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Abstract
An evaluation of the Sacramento Soil Moisture Accounting (SAC-SMA) model was con-
ducted to be used in flood event simulations with datasets at a time step up to one hour. 
The SAC-SMA model is a complex conceptual model which integrates two soil zones, the 
upper and lower zone, in order to provide current soil moisture conditions and generated 
streamflow. However, in flood events, where time intervals are small, the generated flood 
hydrograph is usually the product of only the upper soil layer runoff generation mechanism 
while the lower zone and baseflow have little impact. In this context, a modified version 
of the original SAC-SMA model was introduced, where only the upper zone processes are 
kept in order to reduce the parameter count and the overall model uncertainty involved, 
and a comparison was made against the original model output. The two models were cal-
ibrated and validated for a series of flood events occurred at the Karitaina basin of the 
Alfeios river, located in southern Greece. The results show that both model versions were 
able to reproduce the observed runoff with success. The simplified model showed high 
consistency with the original model in all cases, which is an obvious improvement to the 
original model, since it provided results of equal quality, while lowering significantly the 
total parameter count and the computing time. This contributes against the overall model 
generated uncertainty which is crucial for real-time data processing applications and flood 
forecasting systems.
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1 Introduction

The study of flood events, and specifically of flash flood events, is of crucial importance 
for both hydrologists and engineers. Floods occur when high rain intensity is recorded, in 
conjunction with the basin’s characteristics (Sene 2013). However, these two factors vary 
in time. It is reported that rain intensity has increased as an effect of climate change (Alfi-
eri et al. 2012; Madsen et al. 2014; Caloiero et al. 2017), while the ongoing urbanization 
and land cover change, such as deforestation, have also negatively impacted the basins’ 
flood generation characteristics, thus contributing to flood occurrence overall (Batelis and 
Nalbantis 2014). These effects have led to the result that areas that once did not flood are 
now prone to flooding, especially in the Mediterranean where recent flash floods have not 
only caused economic problems to the affected areas (Pistrika et al. 2014), but have also 
resulted in increased human casualties (Diakakis et al. 2012; Pereira et al. 2017; Feloni 
et al. 2019).

In order to prevent such flood damages, current practice dictates the use of non-struc-
tural measures. Legislation initiatives, such as the European Flood Directive 2007/60, are 
valuable tools for flood management, but the derived estimations can suffer from high 
uncertainty when applied in ungauged or poorly gauged basins, which eventually affect 
decision-making of the proposed flood measures (Yannopoulos et al. 2015). To that end, 
real-time flood warning and prevention systems, such as Early Warning Systems (EWS), 
can be deployed, which allow for real-time detection and forecasting of flood events in an 
adequate lead time. These systems provide with valuable information for proper decision 
making and damage mitigation actions (Alfieri et al. 2012; Cools et al. 2016); however, the 
quality and quantity of this information is mostly depending upon data availability of the 
model used and the overall system framework. Basic systems rely on monitoring current 
weather information, in order to estimate precipitation forecasts and issue warnings based 
on historical weather states that led to flooding. More advanced systems include hydro-
logical modelling in order to estimate current and forecasted discharge values, which then 
allows for the detection of the specific areas within a basin that will probably flood (Chen 
et al. 2013).

The selection of the proper hydrological model is a daring question since there is an 
all increasing number of hydrological models to be used, varying upon the number of 
data they need and the study area characteristics. Process-based models, such as LIS-
FLOOD used in the European flood alert system (Thielen et al. 2009), MIKE-SHE (Iva-
nescu and Drobot 2016) and TOPKAPI (Plate 2007), and data-based models, such as 
feature transfer functions, artificial neural networks (Sušanj et al. 2016) and fuzzy logic 
techniques, are usually fully distributed models, which provide detailed information and 
suit best with weather radar or satellite rainfall data, but tend to require a significant 
amount of data, which is inapplicable in data scarce basins. Conceptual models, such as 
MIKE11/NAM (Singh et  al. 2014), SAC-SMA (Georgakakos 2006; Basha et  al. 2008; 
Wu et  al. 2010) and HBV (Kobold and Brilly 2006) are lighter, less data hungry and 
easier to configure models that work well in lumped or semi-distributed modelling con-
text, but most importantly, in areas where data availability is scarce, such as in ungauged 
basins.

