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Abstract A corrected higher order Laplacian (CHL) sch-
eme is proposed for enhancement of pressure calculation
in projection-based particle methods. The CHL scheme is
derived by meticulously taking divergence of a corrected
SPH gradient model in a similar manner to derivation of
higher order Laplacian (HL) scheme performed by Khayyer
and Gotoh (Appl Ocean Res 32(1):124–131, 2010; Appl
Ocean Res 37:120–126, 2012). Unlike the original SPH
gradient model considered in derivation of HL, the (first-
order) consistency of the corrected SPH gradient model is
strictly guaranteed. The enhanced performance of CHL with
respect to HL is shown by a set of numerical simulations
corresponding to designed sinusoidal pressure oscillations,
unperturbed/perturbed water jets impinging on a flat plate
and a 2D diffusion problem. Hence, the CHL scheme is sug-
gested to be applied in place of the HL one, especially for
practical engineering applications including those encoun-
tered in ocean engineering.

Keywords Corrected higher order Laplacian ·
Particle method · Moving particle semi-implicit method ·
Pressure calculation · Consistency

1 Introduction

Particle methods or Lagrangian gridless methods have been
increasingly applied in a wide range of engineering fields
including ocean and marine engineering. In particular, suc-
cessful simulations of violent sloshing flows (e.g., Gotoh
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et al. 2014; Hwang et al. 2014; Delorme et al. 2009), slam-
ming loads on ships (e.g., Veen and Gourlay 2012) and
scouring of offshore structures (e.g., Ulrich et al. 2013)
have been carried out by two well-known particle methods,
namely, moving particle semi-implicit (MPS; Koshizuka and
Oka 1996) and smoothed particle hydrodynamics (SPH;Gin-
gold and Monaghan 1977) methods.

Despite their robustness and wide potential range of
applicability, particle methods have been suffering from
major shortcomings, that is, presence of unphysical pressure
oscillations that results from local particle-based interpola-
tions by incomplete/inconsistent differential operatormodels
(Gotoh 2009; Gotoh et al. 2013). As a result of this shortcom-
ing, particle methods have not been extensively applied for
practical ocean andmarine engineering applications, particu-
larly those corresponding to pressure calculations (e.g., wave
impact pressure). Considerable efforts, however, have been
made to minimize such unphysical oscillations and enhance
the accuracy of particle methods by deriving corrected (e.g.,
Bonet and Lok 1999; Khayyer et al. 2008), higher order (e.g.,
Colagrossi and Landrini 2003; Khayyer and Gotoh 2009a, b)
differential operator models, error mitigating terms (e.g., Hu
and Adams 2009; Khayyer and Gotoh 2011, 2013; Kondo
andKoshizuka 2011), dynamic stabilizers (e.g., Tsuruta et al.
2013), particle shifting techniques (e.g., Lind et al. 2012) and
enhanced boundary conditions (e.g., Adami et al. 2012; Tsu-
ruta et al. 2015). In the context of explicit SPH methods, a
so-called delta-SPH scheme (Antuono et al. 2010, 2012) has
proven to substantially enhance the pressure calculation. In a
comprehensive and rigorous work, Touzé et al. (2013) high-
lighted the significance of higher order interpolation schemes
to improve the pressure field.

In an attempt to improve the pressure calculation by
a projection-based particle method, namely, MPS method,
Khayyer and Gotoh (2010) derived a higher order Lapla-
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cian model (abbreviated as HL) by meticulously taking the
divergence of a commonly applied SPH gradient model
(Monaghan 1992) for discretization of Laplacian of pressure
in the Poisson pressure equation (PPE). This derivation was
later extended to 3Dwith verified enhancing effects (Khayyer
and Gotoh 2012). One numerical issue of the HL scheme
corresponds to its derivation on the basis of a SPH gradi-
ent model without a guaranteed consistency for irregularly
distributed particles and/or particles without a full compact
support (e.g., at and in the vicinity of free surface) (Randles
and Libersky 1996; Gotoh et al. 2013; Souto-Iglesias et al.
2013). A common approach to guarantee the consistency of
gradient models in particle methods is to derive corrective
matrices based on Taylor-series expansions of the consid-
ered physical field (e.g., Oger et al. 2007; Khayyer andGotoh
2011).

In this paper, a corrected higher order Laplacian, hereafter
abbreviated as CHL, is derived by considering a corrected
SPH gradient model and by performing a careful and metic-
ulous derivation similar to those performed by Khayyer
and Gotoh (2010, 2012). The enhanced performance of the
CHL scheme will be verified by a set of simulations com-
prising of designed sinusoidal and exponentially excited
sinusoidal pressure variations (Khayyer and Gotoh 2012),
unperturbed/perturbed jets impinging on a flat plate (Molteni
and Colagrossi 2009) and a 2D diffusion problem (Young
et al. 2005).

