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Abstract
The present investigation intends to determine the physiochemical parameters and levels 
of toxic metals in surface soils, their possible sources, and their impacts on the tree car-
bon stock potential in a natural forest. Ninety soil samples were collected from three loca-
tions: Site-1: Vicinity to industries, Site-2: 150 m distance, and Site-3: 300 m distance 
from thirty industries in Bhawal Sal Forest. The toxic metal concentrations were quantified 
using an atomic absorption spectrophotometer (AAS). Multiple factor analysis (geo-accu-
mulation index (Igeo), pollution index (PI), Pearson correlation, clustering, and regression) 
was done to measure the ecological risks and relationships of metals. The results revealed 
that the mean concentration of metal pollutants (Cu, Zn, Pb, and Cr) at Site-1 was 32.28, 
7.99, 38.85, and 53.08 ppm, respectively. The geo-accumulation index (Igeo) values for Pb 
at Site-1 and Site-2 were 1.02±0.37 and 0.10±0.26, respectively, which means Igeo class 2 
and 1, indicating moderately contaminated and unpolluted/moderately contaminated soils, 
respectively. A high value of pollution index (PI) for Pb (3.10±0.92) was recorded at Site-
1. Correlation analysis found a strong positive link between metals: Cu-Zn (72%), Cu-Pb 
(83%), Cu-Cr (51%), Zn-Pb (71%), Zn-Cr (54%), and Pb-Cr (62%). Furthermore, nega-
tive correlations for tree biomass carbon stock of Cu (-87%), Zn (-78%), Pb (-84%), and 
Cr (-53%) were recorded, highlighting the negative effects of metals on tree diversity and 
biomass carbon production that require further monitoring. Nonetheless, policymakers and 
conservationists are obligated to take the necessary actions to reduce the impacts of indus-
trial effluent discharge in protected forests.

Highlights 
• Lead was the most significant contributor to the ecological risks.
• Cu, Zn, Pb, and Cr exhibited strong correlations, indicating similar origins.
• Toxic metals in surface soils had negative impacts on tree biomass carbon stocks.
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1 Introduction

The industrialization has been a driving force behind human progress and development, 
yet it has caused significant environmental changes, especially in forest ecology. The rapid 
expansion of the industry is a major contributor to environmental pollution from a wide 
range of sources, particularly toxic metals (Jiang et al. 2017; Zouiten et al. 2016; Vignaroli 
et al. 2018). Human activities triggering toxic metal pollution in protected forests alter the 
physiochemical properties of the soil, threatening the integrity of forest ecosystems (Galal 
et al. 2021; Yang et al. 2022). With the advent of industrialization and urbanization, the 
abundance of toxic metals such as copper (Cu), zinc (Zn), chromium (Cr), nickel (Ni), iron 
(Fe), manganese (Mn), arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd) in the 
environment has skyrocketed over the past few decades, causing global concern (Dutta 
et al. 2021; Adimalla 2020; Shi et al. 2019; Ashraf et al. 2019; Bernardino et al. 2019). The 
toxicity, high degree of bioaccumulation, and pervasiveness of heavy metal contamination 
in soil have brought it to the forefront of research efforts on a worldwide scale (Zhang 
2020). Their contamination causes disruptions in the natural biogeochemical cycle since 
they are not biodegradable (Kumar et al. 2019), pose ecological concerns, and have long 
biological half-lives (Kaur et al. 2020; Carvalho et al. 2020). In addition, they disrupt eco-
system functioning, human health, and nutrient cycling (Hiller et  al. 2021; Huang et  al. 
2020). Particles of toxic metals discharged by urban megaprojects and industrial effluent 
gases infiltrate the atmosphere and are thus subsequently precipitating into urban forest 
ecosystems (Li and Liu 2017). Thus, ecologists and environmentalists are becoming more 
interested in deducing the nature of these connections. Their concern is a result of world 
researchers’ emphasis on the environmental effects of toxic metals. The focus of environ-
mental scientists throughout the globe on toxic metals is likely what piques their curiosity 
(Malunguja et al. 2022; Li et al. 2020; Kumar et al. 2020; Kothandaraman et al. 2020).

Bangladesh is one of the world’s nations with the highest population density (Alam 
2021). The soil near the industrial areas of Bangladesh’s major cities was overabundant 
with toxic metals and metalloids (Islam et al. 2018; Zakir et al. 2017; Zakir and Hossain 
2016), and those wastes containing toxic metals pose a serious threat to the environment, 
particularly to soils, sediments, and streams (Khanam et al. 2020), including protected for-
ests. In addition to being one of the most contaminated countries, Bangladesh has forest 
areas covering approximately 2.53 million hectares, or 17.5% of its total land area (BFD 
2020). Yet, the real area covered by forests does not reach 6% of the country’s total land, 
and a person only has access to 0.022 hectares of forest (Uddin et al. 2020). The decidu-
ous Sal forest in Bangladesh spans over 0.12 million hectares and accounts for 4.7% of 
the country’s total forest area (Roshni et  al. 2022). The Bhawal Sal Forest is one of the 
most endangered natural deciduous forests in Bangladesh. Due to invasion and illegal 
industrialization, the forest environment has suffered. The majority of industries in this for-
est are textiles (Alauddin et al. 2020), which release toxic metals like copper, manganese, 
lead, cadmium, mercury, zinc, and arsenic in their wastes and effluents. These metals have 
been identified as crucial markers among the different hazardous compounds generated by 
industrial operations because they can be efficiently and consistently studied in the major-
ity of environmental matrices. The deposition rate of toxic metals in these areas are attrib-
utable for changes in the plant community, diversity, and biomass production potential 
(Sheng et al. 2021, Khalid et al. 2021, Danelli et al. 2021).

Toxic metals in forest soil have been proven to disrupt root physiological function and 
lower forest productivity (Kang et  al. 2022). The accumulation of these heavy metals in 
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the trees leads to their entry into food webs (Fajardo et al. 2020; Leclercq-Dransart et al. 
2019; Kumar et al. 2019). For instance, Sheng et al. (2021) evaluated the impact of heavy 
metal pollution on moss taxa and the conservation of biodiversity in the Nancha Mn-min-
ing region of China. Ng et al. (2020) discovered the extraordinary capacity of plant species 
to accumulate metals in soils. Khanam et al. (2020) reported that metal exposure decreases 
leaf growth and  CO2 assimilation in plants. Moreover, the accumulation of toxic metals in 
forest soils can impact the ability of trees to sequester carbon, leading to potential implica-
tions for climate change mitigation.

Globally reported data on toxic metals accumulation in forest ecosystems owing to 
industrial activities, including those of Kang et  al. (2022) revealed that Cd, Pb, and Cu 
in their respective enrichment regions were mostly from marble and cement manufactur-
ing of forest soil in Western Guangdong Province, China. Malinova et  al. (2022) meas-
ured heavy metal concentrations in forest soils in Bulgaria’s Western Balkan Mountains. 
A Pb-Zn smelter’s heavy metal contamination was examined by Hu et al. (2022). Bolou-
Bi et al. (2021) examined Cd, Cr, Hg, Ni, Mn, and Zn in an urban forest in Abidjan. Raj 
et  al. (2019) also found heavy metal contamination in forest soil from mining dust and 
waste ore. The nonferrous metallurgy smelter’s air emissions damaged European North 
Russia’s northern taiga pine forest, as reported by Lyanguzova et  al. (2018). Li and Liu 
(2017) stated that industrial activities and transportation are the primary contributors to 
heavy metal contamination in urban forest ecosystem. Roztocze National Park’s (Poland) 
heavy metal contamination was assessed by Mazurek et al. (2017).

