
ORIGINAL ARTICLE

Future Changes in Water Availability Due to Climate
Change Projections for Huong Basin, Vietnam

Quan V. Dau1 & Kittiwet Kuntiyawichai2 & Adebayo J. Adeloye1

Received: 27 March 2020 /Accepted: 13 October 2020/
# Springer Nature Switzerland AG 2020

Abstract The main aim of this study is to assess the water availability in the Huong River
Basin, Central Vietnam under the impacts of climate and population changes. Regarding
the climate change impacts assessment, two options were adopted to produce fine scale
climate projections over the river basin. First, coarse scale projections of rainfall and
temperature by the HadCM3 General Circulation Model (GCM) were downscaled
statistically using the Statistical Downscaling Model (SDSM). The second approach used
bias-corrected dynamically downscaled output of HadGEM3-RA Regional Climate
Model (RCM). The HEC-HMS hydrologic model was used for simulating the rainfall-
runoff response in association with climate forcing. Finally, water availability was
evaluated using the Water Evaluation and Planning (WEAP) model by taking into
account plausible population changes within the river basin. The results showed that
the future temperature will rise by 0.2 to 3.5 °C and annual rainfall will increase by 1 to
8%. Water shortages in 2080s were non-existent if population projections were ignored,
which is to be expected given the projected increase in rainfall. When projected popula-
tion increases were considered, however, there were unmet urban water demands in
districts that were previously self-sufficient. However, the shortages remain very small
relative to the gross domestic demand that they give no cause for alarm. The big message
here is that the hydrology of the Huong River Basin in Vietnam will cope with the most
severe projected climate to meet its agricultural and domestic water supply obligations
well into the future.

Highlights
• Temperature and rainfall are both projected to rise in the Huong River Basin.
• Simulated water shortage was small for the projected climate.
• Population changes accentuated water scarcity within the Basin.
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1 Introduction

Adequate water and sanitation for all is one of the Sustainable Development Goals (SDGs)
targets that the Vietnamese government is fully committed for national development (MPI
2018). With mean annual rainfall of 1960 mm and 2360 rivers, Vietnam can be considered rich
in surface water resources in terms of runoff capacity to cater for its water supply and other
needs (Nguyen-Tien et al. 2018; Nguyen et al. 2020). The estimated total annual surface water
resources in the country is 840 × 109 m3 (Sagris et al. 2017); however, much of this water
(around 524 × 109 m3) derives from the runoff from the neighboring countries (i.e. 1.2 × 106

km2 area located outside the border of Vietnam (Nong et al. 2020)) and only 316 × 109 m3

comes from the direct rainfall in Vietnam. With the total area of 331,230.8 km2, almost half of
the country (44.5%) is dominated by forest in which the main hydrologic abstractions are
evapotranspiration and infiltration. The United Nation’s FAO showed that groundwater
resources in Vietnam are estimated at 63 × 109 m3 (Sagris et al. 2017), which is much smaller
than the surface water resources, with 50%, 40%, and 10% of storage capacity distributed in
the central, northern, and southern regions, respectively.

Based on the Vietnam Development Report in 2011 (World-Bank 2011), the water
resources utilized for agriculture, domestic, aquaculture and industry in Vietnam were esti-
mated at 82%, 3%, 11% and 5%, respectively. However, due to financial constraints and the
attendant lack of physical infrastructure to harness the vast water resources, uneven distribu-
tion of the monsoon rainfall across the country and the prolonged dry season, Vietnam is
frequently affected by water shortage especially during the dry season (typically from January
to August) when the runoff is only about 15 to 30% of the annual total. Another feature of the
water resources situation in Vietnam is the major disparity in accessing the improved water
supply and hygiene facilities between the urban and rural areas. In 2011, about 73.8% of
households in Vietnam were able to access both improved water sources and sanitation
facilities, whereas, the proportion in the poorest quintile enjoying such facilities was just
35.4% (Tran et al. 2016). This means that about two-third of poor households had no access to
clean water. Irrigation in Vietnam currently consumes almost 82% of the total water produc-
tion withdrawal (Nguyen et al. 2020) and this proportion is likely to grow if the irrigation
potential of approximately 9.4 million hectares is fully developed. Currently, only approxi-
mately 27% of this potential irrigation area is being irrigated.

Climate change is another major threat for sustaining water resources in Vietnam.
Kuntiyawichai et al. (2017) revealed that being situated along coastline areas in the tropical
monsoon belt, Vietnam is considerably influenced by the effects of climate change comprising
of tropical cyclones, floods, droughts, and landslides. Average annual temperature in the South
coast has increased significantly by 0.28 °C in last 10-year (Ngo-Duc 2014), and has been
increasing at a rate of 0.26 ± 0.1 °C per decade since the 1970s (Nguyen et al. 2014).
Meanwhile, another report prepared by the Ministry of Natural Resources and Environment
(MONRE) in 2012 suggested that average temperature in Vietnam has soared high to 1.0 °C in
the last recent years (MONRE 2012). Increasing rainfall and temperature would significantly
change the hydrological system and threaten the livelihoods of people. Therefore, it is essential
to fully assess the water resources situations in Vietnam, particularly for the central region that
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is very prone to severe natural disasters on an annual basis, and hence, likely to be most hit by
extreme weather events associated with projected climate change.