2 MPS-HS-HL-ECS-GC method

The MPS method is a macroscopic, deterministic and
projection-based particle method, initially proposed for sim-
ulation of incompressible fluid flows by Koshizuka and Oka
(1996). The method reproduces the flow field by solving
the continuity and Navier–Stokes equations as the govern-
ing equations. Through the past years, refined numerical
schemes have been proposed in order to enhance the stabil-
ity and performance of MPS method. In this study, enhanced
MPS methods benefitting from so-called HS, HL (or CHL),
ECS and GC schemes are considered. In this section, concise
descriptions of HS, HL, ECS and GC schemes are presented
in precedent order. Detailed descriptions can be found in
Khayyer and Gotoh (2009a, b, 2010, 2011) and Gotoh et al.
(2013).

2.1 The HS scheme

The HS scheme corresponds to a Higher order Source term
for the PPE, incorporated for enhancement of pressure cal-
culation. The higher order source term has been derived by
considering the definition of particle number density n:

n =
∑

i �= j

w
(∣∣r j − r i

∣∣) (1)

and by applying a higher order accurate time differentiation:

Dn

Dt
=

∑

i �= j

Dwi j

Dt
=

∑

i �= j

(
∂wi j

∂ri j

∂ri j
∂xi j

dxi j
dt

+ ∂wi j

∂ri j

∂ri j
∂yi j

dyi j
dt

)

=
∑
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(
∂wi j

∂ri j

xi j
ri j

ui j + ∂wi j

∂ri j

yi j
ri j

vi j

)
(2)

wherew symbolizes the consideredkernel function, t denotes
time, r represents the position vector [r = (x, y)], u, v rep-
resent the components of velocity field in x and y directions,
subscripts i and j correspond to a target particle i and its
neighboring particle j , xi j = x j − xi and ui j = u j − ui .
Hence, the PPE with a higher order source term would be
obtained as (Khayyer and Gotoh 2009a, b):

(
∇2 pk+1

)

i
= ρ

n0�t

(
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Dt

)∗

= ρ

n0�t

∑

i �= j

(
∂wi j

∂ri j

xi j
ri j

ui j + ∂wi j

∂ri j

yi j
ri j

vi j

)∗

(3)

where p, ρ, n0 and �t represent pressure, density, constant
particle number density and calculation time step, respec-
tively. The superscript ∗ denotes the pseudo time step k+1/2
(Khayyer and Gotoh 2011) with k being the step of calcula-
tion.

2.2 The HL scheme

A key issue for improvement of pressure calculation by
a projection-based particle method is to apply an accurate
Laplacian model for discretization of Laplacian of pressure
in the PPE [left hand side of Eq. (3)]. Khayyer and Gotoh
(2010) derived a so-called higher order Laplacian model for
the MPS method by meticulously taking the divergence of a
gradient model. The HL scheme was founded on the follow-
ing formulation:

∇ · 〈∇φ〉i = 1∑
i �= j

wi j

∑

i �= j

(
∇φi j · ∇wi j + φi j∇2wi j

)

= 1

n0

∑

i �= j

(
∇φi j · ∇wi j + φi j∇2wi j

)
(4)

where 〈∇φ〉i denotes an approximated value for gradient of
an arbitrary physical quantity φ at target particle i . In deriva-
tion of HL scheme a commonly applied SPH gradient model
(Monaghan 1992) was considered as follows:
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〈∇φ〉i = 1

n0

∑

i �= j

(
φ j − φi

)∇wi j = 1

n0

∑

i �= j

φi j ∇wi j (5)

By considering the following definitions in 2D Cartesian
coordinates

∇φi j = ∂φi j

∂ri j

∂ri j
∂xi j

i+ ∂φi j

∂ri j

∂ri j
∂yi j

j;

∇wi j = ∂wi j

∂ri j

∂ri j
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i+ ∂wi j

∂ri j

∂ri j
∂yi j

j (6)

and performing the following derivations (Khayyer and
Gotoh 2010),

∇φi j · ∇wi j = ∂φi j

∂ri j

∂wi j

∂ri j
≈ φ j i − φi j

ri j

∂wi j

∂ri j
= 2φ j i

ri j

∂wi j

∂ri j
(7)

∇2wi j = ∇ · ∇wi j = ∂2wi j

∂r2i j
+ 1

ri j

∂wi j

∂ri j
(8)

the HL scheme in 2D was derived as follows:

∇ · 〈∇φ〉i = 1

n0

∑

i �= j

(
φi j

∂2wi j

∂r2i j
− φi j

ri j

∂wi j

∂ri j

)
(9)

The HL scheme was shown to outperform the standard
Laplacian model of MPS method which was derived on
the basis of diffusion concept (Khayyer and Gotoh 2010,
2012). Except for one finite difference-based approxima-
tion, namely, ∂φi j/∂ri j ≈ (φ j i − φi j )/ri j , and a reasonable
assumption that

∑
wi j remains to be equal to n0 in an

incompressible fluid flow simulation, exact expressions for
other terms appearing in derivation of the HL scheme were
adopted. However, one clear issue related to the HL scheme
is related to incompleteness or inconsistency (Liu et al.
1993; Randles and Libersky 1996) of the considered gra-
dient model [Eq. (5)]. Thus, it is conjectured that the HL
scheme will result in inaccuracies in the vicinity of bound-
aries with lack of a full compact support or in presence of
highly-disordered particle distributions. The errors related to
lack of a full compact support corresponding to discretiza-
tion of PPE’s Laplacian of pressure do not appear to be
dominant in free-surface fluid flow simulations, as due to
the dynamic free-surface boundary condition, the source
term of PPE takes a zero value. Nevertheless, these errors
may become considerable if the HL scheme is applied for
approximation of Laplacian of another field (e.g., color func-
tion in single-phase surface tension calculations). Therefore,
it is preferred to derive a so-called corrected HL (CHL)
scheme with consideration of completeness (consistency)
issue.

