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Abstract
Raw palm oil mill effluent (POME) is classified as a highly polluting effluent, which
needs to be treated to an acceptable level before being discharged into water bodies.
Currently, chemical coagulants are widely used in treating POME, but their hazardous
nature has caused several health and environmental problems. Therefore, this research
presents the use of natural materials such fenugreek and okra as bio-coagulants and bio-
flocculants, respectively, for the treatment of POME. Artificial neural network (ANN)
modelling technique was used for the estimation of predicted results of the coagulation-
flocculation process. The responses of the process were the percentage removal of total
suspended solid (TSS), turbidity (TUR) and chemical oxygen demand (COD), while the
inputs were fenugreek dosages, okra dosages, pH and mixing speed. The ANN model
was developed using 12 different training algorithms. Scaled conjugate algorithm (SCG)
proved to be the best training algorithm with lowest mean-squared error (MSE), mean
absolute error (MAE), mean absolute percentage error (MAPE) values for all the three
outputs. The MSE, MAE and MAPE values were: 16.64, 2.10, 0.03 for the TSS response;
5.05, 1.03, 0.01 for the TUR response; and 54.59, 3.82, 0.07 for the COD response,
respectively. The ANN model with a regression R of 0.8629 proved to be the best for the
prediction of all the responses in this study. The results proved that ANN can be applied
to predict TSS, TUR and COD of POME.
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1 Introduction

Palm oil mill effluent (POME) is a liquid waste with an unpleasant odour, acidic properties,
and high oxygen demand. These characteristics make it a highly polluting wastewater, hence
cannot be directly released into water bodies (Sethu et al. 2019). The general characteristics of
raw POME are given in Table 1. The values were obtained from a local palm oil mill. There
are several methods used to treat POME, and the most popular one is the ponding method, via
anaerobic, aerobic and facultative treatment ponds. Though efficient, this process takes a very
long time, up to about 6 months to treat and release or reuse the water. Besides that, this
treatment method is not very attractive these days as greenhouse gases are emitted directly into
the environment (Yacob et al. 2006). Thus, a much faster and more efficient method that is
economically and environmentally friendly is required. One such method, which is becoming
popular these days, is coagulation and flocculation with natural materials.

Coagulation and flocculation are widely used in treating wastewater and these coagulants
can be either organic or inorganic in form. Ab Kadir et al. (2004) concluded that chemical
coagulants are the fastest way to treat POME, and proper selection of coagulant and its
optimum dosage succeed in reducing about 60% of BOD and COD content along with 90%
of suspended solids content. Aluminium sulphate (alum) is widely used as coagulant in
wastewater treatment. However, recent studies reported that using alum generates voluminous
sludge and it is linked with health-related issues such as Alzheimer’s disease and senile
dementia (Ugwu et al. 2017). Therefore, natural coagulants are sought by researchers as a
viable alternative in overcoming the drawbacks of using coagulants.

The application of natural coagulants in wastewater treatment has been extensively studied
since natural coagulants produce promising results (Yin 2010; Asad et al. 2020). The advan-
tages of using natural coagulants are that they are eco-friendly, cost-effective, generate a
minimal amount of sludge and have a higher nutritional value which could be used as
fertilizers and as an energy source (Sethu et al. 2019). Bhatia et al. (2007) reported that 99%
removal of suspended solid in POME treatment was achieved using Moringa oleifera seeds
extract as coagulant at optimum pH 5, settling time 114 min, 3469 mg/L ofM. oleifera dosage
and 6736 mg/L of flocculant dosage. Freitas et al. (2015) reported that the addition of okra
mucilage as coagulant into textile wastewater treatment was able to increase the COD removal
by 35.74% and reduce the chemical coagulant dosage by 72.5%. Chung et al. (2018) reported
that when peanut coagulant and okra flocculant were used to treat POME, the highest observed
removal efficiencies of TUR, TSS and COD were 92.5%, 86.6% and 34.8%, respectively. The
optimum pH, and coagulant and flocculant dosages were pH 11.6, and 1000.1 mg/L and 135.5
mg/L, respectively. They also reported that for wheat germ coagulant and okra flocculant the
removal efficiencies were 86.6%, 87.5% and 43.6% for TUR, TSS and COD, respectively. The
optimum parameters were pH 12, coagulant dosage 1170.5 mg/L and flocculant dosage 100
mg/L. Choong et al. (2018) utilised chickpea as the natural coagulant and flocculant for the