Several studies on toxic metals and their sources in forest soil around the world along 
with human activities like roadways, traffic emissions, and development activities are by 
Malunguja et al. (2022) in India, Kupka et al. (2021) in central Poland, Mackowiak et al. 
(2021) in southern California, Vural et  al. 2021) in Bingol Turkey, Wang et  al. (2020) 
in China, Devi et  al. (2019) in Kaziranga National Park in Indi, Alsbou and Al-Khash-
man (2018) in the Petra region, Jordan. On the other hand, numerous investigations have 
depicted industrial discharges as sources of soil toxic metals. For example, Bibi et  al. 
(2023) reported industrial discharge sources of soil heavy metals in Vienna, Austria; Su 
et al. (2022) in South China. Holtra and Zamorska-Wojdyla (2020) observed high pollution 
surrounding the smelter. Petroleum, coal, nuclear, and high-tension wire industries emit 
toxic metals such as Cu, Zn, Cd, Ni, B, Se, and Cs as reported by Zhu et al. (2016), and 
Ahmed and Ahmaruzzaman (2016).

Notwithstanding the importance of data on metals, plant variety, and productivity in 
Bangladesh’s protected forests, this topic is rarely discussed in the literature. The available 
reported data in the country focused on describing the levels of toxic metals in agricultural 
lands, water, and plants in industrial areas (Bhuiyan et al. 2021; Proshad et al. 2020; Yes-
meen et al., 2018; Proshad et al. 2018, Zakir et al., 2017, Mottalib et al. 2016). The base-
line data that characterize the levels of toxic metals in protected forests in terms of plant 
diversity, their potential for biomass production, and ecological hazards are still limited 
and rarely reported. Thus, quantifying the concentrations of toxic metals in forest ecosys-
tems caused by industrialization is deemed a crucial endeavor. Consequently, to address 
this knowledge gap and facilitate efficient forest management, an ecological investigation 
was conducted in Bhawal Sal Forest, Gazipur District, Bangladesh. However, this study 
is unique as it measured the pollution level of toxic metals in forest soils, their probable 
sources, and their effects on tree diversity and biomass carbon stocks. We collected the 
forest soil samples from three sites of industrial activity and measured the concentration of 
heavy metals, i.e., Cu, Zn, Pb, and Cr, and recorded data on tree species. The multiple indi-
cator analysis (geo-accumulation index, pollution index, Pearson correlation, clustering, 
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and linear regression) was done to measure the ecological risks, possible sources, and their 
relationships. Furthermore, we also recorded the tree parameters and used allometric equa-
tions for estimating tree biomass carbon. This study aims to: (i) determine the physico-
chemical properties and levels of four toxic metals (Cu, Zn, Pb, and Cr) in the surface soil 
of forest using the ecological risk index (geo-accumulation index (Igeo) (Muller 1969) and 
pollution index (PI) (Dutta et al. 2021); and (ii) predict the effects of toxic pollutants on the 
soil nutrients and carbon stocking potential of trees.

However, we need consistent forest management monitoring to adjust to and lessen the 
effects of natural and anthropogenic shifts. We believe that this study will encourage sci-
entists and policymakers to focus on forest ecosystems and work towards more environ-
mentally responsible forest management practices. Decisions about forest conservation can 
only be made with accurate, up-to-date data. Thus, policymakers will find this study useful 
in safeguarding the forest zone from toxic metal pollution and in drafting rules and regula-
tory systems to protect the natural forest ecology and environment.

2  Materials and Methods

2.1  Description of the Study Area

The research was conducted at Bhawal Sal Forest (BSF), Bangladesh, which is located 
between the latitudes 24°02′ to 24°11′ North and the longitudes 90°21′ to 90°28′ East 
(Alauddin et al. 2020). BSF has two administrative zones, the National Park Range (divi-
sion) and the Bhawal Range, with seven forest beats (sub-divisions): Park Beat, Baupara 
Beat, Bankharia Beat, Rajendrapur West Beat, Baroipara Beat, Bhabanipur Beat, and 
Bishawakuribari Beat (B. K. Bari Beat) (Masum et al. 2016). Specifically, this study was 
conducted at three forest beats in the Bhawal Sal Forest; Park and Baupara beats within 
the National Park Range (Division) and the Bishawakuribari beat under the Bhawal range 
because of the existence of industries and land encroachment, which harm the soils and 
potential for carbon sequestration (Fig. 1). A total of 255.3 ha of forest land were taken by 
about 354 unauthorized industrial structures in the protected areas (Roshni et  al. 2022). 
The "Chalas" (paddy fields) are split by "Baids" and surrounded by plains or low hills ris-
ing 3.0-4.5 m above them. According to Thornthwaite’s classifications, this forest is con-
sidered to be humid (Rahman and Vacik 2010). The Bhawal-Madhupur and Barind tracts 
have acidic, well-drained brown terrace soils with a clayey to fine loamy texture. It is a part 
of Bangladesh’s 28th AEZ and contains (0.72-2.45%) organic matter (Kabir and Ahmed 
2005). The average rainfall is 1500 mm per year and optimum temperatures range from 
11.5 °C to 38.5 °C. The yearly relative humidity (RH) is 85.2% with a rate of total evapora-
tion of 1023.5 mm (Rahman and Vacik 2010).

2.2  Vegetation of the Study Area

In Bhawal Sal Forest, about 221 species of plants (including 24 species of climbers, 27 
species of grasses, 3 species of palms, 105 species of herbs, 19 species of shrubs, and 
43 species of trees) were recorded (Kabir and Ahmed 2005), with Sal (Shorea robusta) 
was the dominant species. Besides, other associated species such as Azuli (Dillenia 
pentagyna), Akashmoni (Acacia auriculiformis), Eucalyptus (Eucalyptus spp.), Teak 
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(Tectona grandis), Mahogany (Swietenia spp.), Bot (Ficus benghalensis), Koroi (Albizia 
spp.), Jam (Syzygium cumini), Haritaki (Terminalia chebula), Bohera (Terminalia bel-
lirica), Palash (Butea monosperma), Kumbhi (Careya arborea), Gandhi gajari (Miliusa 
velutina), Datai (Microcos paniculata) are also present in this forest. Other shrub spe-
cies like Monkata (Randia dumetorum), Bhat (Clerodendrum squamatum), Bet (Cala-
mus viminalis), Matkila (Glycosmis pentataphyla), and different climbers such as Payna 
lata (Cissus adnata), Samalata (Ichnocarpus frutescens), Swamalata (Cuscuta reflexa), 
Kumarilata (Smilax perfoliata) and Assamlata significantly exist in this forest area.