2.3 The ECS scheme

In order to enhance the accuracy of numerical solutions, i.e.,
to obtain instantaneous divergence free velocity fields, in a
calculation by a projection-based particle method, Khayyer
and Gotoh (2011) proposed so-called Error-Compensating
terms in the Source termof PPE (abbreviated asECS), similar
to those suggested by Hu and Adams (2009) and Kondo and
Koshizuka (2011). The PPE including the ECS scheme was
formulated as:
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(
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)
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= 1
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i
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with dynamic coefficients α and β being defined as:
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∣∣∣∣
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(
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)∣∣∣∣∣ (11)

2.4 The GC scheme

In order to obtainmore accuratemotions of fluid particles and
minimize the probable numerical perturbations in particles’
motions, a pressureGradient Correctionwas proposed for the
MPS method by Khayyer and Gotoh (2011). This proposal
was achieved by focusing on the Taylor series expansion of
pressure at a neighboring particle j with respect to the pres-
sure at a target particle i (as it had been previously shown
by Chen et al. 1999; Oger et al. 2007). Accordingly, a cor-
rected pressure gradient for the MPS method was obtained
as follows:

〈∇ p〉i =
1

n0

∑

j �=i

p j − pi∣∣r j −r i
∣∣2

Bi
(
r j −r i

)
w

(∣∣r j −r i
∣∣) (12)

with the corrective matrix B being formulated as:

Bi =
⎛

⎜⎝

∑
Vi j

wi j x2i j
r2i j

∑
Vi j

wi j xi j yi j
r2i j

∑
Vi j

wi j xi j yi j
r2i j

∑
Vi j

wi j y2i j
r2i j

⎞

⎟⎠

−1

; Vi j = 1

n0
(13)

The HS, ECS and GC schemes are applied in all the simula-
tions performed in this paper.

3 Corrected higher order Laplacian (CHL) scheme

As it was previously discussed in Sect. 2.2, a clear shortcom-
ing of HL scheme is related to incompleteness of the gradient

123



364 J. Ocean Eng. Mar. Energy (2015) 1:361–376

model considered for derivation of this scheme. The basis of
gradient correction corresponds to a Taylor-series expansion
of an arbitrary physical field φ at a neighboring particle j
based on information at a target particle i as follows:

φ j = φi +
(
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)

i
xi j +

(
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)

i
yi j ; xi j = x j − xi (14)

Multiplying both hand sides by
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where r i j = (xi j , yi j ). From Eq. (15) the following cor-
rected gradient vectorwill be obtained (Randles andLibersky
1996):
⎛

⎝
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∂φ
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⎞

⎠

i
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whereC is a correctivematrix for target particle i , formulated
as:
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The above corrective matrix ensures the first-order consis-
tency of approximations (e.g., Oger et al. 2007; Gotoh et al.
2013). In discrete form, the corrected gradient model and the
corresponding corrective matrix are expressed by Eqs. (18)
and (19).
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Similar to derivation ofHL scheme, theLaplacian ofφ is con-
sidered to be obtained by taking the divergence of gradient
of φ. Hence,
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Accordingly the first term on the right hand side of Eq. (20)
will be expressed as:
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And for derivation of second term, divergence of the product
of C and ∇i jwi j will be expressed as:
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It should be noted here that,

∂Cαβ

∂xi j
= ∂Cαβ

∂ri j
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≈ 0 − Cαβ∣∣r i j
∣∣

xi j∣∣r i j
∣∣ = −Cαβxi j∣∣r i j
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(25)

The CHL scheme is thus obtained by considering Eqs. (20),
(23) and (24). The kernel function applied in all simulations
of this study, and for all the schemes, is a Wendland one
(Wendland 1995), formulated as follows:

w (r) =
{(

1 − r
re

)4 (
1 + 4 r

re

)
(0 < r ≤ re)

0 (r > re)
(26)

where re represents the radius of influence circle for a typical
target particle. In all the performed simulations of this paper
re = 2.4d0.

4 Verification tests

The enhancing performance of the CHL scheme with respect
to the HL scheme will be shown by simulations of designed
sinusoidal and exponentially excited sinusoidal pressure vari-
ations (Khayyer andGotoh2012), unperturbed/perturbed jets
impinging on a flat plate (Molteni and Colagrossi 2009) and

a 2D diffusion problem (Young et al. 2005). The simula-
tions are performed by an improved version of the MPS
method, namely, MPS-HS-ECS-GC method (Gotoh et al.
2013; Khayyer and Gotoh 2011), briefly described in Sect. 2,
incorporated with either HL or CHL schemes (MPS-HS-HL-
ECS-GC or MPS-HS-CHL-ECS-GC).

