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Abstract
The main aim of the rain forecast is to determine rain occurrence conditions in a spe-
cific location. This is considered of vital importance to assess the availability of water 
resources in a basin. In this study, several methods are analyzed to forecast monthly 
rainfall totals in hydrological basins. The study region was the Almendares-Vento basin, 
Cuba. Based on Multi–Layer Perceptron (MLP), Convolutional Neural Network (CNN) 
and Long Short–Term Memory (LSTM) neural networks, and Autoregressive Integrated 
Moving Average (ARIMA) models, we developed a hybrid model (ANN + ARIMA) for 
rainfall prediction. The input data were the one year lagged rainfall records in gauge 
stations within the basin, sunspots, the sea surface temperature and time series of nine 
climate indices up to 2014. The predictions were also compared with the rainfall records 
of a gauge station network from 2015 to 2019 provided by the Cuban National Institute 
of Hydraulic Resources. Based on several statistical metrics such as mean absolute er-
ror, Pearson correlation, BIAS, Nash–Sutcliffe efficiency and Kling–Gupta efficiency, the 
CNN model showed higher ability to forecast monthly rainfall. Nevertheless, the hybrid 
model was notably better than individual models. Overall, our findings have proved the 
reliability of using the hybrid model to predict rainfall time series for water management 
and can be extensively applied to this sort of application. In addition, this work proposes a 
new approach to enhance the planning and management of water availability in watershed 
for agriculture, industry and population through improving rainfall forecasting.

Article Highlights
	● Convolutional Neural Network model is able to forecast monthly rainfall amounts.
	● Our methodology allows the models to learn the seasonal variations of the rainfall.
	● The hybrid model is skillful to forecast rainfall time series for water management.
	● The findings are promising to enhance water management systems.
	● The method can be easily applied to predict rainfall in other watersheds.

Keywords  rainfall forecast · artificial neural networks · ARIMA models · Almendares-
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1  Introduction

Basin water resource planning and management require accurate data on rainfall. Under-
standing and modelling rainfall is one of the hydrologic cycle most complicated issues 
because of the complexity of both, the atmospheric processes triggering rainfall and the 
significant variation range of scales in space and time (Hung et al. 2009; Sumi et al. 2012). 
Indeed, rainfall forecast poses a great challenge in operational hydrometeorology, regard-
less of several advances in weather forecasting in the last decades (Li and Lai 2004; Hong 
2008; Majumdar et al. 2021).

There are two well-known approaches to forecast precipitation (Luk et al. 2001). The for-
mer involves studying the rainfall process by applying the underlying physical laws using 
mathematical equations for hydrological process (Solomatine and Ostfeld 2008). The latter 
is substantiated by the pattern recognition methodology, which tries to recognize precipita-
tion patterns, taking into account their characteristics in historical data, which are used to 
predict the rainfall evolution (Ghumman et al. 2011; Diodato and Bellocchi 2018; Ridwan 
et al. 2021). By such contribution, the latter is considered appropriate since the immediate 
priority is to predict monthly rainfall at certain spots inside a basin.

The improvements in pattern recognition methodologies have led to the extensive use of 
machine learning (ML) tools to solve several problems in many research areas, including 
spatial prediction of several natural hazards, i.e., flooding (Band et al. 2020a), landslides 
(Moradi et al. 2019), wildfires (Watson et al. 2019), tropical cyclones (Li et al. 2017; Yang 
et al. 2020; Yuan et al. 2021) and storm surge (Bai et al. 2022). Ghazvinei et al. (2018) 
applied extreme ML to describe the sugarcane growth and, consequently, the improvement 
of agricultural production. Choubin et al. (2019) proposed several models based on ML for 
predicting earth fissures. Likewise, ML algorithms (e.g., boosted regression tree, random 
forest, parallel random forest, regularized random forest, randomized trees) have also been 
applied to evaluate the flash flood (e.g., Band et al. 2020a) and gully erosion (e.g., Band et 
al. 2020b) susceptibility modelling. Fernández-Alvarez et al. (2019) calculated the power 
of an intraocular lens to be implanted after cataract surgery by applying a multilayer per-
ceptron (MLP) neural network. Recently, Shabani et al. (2020) used several ML methods 
(Gaussian Process Regression, K-Nearest Neighbors, Random Forest and Support Vector 
Regression) to predict evaporation. Note that evaporation is a complex and nonlinear phe-
nomenon and one of the most critical components of the hydrological cycle. While Wang 
et al. (2017a,b) found that the MLP model fed by regional data was skillful for predicting 
monthly evaporation in different climate regions of China, Ghorbani et al. (2018) noted that 
the hybrid MLP-Firefly Algorithm performed better. Recently, Fang and Shao (2022) and Li 
et al. (2022) applied the Long Short-Term Memory (LSTM) for predicting rainfall-runoff in 
the Han and Elbe rivers basins, respectively.