Table 1 Characteristics of raw POME

Parameter Unit Range Average value

Turbidity (TUR) NTU 7,700–13,700 10,700
Total suspended solid (TSS) mg/L 7,600–13,300 10,450
Chemical oxygen demand (COD) mg/L 23,100–34,400 40,300
pH - 4.4–5.0 4.7
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treatment of POME. They reported that the optimum condition was established at pH of 6.69,
chickpea dosage of 2.6 g/L, and rapid mixing speed of 140 rpm. At the optimum condition, the
removal percentages of TUR, COD and TSS were 86%, 56% and 87%, respectively. Thus,
from all the above studies, it is clear that natural coagulants perform far superior than their
chemical counterparts, hence, the need of the current research. The present work was carried
out to test the efficacy of a natural and abundantly available bio-coagulant (fenugreek), and a
natural bio-flocculant (okra mucilage), to be used for the treatment of POME. Results obtained
were modelled with artificial neural networks (ANN).

Artificial neural network is a simulation technique used for predicting responses of input data and
identify relationships between input and output data. Several researchers have utilized ANN for
modelling various non-linear systems. Ahmad Tajuddin et al. (2015) developed an ANN model to
predict the percent removals of COD, TSS and TDS through five input variables, namely flocculant
dosage, fenugreek dosage, rapid mixing speed, rapid mixing time and pH. Selvanathan et al. (2017)
usedANNmodelling for the investigation of biochar derived from rambutan peel via slow pyrolysis
as potential adsorbent for the removal of copper ion Cu (II) from aqueous Haghiri et al. (2018) used
ANN to determine the optimum coagulant dosage for water treatment process by developing two
models, i.e., the first to predict the water quality parameter, and the second to predict the optimal
coagulant dosage. In a separate study, a multilayer feed-forward neural network (FANN)model was
trained with an error back-propagation algorithm to predict char yield from reaction time and
temperature input (Arumugasamy and Selvarajoo 2015). Selvarajoo et al. (2019) focused on
modelling the weight loss due to the effect of temperature and time of banana peels during pyrolysis
thermal degradation. An ANN model was developed based on single layer hidden neurons. The
model was trained based on the backpropagation technique using the Levenberg–Marquardt (LM)
optimization algorithm.

Pakalapati et al. (2019a) used ANN for the prediction of polycaprolactone (PCL polymer)
conversion. They used five training algorithms of ANN to carry out the modelling. Among the
five, LM proved to be the most appropriate training algorithm. Pakalapati et al. (2019b)
utilized ANN to predict the biopolymer (PCL) polydispersity index from the enzymatic
polymerization process with four different training algorithms, out of which, the LM training
algorithm proved to be most suitable for their work. Wong et al. (2018) modelled the
enzymatic polymerization of e-caprolactone using 11 training algorithms of ANN, and
found LM to be the best algorithm. Pilkington et al. (2014) used ANN to predict the percentage
recovery of artemisinin through the extraction of A. annua. They used extraction temperature,
duration and solvent (petroleum ether) as inputs and leaf proportions on the recovery of
artemisinin from leaf steeped in solvent as output. In the work of Karri and Sahu (2018), a
low-cost adsorbent produced from palm oil kernel shell based agricultural waste was examined
for its efficiency to remove Zn(II) ions from the aqueous effluent. They made use of ANN for
the study of optimal values of independent process variables to achieve maximum removal
efficiency. The inputs to the ANN model were the factors (initial solution concentration, pH,
adsorbent dosage, residence time and process temperature) and the percentage removal of
Zn(II) ions was chosen as a response. They had the metaheuristic differential evolution
optimization strategy embedded into the ANN architecture which results in a hybrid of both
methods (termed as ANN-DE). Yogeswari et al. (2019) made use of ANN for the estimation of
hydrogen production from confectionery wastewater. Their input parameters were time,
influent COD, effluent pH and volatile fatty acids (VFA). They concluded that maximum
COD removal efficiency of 99% and hydrogen production rate of 6570 mL/d was achieved at
7.00 kg COD/m3d and 24 h of hydraulic retention time.
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In this research, ANN has been used to evaluate and predict the TSS, TUR and COD
removal efficiency of the coagulation-flocculation process using fenugreek-okra in treating
POME. The objective of this research paper was to determine the performance comparison for
the coagulation-flocculant process in efficiency removal of TSS, TUR and COD under 4
operating conditions, namely fenugreek dosage, okra dosage, pH and mixing speed. ANN
models of the coagulation-flocculation process were developed using Matlab™. ANN was
used to predict TSS, TUR and COD results through regression value (R), mean squared error
(MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). The novelty
of this research is in terms of modelling, where 12 training algorithms of ANN have been used
instead of only using LM training algorithms which is the most popular training algorithm and
usually found in most of the literature. This comparison of training algorithms provides the
conclusion of the most suitable training algorithm for the obtained data.