2.3  Design of the Study

The randomly selected thirty industries of this forest were considered as sampling points of 
this investigation; their spatial locations were taken through the Geographical Positioning 
System (GPS). Soil samples were obtained at three sites, i.e., Site-1: Vicinity to industries, 
Site-2: 150 m distance, Site-3: 300 m distance from each industry for determining the soil’s 
physiochemical properties and toxic metals. The quadrate plot (10 m × 10 m) was used to 
estimate tree biomass stocking characteristics from each site. To estimate the tree carbon 
stocks, the girth at breast height (GBH) was recorded at 1.37 meters above the ground. The 

Fig. 1  Map of the study area demonstrating the industries (sampling point) along with samples sites (red 
marked)
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total height of all tree species was measured using the Sunnto Clinometer. The wood den-
sity of specific tree species was collected from a list of the global wood density database 
mentioned by Chave et al. (2009).

2.4  Collection of Soil Samples

The soil samples were collected from the surface layer (0–15 cm depth), followed by the 
Composite Soil Sampling technique as recommended by the USDA Soil Survey Team 
(1951). With the help of manual auger, soil samples from three sites (vicinity, 150 m and 
300 m distance to industries), weighing a 0.5 kg of soil were collected. The total number 
of collected soil samples was 90, with 30 samples from each site. Five soil cores were 
extracted from various locations on each site, completely coated to create a composite sam-
ple, and packaged and labeled securely. The drainage pattern of effluent discharge was con-
sidered when selecting the site locations. To eliminate any damage, samples were kept in 
sealed poly bags with definite markings and tied carefully.

2.5  Preparation of Soil Samples for Analysis

The composite soil sample was brought to the Department of Agroforestry Laboratory, 
Bangladesh Agricultural University, to prepare for analysis. First, the soil was spread thinly 
on clean brown paper in the lab and air-dried for two weeks at 25 °C in a dust-free envi-
ronment (Ngaba and Mgelwa 2020). Then, the soil samples were mashed using a wooden 
pestle and mortar to generate uniform fine particles, and sieved through a 2 mm stainless 
steel sieve to eliminate visible rubbish, stones, weed bits, roots, and other debris. Finally, 
soil samples were stored in zip-locked polybags with chemical analysis labels. Soil sam-
ples were analyzed chemically for heavy metals in the lab of Soil Resources Development 
Institute (SRDI), Dhaka, Bangladesh.

2.6  Soil Samples Analysis Methods

A glass electrode pH meter was used to measure soil pH in water where the soil and water ratio 
was 1:2.5 as outlined by Jackson (1969). The wet-oxidation technique described by Page et al. 
(1989) was used to calculate the organic carbon content of the soil. The quantity of organic mat-
ter in soil samples was estimated by dividing the organic carbon content by the Van Bemmelon 
factor, 1.73 (Piper 1950). Following the semi-micro Kjeldahl method, the total nitrogen concen-
tration of the soil sample was ascertained (Jackson 1969). The soil sample available phosphorus 
was evaluated by extracting it with 0.5 M  NaHCO3 solution at pH 8.5, following Kurtz (Bray 
and Kurtz 1945) method as reported by Tandon (1993). The content of exchangeable potassium 
in soil samples was determined with the help of a flame emission spectrophotometer as outlined 
by Page et al. (1989). In a digestion tube (100 mL), 1.0 g of powdered soil sample was digested 
with 10 mL of pure nitric acid  (HNO3) and heated at 130 °C until the volume was reduced to 
roughly 1 mL to determine harmful metal concentration. After cooling, samples were combined 
with 5 mL of 1%  HNO3 and filtered using Whatman No. 42 filter paper (Hseu 2004). An atomic 
absorption spectrophotometer (AAS) measured Cu, Zn, Pb, and Cr contents in aqueous extracts 
(Shimadzu AA7000 Japan).



Toxic Metal Levels in Forest Soils Caused by Industrialization…

1 3

Page 7 of 28 45

2.7  Standards for Chemicals and Reagents

The chemicals and reagents employed in the laboratory analysis were of a known con-
centration and were spectrophotometrically pure to within 0.01 percent. Every step, from 
creating standards to diluting reagents to preparing samples, was performed with double-
deionized water. Calibration curves were diluted from reference supplies. Periodic wash-
ings were provided, and blanks were routinely run, to guarantee the integrity of the analy-
sis (Sharma et al. 2018). The average values from the three tests conducted on each sample 
were presented (Adhikari and Bhattacharyya 2015).

2.8  Geo‑accumulation Index (Igeo)

The index of geo-accumulation (Igeo) is a quantitative indicator of trace metals. It uses 
(Muller 1969) the link between the element’s concentration in soil/sediment (fraction 2 m) 
and the backdrop. The Eq. (1) is used to estimate the geo-accumulation index of the sam-
ples soil:

Here, Cn is the soil toxic metal concentration (mg  kg-1) and Bn is the same element con-
centration (mg  kg-1) in the geochemical background. The background value is the average 
earth’s crust value of the metal given by Taylor (1964). There are seven Igeo classes: class 
0 (0 ≥ Igeo) unpolluted; class 1 (0 ≤ Igeo ≤ 1) uncontaminated/moderately polluted; class 
2 (1 ≤ Igeo ≤ 2) moderately polluted; class 3 (2 ≤ Igeo ≤ 3) moderately/strongly polluted; 
class 4 (3 ≤ Igeo ≤ 4) strongly polluted; class 5 (4 ≤ Igeo ≤ 5) strongly/extremely polluted; 
and class 6 is an open class and comprises all values of Igeo higher than 5, which indicates 
extremely polluted soil (Muller 1969).

2.9  Pollution Index (PI)

A soil sample’s pollution index (PI) is calculated by dividing the concentration of toxic 
metals by the background concentration (Dutta et al. 2021). The pollution index (PI) is a 
common way to represent the amount by which a sample’s metal concentration exceeds the 
reference (uncontaminated standard) To determine metal toxicity, the index compares the 
average levels of trace elements in a soil sample to a global or regional normal background 
value that accounts for land-use trends and human activities (Adhikari and Bhattacharyya 
2015). The pollution index can be calculated using the Eq. (2):

where, Cn is the element’s measured concentration in soil (mg  kg-1), and Bn is the local 
natural background value (mg  kg-1). The soil element concentration (Cn) is divided by the 
local natural background value (Bn) to derive the pollution index (PI). The metal pollution 
levels are ranked from low (if PI ≤ 1.0), medium (if 1.0 < PI ≤ 3.0), or high (if PI > 3.0) 
according to Dutta et al. (2021).

(1)Igeo = log 2
{

Cn

1.5 × Bn

}

(2)PI =
Cn

Bn
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2.10  Quantification of Identified Tree Species Parameters

The density of the tree species was calculated following the Eq. (3) (Shukla and Chandel 
2000):

where, a= Total number of individual species in all quadrates, b= Total number of quad-
rates of studied areaa (then it was converted into trees/ha).

The two equations Eq. (4) and Eq. (5) mentioned by Dallmeier et al. (1992) were used 
to determine relative frequency and relative density as follows:

where, Fi= Frequency of tree species
and

The Girth at Breast Height (GBH) of tree species was converted into Diameter at Breast 
Height (DBH) by dividing by the π=3.1416 value as stated by Islam et  al. (2016). The 
basal area was calculated using the following Eq. (6) (Chowdhury et al. 2019):

2.11  Allometric Model for Estimating Tree Biomass Carbon Stocks

The aboveground (AGB) and belowground (BGB) biomass stocking potentials of trees 
were calculated using non-destructive methods (Chave et al. 2005; Hangarge et al. 2012). 
To estimate the carbon stocks in tree biomass, an allometric model was used which was 
developed for the tropical "moist forest" mentioned by (Chave et al. 2005). The Eq. (7) was 
used for estimating aboveground biomass:

where, ρ is the wood density (g/cm3), D is the DBH of the tree (cm) and H is the height of 
the tree (m).