The literature reveals that ML has gained popularity for water management, rainfall pre-
diction and solving hydrological issues (Ridwan et al. 2021; Barrera-Animas et al. 2022). 
Several authors (Teschl et al. 2007; Krasnopolsky and Lin 2012; Nastos et al. 2013; Hard-
winarto et al. 2015; Kashiwao et al. 2017; Vathsala and Koolagudi 2017; Chao et al. 2018; 
Haidar and Verma 2018; Benevides et al. 2019; Anochi et al. 2021; Narejo et al. 2021; 
Ridwan et al. 2021; Sun et al. 2021; Venkatesh et al. 2021) have utilized artificial neural 
networks (ANNs) (Anochi et al. 2021), to perform rainfall forecasts. Ridwan et al. (2021) 
used NN regression to estimate the rainfall data in Tasik Kenyir, Terengganu; and Anochi 
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et al. (2021), using a supervised ANN model, proposed a new approach to predict sea-
sonal precipitations over South America. Besides, Krasnopolsky and Lin (2012), based 
on data learning using the ANN technique developed a multi-model cluster approach to 
improve short-term rainfall forecasting over the continental United States, while Teschl et 
al. (2007) enhanced weather radar forecast with feed-forward ANNs. Following a similar 
approach, Benevides et al. (2019) performed an hourly intense rainfall forecasting using the 
time series feed-forward ANN, integrating meteorological data and Global Navigation and 
Positioning System (GNSS). Similarly, Zhao et al. (2021) utilized the precipitable water 
vapour predicted by the GNSS as input data for a supervised learning algorithm for hourly 
rainfall forecasting. Kashiwao et al. (2017) applied the MLP ANN to predict local rainfall in 
Japan’s areas with data from the Japan Meteorological Agency. Likewise, Haidar and Verma 
(2018) applying one-dimensional deep Convolutional Neural Network (CNN) proposed a 
new forecasting method to estimate monthly rainfall for a chosen area in eastern Australia. 
Furthermore, Lee et al. (2018) developed a model using ANN for rainfall forecasting in 
South Korea’s Geum River Basin. Proposals by Haidar and Verma (2018) and Lee et al. 
(2018) stand out as novel since they use climate indices to predict monthly accumulated pre-
cipitation. Narejo et al. (2021) found that the temporary Deep Belief Network (DBN) model 
outperforms the CNN particularly on the forecast of rainfall time series, but it requires more 
computational resources than other deep learning architectures. Additionally, Samad et al. 
(2020) utilized an LSTM model to forecast rainfall in subsequent days. By using satellite 
data from the NASA Global Precipitation Measurement, Gamboa-Villafruela et al. (2021) 
trained a convolutional LSTM architecture for precipitation nowcasting. With a similar 
approach, Bhuiyan et al. (2020) and Derin et al. (2020) used rainfall observation from satel-
lite to train a random forest and neural network for improving the precipitation estimation 
in water resources applications.

On the other hand, stochastic modelling techniques are also common for forecasting time 
series with hydrological applications. Several authors (e.g. Wang et al. 2013; Mahmud et 
al. 2017; Hernández et al. 2017; Bonakdari et al. 2019; Ebtehaj et al. 2019) have employed 
Autoregressive Integrated Moving Average (ARIMA) models to perform precipitation fore-
casts, but these models show a mild ability to catch major nonlinear features of rainfall 
series (Narejo et al. 2021). Nevertheless, the advantages of ANN models to carry out a non-
linear mapping between inputs and outputs provide a useful alternative for rainfall forecast-
ing at short and long terms (Ali et al. 2020; Wu et al. 2010; Dounia et al. 2014; Nourani 
et al. 2019). Authors (e.g., Zhang 2003; Aladag et al. 2012; Moeeni and Bonakdari 2017) 
have shown that the combination of both ANNs and ARIMA models can increasingly trig-
ger forecasting accuracy much more effectively than if they were set apart from each other 
(Dodangeh et al. 2020). Indeed, hybrid models of ANNs and ARIMA have been widely 
used in several applications, i.e., for estimating PM10 pollution (Wongsathan and Seed-
adan 2016), modelling rainfall-runoff process (Nourani et al. 2011), predicting water quality 
(Faruk 2010) and fuelwood prices (Koutroumanidis et al. 2009), and determining the annual 
energy cost budget (Jeong et al. 2014). Overall, both ANNs and ARIMA models turn out 
especially applicable when: (a) mathematical simulation of the physical phenomena is either 
too difficult or impossible; and (b) needed parameters for mathematical simulations cannot 
be described with adequate precision (Xiaojian and Quan 2009). These situations arise quite 
often in water resources management problems, modeling of rainfall-runoff process, flood 
forecasting, etc., turning ANNs and ARIMA models into viable options to be used.
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The accurate rainfall forecast for hydrological watershed management is a challenge 
nowadays due to its spatial and temporal variability (Xu et al. 2014). Therefore, given the 
findings of previous works (e.g., Zhang 2003; Haidar and Verma 2018; Lee et al. 2018; Bon-
akdari et al. 2019; Ebtehaj et al. 2019; Dodangeh et al. 2020), this study aimed to develop a 
hybrid model based on ANNs (MLP, CNN and LSTM) and ARIMA models for predicting 
monthly rainfall totals over hydrological basins. A skillful model for forecasting monthly 
rainfall will be useful for planning water management to mitigate the impact of dry peri-
ods. Furthermore, an accurate forecast over a year will also help decision-makers to decide 
on water availability for agriculture, industry and the population in general. As the study 
region, we selected the Almendares-Vento catchment, considered one of the most important 
basins in Cuba because it provides freshwater to Havana city.

2  Materials and methods

2.1  Study Area

The study area spans the Almendares-Vento basin, which is located in the western region of 
Cuba, on the northern slope of the country (Fig. 1), and is also recognized by the National 
Center for Hydrographic Basins (CNCH, Spanish acronym) as a basin of national interest 
(García-Fernández and Díaz 2017). The Almendares watershed covers an area of 422 km2. 
Its hydrographic network comprises intermittent streams, while its main river is the Alm-
endares with a length of 49.8 km (Rivera 2009). The Vento underground basin is divided 
into two large regions: karstic and non-karstic. Gentle slopes and undulating plains pre-
dominate and a system of sub-horizontal, monocline blocks and a well-marked stratification 
stand out (Valcarce-Ortega et al. 2007).

2.2  Data

Rainfalls registered in gauge stations of the Almendares-Vento basin and climatic indices 
from different sources were collected as monthly predictors of rainfall. Rainfall data used 
were retrieved from the National Institute of Hydraulic Resources (INRH, Spanish acro-
nym) of Cuba. The gauge station spatial distribution is disclosed in Fig. 1. The compiled 
rainfall data included unavailable values. Those values were completed by data from nearby 

Fig. 1  Almendares-Vento basin. The 
red point and black numbers repre-
sent the station gauge locations and 
the station IDs, respectively
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weather station or average. To produce all data, predictors depicted in Table 1 were uti-
lized. Rainfall, sea surface temperature (SST), sunspot and climatic indices time series were 
included as input characteristics.