Notwithstanding the importance of this river basin, there are still very limited number of
studies carried out on the impacts of climate change on hydrological regimes and water
allocations in central Vietnam. Most of the recent studies were merely focused on climate
change adaptation or flood risks assessment. For example, Sen et al. (2020) employed a FAO’s
resilience framework to measure households resilience in response to the effects of climate
change. Trinh et al. (2018) combined a binary logit and multivariate probit models to examine
different factors influencing farmers’ decision on climate change adaptation. Recently, various
studies involving numerical modelling/simulation were carried out to understand flood risk
and damages in the central region (Dau et al. 2017; Dau and Kuntiyawichai 2020; Mai and De
Smedt 2017; Nguyen et al. 2013); however, studies assessing sufficiency in water allocation
for the region are still very few. Thus, the need for comprehensive assessment of a region’s
water resources as a precursor to the development of robust adaptation and mitigation
strategies for climate change effects in the central region of Vietnam is necessary.

Indeed, studies on the impact of climate change on water allocation have become very
popular worldwide. Pickard et al. (2017) used Bayesian statistical modeling to compare
domestic water demand for each county within the contiguous United States based on the
four IPCC Supplemental Report on Emission Scenarios (SRES), i.e. A1b, A2, B1, and B2
scenarios. They estimated that water demand will exceed the 2010 levels by about 50% in
2090 for all four scenarios compared, particularly in the States of California, Texas, and
isolated portions of the Mid-West, Southeast, and Mid-Atlantic. Sun et al. (2018) evaluated
agricultural water demand under future climate change in the Loess Plateau of Northern
Shaanxi, China. The results exhibited a downward trend of the irrigation water requirement
under the RCP8.5 (−0.9%), RCP4.5 (−0.77%), and RCP2.6 (−0.3%) scenarios. Kiniouar et al.
(2017) assessed water demands for domestic, industrial and irrigation sectors in the Kébir-
Rhumel Basin, Algeria, for 30 years (2007–2037) using the Water Evaluation And Planning
(WEAP) system with projections of population and irrigated crop lands. They concluded that
reducing the drinking water consumption by a mere 5% could save about 37 × 106 m3 of water
resources over a 30-year period.

With this goal, this study seeks to carry out an assessment of the water availability under
projections of future climate emission scenarios. Climate models under the Coupled Model
Inter-comparison Project – phase 3 (CMIP3) were compared to the CMIP5 for understanding
hydrological response to meteorological forcing. They were downscaled individually using a
statistical downscaling analysis with an attempt to improve biases from models. Water
allocation was then assessed using a coupled hydrologic rainfall-runoff model HEC-HMS
(Hydrologic Engineering Center–Hydrologic Modeling System) and WEAP water allocation
model. The focus was on irrigation and domestic water consumptions, these being the two
main sectors of consumptive water use in Vietnam, and hence, for which it is crucial to
establish the additional impacts of human activities especially in the central region of Vietnam.

A novelty of this study is its comparison between the CMIP3 and CMIP5 models, thus
representing a radical departure from current focus on the use of ensembles of CMIP5 that
does not test how far the climate change science has evolved. Additionally, the application of
bias-correction with double-gamma distribution for high resolution RCM model would be
useful for similar studies in the region and elsewhere. Furthermore, the integrated hedging
policy and rule curves for reservoir operation in the WEAP model provides a proven, robust
operating policy for managing water scarcity for tempering system vulnerability. Lastly, the
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outcomes would serve the MONRE in central region of Vietnam in the effective planning for
water resources allocation locally within the country or elsewhere.

2 Study Area

This research focuses on the Huong River Basin located in Thua Thien Hue Province, Vietnam
at latitude 16 - 17oN and longitude 107 - 108°E (Fig. 1). The basin covers a total area of
2830 km2 with altitudes varying between 150 m and 1850 m above Mean Sea Level (MSL). It
comprises three major reservoirs, namely, Huong Dien, Binh Dien, and Ta Trach, located
respectively on the Bo, Huu Trach, and Ta Trach tributaries.
ed and operated by the MONRE. Of these, the Huong Dien reservoir built in 2009 is the
largest, with a total capacity of 820.66 × 106 m3. Binh Dien reservoir also built in 2009 has a
capacity of 423.68 × 106 m3 and like the Huong Dien reservoir serves flood control, power
generation, irrigation and tourism needs. The Trach reservoir is much newer, coming into
operation at the end of 2014, has a capacity of 420.5 × 106 m3 and serves similar purposes like
the other two. Along the coast, the basin encompasses the largest lagoon in Vietnam, namely,
Tam Giang – Cau Hai with a total surface area of 220 km2 and 68 km in length. Runoff from
upstream discharges into the lagoon through the Thao Long barrage before entering the sea.
The Thao Long barrage has a total length of 480.5 m and contains of 15 sluice gates, each
having a width of 30 m. The population in the study area was about 1.087 × 106 in 2009; this is
expected to increase to 1.287 × 106 in 2034 based on government’s projections (GSO 2017).

