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Abstract
After several landscape transformations caused by human activities, finding a suitable envi-
ronment becomes increasingly challenging in urbanized regions. The predominance of non-
permeable areas results in a low level of water infiltration. Notwithstanding, even green areas
can have high runoff rates, since soil compaction has a decisive influence on the water
movement. In places that have a natural predisposition to overflow, these problems are more
significant. This study aimed to investigate causes of flooding, highlight the benefits of urban
gardening and to propose urban gardening as an alternative to soil improvement in the Corujas
Watershed, São Paulo, Brazil. The evaluation was based on: (a) the physical characteristics of
the watershed, provided by morphometric analysis and land-use analysis; and (b) the soil
compaction rates of an urban garden compared to a riparian forest and a grass area. The
morphometric results indicated that the watershed has a significant flood tendency, and the
land use map demonstrated that 29.55% of the soil has some permeability. Nevertheless, this
permeability currently varies according to soil management and cover. The grass area
presented the highest compaction rates, the riparian forest a medium rate, and Corujas Garden
the lowest rate. The garden also has green infrastructures and good management practices,
which have led to the appearance and perpetuation of diffuse springs. These results showed
that the urban garden activities could improve the physical characteristics of the soil and
optimize water infiltration. Subsequent studies will investigate whether this characteristic also
applies to other gardens located in different urban watersheds.
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1 Introduction

An environmental issue shared among world’s major urban settlements is soil sealing, i.e.,
impervious cover, and cities in developing countries must face the consequences of soil sealing
with urgency. The urban infrastructure that leads to soil sealing includes streets, houses,
buildings and sidewalks. In these landscapes, only a small portion of stormwater can infiltrate
into the soil (Umer et al. 2019). Hence, the flow to recharge the water table that should come
from stormwater arrives mainly from sanitation leakage, which affects groundwater quantity
and quality (Minnig et al. 2018; Tubau et al. 2017; Wakode et al. 2018).

Soil sealing increases runoff rates and aggravates floods (Alaoui et al. 2018; Redfern et al.
2016), causing damages that can affect population well-being and threaten the city economy
(Haddad and Texeira 2015). Flood hazards grow daily with climatic changes, and its impacts
affect mostly the low-income population (Al-Amin et al. 2019; Henrique and Tschakert 2019;
Liao et al. 2019). As reported by Zambrano et al. (2017), water management strategies focuses
mainly on control of floods and prevention of water supply crises. Nevertheless, a preventive
approach can be more effective (Disse et al. 2020). Land use planning and management are
essential to provide water regulation service. The decision-making process should consider
urban infrastructure, water use (Mokarram and Hojati 2017), soil management (Rahaman et al.
2015), and selection of priority areas for conservation (Adhami and Sadeghi 2016; Shivhare
et al. 2018).

Bae and Lee (2020) argued that it is desirable to restore the natural hydrological cycle and
maximize permeability. In this context, the maintenance of green areas and trees in cities is
essential for climate comfort (Rötzer et al. 2019) and water infiltration. Higher water infiltra-
tion rates mean less runoff and a decrease in damages caused by flood events (Berland et al.
2017; Bloorchian et al. 2016; Carter et al. 2018; Ren et al. 2020; Zambrano et al. 2017). Green
areas can be a broad concept that includes parks, riparian forests, trees in sidewalks, and green
infrastructure (Amato-Lourenço et al. 2016; Bloorchian et al. 2016; Di Marino et al. 2019;
Zhang and Muñoz Ramírez 2019). The community gardens can also be a multifunctional
green space (Russo et al. 2017) that provides several social and environmental benefits, such as
biodiversity of plants and soil fauna, cooling effects, leisure and well-being, and water
regulation (Anguluri and Narayanan 2017; Kabisch et al. 2016; Richards et al. 2017; Tresch
et al. 2019). This activity is currently responsible for environmental activism, reframing of
spaces, and bringing together community members (Carolan and Hale 2016; Egli et al. 2016;
Hardman et al. 2018). However, there is a lack of studies on how urban gardens can play a role
in improvement of soil physical characteristics. Soil compaction analysis studies, for instance,
are more common in soils from forests and rural areas than urban gardens.