The model parameter dependence on climatic features plays an important role in the 
response of the catchments to climatic variability (Sivapalan et al. 2011). Thus, following 
Haidar and Verma (2018) and Lee et al. (2018), several climatic indices that modulate cli-
matic conditions in the North Atlantic Ocean were used to predict the variability of rainfall 
in the Almendares-Vento basin. The North Atlantic Oscillation (NAO) index (Jones et al. 
1997) was extracted from the Climatic Research Unit (CRU). The NAO is one of the greater 
variability modes of the Northern Hemisphere atmosphere in the Atlantic Ocean (Hurrell 
1995). The NAO is often deemed as the normalized pressure difference between a station on 
Iceland and one on the Azores. Niño 1.2, Niño 3.0, Niño 3.4 and Niño 4.0 indices (Rayner et 
al. 2003) were extracted from the Global Climate Observing System (GCOS). The Atlantic 
Multi-decadal Oscillation (AMO) is a consistent way of natural change happening in the 
North Atlantic Ocean. It is based on the SST average anomalies in the North Atlantic basic, 
frequently over 0–70º N (Enfield et al. 2001). The Southern Oscillation Index (SOI) can be 
defined as a standardized index, which is supported by the observed differences in sea level 
pressure between Tahiti and Darwin, Australia. The SOI is a large-scale fluctuation measure 
of air pressure that occurs in the tropical Pacific, between the eastern and western part, dur-

Table 1  Statistics of each rainfall predictor. Niño indices, AMO and SST (in ºC) and rainfall (in mm). (σ: 
standard deviation, µ: mean value. Rainfall ID-N is referred to the rainfall in the gauge station with the iden-
tification number N in Fig. 1)
Attribute Source Minimum Maximum µ Median σ Period
ID-10 INRH 0.0 702.0 122.0 99.95 105.5 1952–2013
ID-12 INRH 0.0 884.0 130.0 105.95 112.2 1971–2014
ID-15 INRH 0.0 822.0 132.0 103.05 118.5 1906–2014
ID-166 INRH 0.0 801.0 119.0 92.80 100.8 1981–2014
ID-284 INRH 0.0 434.0 128.0 90.95 115.2 2000–2014
ID-293 INRH 0.0 526.0 116.0 90.45 100.4 1993–2006
ID-338 INRH 0.0 765.0 115.0 91.65 104.1 1978–2014
ID-340 INRH 0.0 494.0 112.0 92.10 93.13 1981–2014
ID-341 INRH 0.0 503.0 113.0 87.55 98.38 2001–2014
ID-342 INRH 0.0 593.0 134.0 102.5 116.0 2001–2014
ID-343 INRH 0.0 892.0 109.0 81.25 100.1 1981–2014
ID-441 INRH 0.0 498.0 123.0 101.65 107.1 1997–2014
ID-451 INRH 0.0 558.0 120.0 91.10 105.2 1995–2014
ID-456 INRH 0.0 546.0 112.0 84.25 101.3 1995–2014
NAO CRU -4.7 6.66 0.05 0.05 1.714 1906–2014
Niño 1.2 GCOS 18.7 29.6 23.2 22.88 2.284 1906–2014
Niño 3.0 GCOS 22.8 29.2 25.7 25.72 1.196 1906–2014
Niño 3.0 GCOS 22.8 29.2 25.7 25.72 1.196 1906–2014
Niño 3.4 GCOS 26.5 29.8 28.4 28.44 0.589 1906–2014
Niño 4.0 GCOS 24.4 29.1 26.9 27.0 0.866 1906–2014
AMO PSL -0.5 0.60 0.0 -0.036 0.212 1906–2014
SOI BOM -3.4 4.07 0.0 -0.045 1.087 1906–2014
Sunspots SIDC 0.0 359.0 91.0 76.65 71.76 1906–2014
SST NOAA 19.2 25.9 22.3 22.08 1.928 1906–2014
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ing La Niña and El Niño phenomena. The sunspot values were compiled from the Solar 
Influences Data Analysis Center (SIDC) and the SST averaged over the Atlantic Ocean 
between 5 and 50 ºN and 5-100 ºW was taken from the Centennial Time Scale (COBE 
SST2) database (Hirahara et al. 2014) at the National Oceanic and Atmospheric Adminis-
tration (NOAA). In the dataset the daily SST field is made up of a trend’s total, interannual 
variability, and every day shifts, taking into account in situ SST and sea ice concentration 
observations. All these climatic indices were considered as predictors of the monthly rain-
fall in the Almendares-Vento basin. The source, minimum, maximum, mean, median, and 
standard deviation (σ) of each weather parameter are described in Table 1. Figure SM1 in 
Supplementary Material (SM) also shows the time series for each rainfall predictor.

2.3  Artificial Neural Networks

ANNs are mathematical models, which harness learning algorithms led by the intellect to 
save information (Keijsers 2010). Therefore, the ANNs are algorithm clusters made up of 
computational components, denoted as neurons, which get signals from the environment 
or from other neurons, and then change those signals and produce an output signal, which 
could be spread to the environment or to another neuron (Fernández-Alvarez et al. 2019). 
The first neural network called a perceptron was introduced in 1957 (Hung et al. 2009). It 
contained a single input layer and the outputs were obtained directly from the inputs through 
the weighted connections. The MLP neural network was developed in 1960. This ANN 
gradually turned into one of the most broadly used for solving various problems (Velasco et 
al. 2019; Ren et al. 2021). The MLP is a feed-forward network that comprises one or more 
hidden layers (Vathsala and Koolagudi 2017). Mostly, the signals are transmitted within the 
network from input to output in one direction. Every neuron’s output does not influence the 
neuron itself because of the lack of a loop. The MLP power stems precisely from non-linear 
activating functions (Rhee and Shin 2018). The learning process is carried out by means of 
a supervised method where the willing output must be foreseen to actualize the internal con-
nections weights among the layers (Hussain et al. 2020). Connection weights are constantly 
changed in agreement with the calculated error until the error gradient achieves an adequate 
minimum value, which implies that the latter output is near the goal (Ebecken 2011; Panchal 
et al. 2011; Hossain et al. 2013; Popescu et al. 2009). MLPs are usually trained with the 
back-propagation algorithm.