As a consequence of the direct effect of the North-Western Pacific Ocean typhoon in the
area, the Huong River Basin is commonly influenced by severe and extreme weather
events (Lindegaard 2018). For example, the area has the highest rainfall in the Central region
of Vietnam, with mean annual rainfall that ranges from 2500 to 3500 mm during the short

Fig. 1 The Huong River Basin in Thua Thien Hue Province, Vietnam
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rainy season that lasts from September to December. During this period, rainfall usually occurs
in short and heavy bursts, causing erosion to the upper parts and flooding at downstream
locations. The remainder of the year is the dry season when little or no rain falls. The mean
annual discharge of the Huong River also varies widely between 0.040 m3/s/km2 in the
lowland coastal area to 0.080 m3/s/km2 in the mountainous areas (UNESCO-IHP 2004).

In terms of temperature, average annual temperature can range from 21 to 26 °C with the
highest recorded temperature of 41.3 °C at Hue station. Average humidity observed during the
period 2002 to 2016 is approximately 87%; the lowest recorded value is 78% (June) and the
highest value is 93% in December.

3 Materials and Methods

3.1 Data Collection

Daily rainfall, maximum and minimum temperatures spanning 1977 to 2014, and streamflow
data from 2009 to 2014 were obtained from the Thua Thien Hue Hydrology and Meteorology
Center (TTHMC). There are eight rainfall stations in the basin (i.e., A Luoi, Binh Dien,
Thuong Nhat, Nam Dong, Hue, Kim Long, Ta Luong, and Phu Oc), and four streamflow
measurement stations (i.e.. Binh Dien, Kim Long, Phu Oc, and Thuong Nhat). Land use and
soil type data were obtained from the Ministry of Natural Resources and Environment
(MONRE 2019). Population census data were obtained from the General Statistics Office
(GSO 2017) and used to estimate the gross domestic water demands. To project the population
data to future time horizons, the approach being used by the Thua Thien Hue Department of
Statistic (DoS) was applied as shown in Eq. (1):

Pt ¼ P2009 1þ rð Þt−2009 ð1Þ

where, Pt is the projected population in year t, P2009 is the population observed in the baseline
year 2009, and r is percentage population growth rate (= 1.15%). The baseline year was taken
as 2009 when two of the reservoirs went into operation.

For climate data projections, the third generation UK Hadley Centre GCM model
(HadCM3) after statistical downscaling and the RCM model HadGEM3-RA with appropriate
bias correction were used. HadCM3 has a coarse spatial resolution with (2.5o × 3.75o), while
the spatial resolution for HadGEM3-RA is much finer at 0.44o × 0.44o. There has been very
limited studies carried out to determine the best climate models for the central region of
Vietnam. Indeed, climate change assessments in Vietnam are still based on the projection
scenarios of the IPCC SRES, i.e., A1F1, B2 and B1, and as approved by the MONRE in
June 2006. It is, therefore, timely that considerations of state-of-art GCM and RCM model
outputs in water resources availability investigations are implemented in the Huong River
Basin. In this regard, both HadCM3 and HadGEM3-RA have been suggested by recent studies
(e.g., Dau et al. 2017; Dau and Kuntiyawichai 2015) as potential candidates for representing
the climate in the basin. In particular, the HadCM3 model is more suitable for Southeast Asia
region where monsoon climate dominates, and this appropriateness can pertain for the central
region of Vietnam as well (Khoi and Hang 2015; Shrestha et al. 2016). On the other hand,
HadGEM3-RA model complies with the protocol of the Coordinated Regional Climate
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Downscaling Experiment (CORDEX), that was also projected specifically for Asia finer
resolutions. Therefore, the two models would be expected to have a strong potential in
representing climate conditions in Vietnam. As a consequence of the abovementioned reasons,
they were selected for this study.

In terms of radiative forcing, emission scenario A2, a very heterogeneous world scenario,
and Representative Concentration Pathway (RCP) 8.5, a scenario of comparatively high
greenhouse gas (GHG) emission, were considered for HadCM3 and HadGEM3-RA models,
respectively. For Vietnam, the growth of population and industry will lead to high concentra-
tion of greenhouse gases (GHGs) at the end of the twenty-first century (Shrestha et al. 2016);
therefore, projection for high emission scenarios would be necessary for this region.

3.2 Statistical Downscaling of GCM Model Output

As alluded to in the foregoing Section, the output of the 2.5o × 3.75o coarse resolution by
HadCM3 is unsuited for meaningful water resources assessment without downscaling. To
downscale the projected climate forced with SRES A2 scenario, the relatively much easier
downscaling approach was used (Khan et al. 2006). This was accomplished using the Statistical
Downscaling Model (SDSM), which is a multiple regression-based approach that relates the
local climate (e.g., temperature, precipitation, humidity, etc.) as predictand to large scale
atmospheric weather variables as predictors. For specifying the appropriate predictor variables
applied for model calibration, the National Center for Environmental Prediction (NCEP)
reanalysis predictors during the period of 1977 to 2001 were selected. The predictors were
analyzed using correlation analysis and partial correlation analysis to represent the potential
utilization of predictor and predictand relationships. Higher correlation values imply a higher
degree of association (Wilby andDawson 2013). Rainfall wasmodeled as a conditional process
because the amount of rainfall depends on wet-day occurrence while the temperature was
modeled as an unconditional process. Full details about the SDSM are provided byWilby et al.
(1999); it essentially involves seven processes, namely quality control, screen variable, trans-
forms variable, calibrate model, weather generator, scenario generator, and results comparison.