4.1 Designed sinusoidal pressure variations
(Khayyer and Gotoh 2012)

Designed sinusoidal pressure variations are carried out to
investigate the performance of newly proposed CHL scheme
with respect to the HL one. Detailed descriptions regarding
this test have been provided by Khayyer and Gotoh (2011,
2012). Figure 1 shows a schematic sketch of the compu-
tational domain as well as the simulation conditions. The
modified gravitational acceleration considered for this test is
defined as follows:

gd(t) = 2g + δg sin
(
2π t

T

)
(27)

where gd represents designed external accelerations applied
to fluid particles, g is the Earth’s gravitational acceleration
[=(0,−9.81)m/s2], t stands for the simulation time and T
denotes the period of sinusoidal term variations (=0.01s).
The constant coefficient δ is selected to be 0.4. The time
increment of calculation, �t , is set according to the Courant
stability condition and a (maximum allowable) time resolu-
tion chosen as 2.0E − 5, that is:

�t = min (κ d0/umax, 2.0E − 5) (28)

where κ = ratio of the time step to Courant number (=0.2)
and umax = maximum instantaneous velocity of particles.
The above time increment is considered for all the simu-
lations performed in this section regardless of the selected
particle size.

Figure 2 illustrates a qualitative comparison in between
the spatial distributions of pressure obtained by applying the
HL scheme and the CHL one by considering a set of three
spatial resolutions (particle sizes) of (a) d0 = 10mm, (b)
d0 = 5mm and (c) d0 = 2.5mm. In all the three considered
cases, application ofCHLhas resulted in a clear enhancement

100 mm

600 mm

measuring point A

measuring point B50 mm

300 mm

Fig. 1 Schematic sketch of the computational domain—designed sinu-
soidal pressure variations
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Fig. 2 Snapshots of particle
together with pressure field for a
set of spatial resolutions of
a d0 = 10mm, b d0 = 5mm
and c d0 = 2.5mm by HL
(higher order Laplacian) and
CHL (corrected higher order
Laplacian) schemes—designed
sinusoidal pressure variations

t=0.36 sHL

CHL

0.0 2000.0
p(N/m 2  )

t=0.28 sHL

CHL

t=0.20 sHL

CHL

d0 = 10 mm d0 = 5 mm

d0 = 2.5 mm

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(a1) (a2)

(b1) (b2)

(c1) (c2)

(b)(a)

(c)

of spatial distribution of pressure providing a more regular
and smoother pressure field.

Figure 3 depicts the time histories of calculated and ana-
lytical pressure at measuring point A. This figure approves
the enhancing effect of CHL in a quantitative manner, where
significantly enhanced pressure calculations are obtained by
applying the CHL scheme in all three considered spatial res-
olutions. There appears to be a deterioration of simulation
results for both HL and CHL by refinement of spatial resolu-
tion (particle size). However, this apparent inconsistency is
likely caused by consideration of a similar maximum allow-
able time resolution for all the simulations. In other words,
we should have set smaller maximum allowable time resolu-
tions as the particle size was being refined, but on the other
hand, we preferred to set exactly similar calculation condi-
tions for all the performed simulations regardless of particle
size, due to simplicity and clarity, as well as the main target
of our present study, i.e., investigation of the performance
of CHL with respect to HL. We admit that a detailed and
rigorous study on the convergence properties of MPS-based
methods employing either HL or CHL must be carried out.

Figure 4 portrays the effect of CHL in improvement of
volume conservation which is an important aspect in par-
ticle method simulations, especially those corresponding to
incompressible fluid flows. This figure shows time variations

of calculated particle number density at measuring point B
normalized by the initial one (n0). From Fig. 4, the error
in volume conservation related to HL scheme reaches more
than 10%, while, this error for CHL scheme tends to be con-
fined within a limited range with maximum observed error
of about 2%. As illustrated by Khayyer and Gotoh (2011,
2013), volume conservation plays a crucial role both in pres-
sure calculation and overall stability of the method.

Figure 5 shows the spatial distribution of particles together
with pressure field for an initially irregular and disordered
distribution of particles where initially (at t = 0) all the fluid
particles were randomly displaced by 0.05d0 in both hori-
zontal and vertical directions. The presented figure approves
the enhancing effects of CHL in providing a more regular
and smoother pressure field for an initially irregular particle
distribution. It is worth to mention here that in a recent work,
Antuono et al. (2014) proposed an algorithm to measure dis-
order in particle methods and highlighted the applications of
their proposed disorder measure in inspecting the correlation
in between the measure of disorder and accuracy of particle
methods.

Figure 6 depicts the time histories of calculated pressure
as well as analytical solution at measuring point A, for the
initially irregular particle distribution. From Fig. 6, applica-
tion of CHL has been effective in providing a more accurate
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Fig. 3 Time histories of calculated and analytical pressure at measuring point A—designed sinusoidal pressure variations—regular initial particle
distribution

pressure calculation with minimized unphysical oscillations
in time domain.