The CNN is a profound neural network initially created for image study. A convolutional 
neural networks power stems from a particular sort of layer known as the convolutional 
layer. Hence, the structure of a convolutional neural network turns out a multi-layered feed-
forward neural network, generated by stacking a lot of hidden layers on top of one another in 
a row. These layers are generally divided into three types: convolutional, pooling and fully 
connected (Sakib et al. 2018).

The LSTM neural network was suggested by Hochreiter and Schmidhuber (1997), and is 
widely used today because of its superior performance in accurate modelling of both short 
and long-term data. LSTMs are particularly created to recall long-term dependencies. As a 
frequent repeated neural network, it contains a self-loop. The distinction between LSTM 
and frequent networks is the inner architecture. The most noteworthy element of the LSTM 
is the cell state that discloses the information throughout the whole chain with a few linear 
interactions (Fathi and Shoja 2018).
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2.4  Autoregressive Integrated Moving Average (ARIMA) Models

One of the most frequently used automatic prediction algorithms are ARIMA models (Tseng 
et al. 2002; Aguado-Rodríguez et al. 2016). The ARIMA models serve to predict simple 
series of a single variable, in which the forecasts are just based on previous values of the 
analyzed variable. The ARIMA models can be used to make short-term forecasts because 
most of them attach more importance to the late past than to the faraway past.

Box et al. (1994) developed the classic methodology that uses time series for generating 
models (e.g., ARMA, ARIMA) to obtain predictions. According to Hyndman and Khanda-
kar (2008) and Aguado-Rodríguez et al. (2016), a common obstacle when using ARIMA 
models for prediction is that the order selection process is generally considered subjective 
and difficult to apply. The authors recommend to all those interested in delving into the 
details of the method to consult the specialized literature on the subject (Kotu and Desh-
pande 2019; Hyndman and Athanasopoulos 2018).

2.5  Methodology

The dataset generated consists of time series created from gauge station records, as shown 
in Table 1. Additionally, evaluating the ANN model skill to forecast the monthly rainfall, 
the rainfall records of some gauge stations (ID-12, ID-15, ID-284, ID-338, ID-441, ID-451, 
see Fig. 1) in the Almendares-Vento basin and the climatic indices from 2015 to 2019 were 
used. It is worth noting that the selection criteria to use these gauge stations was based on 
the availability of the rainfall data from 2015 to 2019. About 120 characteristics that rep-
resent the predictors backward values up to one natural year backward were generated to 
estimate the monthly rainfall totals for the next calendar year.

2.5.1  Parameter Tuning

For the training of ANN models, we applied a similar algorithm to that previously described 
by Haidar and Verma (2018). To sum up, the dataset was partitioned into three distinct parts 
for training, validation and testing. Some researchers (e.g., Wu et al. 2010) have used 50% 
of the data for training and remaining 50% for testing, whereas others (e.g., Venkatesh et 
al. 2021) used 70% and 30% as training and testing data, respectively. In this work, after 
several tests, we partitioned the dataset in 70% to learn the weights and biases of neurons 
in each ANN model, 15% for validating procedure to find the proper architecture during 
training and the remaining 15% for testing. The training and validating steps are critical 
phases to optimize the model parameters and also prevent overfitting (Chen et al. 2016; 
Sadeghi et al. 2020). In addition, the inclusion of check point helped identify when a better 
performance over the validation dataset was attained in order to save the network weights.

To determine the optimal ANNs architecture and ARIMA configuration the trial-and-
error method was carried out. The MLP neural network was configured with two layers: 
the input and output layers (Fig. 2a). The selected architecture for CNN is made up of two 
convolutional layers, average pooling and fully connected layers (Fig. 2b). Additionally, the 
LSTM network was configured with a single LSTM layer and two fully connected layers 
(Fig. 2c). Dropout (a regularization technique) was added to the CNN and LSTM architec-
tures (Srivastava et al. 2014; Haidar and Verma 2018). In all implemented ANNs, we used 
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the Rectified Linear Unit (ReLU) as activation function. The superior performance of ReLU 
is commonly believed to come from sparsity (Glorot et al. 2011; Sun et al. 2015). Formally, 
in the ReLU activation function, y is equal to x when x is greater than or equal to zero, and 
null when x is less than zero. Furthermore, the neural network was trained by reducing the 
mean absolute error (MAE). That is, the MAE was used as loss function for training. Addi-
tionally, we used the Adaptive Moment Estimation Algorithm or so-called Adam Optimizer 
(Kingma and Ba 2017) for deep learning. According to Kingma and Ba (2017), such method 
is computationally useful, very suitable for issues that are large in terms of data, adequate 
for non-stationary purposes and has few memory requirements.

Furthermore, an exploratory analysis of rainfall data in gauge stations reveals certain 
seasonal frequency in the period analyzed. Data were filtered and smoothed with the Fast 
Fourier Transform (FFT) algorithm, in order to estimate the seasonal frequency. Indeed, 
Fig.  3 displays the temporal progression of the smoothed mean rainfall in Almendares-
Vento basin, which is characterized by 48 ~ 60 months (4 ~ 5 years) of seasonal frequency. 
Thus, there is a succession of wet and dry periods of approximately 4–5 years each one. 
These results were utilized to configure the ARIMA error model seasonally integrated with 
seasonal moving average model.

The rainfall time series of each gauge station were processed in a numerical experiment, 
with and without differentiating (in ARIMA model, D = 1 and D = 0, respectively). The better 
results (not shown) were obtained for D = 1, considering moving average terms at lags 1, 2, 
…, 12; therefore, the configuration applied for all gauge stations was ARIMA(0, 1, 12) with 
a seasonal frequency of 48 and 60 months, respectively.