Consequently, projections for fixed time horizons in the future, i.e., the 2020s (2016–2040),
2050s (2046–2070) and 2080s (2075–2099), were produced from model output for compar-
ison with the 25-year baseline period (1977–2001). You may note that the period 1977–2001
was selected as a baseline period for this study due to the availability of observations and also
due to the limitation of the NCEP predictor variables between 1960 and 2001.

3.3 Bias Correction Using Quantile Mapping of RCM Outputs

In general, downscaled climate data fromRCM are biased due to limited process understanding and
insufficient spatial resolution. It is therefore essential to post-process these data in order to correct the
bias as much as possible before using the downscaled data for climate impacts assessment
(Christensen et al. 2008). There are several bias correction methods, including delta change
approach, multiple linear regression, analogue method, local intensity scaling, quantile mapping,
etc. In this study, a quantile mapping (QM) method was used because of its many advantages, such
as: (1) its ability to correct over the entire statistical distribution of the downscaled variable; (2) its use
of the double gamma distribution for better representation of extreme events; (3) its use of
distribution fitting which makes possible extrapolation beyond the observed range, which is very
useful when both extreme events and variability are important; and (4) wet/dry state dependent
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temperature correction. Its limitations include that climate signal can be altered; correction incre-
ments are the same as in the current climate; and extreme values are restricted to those in the
observed. For the current study, these limitations are not thought to significantly outweigh advan-
tages; consequently, the QM approach was used.

The QM method assumes that for the downscaled data to be valid, its cumulative distribution
function (CDF) must be the same as that of the observed data. For this reason, the QM method is
often referred to as Distribution-Based Scaling (DBS) (Yang et al. 2010). Thus, to bias-correct,
specific quantiles from the empirical CDF of the downscaled are equated to similar quantiles of the
observed leading to the determination of a quantile function for correcting the bias.

For rainfall, the frequency distribution of the rainfall intensity is assumed to follow the 2-
parameter gamma density function (Yang et al. 2010):

f xð Þ ¼
x
β

� �α−1
exp

−x
β

� �

β Γ xð Þ ; x;α;β > 0 ð2Þ

where, α is the shape variable, β is the scale variable, and Γ(x) is the inverse gamma function.
To ensure that extremes are well modelled, the rainfall distribution can be separated into two
parts, the low and moderate rainfall intensities (<95% non-exceedance probability), and
extreme rainfall intensity (>95% exceedance probability). The resulting distribution is hereaf-
ter referred to as the double gamma distribution with two sets of parameters – α, β (for the low
to moderate intensities) and α95, β95 for the extremes – which were estimated from observation
and the HadGM3-RA outputs during the period 1977 to 2001. Maximum likelihood estimation
(MLE) was preferred for estimating the distribution parameters.

Once parameterized, the DBS correction of the future rainfall projections of the HadGM3-
RA model was obtained using (Yang et al. 2010):

PDBS ¼ F−1 αobs;βobs; F
−1 P*;αRCM ;βRCM

� �� �
PDBS ¼ F−1 αobs;95;βobs;95; F

−1 P*;αRCM ;95;βRCM ;95

� �� �
�

ð3Þ

where subscript obs denotes parameters estimated from observed data, and RCM denotes
parameters estimated from global climate model data, F−1 is the inverse of the gamma
distribution CDF, P∗ is daily rainfall from HadGEM3-RA outputs, 95 is the percentile of
rainfall intensity.

For the temperature, since this is more symmetrically distributed, it was described by the
normal distribution function:

f xð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p exp
− x−μffiffi

2
p

σ

� �2

ð4Þ

where, μ is mean of the daily temperature, σ is standard deviation, and f(x) is the CDF.
The DBS correction for temperature then becomes:

TDBS ¼ F−1 σobs;μobs; F−1 T*;σRCM ;μRCM

� �� � ð5Þ

where, T∗ is daily temperature from HadGEM3-RA outputs, and all other symbols are as
previously defined.
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3.4 Rainfall–Runoff Simulations

Rainfall-runoff modelling to estimate catchment’s response to weather forcing was achieved
using the HEC-HMS developed by the US Army Corps of Engineers. HEC-HMS uses the
input watershed meteorological data and control specifications to calculate hydrographs
throughout the river basin. The HEC-HMS model was selected since it has been extensively
used worldwide, with its capability in analyzing flood frequency, flood warning system
planning, and stream restoration, etc. In addition, the selected model was also recently
suggested by the TTHMC for simulating rainfall-runoff processes in the Huong River Basin
(personal communication, June 2017).