The belowground biomass was calculated by multiplying the aboveground biomass 
(AGB) by 0.26 (root-to-shoot ratio) (Hangarge et al. 2012) as follows the Eq. (8):

The total biomass of the tree was then calculated (Sheikh et al. 2011) as follows the Eq. 
(9):

(3)Density, D =
a

b

(4)RF(%) =
Fi

∑∞

i=1
Fi

× 100

(5)RD(%) =
Density of single species

Total density of all species

(6)Basal area
�

m2∕ha
�

=

∑

π
D

4

2

area of all quadrates
× 10000

(7)AGB (Mg∕ha) = exp
[

−2.977 + ln
(

ρ D2 H
)]

(8)BGB (Mg∕ha) = AGB × 0.26

(9)TB (Mg∕ha) = AGB + BGB
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Typically, 50% of a plant’s biomass is considered carbon (Pearson et  al. 2005). After 
estimating the biomass using an allometric relationship, the biomass was multiplied by 0.5 
because wood of tree species comprises 50% of the total biomass. Therefore, the total bio-
mass carbon was calculated using the Eq. (10):

2.12  Statistical Analysis

Boxplots were generated to illustrate the descriptive statistics analysis and Tukey’s test for 
statistically significant differences for every soil sample data. To test whether the values of 
soil nutrient elements, metals, and carbon stocks were substantially different, a one-way 
ANOVA was conducted. Correlation coefficient and dendrogram for cluster analysis using 
the Ward and Euclidean distance methods were utilized to identify interrelation and pat-
terns of similarity between metals, soil physicochemical parameters, and tree biomass car-
bon stocks. To assess the effects of metal pollution on the biomass stocks of trees, predictor 
models were developed using stepwise multiple regression analysis. To separate the means 
of all components, the alpha level of Tukey’s test for genuinely significant differences was 
adjusted to 0.001. The statistical analyses were done using R (version 3.6.3; R Core Team, 
Free software foundation, Europe) and Minitab (version 19; Minitab, LLC, Pennsylvania) 
statistical software.

3  Results and Discussion

3.1  Physiochemical Properties of Soil Samples

Within sampling sites, mean values of soil physiochemical parameters (pH, organic mat-
ter (OM), nitrogen (N), available phosphorus (P), and exchangeable potassium (K)) varied 
significantly (respectively: F=64.44, F=15.13, F=503.83, F=36.01, F=29.50; p < 0.000). 
In the present findings, the values of pH ranged from 4.8 to 6.8, respectively, which indi-
cated that the soils were strongly acidic to slightly acidic. The highest mean and median 
pH values (6.06 and 6.1, respectively) were recorded at Site-1. The discharged items from 
industries such as wastes, effluents, chemicals, and salt could be responsible for pH fluc-
tuations. But with increasing distance from industries, the pH value decreased, and the 
lowest average and median pH values (4.92 and 5, respectively) were recorded at Site-3 
(Fig. 2). Similar finding was reported by Shivakumar et al. (2012) for the Indian city of 
Mysore. Soil acidity in the studied area may have been affected by heavy rain washing 
away exchangeable bases in the natural forest (Malunguja et al. 2022). High leaching and 
wet conditions accelerate base exchange and may escalate the release of hydrogen as a pro-
cess of biochemical weathering, as reported by Dutta et al. (2021). As stated by Adhikari 
and Bhattacharyya (2015), toxic metals move more quickly through the soil and are better 
able to bind to soil particles in acidic soils. The organic matter (OM) values of soil samples 
were asymmetrically distributed over the three sites illustrated in the boxplot (Fig. 2). The 
OM content of all soil samples ranged from 1.7% to 6.1%, which indicated that the soil was 
high- to low-fertile. The results inferred that the greatest amount of organic matter (OM) 
(3.28%) was found to be at Site-1, whereas the lowest organic matter content (2.25%) was 

(10)TBC (Mg∕ha) = TB × 0.50
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found at Site-3 (Fig.  2). The observed discrepancies between the studied sites could be 
attributed to large quantities of industrial waste and the breakdown of solid waste, poul-
try waste, and sewage. Hossen et  al. (2017) revealed that polluted sediments have more 
organic matter than unpolluted ones due to the accumulation of enormous amounts of 
industrial waste, sewage sludge, and other organic material. The organic matter level of 
soil around dyeing businesses, textile industries, and glass industries in Bangladesh was 
highest, as reported by Tusher et al. (2017). The available N, P, and K concentrations vary 
significantly between the sites (Fig. 2). The total nitrogen content, exchangeable potassium 

a b c

d e f

g h i

P<0.001***

b

c

P<0.001***

b

c

Fig. 2  Boxplot showing impacts of industrialization on soil chemical properties (a = pH, b = OM (%), 
c = Nitrogent (%), d = K (meq/100g), e = P (ppm)) and toxic metals accumulation (f = Cu (ppm), g = Zn 
(ppm), h = Pb (ppm), i = Cr (ppm)) at three sites (p < 0.001, significant level). The uppermost hanging bar 
depicts the high edge or maximum value, while the below-hanging bar represents the low edge or minimum 
value. The top and bottom box lines represent the third and first quartiles, respectively. The solid line within 
the box denotes the median value, while the dot represents the mean or average value of all samples
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(ppm), and available phosphorus (ppm) ranged between 0.02% and 0.9%, 0.1 and 0.7 
meq/100 g, and 3 and 58 ppm, respectively. The levels of N and K were higher in sam-
ples collected from Site-3 than in samples collected from the other two sites in the Bhawal 
Sal forest. Because of the loss of natural vegetation due to tree falling, crushing, shearing 
off, and uprooting for industrial development, and the removal of the bulk of nutritive soil 
due to erosion, the value of total N and accessible K in the neighboring area to the indus-
trial site was a little lower. Hasan et al. (2020) reported that the N content was the lowest 
(0.09%) of highly encroached forest sites in Madhupur Sal Forest, Bangladesh. In contrast 
to common belief, the highest P content (34.50 ppm) was obtained from Site-1 (Vicin-
ity to Industries) than other sites (Fig. 2). The greatest P concentration is at Site-1, which 
is likely attributable to the disposal of garbage that includes P elements. Malunguja et al. 
(2022) found high P availability in protected forest soil samples along roadways in India.