Soil compaction can affect primary production, as it limits root growth (Correa et al. 2019).
Also, it is one of the main reasons for the increase in green areas impermeability, causing
runoff peaks and subsequent socio-environmental impacts (Yang and Zhang 2011). In these
scenarios, soil quality is one of the main factors that should be considered in public policies
aimed at conservation and environmental balance (Sefati et al. 2019). The degree of compact-
ness has a decisive influence on the water movement across the soil profile and the water
content (Halecki and Stachura 2021). To evaluate this compaction, the Soil Penetration
Resistance – SPR is a physical property that represents distinct behaviors according to density,
moisture, and porosity (Hillel 2003). In addition to being a determinant for plant development,
this index can also provide information on the soil’s ability to act on water regulation (Martins
and Santos 2017; Yang and Zhang 2011; Wang et al. 2019).
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Among sealed areas and possibly compacted soils, regions with natural tendencies for flooding
can face constant environmental disasters. Hence, this work has the following aims: (a) to identify
the problems that lead to floods; and (b) to evaluate urban gardening as a possible solution related to
soil compaction of an urbanwatershed. First, themain physical characteristics of the watershedwere
identified through a morphometric analysis and a land-use map. Then, compactness in green areas
was evaluated by comparing urban gardens with riparian forest and grass in the same watershed to
make the assessment as accurate as possible. The Corujas watershed in São Paulo-Brazil was
selected for the study because of presenting a constant problem with floods and having one of the
most successful community gardens in the city.

2 Methods

2.1 Study Area

São Paulo is the biggest and most important metropolis in Brazil and capital of São Paulo state.
The city has an area of 1.521,11 km2, a population of 12.106.920, and a demographic density
of 7.959,27 hab/km2 (United Nations 2018). According to the Köppen climatic classification,
the climate is Cwa (Humid subtropical climate), with rainy summer and dry winter, an average
temperature of the hottest month of more than 22 °C and rainfall of about 1376 mm per year
(Center for Education and Research in Agriculture 2017).

The biome in the region is Atlantic Forest with some Savana islands. The remaining
vegetation covers 30% of the city area, and most of it is concentrated in the South. Polygons
with native vegetation up to 0.5 ha are predominant and high rates of forest fragmentation in
the region stands out (São Paulo 2016). São Paulo is within the Alto Tietê Watershed; the
original landscape presents meandering rivers and vast alluvial plains associated with Tietê and
Pinheiros Rivers. Currently, there are 287 water bodies distributed in 103 sub-basins that
discharge in the Tietê River. Nevertheless, most of these rivers are channeled and rectified,
becoming invisible to the population (São Paulo 2017).

The meadows in the urban area consist of flood-subject wetlands and are mostly occupied
by highway and other civic structures. Furthermore, several streams were channelized and
rectified for controlled-access roads and dam construction to explore the hydroelectric poten-
tial. All these interventions contribute to significant flooding in the area (Haddad and Teixeira
2015; Jacobi et al. 2015; Seabra 2015).

In 2009, the Municipal Policy of Climatic Change was instituted in São Paulo to provide
strategies for adaptation and mitigation of environmental impacts related to the traffic, energy
production, waste management, health care and land use (São Paulo 2009). The master plan that
was reviewed in 2014 also refers to soil permeability. The rural zone expansion in Sao Paulo can be
highlighted as an environmental improvement since the agricultural land use allows more water
infiltration (Master Plan of São Paulo 2014). Both policies have achieved some goals, but therewere
differences between plan and implementation (Giulio et al. 2018). The watershed selected for this
study is an example of this situation: Corujas stream has only two patches not channeled (Fig. 1).

2.2 Corujas Stream

The Pinheiros River started to be rectified in 1920, and the Corujas stream went through a
channeling process twenty years later (Oliveira et al. 2012). Some green areas surround its
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open sections (Bartalini 2004), yet floods occur constantly in the region. Due to environmental
hazards, initiatives in 2006–2009 resulted in several changes to improve water drainage in the
Pinheiros neighborhood. The main park (Dolores Ibarruri) went through a revitalization
process, with a landscape project that included several green infrastructures. However, not
all the interventions were completed (Oliveira et al. 2012).