In this study, the deterministic conceptual, Sacramento Soil Moisture Account-
ing (SAC-SMA) model was used. The model was developed by the National Weather 
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Service (NWS), Sacramento, California (Burnash et  al. 1973; Burnash 1995) for use by 
the National Weather Service River Forecast System (NWSRFS), and it mainly focuses 
on the water distribution among the different soil layers and their ability to constrain or 
release water. The model was designed to be a deterministic, lumped based model, model-
ling the daily input of precipitation and potential evapotranspiration values into runoff and 
soil moisture accounting, but it has since been used as semi-distributed model (Boyle et al. 
2001) and as a distributed model (Koren et al. 2004; Smith et al. 2004; Reed et al. 2007) as 
well. Moreover, the wide range of successful applications across different basins (Koutrou-
lis et al. 2013; Posner and Georgakakos 2015; Katsanou and Lambrakis 2017; Uliana et al. 
2019) highlight the versatility of the model and its low limitation regarding data availabil-
ity and different basin characteristics, making it a valid choice for ungauged basins. The 
downside of the model is its large number or parameters, making calibration a complex 
procedure, but significant research has been conducted towards that area (Boyle et al. 2001; 
Ajami et al. 2004; Hogue et al. 2006; Zhang et al. 2011; Wu et al. 2012; Koren et al. 2014). 
Although, the model dates over 50 years and clearly reflects the technology of its time of 
appearance, i.e., the large number of parameters, the model is still well used, especially 
in the United States, mainly due to the NWSRFS adaptation and the gained experience of 
the users. In a recent study evaluating the usage of hydrology models through text mining 
techniques of over 1500 journal related abstracts (Addor and Melsen 2019), it is reported 
that the importance of legacy in model selection, i.e., the preference and experience gained 
on a particular model is usually more important when selecting a model than its adequacy, 
i.e., the use of the most adequate model for a specific research question that depends upon 
data characteristics such as the landscape of the region, and the extend and the temporal 
and spatial scales of the datasets. In the same study, it was reported that the SAC-SMA has 
been used mostly for flood and low-flow modelling for prediction and forecasting applica-
tions, rather than water-resources and drought modelling. Finally, the model is often used 
as a benchmark for testing new models (Nearing et  al. 2016; Daliakopoulos and Tsanis 
2016; Birhanu et al. 2018).

Concerning event-based rainfall-runoff applications, as stated above, the model is used 
by the NWSRFS as a flood forecasting tool, and specifically, as a core element of the 
Flash Flood Guidance system (FFG), a forecasting system of flash floods (Ntelekos et al. 
2006; Georgakakos 2006). In the system, the model is used as a rainfall-runoff model in 
order to provide with current and forecasted soil moisture conditions and correlate them 
with the forecasted rainfall observations and predetermined thresholds to issue warnings. 
The system is well established (Norbiato et al. 2009) and has been also expanded outside 
the USA through the global flash flood guidance initiative (Clark et al. 2014; Putra et al. 
2021).

In this context, the main objective of this study was to shed light into the model func-
tions for event-based simulation with the intent of real time calibration and simulation 
applications. To that end, a simplified version of the model was introduced. The overall 
scope of this study was to simplify the original model by removing model functions, and 
therefore, parameters that do not affect the model performance in event-based rainfall run-
off simulations, but yet contribute negatively into the overall model uncertainty and com-
puting time, mainly due to the extensive number of equations and parameters involved. A 
mountainous basin in Greece was used as the study area, while the analysis was performed 
on a one-hour time interval.
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2  Materials and Methods