The Python Keras package (Chollet 2015) installed on top of Tensorflow framework 
was employed to carry out and train the CNN, MLP and LSTM neural networks, while the 
ARIMA function in MATLAB was configured with the rainfall dataset of each gauge station 
as ARIMA (0,1,12), with a seasonal frequency of 48 (ARIMA4) and 60 (ARIMA5) months, 
respectively.

Fig. 2  Artificial Neural Networks 
architecture for: (a) Multi–Layer 
Perceptron (MLP); (b) Convolution-
al Neural Network (CNN); and (c) 
Long Short-Term Memory (LSTM)
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2.5.2  Performance Measurements

To evaluate the precision of the models, some statistics, which have been broadly employed 
in rainfall forecasting tasks were estimated: MAE (Eq. 1), BIAS (Eq. 2), Root Mean Square 
Error (RMSE, Eq. 3), Pearson correlation coefficient (rp, Eq. 4), Nash-Sutcliffe efficiency 
(NS, Eq. 5) and coefficient of variation (CV, Eq. 6):

	
MAE =

∑n
i=1 |xi − yi|

n
� (1)

	
BIAS =

∑n
i=1 (xi − yi)

n
� (2)

	
RMSE =

√∑n
i=1(xi − yi)

2

n
� (3)

	

rp =
∑n

i=1 (xi − x) (yi − y)√∑n
i=1(xi − x)2(yi − y)2

� (4)

	
NS = 1 −

∑n
i=1(xi − yi)

2

∑n
i=1(yi − yi)

2 � (5)

	
CV =

σx

x
� (6)

In all equations yi is the observed value, xi is the predicted value, y  and x  are the average 
of observed and predicted values, respectively; n is the number of elements in the dataset, 
1 ≤ i ≤ n; σy, σx represents the standard deviation of observed and predicted values, respec-
tively. The RMSE and MAE values fluctuate between 0 and ∞. The nearest to 0 a value is, 
the more suitable the model forecast will be. Pearson correlation values range between − 1 
and + 1. The closer the value is to 1, the better the forecast is. Nevertheless, to determine the 
statistical significance of the Pearson correlation coefficient, we applied the two-tailed sig-

Fig. 3  Smoothed mean rainfall in Almendares-Vento basin by applying the Fast Fourier Transform algorithm
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nificance test (Weathington et al. 2012). The NS values range between -∞ and 1. Negative 
NS values denote that the forecasting model does not prove to be a higher predictor than the 
mean of the measured values. According to Wu et al. (2010), NS is a good alternative as a 
“goodness-of-fit” because it is sensitive to differences in the observed and forecasted means 
and variances. Additionally, NS = 0 is regularly used as a benchmark to differentiate ‘good’ 
from ‘bad’ models (Houska et al. 2014).

For calibrating and evaluating hydrological models, the Kling–Gupta efficiency (KGE) 
(Gupta et al. 2009; Kling et al. 2012) has been recently used to summarize the model perfor-
mance (Knoben et al. 2019). Therefore, to gain a complete overview of the ability of each 
ANN and ARIMA model to predict the monthly rainfall in the Almendares-Vento basin, we 
used the KGE index, which is defined according to following Eq. (7):

	
KGE = 1 −

√

(rp − 1)2 +
(

σx

σy
− 1

)2

+
(

x

y
− 1

)2
� (7)

Similar to the NS efficiency, KGE = 1 indicates a perfect agreement. Several authors have 
used positive KGE values as indicative of “good” model simulations, while negative KGE 
values indicates “bad” simulations (see references in Knoben et al. 2019). Conversely, Kno-
ben et al. (2019), pointed out that KGE values higher than − 0.41 indicates that a model 
enhances over the mean flow benchmark, but this criterion was applied to the flow in a 
basin. Therefore, in this study we assumed that higher KGE values suggest that the model is 
more skillful to predict the monthly rainfall. The KGE efficiency has been widely applied to 
evaluate the model performance in predicting rainfall time series (e.g., Thiemig et al. 2013; 
Towner et al. 2019; Gebremichael et al. 2022; Shahid et al. 2021; Girihagama et al. 2022; 
Li et al. 2022).

Additionally, to better evaluate the relative improvement of one model relative to 
another, we utilized the KGE skill score (KGESS), defined according to Eq. 8, in which 
KGEa and KGEb are the scores for the model of interest and the comparative or baseline 
model, respectively: 

	
KGESS =

KGEa − KGEb

1 − KGEb
� (8)

Positive KGESS indicates improved skill, while a negative score represents that the model 
of interest performs worse than the baseline. The KGESS was previously used with this goal 
by Towner et al. (2019).

The flowchart shown in Fig. 4 summarizes all the steps followed in this work to identify 
the models with the highest performance to predict the monthly rainfall in the study region 
and, accordingly, to generate the rainfall forecast. This schematic representation could be a 
useful guide for future applications of this methodology in other hydrological basins.
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3  Results and Discussion

3.1  ANN Training

The statistics for ANN architectures during the training and testing procedures are depicted 
in Fig. 5. The loss function above the training database had not been very different from 
the one over the validating dataset, except for LSTM (Fig. 5c), which compared with CNN 
(Fig. 5a) and MLP (Fig. 5b) has a larger separation, but with similar monotony. These results 
suggest that the networks did not overfit in the training phase (Chollet 2015). According to 
Barrera-Animas et al. (2022), overfitting between observed and forecasted values is one of 
the major drawbacks in rainfall forecasting. Table 2 presents the MAE, BIAS, RSME, rp 
and NS obtained for each ANN model during the training and testing steps. In the training 
phase, the best weights were obtained on 2898, 995 and 1805 epochs for the CNN, MLP 
and LSTM models, respectively. The statistics shown in Table 2 suggest that CNN predicted 
monthly rainfall during the training and validation procedures in good agreement with the 
observed rainfall.