The project had good drainage strategies. The bioswale, a ditch with vegetation and a
porous bottom responsible for reducing runoff speed, filtering rainwater, and controlling
pollution that would go to the body of water (Berland et al. 2017; Li et al. 2016). Permeable
pavements can also contribute to the reduction of runoff (Eaton 2018) and has potential for
storage and reuse of water for irrigation (Nnadi et al. 2015). However, improper modifications
or structures have increased the speed and volume of drained water in some regions, triggering
erosion and soil accumulation on walking tracks after rain events. To better understand this

Fig. 1 Corujas watershed delimitation with the study area, main water course, and the non-channeled patches.
Source: Image from Google Earth (2018)
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Table 1 Morphometric parameters analyzed and their formulas

Geometric character
Area Form factor
Perimeter Circularity ratio
Compactness coefficient Drainage pattern
Relief character
Max slope Max elevation
Min slope Min elevation
Mean slope Mean elevation
Relief ratio Roughness index
Mean slope of the main stream
Drainage character
Main stream length Drainage density
Total stream length Watershed order
Sinuosity index Maintenance coefficient

Strahler’s stream ordering
No tributaries, small channels 1st
Confluence between two first order channels (Only receive first
order tributaries)

2nd

Confluence between two second-order channels (Receive first and
second-order tributaries)

3rd

Confluence between two second-order channels (Receive first,
second and third order tributaries)

4th

Index Formula
Compactness coefficient (Kc) Kc ¼ 0:28 P

ffiffiffi

A
p

where: P=Perimeter (km)
A=Watershed area (km2)

Form factor (Kf) Kf ¼ A
L2

where: A=Watershed area (km2)
L=Watershed length (from the outfall until

the spring) (km)
Circularity ratio (Ic) Ic ¼ A

Ac
where: A=Circularity ratio (km2)
Ac=Circle area correspondent to the

watershed perimeter (km2)
Relief ratio (Rr) Rr ¼ Hm

Lc
where: Hm=Altimetric amplitude (m)
Lc=Main stream length (km)

Roughness index (Ir) Ir ¼ ðHm�DdÞ
1000

where: Altimetric amplitude (m)
Dd=Drainage density (m/m2)

Mean slope of the main stream Gc ¼ Amax
Lc

where: Amax=Max elevation of the
watershed (m)

Lc=Main stream length (m)
Drainage density (Dd) Dd ¼ Lt

A
where: Lt=Total stream length (km)
A=Watershed area (km2)

Sinuosity index (Is) Is ¼ Lc
Lv

where: Lc=Main stream length (km)
Lv=Vector main stream length (km)

Maintenance coefficient (Cm) Cm ¼ 1
Dd

where: Dd=Drainage density (m/m2)

Source: Adapted from Christofoletti (1969), Horton (1945), Strahler (1964) and Villela and Mattos (1975)
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trend to floods and soil erosion, an analysis of the morphometry was carried out in the Corujas
Watershed.

2.3 Morphometric Analysis of Corujas Watershed

A key instrument to understand the dynamics of a watershed is morphometric analysis. The
characteristics such as slope, geology, and drainage aspects can provide a holistic view of the
physical environment (Christofoletti 1969). Focusing on these aspects, parameters were
selected based on the works of Christofoletti (1969), Horton (1945), Strahler (1964), Villela
and Mattos (1975), and they are summarized with their formulas in Table 1.

2.4 Geoprocessing

All the maps and the morphometric parameters of this work were developed with the QGIS
2.18 software and the GRASS 7.4.1 extension. Different charts were consulted for temporal
comparison purposes: Society of Aerophotogrammetric Surveys chart from 1930 (1:5000)
(São Paulo 2018); IBGE planialtimetric chart from 1984 (1:50,000) (São Paulo 2018); and
EMPLASA planialtimetric chart from 1986 (1:25,000) (São Paulo 2018). The elevation and
slope map that enabled the calculation were constructed from the IGC topographic chart from
1971 (1:10,000) (Geographic and Cartographic Institute 2018).