There are four major constituents in HEC-HMS, namely baseflow separation, runoff volume
computation, direct runoff, and flow routing (Feldman 2008). HEC-HMS employs the Soil
Conservation Service-Curve Number (SCS–CN) loss method to estimate the rainfall excess from
rainfall events. The SCS-CN was originally developed for use on small agricultural watersheds but
has been applied to rural, forest and urbanwatersheds (Mishra and Singh 2003). To route the rainfall
excess into runoff hydrograph, the Snyder unit hydrograph method was used (Dau et al. 2017).
Baseflow recession analysis was used to characterize the subsurface flow while the instream
translation or routing of hydrograph was achieved using the Muskingum routing method.

There are three river gauging stations, namely, Phu Oc, Binh Dien and Ta Trach, situated in the
river basin (Fig. 2). In detail, both Binh Dien and Ta Trach stations have only recorded flow
measurement, whereas Phu Oc station has only water level data. Therefore, the daily flowmeasured
at Binh Dien during 2010 to 2011 and 2012 were used for model calibration and validation,
respectively. For Ta Trach station, the observed daily flow during September to October 2014 was
used for calibration, while the period November to December 2014 was used for validation.

3.5 Water Availability Assessment

The water availability assessment was performed using the WEAP model, a water resources
evaluation and planning tool developed by the Stockholm Environment Institute (Sieber and

Fig. 2 HEC-HMS schematic diagram for the Huong River Basin
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Purkey 2011). The model is designed to support water resources planning and management by
representing the water allocations between agricultural, municipal and environment uses, which
usually requires a full integration of supply, demand, water quality, and ecological considerations.
The WEAP model has been used widely for solving various water-related problems (Dau et al.
2018; Faour and Fayad 2014; Momblanch et al. 2019; Tena et al. 2019). Based on its demonstrated
capability, the decision was made to use the WEAP model for this study.

The MABIA (MAitrise des Besoins d’Irrigation en Agriculture) irrigation method based on
the dual Kc method (Allan et al. 1998) was used in WEAP to estimate the actual evapotrans-
piration, and hence, irrigation requirements and its scheduling, crop growth and yields, soil
water dynamics, etc. The Kc is divided into basal crop coefficient (Kcb) and the soil evapo-
ration coefficient (Ke). The Kcb is ratio of the crop evapotranspiration (ETc) to reference
evapotranspiration (ETo), when topsoil is dry that direct evaporation is almost gone but water
is present from the root zones to the crops for transpiration to continue (Allan et al. 1998).
When the soil becomes wetter or close to saturation following rainfall or irrigation, evaporation
dominates the evapotranspiration process and the value of Ke will be increased. In general, the
actual evapotranspiration ETc is estimated by multiplying Kcb, Ke and ETo.

Water availability was then estimated by considering the water balance of inflows taken
from hydrological model (HEC-HMS), crop evapotranspiration, and water demands for both
irrigation and domestic consumptions. The first five districts presented in Table 1 are located in
the downstream part of the river basin and are supplied from the three main reservoirs, while
the remaining four upstream districts rely on direct water abstraction from the river. The water
released by the three reservoirs is governed by their prevailing rule curves as suggested by
MONRE and the dam operators (Fig. 3).

Referring to the WEAP model setup (see Fig. 4 for a schematic diagram), competing
demand sites and catchments, reservoir filling and hydropower generation, and flow require-
ments are allocated water according to demand priorities. In this case, a priority rule is useful in
representing a system of water rights, and helpful during water shortage so that higher
priorities are satisfied as fully as possible before lower priorities are considered (Sieber and
Purkey 2011). In WEAP, the priority index ranges from 1 to 99, with the lower value
indicating higher priority and vice versa. For example, if a reservoir filling has low priority
(99), then it will only fill if water remains after serving all other higher priority demands.
Meanwhile, if priorities are the same, shortage will be equally shared between all the demands.

Table 1 Irrigation and domestic water demand for the Huong River Basin

District Irrigation water
demand (×106 m3)

Domestic water demand (×106 m3)

Baseline With the projected
population in 2080s

Hue 26.54 26.56 55.85
Quang Dien 102.90 0.40 0.85
Phong Dien 202.04 0.25 0.52
Phu Vang 189.77 1.68 3.53
Huong Tra 115.20 6.16 12.94
Aluoi 86.72 0.27 0.58
Huong Thuy 78.27 5.07 10.66
Nam Dong 23.02 0.14 0.30
Phu Loc 162.51 0.39 0.83
Total 987 41 86
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3.6 Criteria for Model Performance

Three common statistical indices were evaluated to assess the goodness-of-fit for model
simulations. These are the Nash-Sutcliffe coefficient (Na), the coefficient of determination
(R2), and root mean square error (RMSE), as presented in Eqs. (6), (7), and (8), respectively.
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Fig. 3 Reservoir rule curves at (a) Binh Dien, (b) Ta trach, and (c) Huong Dien, whereMax is reservoir capacity,
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Fig. 4 WEAP schematic diagram for the Huong River Basin
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2

ð8Þ

where, X is observed data; X is mean of observed data; Y is simulated data; Y is mean of
simulated data; n is total number of data. Indices Na and R2 were used for the assessment of the
climate projections while all three indices were used rainfall-runoff modelling assessment.