2.1  Study Area

The Karitaina Basin is the upper part of the Alfeios river basin located in Southern Greece, 
in the center of the Peloponnesus prefecture (Fig. 1). The basin is surrounded by Mount 
Taygetus in the south, Mount Lykaion on the west and Mount Mainalo on the northeast, 
while its outlet is located in the northwest of the basin, near the Karitaina settlement. The 
basin total area is 892  km2, while the mean, maximum and lowest elevation heights are 
750  m, 1854  m and 288  m, respectively. Within the basin lies the agricultural plane of 
Megalopolis, as well as, the large Megalopolis lignite excavation site, which produces 
nearly 8% of the lignite production of Greece and covers a total of 2.4% of the basin. Based 
on the 2012 CORINE Land Cover (CLC) dataset classification, featured in Table  1, the 
dominant land uses are forest and semi natural areas, 64% of the basin, while 32% of the 
basin, mostly in the lowlands, is covered by high agriculture activity. The most significant 
stream is the Alfeios river, whose source lie in the Mount Taygetus, while the smaller Elis-
sonas stream springs from Mount Mainalo and joins Alfeios near the Megalopoli settle-
ment (Fig. 1). The basin has a nearly symmetric shape, close to an oval shape rather than 
an elongated shape, which has the effect of generating hydrographs with steep rising limb; 
as a result, high peak discharges are often observed.

The discharge at the Karitaina station was calculated from stage measurements. The 
stage measurements (H) were transformed into runoff (Q) by using the following derived 
rating curve:
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The precipitation data used in this analysis were obtained from the National Observa-
tory of Athens Automatic Network (NOANN). The network provides high quality precipi-
tation values for a given time step of 10 min (Lagouvardos et al. 2017). A total of nine rain 
gauge stations, shown in Fig. 1, were used, while the spatial interpolation of the precipita-
tion input was conducted using the Thiessen polygon method. The NOANN network is 
an always expanding station, with the addition of new stations, therefore the actual gage 
weights used for each station were adjusted based on the available rain gauge stations at the 
time of each of the studied event.

2.2  Hydrological Model

The SAC-SMA model is a deterministic, nonlinear, conceptual model that describes with 
analytic linear and nonlinear equations the mechanics of soil moisture transfer between the 
soil layers. The model introduces two concepts: the tension and free water. Within a single 
soil block, tension water is the amount of water that is upheld by the soil particles, while 
free water is the water that remains within the soil mantle but can move freely between 
the soil particles. Runoff is defined as the amount of water that eventually runs out of the 
soil block, due to gravity or saturation. In the SAC-SMA model, this concept is repeated 
in two different soil zones, the upper and lower zone. The upper zone is responsible for the 
estimation of surface runoff, while the lower zone describes the groundwater storage and 
the baseflow generation. The two zones are connected through the percolation equation, 
which controls the water transfer between the upper zone and the lower zone, based on the 
water deficit of each zone and the soil infiltration characteristics. The model features 16 
parameters that control the different stages of the flow generation, six state variables and 
five runoff components, as seen in the flowchart of the model (Fig. 2).

The model was developed for the US river forecasting system, and the time interval 
was originally intended to be daily, or up to 6-h, since it was designed for use in large 
sized basins, while the available datasets and computer power of that time were also lim-
ited. However, the model is capable of accepting any time-scale input, as long as, it has 
been calibrated for that scale because the model parameter values are found to be timescale 

(1)Q = 7.798H1.906

Table 1  Land cover percentages according to Corine 2012

Level 1 classification Level 2 classification Area (%) Sum (%)

Artificial surfaces Urban fabric 0.41 3.67
Industrial, commercial and transport units 0.84
Mine dump and construction sites 2.42

Agricultural areas Arable land 0.94 31.93
Permanent crops 0.48
Pastures 1.88
Heterogeneous agricultural areas 28.63

Forest and seminatural areas Forests 15.72 64.40
Scrub and/or herbaceous vegetation associations 46.29
Open spaces with little or no vegetation 2.39
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sensitive (Finnerty et al. 1997). Table 2 presents the description of each parameter along 
with its suggested value ranges.

2.3  Simplified Model

In flood events and simulations of small basins, where the time intervals are small, it is a 
fact that the impact of the lower zone processes on the observed flood hydrograph is neg-
ligible, and the generated runoff is mainly the product of the upper zone processes, where 
the major part of the precipitation losses and the streamflow, i.e., the total channel flow, 
are calculated in the form of direct, surface and interflow runoff. Specifically, the upper 
tension zone, controlled by parameter UZTWM, is responsible for the initial precipitation 
losses, while the upper free zone, controlled mainly by UZFWM and UZK, is responsible 
for the surface and interflow runoff. An amount of the water stored in the free water tank is 
then percolated to the lower zone, mainly as groundwater storage and observed as runoff in 
the form of baseflow only several days after the rain event ends. Since in flood events the 
baseflow is only a fraction of the generated flow peak, in order to increase the efficiency of 
the SAC-SMA model in these cases, a simplified model was introduced, where these com-
ponents, i.e., the lower zone processes, are removed or replaced (Fig. 3).
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In order to remove the lower zone processes, the percolation process must first be 
changed. By design, the water transfer from the upper zone to the lower zone is related to 
both the upper zone deficit and the lower zone percolation demand. The lower zone perco-
lation demand is calculated through a nonlinear equation involving the lower zone water 
deficit and two model parameters, ZPERC and REXP, which describe the soil infiltration 
characteristics. In the simplified model, we assume that the lower zone demand is constant 
throughout the flood event, described by a new model parameter P