Fig. 2 Study areas characterization: a) Grass with exposed soil patches; a) Riparian forest; c) Corujas garden; d)
Location in satellite images. Source: Image from Google Earth (2018). Photos by the lead author
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2.5 Soil Compaction Study and Statistics Analysis

The soil penetration resistance (SPR) helps to understand the soil permeability. The compac-
tion is superior when the resistance is higher, consequently, the water infiltration time into the
soil will be longer. The areas selected for the compaction analysis are in the Dolores Ibarruri
Park, Sumarezinho neighborhood. The selection was based on the proximity of distinct
vegetation coverings so that the soil characteristic would be the same and the land use
different: (1) Grass and exposed soil areas; (2) Tree area (riparian forest of the Corujas river);
(3) Gardening area (Corujas garden). The garden has a high diversity of vegetables, fruits,
medicinal plants, and unconventional food species (Fig. 2).

The equipment used was the Falker PenetroLOG Penetrograph – Electronic Meter of Soil
Compaction, which measures SPR in pressure units (mPa) until 60 cm depth. Ten tests were
made randomly in each area, totaling 30 repetitions. According to Filho and Ribon (2008),
number of tests n = 10 in the 0–60 cm layer by soil management enables a high accuracy of the
data and use of statistical parameters in SPR analysis. The fieldwork was accomplished in
July 2018, and all SPR measurements were carried out on the same day to reduce the impacts
of soil moisture variation (Esteban et al. 2019). The averages were analyzed through a Shapiro-
Wilk normality test, a Variance Analysis (ANOVA), and a Tukey test. All analyses considered
a level of significance of 95% and were made using PAST 3.22 Software.

3 Results and Discussion

3.1 Morphometric Analyses

According to Strahler’s (1964) classification, the Corujas Watershed has only one watercourse,
classified as a first-order. Regarding the size, using García’s (1982) classification, it can be
considered a nano-watershed. The other morphometric indices were calculated and are
summarized in Table 2.

Corujas has a circular tendency since the compactness coefficient is 1.231. A perfect circle
would receive 1 for Kc, so proximity to unit means a nearly round shape (Villela and Mattos
1975). The circularity index (0.651) and form factor (0.5113) corroborate the result since
values higher than 0.5 also indicate a trend to circularity (Christofolleti 1980). Compared to
other studies (Abboud and Nofal 2017; Kaliraj et al. 2015; Rai et al. 2017; Shivhare et al.
2018), the watershed presents a high tendency to floods and significant surficial flows due to
its low time of concentration (Tc).

The average relief is smoothly undulating (mean slope of 5.03%). However, there is a
significant variation, with rugged areas in the upstream region and plain regions near its
downstream. In the study area, slope can reach 45% and can contribute to land degradation
(Santos et al. 2020). According to Didoné et al. (2021), sites with higher slopes are more
predisposed to erosive processes. The digital elevation model presented a minimum altitude of
721 m, a maximum of 806 m, and an average of 765.11 m. The altimetric range represents the
difference between the inlet and the highest altitude at a given point in the watershed area. The
85 m amplitude can be considered low compared to other morphometry studies (Almeida et al.
2016; Nardini et al. 2013; Santos and Morais 2012; Tonello et al. 2006) (Fig. 3).

Regarding the watercourse, the sinuosity index (1.183) indicates that the channel tends to
be straight. Values close to 1 shows rectification, while values higher than 2.0 represent
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tortuous channels (Schumm 1963). Since there is only one stream, the watershed presents
regular drainage parameters and a high maintenance coefficient. The value indicates the
minimum area required for the maintenance of a watercourse. In this case, the watershed
has a large recharge area (1.101 km/km2) (Santos et al. 2012).

The drainage density can range from 0.5 km/km2 (reduced drainage basins) to 3.5 km/km2 or
more (exceptionally well-drained basins) (Almeida et al. 2016; Tonello et al. 2006; Villela and
Mattos 1975). The regular Dd found (0.987 km/km2) may be due to low-intensity rain regimes, low
precipitation concentration, porous rock formations, and low roughness index. When the rainfall of
the last 20 years in the region was analyzed, rates remained close to the state average (1558 mm per
year) and the national average (1430 mm per year) (National Institute of Meteorology 2018). In this
context, rainfall is unlikely the answer for low drainage density.

Hence, the low roughness index (0.0838) (Kabite and Genesse 2018) and rock formations
are the most likely explanation: the watershed presents sedimentary Cenozoic deposits with a
porous domain. More precisely, sedimentary origin in the north portion is Conglomerate/
Claystone/Siltstone, while the southern portion is Sand/Clay/Gravel (Brazilian Institute of
Geography and Statistics, 2021).