4 Results and Discussions

4.1 Climate Change Assessment under GCM Model with Statistical Downscaling

The outcomes of the statistically downscaled climate are summarized in Fig. 5a, b for rainfall
and Fig. 5c, d for temperature. These demonstrate that the mean monthly rainfall and
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Fig. 5 The results of calibration (a, c) and validation (b, d) for mean monthly rainfall and maximum temperature
at Hue station using SDSM model
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temperature for the observed and modelled data are in good agreement, both during calibration
and validation. The relevant statistical indices evaluated for Hue station lend further support to
the good performance evidence, with the R2 value varying from 0.88 to 0.99, and RMSE value
ranging between 3.72 and 0.05 for both monthly rainfall and temperature variables.

With the downscaling model shown to be satisfactory for the baseline, the model was
applied to similarly downscale the future climate projections. Figure 6a shows the projected
changes in mean monthly rainfall, from where it is clear that these will increase throughout the
year except during the rainy season (August – October) when slight deceases in rainfall are
projected. What is also clear from Fig. 6 is that the increased wetness will be sustained well
into the end of the Century. Indeed, by 2080s, rainfall increase of up to 8% is likely in
February–March, with more modest but still significant increases in the other dry season
months. These projected rises in dry season rainfall are a welcome development as they signify
improved water security in the basin. The temperature projections shown in Fig. 6b are
signifying changes of −2.5 to +2.5 °C depending on the time of the year. The temperature
reductions occur during January, May and June, with January recording the highest decline.
Rises in temperature projected for the other months are a sink of water by causing evapo-
transpiration and other consumptive demands for water to increase. It is therefore a threat to
future water security but whether or not these effects are sufficient to annul the effects of the
increased rainfall-runoff will become clearer when the water availability situation is evaluated
with the WEAP model. Nonetheless, the above observations agree with other independent
studies. For example, MONRE (2012) and Schmidt-Thome et al. (2015) found that rainfall at
the end of the twenty-first century in the Huong River Basin will increase by 2 to 10% and
temperature will also increase by 2.5 to 3.7 °C.

4.2 Climate Change under RCM Model with DBS Bias Correction

The DBS was calibrated using the 1997 to 2001 data and validated using the 2002 to 2005
data. The empirical cumulative distribution functions (CDFs) for the raw and bias-corrected
output of the RCM during calibration and validation are compared with that of the historical
climate data in Fig. 7 from which it is clear that the DBS bias correction approach has been
very effective in reducing the huge bias associated with the raw RCM output. This observed
good performance was well supported by the evaluated performance indices with the R2

ranging from 0.76 to 0.95, and Na varying from 0.69 to 0.95 for both rainfall and temperature
projections.
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Once the bias-correction has been performed satisfactorily for the historical period, the
projection for future climate was done accordingly. However, rather than using the A2-CMIP3
emissions scenario, the high GHG emission scenario RCP8.5-CMIP5 was used. Figure 8a
shows that the rainfall is likely to increase during the dry season from January to May similarly
to the A2 scenario, with the highest increase of 10% occurring in February. As also was the
case with the A2, the rainy season is drier with RCP8.5 much drier with up to 5% reduction in
average August rainfall compared to the baseline situation. Although different baseline periods
were used here (1977 to 2001) compared to the shorter period used for the A2-CMIP3 analysis
(1977 to 1990), which could have affected the obtained changes, it is also possible that
differences in grid resolutions of the climate models can result in differences in model outputs.
The temperature changes shown in Fig. 8b exhibit a similar pattern to that of the A2 scenario
although as was the case with rainfall, the obtained changes were slightly different.

To reveal further the differences in the magnitude of the projected changes (as opposed to
the trends) by the two approaches, Fig. 9 compares the average annual projected changes in

Fig. 7 Cumulative distribution function (CDF) of daily rainfall and temperature for (a, c) calibration and (b, d)
validation using QM approach at Hue station
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both the precipitation and temperature. As shown in the figure, both approaches are projecting
increasing annual rainfall in the future, which rises by about 8% at the end of the Century when
compared with the baseline. What is also noticeable in Fig. 9 is that the A2-CMIP3 scenario
has projected higher annual rainfall increase than the RCP8.5-CMIP5 scenario. A recent study
conducted by Onyutha et al. (2016) for Lake Victoria in Africa showed that projection changes
in the rainfall extremes from the RCP8.5-CMIP5 were lower than those of the A2-CMIP3.
Similarly for the lower emission scenarios, Mirgol and Nazari (2018) also found that rainfall in
the Qazvin Province, Iran under projection of RCP2.6-CMIP5 was lower than B2-CMIP5.
Thus, although the seasonal trends in the rainfall changes were similar, the significantly lower
precipitation during the rainy season for the RCP8.5 has resulted in its annual total rainfall
change being lower than that of the A2 scenario.

Furthermore, the spatial distribution of the projected climate is shown in Fig. 10, where the
higher temperatures are towards the eastern part of the basin whereas the wetter areas are
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confined in the central part of the basin. The spatial patterns of the temperature and rainfall for
RCP8.5-CMIP5 bear resemblance to those observed for the A2-CMIP3 scenario.