3.2  Toxic Metals Concentration of Soil Samples

The present investigation found a significant difference in levels of heavy metals between 
sampling sites (Site-1, Site-2 and Site-3) (Fig. 2). The recorded concentration of the studied 
heavy metals like Cu, Zn, Pb and Cr concentrations of all the soil samples ranged between 
1.15 to 52 ppm, 2 to 10 ppm, 3.26 to 84.2 ppm, and 17.8 to 154.18 ppm, respectively (Fig. 2). 
As per sampling sites, toxic metals concentrations were found to be greater at Site-1 (Vicin-
ity to industries) than other sites (Fig. 2). Cu had the highest concentrations of 32.28 ppm at 
Site-1, followed by Zn (7.99 ppm). Boxplot showed that Pb concentration of soil samples was 
both positively and negatively skewed distributed at Site-1 and Site-2 but was found negligi-
ble at Site-3. The maximum Pb content was found at Site-1 (38.85 ppm) while the minimum 
Pb content was found at Site-3 (4.81 ppm) which was at 300 m distance from industries. The 
highest average Cr concentration (53.08 ppm) was found at Site-1 and the lowest (20.99 ppm) 
was found at 300 m distance from industries, respectively. The sequence of heavy metal con-
centrations at Site-1 was in the order Cr > Pb > Cu > Zn.

Despite significant variances in toxic metal contents, the mean values were below the 
standards limit for earth crusts (Taylor 1964). The higher concentrations of metal pollutants 
in soil samples collected along Site-1 (Vicinity to industries) compared to other sites (Site-2 
and Site-3) suggest that these metals could be from wastes, textile manufacturing effluent, dye-
ing wastewater, cement factory wastes, and vehicular emissions caused by rapid industrializa-
tion in natural forest areas. Due to a dearth of similar research in the region, it was difficult 
to make appropriate comparisons from the present study findings. For comparison and justifi-
cation, certain metal contamination concentration studies from various countries are included 
(Table  1). The present study findings agree with other reported data in Bangladesh and the 
world at large. The present study is in accord with the findings of industrial areas of Gazipur, 
Bangladesh (Hossain et al. 2019). The mean concentrations of Pb, Cu, Zn, and Ni in forest soils 
in Western Guangdong Province, China, reported by Kang et al. (2022), were 0.02 mg·kg−1, 
17.05 mg·kg−1, 10.20 mg ·kg−1, 18.14 mg·kg−1, and 7.14 mg·kg−1, respectively. Earlier research 
showed that car exhaust emissions and industrial output increased soil Cd, Pb, and Cu (Liu 
et al. 2018; Zhang et al. 2018). Pb and Cu in Yunan District were more likely to originate from 
cement production and Zn from processing and manufacturing, according to Cao et al. (2020). 
Tavakoli et al. (2019) found that lead and cadmium concentrations were substantially higher in 
mine area in Hyrcanian Forest, North Iran. Similarly, petroleum industries, coal-burning power 
plants, nuclear power stations, and high-tension cables emit B, Se, Cu, Zn, Cd, Ni, and Cs 
(Ahmed and Ahmaruzzaman 2016). Mining and refining are additional important contributors 
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of heavy metal pollution (Srivastava et  al. 2017). On the other hand, textile wastewater was 
the largest source of heavy metals revealed by Astuti et al. (2023). For instance, Proshad et al. 
(2018) stated that rapid industrialization were the causes of heavy metal toxicity in agricultural 
soil of Bangladesh. Islam et  al. (2018) stated that untreated industrial effluents immediately 
contribute heavy metals and metalloids to water and soil of metropolitan areas in Bangladesh. 
According to Begum and Huq (2016), the presence of trace elements in the surrounding soil 
may be related to the textile industry’s use of heavy metals (especially Cu, Cr, and Zn) in dying 
and printing steps. Many pertinent pieces of research demonstrate significant metal concentra-
tions next to the industries (Table 1). Perhaps site-specificity explains the present study’s strik-
ing heavy metal level discrepancies from those of earlier research. The diverse sources of metal 
pollutants may explain the differences in metal pollutant concentrations across all compari-
sons. These studies were done in vehicular emissions, urban, or agricultural areas. As this work 
focused on soil samples contaminated mostly by a single source of human activity (i.e., indus-
trial activity), pinpointing the practical rationale for considerable enlargement from these find-
ings proved challenging. The higher metal concentrations found at Site-1 of the present study 
support the idea that these metals are the product of industrial effluents. If not monitored and 
regulated, this concentration might rise to unmanageable levels and harm surrounding species’ 
habitats in forest.

3.3  Assessment of Ecological Risks of Toxic Metals

3.3.1  Geo‑accumulation Index (Igeo)

The geo-accumulation index (Igeo) for the metal contaminants exhibited different classes, 
as shown in Fig. 3. The mean Igeo values at Site-1 (vicinity to industries) for Cu, Zn, Pb, 
and Cr were -1.12, -3.74, 1.02, and -1.62, respectively. These values were relatively higher 
as compared to those recorded at Site-3, where Igeo values for Cu, Zn, Pb, and Cr, were 
-5.93, -5.11, -2.01, and -2.85, respectively (Fig. 3). In all examined soil samples, the Igeo 
values for Cu and Zn were zero, indicating that the soil quality at each site was uncon-
taminated. Nonetheless, all soil samples collected from Site-3 (300 m distance from indus-
tries) displayed uncontaminated levels (i.e., Igeo ≤ 0). The surface soils of Site-1 were 
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Fig. 3  Geo-accumulation index (Igeo) values for studied soil samples at the three sites in Bhawal Sal Forest
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determined to be moderately contaminated with Pb (1 < Igeo < 2), while Cr, Cu, and Zn 
had the lowest concentrations. At Site-2, it was determined that Pb (0 < Igeo < 1) in the 
surface soils was uncontaminated to moderately contaminated by lead metal pollutants. 
Therefore, Pb contributed the most contamination to the surface soils in Bhawal forest 
(Site-1), while Cu, Zn and Cr contributed the least. Pb has a significant impact on eco-
logical and environmental risk, as well as plant diversity and biomass production. Accord-
ing to the research of Malunguja et al. (2022), all heavy metals at 200 m away from the 
highway towards the forest (control) posed no ecological risk, since the site represented 
a "practically uncontaminated category" (Igeo 0) for both Bhomoraguri and Balipara RF, 
India. Hossain et al. (2019) stated that Igeo values for Ni and Cd of industrially impacted 
soils demonstrated unpolluted/moderately polluted soil quality in the pre-monsoon and dry 
season. As stated by Zakir et al. (2015), the Igeo of soils in three distinct industrial areas 
of the Gazipur district showed moderate soil contamination by Pb, Zn, and Cd from multi-
ple anthropogenic sources, preferably different industrial activities, supporting the current 
findings.