Every time that an ANN was trained, the training time was approximately 5, 13 and 
19  min for MLP, CNN and LSTM architectures, respectively. Nevertheless, the training 
time depends on the available computing resources. In this work, we used a computer with 
32 CPUs and 128 GB of RAM. It is worth noting that the time required for the training 
process also depends on the learning rate, which controls how much to change the model in 
response to the estimated error each time the model weights are updated. A small learning 
rate leads to a long training process, whereas a value too large may result in sub-optimal 

Fig. 4  Schematic representation of the methodology followed in this work. MLP: Multi-Layer Perceptron, 
CNN: Convolutional Neural Network, LSTM: Long Short-Term Memory, FFT: Fast Fourier Transform, 
ARIMA4 and ARIMA5: Autoregressive Integrated Moving Average model with a seasonal frequency of 4 
and 5 years, respectively
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learning weights. Furthermore, the differences observed in the training time of the three neu-
ral networks were due to the differences in complexity between them. As the trial-and-error 
method was applied, the total training time to determine the model with the most adjusted 
weights will also depend on the number of times each ANN architecture was trained. How-
ever, once the model that best fits the accumulated monthly rainfall during the training phase 
has been found, the predictions are obtained relatively quickly.

3.2  Comparative Analysis of the Forecasting Models

The rainfall data in the Almendares-Vento basin and climate indices from January 2015 to 
December 2019 were used to assess the ability of ANN and ARIMA models, as noted above. 
The validation of model performance was achieved based on several statistical metrics and 

Table 2  Statistics for each ANN model during the training and testing phases. The epoch denotes when the 
best loss values were obtained during the training. Mean absolute error (MAE), BIAS and Root Mean Square 
Error (RMSE) are given in mm; and Pearson correlation coefficient (rp) and Nash-Sutcliffe efficiency (NS) 
are dimensionless. Pearson correlation coefficient higher than 0.27 are statistically significant (p < 0.05)
ANN Epoch Training Testing

MAE BIAS RSME rp NS MAE BIAS RSME rp NS
CNN 2898 30.50 -11.90 47.17 0.91 0.81 42.93 -5.39 49.28 0.80 0.63
MLP 995 57.472 -14.12 83.45 0.66 0.42 56.14 -7.33 86.15 0.65 0.42
LSTM 1805 59.43 -16.58 86.57 0.63 0.38 58.04 -9.15 86.12 0.64 0.41

Fig. 5  Loss function while training the neural networks: (a) Convolutional Neural Network (CNN), (b) 
Multi–Layer Perceptron (MLP), and (c) Long Short-Term Memory (LSTM). The red and blue curves denote 
losses during training and validations phase, respectively
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model performance criteria. Figure 6 and Table SM1 show the statistics for each predicting 
model. Apparently, the LSTM model exhibits the best performance by analyzing the mean 
rainfall over the whole basin and in the previously selected gauge stations. In agreement 
with Kim and Bae (2017), Kim and Won (2018) and Kumar et al. (2019), the LSTM per-
forms better in terms of the RSME, MAE and NS. However, and although several studies 
(e.g., Kim and Bae 2017; Liu et al. 2017; Kratzert et al. 2018; Kim and Won 2018; Kumar 
et al. 2019) suggest the superiority of LSTM models, we found in this study that it is the 
worst to predict the peaks of maximum rainfall, as shown in Fig. 7 (for the mean rainfall) 
and Figure SM2 (for the monthly total precipitation in each gauge station). The main reason 
for such behaviour is that the number of heavy rainfall events was scarce in the data, and 
thus, it was difficult for ANN models, and particularly for the LSTM, to learn such features. 
Besides, very few rain events might not activate neurons (Zhang et al. 2021). As the LSTM 
model has the capability of learning long-term dependencies, probably the size of the input 
data for training was too small for the optimal fit of the model weights. It is important to 
remark that Fig. 7 also shows that the model simulated rainfalls preserved the seasonality.

Moreover, there is consistency in the results between precipitation time-series predicted 
by CNN, MLP and ARIMA models and the observed series, but the CNN model shows bet-
ter performance. This result agrees with the findings of Haidar and Verma (2018), who noted 
the ability of CNN models to predict rainfall time series. From Fig. 6 (see also Table SM1), 
the CNN predicted the mean rainfall with the lowest MAE (46.41 mm), BIAS (4.22 mm) 
and RSME (65.78 mm), and it also showed a skill in predicting the monthly rainfall on the 
gauge stations. It must be highlighted that the CNN showed a statistically significant Pear-
son correlation coefficient (p < 0.05) between the predicted and observed rainfall in both 
mean rainfall and gauge stations. Furthermore, the CNN model predicted the mean rainfall 
with the least difference between the coefficient of variation of the observed and simulated 
data. Overall, the CNN model has the capacity to cope with the time series data with non-
stationarity and seasonal feature of rainfall.

To assess the proper functioning of each model to predict the monthly rainfall, we com-
puted the KGE index over the mean rainfall and over the rainfall in selected gauge sta-
tions. By definition, KGE includes several metrics as the Pearson correlation coefficient, the 