0
(mm/h), and as a result, 

the amount of water transferred into the lower zone is only depending upon the upper 
zone water deficit. By applying this change, the lower zone can be completely removed 
and replaced by a single groundwater tank, mainly for keeping some consistency with the 
original concept, which results in a significant reduction of the model’s total processes, 
since half of model functions are removed, thus making the model lighter and faster to run. 
Moreover, the model parameters are reduced from 16 to only 6, which provides with an 
overall better control over the model generated uncertainty, and also reduces the calibration 
and simulation computing processes.

The two models were reprogrammed using the Matlab software, based upon the original 
FORTRAN computer code (Peck 1976). The shuffled complex evolution (SCE-UA) opti-
mization algorithm (Duan et al. 1992, 1994) was used for the calibration of the parameters, 
and the Nash–Sutcliffe efficiency coefficient (NSE; Nash and Sutcliffe 1970) was used 
as the model performance criterion since it emphasizes the high flows, which is the most 
important characteristic in event based rainfall-runoff simulations, and as a result, it is the 
most widely used measure in hydrology (Gupta et al. 2009; Moussa and Chahinian 2009; 
Pushpalatha et al. 2012).

3  Results and Discussion

A total of six events, which caused extensive flooding within the Karitaina basin, were 
used in this study. The maximum observed discharge and main rain characteristics are pre-
sented in Table 3. The first four events were used for the calibration of the model param-
eters, while the last two for its validation. Since the events occurred during the same time 
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Fig. 3  The simplified SAC-SMA flowchart
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period, being between winter to early spring, the initial conditions were assumed of the 
same magnitude for each event, as a fixed percentage of the estimated water zone capacity. 
The potential evapotranspiration was also set as a low fixed value, since evapotranspiration 
is usually low and negligible in rainfall-runoff events, where cloud conditions are present 
and time intervals are small. Moreover, the process is identical in both models, occurring 
before any runoff generation is calculated, and unless the soils are completely dry it does 
not affect the comparison made. Finally, the model parameters for the validation process 
were taken as the mean values of the parameters calculated by the calibration process.

In Fig. 4, the calibration for both the original and the simplified models for Events 1, 
2, 3 and 4 are presented, while in Fig. 5 the validation simulations for Events 5 and 6. The 
corresponding model parameter values are presented in Table 4, along with and the corre-
sponding calculated NSE value, for each event. The results showed that the SAS-SMA can 
be used for event-based simulations, since the NSE values for the calibration process var-
ied between 0.81 to 0.96, while for the validation process between 0.83 and 0.78, respec-
tively, which shows high correlation between the simulated and observed hydrographs.

First, we addressed the original and simplified model differences on model performance 
in short timescale events. In all occasions, the two models behaved identically, especially 
in the calibration processes, since, as discussed, the main source of runoff generation is the 
upper zone processes which are described almost identically in both model versions. The 
model parameter values between the two models differ slightly as a result of the optimiza-
tion algorithm and the change in the percolation curve equation. A once at a time (OAT) 
sensitivity analysis was performed, where the sensitivity of each parameter was estimated 
by observing the change in the output, i.e., the NSE criterion, when altering the optimal 
value of each parameter in equal percentages and keeping the rest fixed in their optimal 
values. It was found that the most sensitive parameters for both models were the upper zone 
parameters UZTWM, UZK and UZFWM, while the majority of the lower zone parameters 
had a low or no impact upon the generated results, thus justifying the simplification.