3.3.2  Pollution Index (PI)

According to the PI criteria, the studied forest soil samples revealed three lev-
els of pollution (i.e., low, medium, and high levels). The present findings state that 
Pb (3.10±0.92) had the highest level of pollution, whereas Cu (0.72±0.20), Zn 
(0.11±0.03), and Cr (0.53±0.302) had the lowest levels (Table 2). At Site-2, all met-
als (Cu, Zn, Pb, and Cr) were classified as having low levels of pollution, with mean 
values of 0.38, 0.07, 0.64, and 0.31, respectively (Table  2). At Site-3 (300 m away 
from industries), all metals (Cu, Zn, Pb, and Cr) had minimal levels of contamination. 
The overall pollution in the adjacent industries was as follows: Pb > Cu > Cr > Zn. 
This demonstrates that the surface soils of the Bhawal Sal Forest next to industries 
were highly contaminated with Pb. The present findings are congruent with the data 
reported by Xu et  al. (2021) for East China with comparable industries, indicating 
that the potential ecological risk index by Pb and Cd in the adjacent soil was at a 

Table 2  Pollution index (PI) 
values of toxic metal pollutants 
of three sites in the study area

Forest Sites Metals
(ppm)

Pollution index (PI)

Average ± Standard 
Deviation

Level of Pollution

Site-1 Cu 0.72±0.20 Low
Zn 0.11±0.03 Low
Pb 3.10±0.92 High
Cr 0.53±0.302 Low

Site-2 Cu 0.38±0.103 Low
Zn 0.07±0.019 Low
Pb 0.64±0.27 Low
Cr 0.31±0.04 Low

Site-3 Cu 0.03±0.09 Low
Zn 0.04±0.08 Low
Pb 0.38±0.06 Low
Cr 0.21±0.03 Low
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medium (or high) level. The southwest region of Xinxing County was moderately and 
heavily contaminated (PI > 1), whereas the center districts of Yunan and Yuncheng 
were only slightly and moderately contaminated (Kang et al. 2022). The present find-
ings support previous research (Tavakoli et al. 2019) where according to PI index for 
Pb (1.16) and Cd (1.77), soils were moderately polluted near a coal mine in Hyrcan-
ian Forest, North Iran. The majority of metal pollution is said to originate from indus-
trial effluents. The results indicate that industrial activities in the Bhawal Sal Forest 
provide a potential ecological risk to the soils on the forest floor. Effluent emissions 
are sources of large quantities of metal pollutants into forest soils, which may have a 
significant impact on biodiversity and productivity. The results could be very danger-
ous for the planet’s ecosystem. Excessive concentrations may lead to pollution due to 
their cumulative effects over time causing serious environmental problems. Thus, it is 
important to track metal levels in soil to prevent excessive buildup.

3.4  Carbon Stock Potentials of Tree Species

A total of 30 mature tree species were recorded from 90 quadrate plots of three sites 
(i.e., 10 trees from Site-1, 19 tree species from Site-2 and 24 tree species from Site-
3) to evaluate the impacts of the toxic metal pollutants (Cu, Zn, Pb and Cr) on tree 
biomass carbon stock and production potential in the forest where some species were 
common within the sites. Table 3 showed that at Site-1, the total stand density was 
343.33 trees  ha-1 while the total stand density at Site-3 was 946.65 trees  ha-1. This 
indicates that tree density is a key factor contributing to tree biomass carbon pro-
duction which means positive relationships between them. Random cutting down of 
trees for industrial developments leads to the change in the tree density and biomass 
carbon production at industrial-affected Site. At Site-1 (Vicinity to industries), a 
total biomass of 239.46 Mg  ha-1 with a total carbon of 119.73 Mg  ha-1 were recorded 
(Table 3). On the contrary, at Site-2 (150 m distance to industries), the total biomass 
was 482.15 Mg  ha-1 and the total carbon was 241.08 Mg  ha-1. At Site-3, the total bio-
mass was 992.88 Mg  ha-1 and the total carbon was 496.44 Mg  ha-1 (Table 3). These 
values equalized 439.40 Mg  ha-1, 884.75 Mg  ha-1 and 1821.94 Mg  ha-1 of  CO2 seques-
tration by tree species. Acacia hybrid (31.54 Mg  ha-1), Shorea robusta Gaetrn (28.73 
Mg  ha-1), Swietenia macrophylla King f. (19.33 Mg  ha-1), Acacia auriculiformis A. 
Cunn ex Benth (15.87 Mg  ha-1) were the dominant tree species that produced the 
most tree biomass and carbon stock at Site-1. The highest biomass stocks at Site-2 
(150 m distance from industries) were found in: Shorea robusta Gaetrn (272.69 Mg 
 ha-1), Swietenia macrophylla King f. (36.65 Mg  ha-1), Artocarpus heterophyllus Lamk 
(36.46 Mg  ha-1), Xylia xylocarpa (Roxb.) Taub (24.53 Mg  ha-1) (Table 3). For Site-3 
(300 m distance from industries), the top tree biomass carbon stock was found in Sho-
rea robusta Gaetrn (567.69 Mg  ha-1) and Haldina cordifolia (Roxb.) Ridsdale (110.42 
Mg  ha-1), respectively (Table 3). The dominant biomass stocks at Site-1 and Site-2 of 
Balipara RF were F. carica L (11.13 and 25.20 Mg  ha−1), Mimusops elengi L (7.49 
and 17.09 Mg  ha−1), and Stereospermum chelonoides DC (5.19 and 9.99 Mg  ha−1). 
The topmost biomass producer and carbon accumulator species were T. grandis L.f. 
and F. carica L., in Bhomoraguri and Balipara RF, India, respectively, as reported by 
Malunguja et al. (2022). The present study’s findings provide a substantial chance for 
carbon sequestration and might lead to the right use of REDD+ carbon credits.
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Table 3  Tree biomass (TB) and tree biomass carbon (TBC) stock potentials (Mg  ha-1) of three sites in the 
studied area of Bhawal Sal forest

Forest Site Botanical Name Family Name Density 
(tree/ha)

Relative 
density 
(%)

Relative 
frequency 
(%)

TB
Mg  ha-1

TBC
Mg  ha-1

TCO2 
equivalent

Site-1
(Vicinity to 

indus-
tries)

Shorea robusta Gaetrn Dipterocarpaceae 76.67 29.87 33.33 57.45 28.73 105.42

Mangifera indica L. Anacardiaceae 43.33 8.61 8.82 14.78 0.45 1.64
Acacia auriculiformis 

A. Cunn ex Benth
Fabaceae 43.33 16.88 16.67 31.74 15.87 58.24

Eucalyptus camaldulensis 
Dehnhardt

Myrtaceae 40 15.58 20.83 22.72 11.36 41.69

Acacia hybrid Fabaceae 36.67 14.29 12.5 63.08 31.54 115.76
Swietenia macrophylla 

King f.
Meliaceae 33.33 12.99 8.33 38.66 19.33 70.94

Artocarpus heterophyllus 
Lamk

Moraceae 26.67 10.39 8.33 20.71 10.35 38

Lagerstroemia speciosa 
(L.) Pers.

Lythraceae 23.33 9.93 10.29 2.28 1.14 4.2

Lannea coromandelica 
(Houtt.) Merr.

Anacardiaceae 16.67 3.31 5.88 1.27 0.64 2.34

Ziziphus mauritiana 
Lam.

Rhamnaceae 3.33 0.66 1.47 0.63 0.32 1.16

Total 343.33 122.51 126.45 239.46 119.73 439.40
Site-2
(150 m 

distance)

Shorea robusta Gaetrn Dipterocarpaceae 216.67 43.05 27.94 272.69 136.34 500.38
Lannea coromandelica 

(Houtt.) Merr.
Anacardiaceae 63.33 29.69 12.5 0.8 0.4 1.47

Grewia serrulata DC. Tiliaceae 56.67 26.56 25 12.91 6.46 23.69
Tectona grandis L. f. Verbenaceae 50 9.93 10.29 5.67 2.83 10.4
Dipterocarpus turbinatus 

Gaertn.
Dipterocar-

paceae
43.33 8.61 8.82 14.78 7.39 27.12

Artocarpus heterophyllus 
Lamk

Moraceae 40 7.95 11.76 36.46 18.23 66.9

Anthocephalus 
cadambo (Roxb,)

Rubiaceace 33.33 6.62 5.88 10.72 5.36 19.67

Lagerstroemia speciosa 
(L.) Pers

Lythraceae 26.67 12.5 21.88 0.65 0.33 1.2

Ziziphus mauritiana 
Lam.