4.2 Designed exponentially excited sinusoidal pressure
variations (Khayyer and Gotoh 2012)

In order to further investigate the performance of CHL with
respect to HL, a set of exponentially excited sinusoidal
pressure variations is performed by considering three dif-
ferent spatial resolutions (d0 = 0.01, 0.005 and 0.0025m).
The computational domain corresponds to that of Sect. 4.1
schematically shown in Fig. 1. Here, the designed gravita-
tional acceleration is considered as:

gd(t) = 2g + δg sin
(
2π t

T

)
exp

(
επ t

T

)
(29)

where T , the period of sinusoidal term variations, is set as
0.01 s and the constant coefficients δ and ε are selected to

be 0.2 and 0.015, respectively. In order to see the differ-
ences in between performances of CHL and HL schemes
more clearly, an initially irregular distribution of particles
is considered, similar to that in Sect. 4.1, i.e., all the fluid
particles were randomly displaced by 0.05d0 in both hori-
zontal and vertical directions. The calculation time step, �t ,
is set according to the Courant stability condition and a time
resolution chosen as 2.0E − 5.

Figure 7 depicts the time histories of pressure variations
at measuring point A (Fig. 1). As it can be clearly seen from
this figure, in all the three performed simulations, the CHL
schemeoutperforms theHLone, in providing amore accurate
calculation of pressure field. Table 1 shows the RMSE (root
mean square error) corresponding to these three simulations.
Although the CHL evidently outperforms the HL, a clear
convergence cannot be seen. This is most probably due to the
fact that the maximum allowable time resolutions for all the
performed three caseswere the same.Adetailed further study
on convergence properties of both HL and CHL schemes
appears to be indispensable.
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Fig. 4 Time variations of
calculated particle number
density at measuring point B
normalized by the initial one
(n0)—designed sinusoidal
pressure variations—regular
initial particle distribution
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4.3 Jet impingement on a flat plate
(Molteni and Colagrossi 2009)

The impingement of a water jet on a flat plate has been
considered as a benchmark test to illustrate the enhanced
pressure calculations by improved versions of both SPH (e.g.,
Molteni and Colagrossi 2009; Antuono et al. 2010) andMPS
(e.g., Khayyer andGotoh 2011)methods.A two-dimensional
inviscid water jet impinges on a horizontal rigid plate. After
the impact of jet and release of shock pressure, the flow
regime becomes steady and the pressure at the stagnation
point is that obtained from the Bernoulli equation.

Figure 8 shows a schematic sketch of calculation domain.
A water jet of width W = 0.2m impinges on a rigid flat
plate from a distance of D = 2.5W with a velocity of U =
1.32m/s. The particle size is considered to be d0 = 2.5mm.

The time increment of calculation,�t , is set according to the
Courant stability condition and a time resolution of 2.0E−4.

Figure 9 shows the time histories of calculated pressure
at measuring point C obtained by HL and CHL schemes.
From this figure, the results by both HL and CHL appear to
have the same level of accuracy. Thus, it may appear that
the CHL scheme does not provide any enhancements for this
benchmark test. However, some clear enhancements by CHL
are observed when we consider the spatial distributions of
particles and pressure field.

Figure 10 illustrates the spatial distributions of parti-
cles together with pressure field at t = 4.55s. From
this figure, the instabilities (Fig. 10a1) and unphysical
pressure oscillations (Fig. 10a2) seen in the vicinity of
free surface corresponding to the HL scheme have been
improved (Fig. 10b) by applying the CHL scheme. How-
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Fig. 5 Spatial distribution of
particles together with pressure
field for a d0 = 10mm,
b d0 = 5mm—designed
sinusoidal pressure
variations—irregular initial
particle distribution
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Fig. 6 Time histories of calculated pressure and analytical solution at measuring point A—designed sinusoidal pressure variations—irregular
initial particle distribution

123



370 J. Ocean Eng. Mar. Energy (2015) 1:361–376

3000

2000

1000

0.40.30.20.10.0

3000

2000

1000

0.40.30.20.10.0

3000

2000

1000

0.40.30.20.10.0

 theory
 HL
 CHL

 theory
 HL
 CHL

 theory
 HL
 CHL

p(N/m2)

p(N/m2)

p(N/m2)

t(s)

t(s)

t(s)

d0=0.01 m

d0=0.005 m

d0=0.0025 m

Fig. 7 Time histories of calculated and analytical pressure at measuring point A—designed exponentially excited sinusoidal pressure variations—
irregular initial particle distribution

Table 1 RMSE (root mean
square error) corresponding to
HL and CHL
schemes—exponentially excited
sinusoidal pressure variations

d0 10mm 5mm 2.5mm

Scheme HL CHL HL CHL HL CHL

Irregular 234.5438 19.2850 162.1980 30.8089 150.9107 24.2292

U=1.32 m/s

W=0.2 m
Inflow boundary

D = 2.5W

measuring point C

Outflow
boundary

Fig. 8 Schematic sketch of the computational domain—a jet imping-
ing on a flat plate

ever, consistent with the results in Fig. 9, both HL and
CHL have resulted in almost similar spatial distributions
of pressure at other regions. In the next section, the per-

Fig. 9 Time histories of calculated pressure at measuring point C—a
jet impinging on a flat plate

formance of CHL with respect to HL is examined through
the simulations of a deliberately perturbed jet impinge-
ment.
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(b)(a)

Fig. 10 Spatial distributions of particles together with pressure field at a typical time of t = 4.55s—a jet impinging on a flat plate