4.3 Evaluation of the Hydrological Model HEC-HMS

The performance of the hydrological model is shown in Fig. 11, where the observed and
simulated hydrographs are compared for both the calibration and validation periods. Focusing
on the HEC-HMS model, initial values of the model parameters were taken from recent studies
in the basin (Mai and De Smedt 2017; Nguyen et al. 2013) and were adjusted manually during
the calibration process to produce good fits with the observed streamflow. These include the
Curve Number (CN) varying from 60 to 75, lag time (tp) ranging from 7 to 10 h, baseflow (Q0)
fluctuating between 15 and 30 m3/s, and Muskingum variables (K ranging from 1 to 4 h and x
equal to 0.25). Statistical indices as presented previously were used to evaluate the perfor-
mance of the HEC-HMS in simulating flows and hence the best estimates of the parameters.
The results indicated a good model performance for the rainfall-runoff process along the
Huong River Basin. In addition, the goodness-of-fit indices obtained during the calibration and
validation are at: Phu Oc station (R2 = 0.85 and 0.86, respectively, Na = 0.78 and 0.84,
respectively); Binh Dien station (R2 = 0.84 and 0.85, respectively, Na = 0.77 and
0.83, respectively); and Ta Trach station (R2 = 0.91 and 0.94, respectively, Na = 0.89
and 0.91, respectively). In comparison to the calibration results of other studies (Abdo
et al. 2009; Mai and De Smedt 2017; Nguyen et al. 2013), it can be stated that HEC-
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HMS is satisfactorily suited for hydrological simulations in order to understand the
runoff response due to rainfall in the study area.

4.4 Climate Change Impacts on Runoff

With the HEC-HMS satisfactorily calibrated and validated, the model was forced with the
climate-change perturbed rainfall and temperature data to derive the catchment response. The
end-of-Century responses are summarized in Fig. 12 which compares the mean monthly runoff
for the climate change situations with the baseline hydrology. In general, the trend in the
projected runoff agrees with the trend in the projected rainfall. Thus, the runoff during dry
period (January – May) was generally higher than the baseline runoff because the rainfall
behaved similarly. This increment has been previously noted by Dau and Kuntiyawichai
(2020) indicating that mean annual rainfall for the dry period will increase by about 5 to
15%, 5 to 20%, and 5 to 25% at the Ta Trach, Huong Dien, and Binh Dien reservoirs,
respectively. The rainfall was projected to decrease during June to September by both CMIP3
and CMIP5 projections and this decrease is translated to lower runoff during these months.
The significant rise in the runoff from October onwards is a direct consequence of the
projected rainfall increase and the relatively lower temperature rises, which would have also
lowered the evapotranspiration in the basin.

The runoff situation shown in Fig. 12 exhibits distinct seasonality which at first sight might
connote potential water security issues in the basin. However, in terms of surface water
availability, the runoff has not changed much (Mean Annual Runoff difference is 10% and
5% for RCM and GCM, respectively). Dau et al. (2017) suggested future runoff in the Huong
Basin will increase by more than 10% under RCP8.5 scenario using the HadGEM3-AO
climate model. The seasonality of the runoff is what can be tempered by reservoirs, and the
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three reservoirs in the basin, if effectively operated, will smoothen out this seasonality in river
flow and thus temper any potential water shortages in the basin.

4.5 Determination of Water Availability Using WEAP Model

The WEAP model forced with the simulated weather and runoff data was used to evaluate
water demand conditions for each district in the Huong River Basin. Both irrigation and
domestic water needs (Table 1) were considered for each district, with a prioritization given to
irrigation as mentioned earlier in the priority rule. This means that in each time period, effort
will first be made to meet the irrigation water demands and only the remainder, if any, is
allocated to domestic water supply.

In general, effort is made to keep the reservoir state between the upper and lower rule
curves when the full demand can be met. If the reservoir storage falls below the lower rule
curve, hedging or deliberate water rationing kicks in. The hedging factor used is 0.8. WEAP
allows this hedging factor to be applied to only the starting storage volume without considering
the (unknown) inflow during the ensuing period. The WEAP simulation carried out in this
study also adopted this approach. The three reservoirs are essentially parallel and to enhance
their combined yield, total desired water (or demand) was apportioned to each reservoir based
on its available storage space at the start of the period and the anticipated inflow, i.e., the Space
Rule (Bower et al. 1962). A similar approach was described recently by Adeloye and Dau
(2019) and Adeloye et al. (2019) in the Beas-Sutlej Basin, India, although rather than apply the
hedging factor to the water in storage, they applied it directly to the demand.

The outcome of the water availability simulations for the end-of-Century is summarized in
Table 2. The results in Table 2 do not include urban population projections, a case that will be
discussed in the next section. As expected, most all the downstream districts using water from
the reservoirs did not experience water shortages under the GCM or RCM climate projections.
The increased runoff that would result from the projected future climate by both climate
models, coupled with the integrated operation of the three reservoirs for meeting the down-
stream demands as argued previously, have ensured the perfect performance of the reservoirs.
There were, however, water shortages at the upstream districts that rely solely on direct river
abstraction. For example, there was a total shortage of 50 × 106 m3 with the GCM climate
projections in the 2080s, whilst the corresponding shortage for the RCM was 40 × 106 m3.