According to the Brazilian Agricultural Research Corporation (2013), the watershed soil
can be classified as Red-yellow argisol that can present high susceptibility to erosion and great
cohesion (Agronomic Institute 2015). The clay composition can also delay water infiltration
and decrease water retention (Jim 2019). Thus, the floods can be explained by the natural
composition of the soil and an accentuated slope. Furthermore, soil sealing rates can contribute
to stormwater runoff. The land use map (Fig. 4) demonstrated that 29.48% of the soil has
some permeability (6.98% parks and green areas in residential building, and 22.5% trees on
sidewalks).

Table 2 Synthesis of the values found for the adopted parameters

Parameters Values

Area 2.66501 km2

Perimeter 7.168 km
Compactness coefficient 1.231
Form factor 0.511
Circularity ratio 0.651
Drainage pattern* -
Min declivity 0%
Max declivity 39.81 %
Mean declivity 5.03 %
Min elevation 721 m
Max elevation 806 m
Mean elevation 765.11 m
Relief ratio 31.516
Roughness index 0.083
Mean slopeof the main stream 0.031
Main stream length 2.697 km
Total stream length 2.697 km
Sinuosity index 1.183
Drainage density 0.987
Watershed order 1st
Maintenance coefficient 1.101

* Drainage pattern cannot be assigned as the basin has only one watercourse
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The percentage found in this study corroborates the results by Amato-Lourenço et al.
(2016) about the urban afforestation of São Paulo city. The authors found that the Pinheiros
region has 28.4% of vegetation cover, considering the trees in the streets and parks. Still, a

Fig. 3 Digital elevation and slope map of the Corujas watershed, São Paulo, Brazil. Source: Geographic and
Cartographic Institute (2018)
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70% waterproofing area can contribute to flooding. As stated by Eshtawi et al. (2016), small
expansions of sealing can considerably increase runoff. In a quantitative analysis of water-
sheds, Walsh et al. (2012) noticed that 5-10% of total impermeability and conventional
drainage systems can increase the frequency and magnitude of the stormwater flow.

3.2 Soil Compaction in Different Permeable Areas

The degree of soil compaction was different according to soil management. In the grass area,
the maximum measurement could be made up to 8 cm, and in the Riparian forest, the
maximum value was reached of 21 cm. The garden was the only area where it was possible
to measure to the end (60 cm) in 7 of the 10 collections. But the discrepancy between the areas
can be observed from the first measured layer (0–9 cm) since the average strength in the
garden was 0.28 MPa, in the riparian forest 0.85 MPa and in the park 1.12 MPa. In the next
layers, the required strength continues to increase as expected (Betzek et al. 2018), but the
vegetable garden continued to have lower values and, consequently, lower soil compaction
rates (Fig. 5).

When the strength averages were analyzed statistically, it was verified that all areas differ
from each other significantly. It is important to highlight that the areas are close to each other,
with soil management being the only variation that can be pointed out among them. In this
case, the soil organic matter index may be a factor for the lower compaction in the community
garden (Jim 2019; Lima et al. 2015; Stock and Downes 2008).

Agroecological practices can improve soil physical characteristics including decompaction,
as shown by Cherubin et al. (2019). The gardeners provide constant fertilization with organic
compost produced locally and apply management techniques of soil cover. This cover consists
of plant residues that provide a natural layer to retain moisture, prevent accentuated sunshine

Fig. 4 Land use map of the Corujas watershed, São Paulo, Brazil
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exposure, and protect from rainfall impacts. According to Silva et al. (2018), soil cover
techniques is effective to promote a decrease in temperature, increase of humidity, and
reduction in compaction rates.

Another feature that favors the community garden is a higher vegetation cover. The roots of
the plants are closely interrelated with porosity (Colombi et al. 2018; Paule-Mercado et al.
2017). As the garden has more vegetation growth than the park, it was expected that its result
would be superior. However, a less compacted soil would be standard from the riparian forest,
precisely because of the root’s depth and volume (Almeida et al. 2018; Xie et al. 2020). In this
case, the higher compaction rate could be explained by the channeling and imperviousness
process. As proven by Jim and Ng (2018), areas around trees planted in urban areas may suffer
from soil compaction and low porosity.