U=1.0 m/s

W=0.2 m
Inflow boundary

D = 1.0W

measuring point D

Outflow
boundary

Fig. 11 Schematic sketch of the computational domain—a perturbed
jet impinging on a flat plate

4.4 Perturbed jet impingement on a flat plate

Adeliberately perturbed jet impinging on a flat plate is repro-
duced to demonstrate the enhanced performance ofCHLwith
respect to HL. A schematic sketch of calculation domain is
shown in Fig. 11. A perturbed water jet of widthW = 0.2 m
impinges on a rigid flat plate from a distance of D = 1.0W
with a velocity ofU = 1.0m/s. A set of spatial resolutions of
d0 = 1.25, 2.0 and 2.5mm is considered. The perturbation in
the water jet is caused by deliberately assigning an irregular
distribution to the initial 5 layers of inflow boundary particles
by randomly displacing them by 0.2d0 in vertical direction.
This irregular initial distribution is exactly the same for both
HLandCHL simulations. The calculation time step for all the
performed simulations of this section is chosen by consider-
ing the Courant stability condition and amaximum allowable
time resolution of 2.0E − 4.

Figure 12 shows the snapshots of particles together with
pressurefield at t = 0.12 and0.20 s byHLandCHLschemes.

As it can be seen from the presented figure, just after the
impact instant at t = 0.20 s, the pressure field by the HL
scheme is characterized by clear discrepancies and spuri-
ously calculated pressures. Such discrepancies are clearly
minimized in the snapshot by the CHL scheme.

Figure 13 shows the snapshots of particles and pressure
fields at t = 0.20 s by the HL and CHL schemes corre-
sponding to two other considered spatial resolutions. In both
cases, the enhanced performance of CHL with respect to HL
is evident.

Figure 14 depicts the time history of calculated pressures
at measuring point D by the HL and CHL schemes corre-
sponding to d0 = 2.0mm.Although results of a perturbed jet
impact tend to contain more numerical noises in comparison
with an unperturbed, perfectly smooth jet (with a completely
uniform velocity field), the CHL is shown to outperform the
HL in a quantitative comparison as well.

The superiority ofCHLwith respect toHL in simulation of
a perturbed jet impingement suggests that this scheme should
be preferred to the HL scheme in simulations of violent fluid
flows that often contain irregularities and fragmentations.

4.5 Two-dimensional diffusion problem

In order to further verify the accuracy of both HL and CHL
schemes, a two-dimensional diffusion problem correspond-
ing to a square domain subjected to Dirichlet boundary
condition is simulated. Figure 15 shows a schematic sketch
of this test. The Dirichlet boundary condition, specified by
φ = z at the square’s four sides, is set as z = 0 except for
the horizontal side at y = 0, where the condition of z = x
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Fig. 12 Spatial distributions of particles together with pressure field at t = 0.12 and 0.2 s corresponding to d0 = 1.25mm—a perturbed jet
impinging on a flat plate

is imposed. The initial condition for all the other particles is
set as φ = 0. The exact solution for this diffusion problem is
given as (Young et al. 2005):

φ(x, y) =
∞∑

n=1

(
2(−1)n+1

nπ sinh(nπ)

× sinh {nπ(1 − y)} sinh(nπx)

)
(30)

Two different spatial resolutions are considered, namely,
L/D = 10 and L/D = 100 with L being the square’s side
length (taken as unity) and D being the particle diameter (d0),
respectively. Figure 16 shows the spatial distributions of cal-
culated φ corresponding to these two resolutions by applying
the CHL scheme. For this test, the HL scheme resulted in
almost the same qualitative results.

Figure 17 shows a quantitative comparison in between
the HL and CHL schemes with respect to analytical solu-

tion for L/D = 10 at x = 0.5 and at y = 0.5.
From the presented figure, the CHL scheme has provided
relatively more accurate results for this considered resolu-
tion.

Figure 18 shows the calculation results for the fine resolu-
tion case of L/D = 100. For this calculation case, both HL
and CHL schemes have provided almost accurate results.
In order to quantify the accuracy, the RMSE of calculated
results with respect to the analytical solution is presented
in Table 2. In both cases, the CHL scheme shows a smaller
RMSE compared with the HL scheme.

5 Concluding remarks

The paper presents a corrected higher order Laplacian (CHL)
model for enhancement of pressure calculation by moving
particle semi-implicit (MPS) method. The proposed CHL
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Fig. 13 Spatial distributions of
particles together with pressure
field at t = 0.2 s corresponding
to d0 = 2.0mm and 2.5 mm—a
perturbed jet impinging on a flat
plate
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Fig. 14 Time histories of calculated pressure at measuring point D—a
perturbed jet impinging on a flat plate

scheme is derived by meticulously taking the divergence of a
corrected SPH gradient model in a similar manner to deriva-
tion of higher order Laplacian (HL) scheme conducted by
Khayyer and Gotoh (2010, 2012). The considered corrected
SPHgradient is characterized by a correctivematrix to assure
the first-order consistency of pressure gradient approxima-
tions.