Table 2 Irrigation and domestic water shortages under projected RCP8.5 and A2 in 2080s

District RCM and RCP8.5 GCM and A2

Irrigation
(×106 m3)

Domestic
(×106 m3)

Total
(×106 m3)

Irrigation
(×106 m3)

Domestic
(×106 m3)

Total
(×106 m3)

Hue – – – – – –
Quang Dien – – – – – –
Phong Dien – – – – – –
Phu Vang – – – – – –
Huong Tra – – – – – –
Aluoi – – – – – –
Huong Thuy – – – – – –
Nam Dong 5.40 0.039 5.44 6.90 0.042 6.94
Phu Loc 34.20 0.107 34.41 43.40 0.117 43.52
Total 40 50
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However, compared to the gross demand, these shortages represent a mere 27% and 21%,
respectively, and as argued by Adeloye et al. (2017) and Fiering (1982), there is nothing to
worry about because consumers should easily adapt.

4.6 Water Availability Simulation under Socio-Economic (Population) Scenarios

According to the DoS, the population in Thua Thien Hue Province will continuously increase
in the future as expressed by Eq. (1). The population is estimated to be about 1.23 × 106 in
2020, with the majority (65%) being urban residents. The projected population for the district
in the future is shown in Table 3, which has been split into urban and rural based on the current
ratio. In accordance with Vietnamese Construction Standards 33:2006/BXD, the per capita
water demand of 200 L/day must be met with at least 95% reliability while the rural population
per capita demand of 100 L/day only carries a reliability of at most 90%. This gives a total
water consumption of 86 × 106 m3/year for the whole province at the end Century (Table 1).

The projected future populations, the associated demand as well the simulated water
shortages by WEAP are summarized in Table 4 (see also Fig. 13). As seen in the Table,
Nam Dong, Phu Loc and Huong Thuy districts that were previously self-sufficient are now
experiencing water shortages due to the projected increase in their resident population.
However, as was the case earlier when the gross (agricultural and domestic) demand was
analyzed, the total shortage due to population expansion is modest and should be adaptable.

Table 3 Projected population for urban and rural areas in the mid- and end-century

District Baseline Mid Century End Century

Urban Rural Urban Rural Urban Rural

Hue 302,983 32,592 484,194 32,592 857,658 57,731
Quang Dien 9734 73,077 15,556 73,077 27,554 129,442
Phong Dien 6015 82,075 9613 82,075 17,027 145,380
Phu Vang 20,671 149,709 33,034 149,709 58,514 265,181
Huong Tra 7641 107,392 12,211 107,392 21,629 190,224
A Luoi 3272 19,294 5229 19,294 9262 34,176
Huong Thuy 13,497 82,625 21,569 82,625 38,206 146,354
Nam Dong 6303 36,218 10,073 36,218 17,842 64,153
Phu Loc 20,996 113,326 33,554 113,326 59,434 200,735
Total 391,112 696,308 625,032 696,308 1,107,126 1,233,377

1,087,420 1,321,340 2,340,502

Table 4 Domestic water shortage under projected population in the end-Century

District Domestic water shortage (×106 m3)

Without population Within population

RCP 8.5 A2 RCP 8.5 A2

Huong Thuy – – 0.1167 0.1167
Nam Dong 0.0386 0.0421 0.0813 0.0813
Phu Loc 0.1073 0.1171 0.2260 0.2260
Other districts - (No shortage)
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5 Conclusions

A water availability assessment under climate change impacts was carried out over the
Huong River Basin. Climate outputs from GCM and RCM models were used as the
forcing inputs for the HEC-HMS hydrological model to develop the runoff response
of the basin to the different meteorological forcing scenarios. The result suggests that
the basin is currently self-sufficient in water resources for its agricultural and domestic
needs. When future projections of climate alone were incorporated, shortages were
observed notably in the upper part of the basin that are not served by reservoirs while
the downstream areas that are served by reservoirs (which help to smoothen the
seasonality of the runoff) experienced no water shortages. However, when viewed in
the context of the gross water demand, the total shortage was inconsequential as it
can easily be adapted to. When population increases were incorporated, districts that
were self-sufficient in domestic supply experience water shortages but as usual, these
shortages were infinitesimal when compared to the gross domestic demand. This is
good news for this basin in Vietnam because on the evidence of this research, there is
sufficient water to cope even with most severe (and extreme) climate in the future.

The application of the statistical downscaling method presented in this study would
be useful for further studies on climate studies, particularly in Southeast Asia.
Nevertheless, there are some limitations emerging during this study, which need to
be kept in mind, i.e.:

& the exclusion of groundwater resources from the study, although, as noted previously in
the introduction, groundwater resources in Vietnam are not as many as surface water
resources;

& the application of only one single scenario for each CMIP which could lead to a high
uncertainty in projection, whereas the use of multi-model ensemble forced with different
scenarios would enhance the reliability of the project future climate patterns;

& the insufficient observed data for model calibration and validation.

The above notwithstanding, however, that the conceptual framework developed for this study
can be used as a template for other applications elsewhere around the world in managing water
resources systems.
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