Concerning the validation runs, a small deviation of under 6% was observed in the cal-
culated peak discharge between the two models. This difference is probably associated 
with the different model parameter values used in each case, which were calculated from 
the mean values of the calibration events and the related set of initial conditions. The most 
obvious difference is found in the recessing limb. This difference is mainly the result of the 
different starting point, i.e., the peak discharge value, from where the recession is begin-
ning, while no obvious effect of the different percolation process is seen. The results were 
overall satisfactory, and any differences found were small, compared to the benefit in the 
computing speed of the model being up to three times faster with the simplified model 
compared to the original model. However, regarding the absolute computation demands, it 

Table 3  Characteristics of the 
events

Event Date Maximum dis-
charge  (m3/s)

Total rain-
fall (mm)

Total rain-
fall duration 
(h)

1 15-02-2012 194.70 60 91
2 24-01-2014 279.47 82 83
3 01-03-2014 314.75 58 43
4 23-01-2015 187.05 163 241
5 26-02-2015 144.80 43 91
6 05-03-2015 168.92 45 91
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should be noted that model runs by modern computers are usually fast, if not nearly instant, 
as they depend mostly upon the size of the inputs, i.e., the duration of the event and the 
optimization algorithm in the calibration phase. Therefore, in a lumped scheme, as in this 

Fig. 4  Calibration runs of the original and the simplified SAC-SMA

Fig. 5  Validation runs of the original and the simplified SAC-SMA
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research work, the differences in computational demands might be non-worthy. However, 
in a semi-distributed or a fully-distributed scheme, where the number of calculations is 
multiplied based on the number of subbasins or total grids, the differences would be sub-
stantially larger. It is estimated that in the current study area with a total area of 892  km2, 
by applying a 500 m cell size for a distributed model, a total of 3568 cells would have to be 
calibrated and simulated, and thus, the computational time difference could have been over 
one hour.

Concerning the lower zone parameters, in both the original and simplified models, their 
values showed increased variability, which is the result of their negligible impact on the 
overall performance. In order for the optimization algorithm to properly estimate these 
parameters, the calibration period should be extended several days after the event for both 
models. However, this is not usually the case in event-based modelling, where only the 
period of surface runoff generation is important. Therefore, the high uncertainty of these 
values was expected.

Finally, we compared the model performance in contrast with the observed hydrograph. 
As already mentioned, the NSE values showed the high correlation between the simula-
tion and the observed values. We now focus on the form of the rising limb, the peak dis-
charge and the time to peak, since these values are the crucial in any flood forecasting and 
management system. In all events, the rising limb was correctly simulated, concerning the 
starting point of the hydrograph and the overall slope. A small difference is observed in 
the discharge peak, where in the calibration events the simulated peak is lower than the 
observed, while in the validation the opposite is seen. Nevertheless, the difference in most 
cases is under 5%, while in Events 1 and 3 is under 10%. The most obvious difference is 
observed in the time to peak values. In almost all cases, the time to peak value is calculated 
sooner than what is observed, ranging from 2 to 6  h which is noticeable in these basin 
sizes. For a flood forecasting system, the model would be on the safe side, since earlier 
times are considered the worst-case scenario. Furthermore, the model result seems to be 

Table 4  Model parameter values derived from calibration

Parameter Original Simplified

E1 E2 E3 E4 Mean E1 E2 E3 E4 Mean

UZTWM (mm) 49.64 76.77 56.67 81.25 66.08 49.30 80.12 55.78 79.99 66.30
UZFWM (mm) 74.72 114.03 120.83 94.20 100.94 149.31 145.97 105.40 131.27 132.99
UZK  (h−1) 0.32 0.41 0.50 0.34 0.39 0.41 0.37 0.50 0.24 0.38
LZTWM (mm) 498.72 498.95 143.68 499.88 410.31 248.69 214.06 38.31 389.91 222.74
PCTIM 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
ADIMP 0.15 0.13 0.04 0.26 0.15 0.38 0.00 0.06 0.00 0.11
ZPERC 10.75 22.12 39.66 13.15 21.42 – – – – –
REXP 3.14 1.44 2.78 1.54 2.22 – – – – –
LZFSM (mm) 288.81 178.77 138.61 260.35 216.63 – – – – –
LZFPM (mm) 147.12 150.28 120.90 223.86 160.54 – – – – –
LZSK  (h−1) 0.02 0.01 0.01 0.01 0.01 – – – – –
LZPK  (h−1) 0.01 0.02 0.02 0.01 0.01 – – – – –
PFREE 0.11 0.32 0.42 0.14 0.24 – – – – –
Po (mm/h) – – – – – 0.25 0.30 0.31 0.26 0.28
EC (NSE) 0.88 0.86 0.95 0.91 – 0.88 0.86 0.96 0.91 –
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highly correlated with the precipitation datasets, since runoff peaks are found in high cor-
relation with the precipitation datasets, even in the recessing limb, e.g., in Event 6, while 
such behavior is not always found in the observed data. This difference is a result of: first, 
the observed hydrograph derivation method, i.e., the Q-H curve method; and second, the 
actual model application which is taking into account the entire rainfall pattern.