Rhamnaceae 26.67 12.5 12.5 5.34 2.67 9.79

Butea monosperma 
(Lam.) Taub.

Fabaceae 23.33 10.94 15.63 1.86 0.93 3.41

Careya arborea Roxb Lecythidaceae 16.67 3.31 4.41 6.79 3.4 12.47
Mangifera indica L Anacardiaceae 16.67 7.81 12.5 2.99 1.49 5.49
Xylia xylocarpa (Roxb.) 

Taub.
Fabaceae 16.67 3.31 5.88 24.53 12.26 45.01

Albizia procera (Roxb.) 
Benth

Fabaceae 13.33 2.65 5.88 1.67 0.83 3.06

Artocarpus chaplasha 
Roxb

Moraceae 13.33 2.65 5.88 21.01 10.5 38.55

Ficus benghalensis L. Moraceae 3.33 0.66 1.47 9.81 4.91 18
Swietenia macrophylla 

King f.
Meliaceae 3.33 0.66 1.47 36.65 18.32 67.25

Acacia hybrid Fabaceae 13.33 2.65 2.94 16 8 29.36
Total 676.66 192.05 192.63 482.15 241.08 884.75
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Table 3  (continued)

Forest Site Botanical Name Family Name Density 
(tree/ha)

Relative 
density 
(%)

Relative 
frequency 
(%)

TB
Mg  ha-1

TBC
Mg  ha-1

TCO2 
equivalent

Site-3
(300 m 

distance)

Shorea robusta Gaetrn Dipterocarpaceae 513.33 71.96 39.66 567.69 283.84 1041.71

Cassia fistula L Fabaceae 16.67 2.34 5.17 30.00 15.00 55.05

Careya arborea roxb Lecythidaceae 20.00 2.80 6.90 12.96 6.48 23.77

Tectona grandis L. f. Verbenaceae 13.33 1.87 6.90 9.85 4.93 18.07

Microcos paniculata L. Tiliaceae 23.33 3.27 8.62 43.62 21.81 80.03

Dillenia pentagyna 
Roxb.

Dilleniaceae 23.33 3.27 6.90 16.34 8.17 29.97

Terminalia bellirica 
(Gaertn.) Roxb

Combretaceae 13.33 1.87 3.45 8.37 4.18 15.36

Zanthoxylum rhetsa 
(Roxb.) DC.

Rutaceae 6.67 0.93 3.45 4.28 2.14 7.86

Melia sempervirens 
(L.) Sw.

Meliaceae 10.00 1.87 3.45 11.03 5.52 20.24

Spondias pinnata (L.f.) 
Kurz

Anacardiaceae 13.33 1.87 3.45 10.01 5.01 18.37

Albizia procera (Roxb.) 
Benth

Fabaceae 13.33 1.87 3.45 57.83 28.91 106.12

Dipterocarpus turbinatus 
Gaertn.

Dipterocarpaceae 16.67 2.34 3.45 40.47 20.23 74.26

Artocarpus chaplasha 
Roxb

Moraceae 10.00 1.40 1.72 37.36 18.68 68.56

Ficus racemosa L. Moraceae 13.33 1.87 3.45 4.09 2.05 7.51

Haldina cordifolia 
(Roxb.) Ridsdale

Rubiaceace 6.67 0.93 3.45 110.42 55.21 202.62

Mangifera indica L Anacardiaceae 10.00 4.29 4.35 1.13 0.57 2.07

Lagerstroemia speciosa 
(L.) Pers

Lythraceae 23.33 10.00 8.70 1.73 0.86 3.17

Clerodendrum infortu-
natum L.

Myrtaceae 26.67 11.43 13.04 2.23 1.11 4.09

Aphanamixis polys-
tachya (Wall.) Parker

Meliaceae 43.33 18.57 26.09 5.73 2.86 10.51

Butea monosperma 
(Lam.) Taub.

Papilionaceae 13.33 5.71 8.70 3.60 1.80 6.61

Ziziphus mauritiana 
Lam.

Rhamnaceae 33.33 14.29 19.57 2.57 1.28 4.72

Swietenia macrophylla 
King f.

Meliaceae 26.67 11.43 6.52 4.36 2.18 7.99

Bauhinia variegate (L.) 
Benth.

Fabaceae 16.67 7.14 6.52 0.41 0.20 0.74

Syzygium cumini (L.) 
Skeels

Myrtaceae 40.00 17.14 6.52 6.82 3.41 12.51

Total 946.65 200.46 203.48 992.88 496.44 1821.94
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3.5  Correlation between Physicochemical Properties, Metal Pollutants and Tree 
Biomass Carbon Stocks

Table 4 and Fig. 4 provide the Pearson correlation coefficient matrix (r) and cluster analysis 
(CA) findings for toxic metals, physicochemical parameters and tree biomass carbon stock, 
respectively, to reveal the similarities and connections between these variables. Soil metals 
are shown to be associated with pH and OM as well as accessible soil nutrients (N, P, and 
K) at a 1% level of probability. To determine whether or not any of the soil-examined fac-
tors are associated, a correlation matrix was generated and provided the results in Table 5. 
Matrix analysis may also reveal the presence of carrier chemicals and the harmful metal 
chemical associations in the study area. The results reveal a positive correlation between 
pH and metal concentrations (Cu=0.67, Zn=0.66, Pb=0.61, Cr=0.56) (Table 4). However, 
OM was positively correlated to metal pollution, with 53% and 40% for Cu and Zn, respec-
tively, and negatively correlated to Pb (-49%). Heavy metals had a negative correlation 
with nutrients with coefficient (r) values: for N -76%, -69%, -74%, and -54%; for K -55%, 
-42%, -54%, and -34%; for P 56%, 57%, 58%, and 38%; respectively (Table 4). It is shown 
that OM and nutrients such as N and K were negatively linked with metal pollutants in the 
present study. Cu had a highly significant positive correlation with Cu-Zn (72%), Cu-Pb 
(83%), and Cu-Cr (51%). Similar results were found for Zn with Zn-Pb (71%) and Zn-Cr 
(54%), and Pb with Pb-Cr (62%); all these suggest that these metals may have the same ori-
gins, ideally across diverse industrial activities. Given the strong positive correlation seen 
between the metals in this research, it is likely that these metals originated from the same 
place. A significant inverse relationship between tree biomass and the four metal pollutants 
was found and the correlation coefficient matrix is as follows: TBC-Cu (-87%), TBC-Zn 
(-78%), TBC-Pb (-84%), and TBC-Cr (-53%) (Table 4). Findings from the current inves-
tigation indicate a negative relationship between tree biomass carbon stocks and all metal 
pollutants from studied soils. This significant negative correlation between plant diversity 
and productivity suggests that metals have an effect on the diversity and productivity of 
trees. Variations in tree species biomass production can be attributed to plant diversity, 
which is positively correlated with tree production and stocking (Paletto et al. 2021).