Fig. 6  Comparative analysis of the 
statistics of each forecasting model: 
(a) Mean Absolute Error, (b) BIAS, 
(c) Root Mean Square Error, (d) 
Pearson correlation coefficient, 
(e) Nash-Sutcliffe coefficient and 
(f) Coefficient of variation. In (d) 
the horizontal black dashed line 
indicates the threshold (rp =0.27) 
for statistically significant rp at 95% 
significance level. In (f) the marker 
“+” denotes the coefficient of varia-
tion of observed data in each gauge 
station
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standard deviation and the mean (Eq. 7), therefore, it provides a more precise estimation of 
each model accuracy (Osuch et al. 2015; Towner et al. 2019). As noted above, higher KGE 
values are indicative of better model performance. The validation results by applying KGE 
index are shown in Fig. 8. The KGE values of mean rainfall predictions ranged from 0.53 
(for the LSTM model) to 0.65 (for the CNN), which confirms the ability of CNN to estimate 
the monthly mean rainfall over the study region. Additionally, our analysis indicates that in 
general, ARIMA models are better predicting rainfall in selected gauge stations. It must be 
noted that the KGE value for LSTM is higher than all in the station gauge ID-441. Based 
on these findings, the CNN and ARIMA4 models exhibit the best performance again. The 
ability of the CNN model could be attributed to its filter to capture certain recurrent pat-
terns, and then, try to forecast the future values. Apparently, this property of the CNN model 
favours their applications on time series forecasting (Fotovatikhah et al. 2018; Moazenza-
deh et al. 2018; Chong et al. 2020). The overall low KGE values in station gauges ID-284, 
ID-338, ID-441, and ID-451 can be attributed to the bias magnitude of model predictions. 
This behavior agrees with Gebremichael et al. (2022), who found that the KGE value tends 
to decrease when the model overestimates the precipitation. It is worth noting that the data 
used from stations ID-12 and ID-15 represent 10.5% and 26.4% of the dataset, while the 
data for the remaining stations account for 8.8% (ID-338), 4.6% (ID-451), 4.1% (ID-441) 
and 3.4% (ID-284). Therefore, the best performance of all models for the mean rainfall 
in the whole basin and gauge stations ID-12 and ID-15 could be attributed to more data 
availability during the training process. Accordingly, the ANN and ARIMA models better 
learned the rainfall variability in stations ID-12 and ID-15 than in the other stations. This 
hypothesis agrees with Abiodun et al. (2018) and Hijazi et al. (2020), who noted that ANNs 
usually need big databases for training the network to accomplish substantial prediction 
accuracy.

In order to compare the performance of the models in terms of estimating the mean 
monthly rainfall, the KGE skill score was also used (Eq. 8). This parameter makes it possi-
ble to assess the relative improvement achieved when using one model compared to another, 
taking into account that the denominator of the KGEss expression measures the difference 
between the KGE value obtained for a perfect fit (1.0) and the KGE obtained for the com-
parative base model, i.e., the maximum possible improvement that would be possible to 
achieve, and the numerator measures the difference between the KGE of the model to be 
compared with the KGE obtained for the comparative base model, i.e., the actual improve-
ment in fit achieved by using another model. The maximum possible value of the KGEss 
is 1, assuming that the model selected for comparison with the base model perfectly fits 
the data with a KGE equal to 1. In this way, the magnitude of the KGEss value is directly 
proportional to the degree of improvement of the mean monthly rainfall estimation with the 

Fig. 7  Mean observed rainfall values 
and the ANN and ARIMA models 
outputs in the whole basin from 
January 2015 to December 2019
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reference model with respect to the base model of the comparison. The other issue that must 
be taken into account is that the positive value of KGEss indicates that the model which is 
compared with the base model has a better prediction performance.

Figure  9 displays the KGE skill score of all models compared against each other in 
predicting the mean rainfall over the whole basin. Simple inspection of the figure reveals 
that CNN outperformed all models, followed by ARIMA4 > MLP > ARIMA5 > LSTM. The 
improvement ranges from 0.25 between CNN and LSTM models to 0.008 between MLP 
and ARIMA5 models. Note that CNN improvement over ARIMA4, the second highest per-
forming model, was 0.075, a value that represents 27% of improvement relative to the mini-
mum improvement achieved between two models in the range.

The KGE skill score for predicting the rainfall in the station gauges (Figure SM3) con-
firmed the results shown in Fig. 8. ARIMA4 showed the highest improvement in station 
ID-12, ARIMA5 in ID-15, MLP in ID-284, LSTM in ID-441 and ARIMA5 in ID-451, while 
ARIMA4 and CNN were better at predicting the monthly rainfall time series in ID-338. 
Interestingly, the LSTM improvement over the other models at station ID-441 ranged from 
0.26 to 0.38, which means that the performance of LSTM model in this gauge station is 
much better than the rest of the models. Overall, the KGE skill score confirmed that CNN 
and ARIMA4 performed better.

To investigate further, we analyzed the ability of each model to predict the rainfall 
amounts in each month from 2015 to 2019. Table  3 shows the RMSE, BIAS and KGE 
values of the mean rainfall series predicted for each month of the year. In terms of RSME, 
the CNN model is better in February, April, June and November, the LSTM performs best 
in March, July, September and October, while ARIMA4 is most skillful in January, August 
and December and ARIMA5 in May and July. In terms of BIAS, CNN (August, Octo-
ber and November), MLP (February, April, May and June) and LSTM (March, July and 
September) show the best performance. The Wilcoxon Signed Rank Test revealed that the 
CNN model has the overall best performance in terms of the RMSE, confirming the results 
discussed above. Additionally, CNN exhibits improved forecast capacity regarding KGE in 
six months of the year (February, April, June, September, October and November), while 
the ARIMA4 shows the better prediction for August and December. Likewise, ARIMA5 
is better for predicting in May and July, and finally, the LSTM shows the better prediction 

Fig. 8  Kling–Gupta efficiency 
(KGE) for ANN and ARIMA models 
to predict the mean rainfall over 
the Almendares-Vento basin and in 
gauge stations from January 2015 to 
December 2019

 

1 3

Page 15 of 26  53



A. Pérez-Alarcón et al.

of rainfall only in March. Similar results were found for the monthly rainfall prediction 
each month alone at every gauge station (Tables SM2 to SM7). It is outstanding that the 
worst performance of all models occurred in January, which can be related to the outlier of 
240 mm registered for that month (Fig. 7). It is well known that the weather of January 2016 
was described as extremely wet, because of 99.7 mm of average rainfall was recorded for 
the Cuban archipelago (212% of the historical value). Specifically, 178.1 mm (339%) for the 
western region and 298.3 mm (424%) for Havana. This unusual behavior was conditioned 
by the presence of a strong El Niño/Southern Oscillation (ENSO) event in the equatorial 
Pacific Ocean (González-Pedroso and Estévez 2016). On average, according to these find-
ings, the CNN model performs better than all other models.