Pereira et al. (2021) demonstrated that average SPR (0–10 cm) in restored forests of
Brazilian Savana range between 0.22 MPa and 0.42 MPa. These values indicate that the first
soil layer of Corujas garden presents an average like a restored forest 46 years ago. On the
other hand, the riparian forest area has a much higher rate. But this resistance varies in different
forest formations. In Atlantic Forest, an average of 0.79 MPa was found (Martinkoski et al.
2017). As the study region is composed of Atlantic Forest, the comparison within this biome
also demonstrates that the SPR in the upper layer of the soil of the riparian forest is high.

3.3 Stormwater Management

Green infrastructures can be described as engineering alternatives to establish spaces for
stormwater management, to benefit the local microclimate and to create leisure spaces
(Chenoweth et al. 2018; Mander et al. 2018). During the fieldwork, structures developed for
the water infiltration were found in the garden. These are pits with a depth of approximately
60 cm, filled by boulders and covered by a cement structure. These structures can help in the
maintenance of soil moisture, and therefore, in its decompaction. In addition, they reduce the
amount of surface runoff by protecting herbaceous species from the garden (Fig. 6).

Fig. 5 Graph of the mean values and standard error of penetration resistance (mPa) up to 60 cm deep of the study
areas: Corujas Garden, Riparian Forest, and Park. Different letters mean significant differences at p < 0.05
according to Tukey Test

1223Urban Gardens and Soil Compaction: a Land Use Alternative for Runoff...



Another system implanted is a rain garden with the use of the biological activity of plants
and microorganisms. This infrastructure can purify the stormwater, increase water infiltration
in the water tables, and reduce the flow (Chaffin et al. 2016). The green drainage systems
decrease flood hazards in urbanized areas (Walsh et al. 2012). The development of solutions to
reduce runoff are crucial in the garden because of the inclination right above the area. To date,
they appear to be helpful for soil conservation.

Soil management, fertilization techniques, vegetation planting, and green infrastructures
generated another benefit: the appearance of diffuse springs. These springs do not appear in
any official letter, and the water is used for irrigation purposes. The flow is stored in water
tanks, which have small aquatic plants and tiny fish to control plagues and organic materials.
Besides, they are responsible for keeping water moving, and thus, prevent the creation of
disease-propagating mosquitoes.

4 Conclusions

The Corujas Watershed is an example of significant anthropic interventions in cities since it
had a great part of its main water body channeled. Consequently, the region suffers from flood
hazards and soil erosion. This situation could be explained by the geometric characteristics,
which indicate a circular tendency and a low time of concentration. The slope of some regions,
including the study area, may also favor environmental disasters. In this context, the mainte-
nance of green areas is fundamental to mitigate the problem and increase soil permeability.

In Corujas watershed, 29.48% of the area did not go through soil sealing. This portion is
divided into parks, individual trees, riparian forest, and a vegetable garden. Since compaction

Fig. 6 Stormwater management in the Corujas garden: (a) Concrete infrastructure for stormwater infiltration; (b)
Rain garden; (c) Water source in the middle of the garden; (d) Water tank used for water storage and irrigation
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reduces the porosity and permeability of the upper layer of the soil, this parameter was
evaluated in these distinct green areas. The results indicated that the grass and the riparian
forest have high compaction, an adverse characteristic. Interventions for better soil manage-
ment such as enrichment planting are valuable both for plant growth maintenance and soil
capacity to water infiltration. On the other hand, the community garden has the lowest rates of
soil compaction. Corujas garden promotes soil conservation practices, such as specific
stormwater management infrastructures. The good practices had an unprecedented effect: the
emergence of new springs that currently are protected by gardeners. Spring rising corroborates
that the soil has good permeability and low rates of compaction. Subsequent studies on the
extent of this potential in other urban watershed and other vegetable gardens need to be carried
out. Still, the present findings are positive indicators that urban gardening can be a strategy for
environmental and water conservation. These spaces can co-exist with other green areas and
optimize water infiltration with green infrastructures, enhancing ecosystem services provision
in cities. These benefits can be added to social and economic reasons for prioritizing the
practice in public policies in Brazil and other densely urbanized regions.
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