In general, deviations from the observed hydrograph may not be linked to the model 
inability to correctly simulate the observed hydrograph but more likely to the scale of the 
datasets included, such as the spatial detail of the rainfall input. In small time intervals, 
the storm movement within the basin is noticeable, and thus, the time to peak can change, 
depending on the actual direction of the storm. This detail cannot be examined when ana-
lyzing using a lumped model but rather a semi-distributed, or fully distributed approach 
should be favored, since they allow for better estimation of the rainfall field. Finally, it 
should be stated that the application of the simplified model, is suitable in basins where 
the upper zone processes are expected to produce the major part of storm runoff. In cases 
where the lower zone processes and parameters are expected to have a significant impact, 
such as in Karst basin cases (Katsanou and Lambrakis 2017), a calibration–validation anal-
ysis must be first performed, prior to the application of the model, in order to avoid simula-
tion errors and unrealistic parameter values.

4  Conclusions

The SAC-SMA model was used in order to perform rainfall-runoff simulations with a 
fine timescale dataset. The results indicate that model performed well as a rainfall runoff 
model for simulation of short timescale events, as low as one hour, provided that the model 
parameters were calibrated for that timescale. The tension and free water concepts are valid 
and applicable on short timescale data simulations. Specifically, the model, in these cases, 
was highly sensitive to the upper zone parameters UZTWM, UZFWM and UZK, since 
they control the major part of the produced storm runoff. The most sensitive parameter was 
UZTWM, which is the upper zone tension water capacity and controls the initial losses, 
followed by parameter UZK, the percentage of the upper free water content, and UZFWM 
which controls the interflow and surface runoff generation.

In order to improve the efficiency of the model, a simplified version was introduced by 
modifying the original model based on the assumption that lower zone processes do not 
affect the generated flood hydrograph since they occur in different timescales, and thus, 
do not affect the flood hydrograph characteristics. The simplified model was evaluated 
by comparing the produced hydrographs of the original and the simplified models with 
the observed hydrograph for a total of six rainfall events used in model calibration and 
validation. In all cases, the generated hydrographs of the two models were almost identi-
cal, which proved the simplified model accuracy and the assumption made. Moreover, by 
reducing the number of parameters from 16 down to only six, the simplified model showed 
an important improvement against the original model concerning simplicity and computing 
time. Overall the simplified model, was lighter, easier to configure and faster to calibrate 
and run, which is crucial for modern early warning systems that rely on massive real time 
and data ensemble calculations for detailed flood forecasting applications.

Future research should focus on analyzing the performance of the simplified model in 
a semi-distributed and a fully distributed design, since, as stated, the overall model gen-
erated uncertainty due to the large number of parameters to be estimated, as well as the 
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computational demand due to the size of input datasets are substantially larger and the ben-
efit will be more rewarding. Moreover, a global sensitivity analysis in both the original, as 
well as the simplified model should be applied, in order to assess in detail, the sensitivity 
of each parameter and reach conclusions regarding the effectiveness and the performance 
of the simplified model. Finally, a complete flood forecasting system based on the simpli-
fied SAC-SMA model could be evaluated. In such a system, the original model could be 
used to determine the initial conditions in longer time intervals, such as 3 and 6 h, prior to 
the rainfall event, whereas the simplified model could be used during the rainfall event, in 
order to provide with accurate and well spatially and temporally scaled information regard-
ing the current soil moisture conditions and generated runoff estimates for further flood 
forecasting analysis.
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