig. 12 at the time ¢ = 2497.5 that the highest crest occurs
atx = —900, y = 785. The plot shows, apart from the high-
est crest, a typical view of a somewhat confused sea. Crest
lines of more than 1 km length are directed somewhat in
south-eastern and south-western direction, causing a pattern
that is much shorter in the propagation direction than in the
transversal direction. The highest elevation is at the intersec-
tion of two oblique crests, seemingly causing constructive
interference that contributes to the isolated high crest.

The dynamic evolution is difficult to capture in snap-
shots; in the entire surrounding of the successive freak wave
area active interaction is visible between waves, resulting in
locally different downward propagation speeds, deforming
crests, and changing heights along crests. To illustrate the
dynamics resulting in the three high crests, in Fig. 13, in

-900 -900

x[m]

-450 0 1800 -1350

-450 0

t = 2497.5s with crest height 21.7m. Level lines are shown for values
6, 16 and 20 m. In the lower plots, the three successive freak crests are
shown at the three different times in a somewhat larger area
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Fig. 14 Plot of the minimal 2500 -9 22
trough depth (lower than 9 m) at
the left and of the maximal crest 2000 « 10 20
height (higher than 9 m) at the " ;.
right over a time interval of - 18
120 s for the three successive 1500 . o
freak crests £ - 16
> -12
1000 ’ & 14
w,
- -13
500 . k2
-14 10
-fLDU -1200 -1000 -800 -600 400 -1200 -1000 -800
x[m] x[m]

one area [—1400, —400] x [500, 2000], we show three snap-
shots of the waves at different times, giving an indication
of the southward propagation. The first freak wave of height
19.57 m is shown in the northern part of the plot at time
t = 2442.5 s. The crest propagates quickly southward and
reaches with another peak value of 18.22 m at time t = 2466
s the position shown in the middle part of the plot. The lower
part of the plot is at t = 2497.5 s and contains the highest
freak wave with height 21.7 m. At each of the three times of
the extreme crests, Fig. 13 also shows plots of the sea in a
somewhat larger area.

To illustrate the localized spatial extend of the three suc-
cessive freak crest appearance, in Fig. 14, the maximal and
minimal elevations are shown in a time interval of 120 s start-
ing 30 s before the first high crest. Only elevations of more
than 9 m are shown which implies that such large elevations
are not present in the lateral direction outside the area of the
freak event.

4.3 Single freak wave

A single freak wave was observed in sea 17m26 and will be
described in this subsection. Data at the buoy positions were
listed in Table 3. Over the whole area, the peak period is
T, = 14.89 s, the significant wave height is H; = 12.01 m,
the maximal elevation 20.7 m, and the minimal trough depth
—15.4 m. The wave length at peak frequency is A, = 308 m
and phase and group velocity values are Cp = 20.7 m/s and
Vp = 13.8 m/s. The highest wave occurred att = 3115, x =
—1286, y = 1948. The data and further investigations show
that it is an impressive, but fully isolated occurrence caused
by interactions of waves from different directions. In Fig. 15,
time traces of the elevation at the position of the highest crest
are shown for all observation time and a zoom in for 350 s
around the highest crest. Note that early in the full time trace,
there was another freak wave at the same position.

Figure 16 shows at the left the surrounding area of the
highest crest at the time of the freak event; level lines of 12
and 18 m surround the highest crest. The plot at the right

. . .
2000 2500 3000
time [s]

20 T T T

.
1500

. 1
3100 3200

time [s]

1
3000

Fig. 15 For the single freak wave, shown are the time trace of the
elevation trough the highest crest on the full observation time length,
and a zoom in around the maximal height for 350 s

shows at the same instant the steepness (norm of the gradient
of the surface elevation) in a somewhat smaller area; values
of the gradient for the highest crest run from —0.73 to 0.70,
so also very steep at the back of the wave.

Plots of the maximal and minimal elevation in a time inter-
val of length 120 s around the time of the event in Fig.17 show
the localized extent of this extreme wave in a very moderate
surrounding. Figure 18 shows the elevation at the time of the
freak event at the vertical transect through the event position,
and the lower plot gives the space dynamics at the same tran-
sect for all y-values, showing that the freak wave produces
highest speeds in the main propagation direction.

5 Discussion and conclusions

The somewhat technical adjustment to rotate the original
spectrum, so that the main energy flux is from North to South,
has helped considerably to design the most optimal influx
domain and to interpret the wave evolution in the numerical
output. The semicircle with assimilation from the outer area
can deal successfully with the wide spreading of the sea, so
that each point in the observation area receives waves from
all relevant directions. The plot of the significant wave height
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Fig. 16 At the left, the elevation in an area around the single freak wave, and at the right, the steepness in a smaller domain

Fig. 17 Plots of the minimal

2500
(left, lower than —9 m) and .
maximal (right, higher than 9 "
m) elevations over a time 2000 » :
interval of 120 s around the time A
of the highest crest 1500 -
T .
>
1000
500

i
1800 -1600 -1400 -1200 -1000 -800
x[m]

y[m]
elevation

1000
3000 3050 3100

time[s]

3150 3200 3250

Fig. 18 Upper plot shows the elevation at the time of highest crest
in North—South direction for decreasing y. The lower plot shows the
elevation from North to South vertically downwards, as function of time
horizontally
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in Fig. 4 shows, however, variations of the order of 10% near
the origin. This inhomogeneity indicates that it has been only
partly successful to obtain a uniform area; effects of this or
other inhomogeneities were not observed.

With regard to numerical accuracy, it should be recog-
nised that a difference of one grid size or time step, caused
for instance by small phase errors, may result in a local error
in elevation that, in particular for high crests of steep waves,
may be considerably more than 1 m. Such errors seem to
be unavoidable in simulations as done here. However, a sys-
tematic bias has not been found in the area where the waves
were analysed and hence the statistical exceedance data will
not have been influenced substantially. Therefore, our simu-
lation results provide a reliable insight in the qualitative and
quantitative behaviour of Draupner seas for which influence
of wind and bottom friction were not taken into account.

As stated before, in our simulations, no wave-breaking
takes place for reasonable values of the kinematic breaking
criterion, despite the fact that near the highest waves, the
steepness can be as large as 0.7. The elevation exceedance,
and the derived crest probability, makes it possible to discuss
the encounter probability. As an example, a ‘Draupner event’,
defined as a crest height exceeding 1.5H;, has probability
1.4e7% per period per gridpoint, and will occur in a time
interval of 20 minutes in an area of approximately 900 x 900
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m2, a bit larger than the area of 800 x 800 m? as stated in
Cavaleri et al. (2016).

The Draupner seas that have been designed, simulated,
and characterized show that linear interference arguments
can be used to describe the, sometimes confused, nonlin-
ear sea states in a qualitative way. The wide spreading can
explain that waves from different directions can occasionally
contribute in a coherent way to form isolated, exceptionally
high waves with time signals that have the same character
as that of the measured Draupner sea. Nonlinear effects are
very clearly present in the formation and probability of high
crests.

Superposition of oblique waves are essential to form the
high crests of the freak waves, as has already been shown by
Adcock et al. (2011). The plot of the elevation in Fig. 16 is
an illustration of the multi-directionality: with no waves in a
large surrounding that are higher than 12 m, an extreme wave
larger than 20 m suddenly arose from waves with different
directions, as also noticed from the gradient plot in the same
figure.
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