On the contrary, tree biomass carbon stock had a positive relationship with tree stand 
characteristics viz. DBH (cm), height (m), basal area and density (trees/ha) at the three 
sites (Fig.  5). Similarly to the current work, Malunguja et  al. (2022) found that TBC-
Pb (-80%), TBC-Ni (-79%), TBC-Cr (-76%), and TBC-Cd (-71%) were negatively cor-
related with the four metal pollutants demonstrating to be highly adversely connected 
with tree biomass. Biswas and Hasan (2020) also stated that basal area  m2/ha (r=0.99 
and  R2=0.99) and stand density/ha (r=0.93 and  R2= 0.87) had a strong relationship with 
total above-ground carbon and the relationship was significant (p ˂ 0.05) which is quite 
similar to the present study. Other factors such as density, basal area, forest maturity, 
climate, terrain, and disturbance regime may have influenced differences in biomass pro-
duction between tree species (Dibaba et al. 2019).

Cluster analysis (CA) was used to determine the existence of interconnected groups 
and to separate them into distinct clusters and sub-clusters. It was also used to back up the 
relationship observation results using the correlation coefficient (r). Figure 4 shows that 
the data can be roughly divided into three major groups, each of which exhibits its own 
distinct patterns. The remaining cluster includes pH, Cu, Pb, Zn, and Cr. The second clus-
ter contains OM and available P, while the third has available K, tree biomass stock, and 
nitrogen values. The current study’s cluster analysis (CA) indicated comparable grouping, 
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which lends credence to the notion that the metal pollutants under examination have com-
mon sources of accumulation in surface soils, which may be considerably connected to 
industrialization. Kumar et  al. (2019) and Shi et  al. (2019) used Ward method and the 
Euclidean distance to quantify levels of similarity.

3.6  Quantifying the Potentials Impacts of Toxic Metal Pollution on Tree Biomass 
Carbon Stocks

In order to calculate the effects of toxic metal contaminants (Cu, Zn, Pb and Cr) on the car-
bon stock potentials for tree species at the three sites, a stepwise multiple regression analy-
sis was performed (Table 5). Tree biomass stocks are influenced by metal concentrations in 
surface soils to varying degrees. Metals (Cu, Zn, Pb, and Cr) are shown to have a profoundly 
negative association with tree biomass stocks, as indicated by linear regression models:

Y = -10.07x+447.44 for Cu,  R2=0.7691, p < 0.001; Y = -51.87x+564.65 for 
Zn,  R2=0.615, p < 0.001; Y = -8.78x+464.93 for Pb,  R2=0.719, p < 0.001; Y = 
-3.868x+413.79 for Cr,  R2=0.290, p < 0.001 where, Y= Tree biomass stocks (dependent 
variable), x= Concentration of toxic metals (independent variable) (Table 5). Singh et al. 
(2020) reported that heavy metals tend to modify the physicochemical characteristics of 
soils, affecting plant production. Consequently, metal accumulations as Cu, Zn, Pb, and Cr 
in surface soils in industrial regions of Forest may have changed soil physical and chemi-
cal characteristics, affecting nutrient absorption. Due to excessive metal absorption, plant 
development and stocking potential are impaired.

3.7  Practical Implications of the Study

The present study provides the scientific data on the concentrations of four toxic metals 
(Cu, Zn, Pb, and Cr) and the ecological concerns in forest soils that can be used to improve 
environmental policies and regulations with the goal of limiting the emission of toxic met-
als. With the up-to-date data in hand, forest policymakers and government can implement 
appropriate mitigation strategies, such as phytoremediation, phyto-extraction, and phytore-
mediation technologies, customized for the particular plant kind and degree of contamina-
tion. Based on the findings of this study, Cr and Pb should be prioritized in future efforts to 
reduce the contribution of industrialization to soil heavy metal pollution.

3.8  Limitations of the Study

The researchers acknowledge the study’s limitations while maintaining optimism that 
it provides a useful assessment of toxic metals contamination, its pollution levels, and 
effects on tree biomass carbon stock potentials in BSF that can drive subsequent pol-
icy considerations and forest management. First, the samples analyzed from thirty dif-
ferent categorized industries inside the natural forest could not reflect the full entire 
scenario of industrialization and its repercussions on the entire forest soil. Finally, 
the study was designed to determine the pollution levels of four toxic metals and their 
effects on tree biomass carbon, and did not identify the other toxic metals, possibly 
limiting the accuracy of the study. As a result, it is suggested that more research be 
conducted to learn more about the effects of toxic metals contamination on tree bio-
mass carbon stock potentials in BSF.
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4  Conclusions

The followings conclusions were drawn from the present investigation:

1. Although the mean concentrations of all examined metals (Cu, Zn, and Cr) were within 
the limit set by the geochemical background concentration of the earth’s crust, the soil 
samples from the vicinity of industries had the greatest levels of toxic metals than the 
other two sites in the forest area. The results show that industrial effluent discharges 
were a substantial contributor to hazardous metal pollution in the surface soils of natu-
ral forests. Hence, it is necessary to track the levels of these metals to ensure that their 
accumulation and toxicity do not impair the forest ecosystem. A database of heavy metal 
concentrations in forest soils is necessary because of the possible ecological risks they 
provide to forest-based ecosystems.
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Fig. 4  Hierarchical dendrogram illustrating the clustering of the investigated soil nutrients, toxic metal pol-
lutants, and tree biomass carbon stock

Table 5  Linear-regression equations to predict the effects of soil metal pollutants on tree biomass

Model Predictors Regression equations R Square r value Sig.

1 Cu Y effect of Cu = -10.07x+447.44 Cu R2=0.7691 r=-0.88 p < 
0.001

2 Zn Y effect of Zn = -51.87x+564.65 Zn R2=0.615 r=-0.78 p < 
0.001

3 Pb Y effect of Pb = -8.78x+464.93 Pb R2=0.719 r=- -0.85 p < 
0.001

4 Cr Y effect of Cr = -3.868x+413.79 Cr R2=0.290 r=--0.54 p < 
0.001
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2. The ecological risk assessment results showed that the geo-accumulation (Igeo) and 
pollution index (PI) were found to be greater in all industrially contaminated areas 
(Site-1), with the highest contribution of Pb. Strong positive correlations between metals 
in the study revealed that they have a similar source. The observed significant nega-
tive relationship indicates that metals are contributing factors to tree biomass carbon. 
Furthermore, a comprehensive investigation of the mechanism and distribution of met-
als in soils and tree species in protected forests is required. As a result, ecologists and 
policymakers ought to give protective efforts the highest priority to lessen the harshness 
of this impact on the environment.
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Fig. 5  (a–c) Relationship of biomass carbon stock (Mg/ha) of tree species (TBC) with DBH (cm) at three 
sites; (d–f) relationship of TBC with height (m); (g–i) relationship of TBC with basal area and (j–l) rela-
tionship of TBC with density (tree/ha)
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Abbreviations Cu:  Copper; Zn:  Zinc; Pb:  Lead; Cr:  Chromium; NaHCO3:  Sodium Bicarbonate; 
DBH: Diameter at breast height; TB: Tree biomass; TBC: Tree biomass carbon
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