Fig. 15 Schematic sketch of calculation domain—a2Ddiffusion prob-
lem

The enhanced performance of CHL with respect to HL is
shown by performing designed sinusoidal and exponentially
excited sinusoidal pressure variations (Khayyer and Gotoh
2012), unperturbed/perturbed jets impinging on a flat plate
(Molteni and Colagrossi 2009) and a 2D diffusion problem
(Young et al. 2005) through both qualitative and quantita-
tive comparisons. The superiority of CHL with respect to
HL is found to be more realizable in presence of irregu-
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larities in particle distributions or highly accelerated flow
fields, often encountered in simulation of violent fluid flows.
Thus, despite relative complexity in formulation and cod-
ing, the CHL scheme should be preferred to the HL one,
in simulations related to practical engineering applications,

Fig. 16 Spatial distributions of calculated φ by the CHL scheme—a
2D diffusion problem

including those related to ocean engineering. More rigor-
ous studies on the accuracy and convergence of both HL
and CHL schemes are scheduled to be conducted by the
authors.

Although in this paper, derivation and application of CHL
is considered for theMPSmethod, similar developments can
be easily made for another well-known projection-based par-
ticle method, i.e., incompressible SPH method (e.g., Shao
and Lo 2003).

Development of refined differential operator models,
such as CHL, will be also helpful to achieve a more
accurate and more reliable reproduction of SPS (sub-
particle scale) turbulence (Gotoh et al. 2001) in hydrody-
namic fluid flows where presence of unphysical pressure
oscillations remains to be a challenging difficulty (Gotoh
and Sakai 2006). Upon achieving an accurate and fully
reliable MPS-based solver, real-time fluid flow simula-
tions are expected to be obtained via high-performance
GPU (graphics processing unit)-based computations (e.g.,

Fig. 17 Quantitative comparison in between the HL and CHL schemes with respect to analytical solution for L/D = 10 at x = 0.5 and at
y = 0.5—a 2D diffusion problem

Fig. 18 Calculation results by the HL and CHL schemes for L/D = 100 at x = 0.5 and at y = 0.5—a 2D diffusion problem
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Table 2 RMSE (rootmean square error) corresponding toHL andCHL
schemes—a 2D diffusion problem

L/D = 10 L/D = 100

HL CHL HL CHL

0.00748421 0.00649334 0.00125827 0.00105165

Hori et al. 2011). Gotoh (2009) and Koshizuka (2011)
provide comprehensive reviews on key issues for exten-
sion of particle methods for practical engineering applica-
tions.

References

Adami S, Hu XY, Adams NA (2012) A generalized wall boundary
condition for smoothed particle hydrodynamics. J Comput Phys
231(21):7057–7075

Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface
flows solved by means of SPH schemes with numerical diffusive
terms. Comput Phys Commun 181(3):532–549

AntuonoM, Colagrossi A,Marrone S (2012) Numerical diffusive terms
in weakly-compressible SPH schemes. Comput Phys Commun
183(12):2570–2580

Antuono M, Bouscasse B, Colagrossi A, Marrone S (2014) A measure
of spatial disorder in particle methods. Comput Phys Commun
185(10):2609–2621

Bonet J, LokTS (1999)Variational andmomentumpreservation aspects
of smooth particle hydrodynamic formulation. Comput Methods
Appl Mech Eng 180:97–115

Chen JK, Beraun JE, Jih CJ (1999) An improvement for tensile
instability in smoothed particle hydrodynamics. Comput Mech
23:279–287

Colagrossi A, Landrini M (2003) Numerical simulation of interfa-
cial flows by smoothed particle hydrodynamics. J Comput Phys
191(2):448–475

Delorme L, Colagrossi A, Souto-Iglesias A, Zamora-Rodriguez R,
Botia-Vera E (2009) A set of canonical problems in sloshing, part
I: pressure field in forced roll-comparison between experimental
results and SPH. Ocean Eng 36(2):168–178

Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics:
theory and application to non-spherical stars. Mon Not R Astron
Soc 181:375–89

Gotoh H, Shibahara T, Sakai T (2001) Sub-particle-scale turbulence
model for the mps method—Lagrangian flow model for hydraulic
engineering. Comput Fluid Dyn J 9(4):339–347

Gotoh H, Sakai T (2006) Key issues in the particle method for compu-
tation of wave breaking. Coast Eng 53:171–179

GotohH (2009) Lagrangian particlemethod as advanced technology for
numerical wave flume. Int J Offshore Polar Eng 19(3):161–167

Gotoh H, Khayyer A, Ikari H, Arikawa T, Shimosako K (2014) On
enhancement of Incompressible SPH method for simulation of
violent sloshing flows. Appl Ocean Res 46:104–115

Gotoh H, Okayasu A,Watanabe Y (2013) Computational wave dynam-
ics. World Scientific Publishing Co, Singapore

Hori C, Gotoh H, Ikari H, Khayyer A (2011) GPU-acceleration for
moving particle semi-implicit method. Comput Fluids 51(1):174–
183

HuXY,AdamsNA (2009)A constant-density approach for incompress-
ible multi-phase SPH. J Comput Phys 228(6):2082–2091