From the statistical indices shown in Table 3, a hybrid model based on the ANN and 
ARIMA models was developed in order to combine the forecasting model efficiencies, as 
previously suggested by Zhang (2003) and Haidar and Verma (2018). In this contribution, 
for each month, the maximum KGE value was selected as the decision criterion. This strat-
egy aims at increasing computational efficiency by growing correlations and minimizing 
errors during the forecasting process. The temporal variations of the observed and predicted 
rainfall by the hybrid model are presented in Fig. 10 and SM4. Both Figures reveal that the 
hybrid model fits better the observed rainfall values than the prediction by the individual 
models. Precisely, the results of hybrid model implementation are presented in Table  4. 
The statistical evaluation shows high accuracy of hybrid model based on RMSE, BIAS, rp, 
NS and KGE indices. The KGE records for the mean rainfall and selected gauge stations 
are notably higher than 0.5 and the NS values are always positive, suggesting the abil-
ity of the hybrid model in predicting monthly rainfall in the study region. Following the 
breakdown of KGE values into four benchmark categories (Kling et al. 2012), the perfor-
mance of the hybrid model could be classified from Intermediate (0.5 ≤ KGE < 0.75) to Good 
(KGE ≥ 0.75). This approach was previously applied by Thiemig et al. (2013) for evaluating 
the satellite-based precipitation products and Towner et al. (2019) for assessing the perfor-
mance of global hydrological models in capturing peak river flows in the Amazon basin. 
On the other hand, Xu et al. (2020) found NS values ranging from 0.35 to 0.75 in the runoff 
prediction in the Hun River basins, while Bhagwat and Maity (2012) previously achieved 
NS values from 0.58 to 0.68. Overall, the hybrid model better captured particular features 
of the data set than individual models, in agreement with previous works (e.g., Zhang 2003; 
Aladag et al. 2012; Dodangeh et al. 2020).

Fig. 9  Kling–Gupta efficiency skill 
score (KGS) in predicting the mean 
rainfall over the Almendares-Vento 
basin from January 2015 to Decem-
ber 2019
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Figure  11 highlights the improvements of the hybrid model in forecasting the mean 
monthly rainfall in the whole Almendares-Vento watershed and in each gauge station. The 
fact that all KGEss values are positive means that the hybrid model is better predicting the 
mean monthly rainfall than the rest of the models in the whole basin and in each gauge 
station, except at station ID-441, where the LSTM model has a similar performance. The 
improvement ranges from 0.48 between hybrid model and LSTM models at gauge station 
ID-284 to 0 between the same models at ID-441. For the whole basin the improvement in 
the mean monthly rainfall prediction ranges from 0.26 with respect to CNN model to 0.44 
with respect to LSTM model. This improvement could be considered as significant.

Table 4  RMSE, BIAS, rp, NS and KGE values obtained using the hybrid model for predicting the mean 
rainfall over the whole basin and at each gauge station

Mean ID-12 ID-15 ID-284 ID-338 ID-441 ID-451
RMSE 54.632 58.498 61.772 76.596 73.154 65.434 66.523
BIAS 5.4518 6.1675 0.6445 7.9766 2.8237 14.193 0.2577
rp 0.7479 0.7294 0.7282 0.6804 0.5684 0.5864 0.6249
NS 0.5027 0.4246 0.4964 0.3907 0.2310 0.1100 0.3127
KGE 0.7413 0.7194 0.7143 0.6669 0.5484 0.5287 0.6127

Fig. 11  Hybrid model improvements 
in the prediction of the monthly rain-
fall time series in the Almendares-
Vento basin from January 2015 to 
December 2019 based on the Kling–
Gupta efficiency skill score (KGS)

 

Fig. 10  Mean rainfall observed val-
ues, the CNN and the hybrid model 
outputs in the whole basin from 
January 2015 to December 2019
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4  Conclusions

We utilized the Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), 
Long Short-Term Memory (LSTM) artificial neural networks (ANNs) models, and the 
Autoregressive Integrated Moving Average (ARIMA) models in developing a hybrid model 
(ANN + ARIMA) with the aim to forecast the monthly rainfall totals in hydrological water-
sheds. The region was the Almendares-Vento basin, which is an important basin in Cuba. 
The ANN models were trained using the monthly rainfall, sunspots, sea surface temperature 
and climatic variability modes (NAO, Niño 1.2, Niño 3.0, Niño 3.0, Niño 3.4, Niño 4.0, 
AMO, SOI) time series of the previous calendar year to predict the rainfall of the next cal-
endar year, while ARIMA models were adjusted using the rainfall seasonality.

Additionally, to assess the ability of each model to predict monthly rainfall in the study 
region, both ANN and ARIMA models were compared. This study showed in general that 
the CNN model has a good performance to forecast monthly rainfall amounts in the Alm-
endares-Vento basin. However, better accuracy was reached through a hybridization of ANN 
and ARIMA models, with maximum monthly KGE as the selection criteria. This approach 
ensures an efficient performance, as the statistical indices MAE, BIAS, RMSE, rp, NS, and 
KGE for mean rainfall and selected gauge stations in the Almendares-Vento basin unfolded.

Although this work was focused on forecasting the monthly rainfall over the Almendares-
Vento basin, these results prove the reliability of using the hybrid model (ANN + ARIMA) 
to predict rainfall time series for water management. Monthly time series of precipitation 
recorded in gauge stations within the basin and climatic indices used as input data in our 
methodology also allows the ANN and ARIMA models to learn the seasonal variations of 
the rainfall, improving the accuracy of prediction and consequently the ability of the hybrid 
model. Additionally, our method can be easily applied in forecasting rainfall in other hydro-
logical basins.

In summary, this work proposes taking a new detour to enhance the water management 
system in hydrological basins through improving rainfall forecasting. However, the main 
limitation for the extensive application of the present approach could be the non-availability 
of long-term time series of monthly rainfall within a basin. In future studies, the network 
model structure is going to be assessed and further optimized to accomplish a more accurate 
prediction.
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