Hwang SC, Khayyer A, Gotoh H, Park JC (2014) Development of a
fully Lagrangian MPS-based coupled method for simulation of
fluid-structure interaction problems. J Fluids Struct 50:497–511

Khayyer A, Gotoh H, Shao SD (2008) Corrected Incompressible SPH
method for accurate water-surface tracking in breaking waves.
Coast Eng 55(3):236–250

Khayyer A, Gotoh H (2009a) Modified moving particle semi-implicit
methods for the prediction of 2Dwave impact pressure. Coast Eng
56:419–440

Khayyer A, Gotoh H (2009b) Wave impact pressure calculations by
improved SPH methods. Int J Offshore Polar Eng 19(4):300–307

Khayyer A, Gotoh H (2010) A higher order Laplacian model for
enhancement and stabilization of pressure calculation by the MPS
method. Appl Ocean Res 32(1):124–131

Khayyer A, Gotoh H (2011) Enhancement of stability and accuracy
of the moving particle semi-implicit method. J Comput Phys
230:3093–3118

Khayyer A, Gotoh H (2012) A 3D higher order Laplacian model for
enhancement and stabilization of pressure calculation in 3DMPS-
based simulations. Appl Ocean Res 37:120–126

Khayyer A, Gotoh H (2013) Enhancement of performance and stability
of MPS meshfree particle method for multiphase flows character-
ized by high density ratios. J Comput Phys 242:211–233

Kondo M, Koshizuka S (2011) Improvement of stability in moving
particle semi-implicit method. Int J Numer Methods Fluids 65:
638–654

Koshizuka S, Oka Y (1996) Moving particle semi-implicit method
for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–
434

Koshizuka S (2011) Current achievements and future perspectives on
particle simulation technologies for fluid dynamics and heat trans-
fer. J Nucl Sci Technol 48(2):155–168

Lind S, Xu R, Stansby P, Rogers B (2012) Incompressible smoothed
particle hydrodynamics for free-surface flows: a generalised
diffusion-based algorithm for stability and validations for impul-
sive flows and propagating waves. J Comput Phys 231(4):1499–
1523

LiuWK,Adee J, Jun S (1993) Reproducing kernel andwavelets particle
methods for elastic and plastic problems. Adv Comput Methods
Mater Model 180(268):175–190

MolteniD,ColagrossiA (2009)A simple procedure to improve the pres-
sure evaluation in hydrodynamic context using the SPH. Comput
Phys Commun 180(6):861–872

Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev
Astron Astrophys 30:543–574

Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved
SPH method: towards higher order convergence. J Comput Phys
225(2):1472–1492

Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics:
some recent improvements and applications. Comput Meth Appl
Mech Eng 139:375–408

Shao SD, Lo EYM (2003) Incompressible SPH method for simulat-
ing Newtonian and non-Newtonian flows with a free surface. Adv
Water Resour 26(7):787–800

Souto-Iglesias A,Macià F, González LM, Cercos-Pita JL (2013) On the
consistency of MPS. Comput Phys Commun 184(3):732–745

Touzé DL, Colagrossi A, Colicchio G, GrecoM (2013) A critical inves-
tigation of smoothed particle hydrodynamics applied to problems
with free surfaces. Int J Numer Methods Fluids 73:660–691

Tsuruta N, Khayyer A, Gotoh H (2013) A short note on dynamic stabi-
lization of moving particle semi-implicit method. Comput Fluids
82:158–164

Tsuruta N, Khayyer A, Gotoh H (2015) Space potential particles to
enhance the stability of projection-based particle methods. Int J
Comput Fluid Dyn. doi:10.1080/10618562.2015.1006130

123

http://dx.doi.org/10.1080/10618562.2015.1006130


376 J. Ocean Eng. Mar. Energy (2015) 1:361–376

Ulrich C, Leonardi M, Rung T (2013) Multi-physics SPH simulation
of complex marine-engineering hydrodynamic problems. Ocean
Eng 64:109–121

Veen D, Gourlay T (2012) A combined strip theory and smoothed par-
ticle hydrodynamics approach for estimating slamming loads on a
ship in head seas. Ocean Eng 43:64–71

Wendland H (1995) Piecewise polynomial, positive definite and com-
pactly supported radial functions of minimal degree. Adv Comput
Math 4:389–396

Young DL, Chen KH, Lee CW (2005) Novel meshless method for solv-
ing the potential problems with arbitrary domain. J Comput Phys
209:290–321

123


	Corrected higher order Laplacian for enhancement of pressure calculation by projection-based particle methods with applications in ocean engineering
	Abstract
	1 Introduction
	2 MPS-HS-HL-ECS-GC method
	2.1 The HS scheme
	2.2 The HL scheme
	2.3 The ECS scheme
	2.4 The GC scheme

	3 Corrected higher order Laplacian (CHL) scheme
	4 Verification tests
	4.1 Designed sinusoidal pressure variations  (Khayyer and Gotoh 2012)
	4.2 Designed exponentially excited sinusoidal pressure variations (Khayyer and Gotoh 2012)
	4.3 Jet impingement on a flat plate  (Molteni and Colagrossi 2009)
	4.4 Perturbed jet impingement on a flat plate
	4.5 Two-dimensional diffusion problem

	5 Concluding remarks
	References