2 Materials and Methods

2.1 Preparation of Samples

2.1.1 POME Sample

POME sampleswere obtained from Jugra PalmOil, Banting, Selangor,Malaysia. The sampleswere
collected at a temperature range of 70˚C to 80˚C from the first anaerobic pond. The samples were
cooled down to room temperature and stored in an airtight container, away from sunlight to avoid
decomposition due to microbial reaction. The characteristics of the POME are given in Table 1.

2.1.2 Fenugreek Coagulant

Fenugreek was purchased from a local supermarket in Semenyih, Malaysia. The fenugreek
was dried in an oven (Memmert GmbH) at 60˚C for 24 h. The dried fenugreek was ground into
fine powder using a domestic blender. The fine powder was sieved to a size range of 200 µm to
500 µm through a sieve shaker and was stored in a sealed beaker and kept in a dry place. The
fenugreek stock solution was prepared by dissolving 10 g of fenugreek powder in 500 ml of
distilled water.

2.1.3 Okra Flocculant

Fresh okra was bought from a local supermarket in Semenyih, Malaysia. The okra was washed
to remove impurities before it was cut into small pieces. The pieces were then immersed in a
container filled with distilled water for 12 h to extract the mucilage. The mucilage was
squeezed using a muslin cloth and stored in an airtight beaker and kept in a cool and dry place.

2.2 Jar Test Experiments

Jar test experiments were performed in batches of six, using the Lovibond flocculator. The
POME samples were homogenized by inverting the plastic container several times before it
was poured into the beaker. Each jar test was carried out using 500 mL of POME and initial
readings, namely pH, TSS, TUR and COD were measured for each jar test. The jar test was
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conducted by following the combination of the four manipulating variables that have been
generated by the Design Expert™ software. Each manipulating variable, namely pH, mixing
speed, fenugreek, and okra dosage were adjusted for each jar test as shown in Table 2.

The pH value of the POME sample was altered to the desired pH value within the range 3 to
8 by adding either 0.1 M of sodium hydroxide (NaOH) or 0.1 M of sulphuric acid (H2SO4).
The coagulation and flocculation process were carried out by adding the fenugreek coagulants
at the beginning, at dosages from 4 to 8 g/L, with rapid mixing for 2 min. The mixing speed
values used were based on the ones given in Table 2. After rapid mixing, the okra flocculants
were added with dosages between 20 and 100 mL, and slow mixing was carried out at 60 rpm
for 30 min. The rapid agitation favours mixing of reagents and destabilization of particles,
while the slow agitation was for stimulating collision of particles to promote agglomeration of
particles. The POME samples were then allowed to settle for 4 h.

2.3 Experimental Analyses

TSS was measured using the Hach DR 3900 spectrophotometer, and turbidity was measured
using the Martini Mi415 turbidity meter. As for COD, 2 mL of the treated POME samples
were mixed with high-range Hach COD vials separately and the samples were digested at 150
oC for 2 h. After that it was cooled to room temperature and the COD reading was taken using
the Hach DR 3900 spectrophotometer. Each experiment was carried out in triplicates to
increase accuracy. Values obtained were averaged and reported. The removal efficiencies of
TSS, turbidity and COD were calculated using Eq. (1):

Table 2 Experiment data generated by Design Expert™

Run Fenugreek dosage-FD
(g/L)

Okra dosage-OD
(mL/500 mL POME)

pH Mixing speed-MX
(rpm)

1 5.4 48.8 8 168
2 4 68 5 180
3 4 26.4 6 150
4 6.4 68 5 150
5 5.4 48.8 8 168
6 8 44 8 200
7 5.4 48.8 8 168
8 5.2 100 8 200
9 8 100 3 155
10 8 34 3 200
11 4 20 8 200
12 6.4 68 5 150
13 4.6 99 3 200
14 6.42 20 5 180
15 8 20 8 150
16 4 100 8 150
17 5 100 3 163
18 6.42 20 5 180
19 4 20 3 150
20 8 41.2 3 165
21 8 100 8 200
22 8 100 4 200
23 4 68 5 180
24 5 40 3 200
25 8 100 8 200
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Removal efficiency %ð Þ ¼ Final reading − Inital reading
Inital reading

100 ð1Þ

Zeta potential analysis was conducted on the fenugreek solution and raw POME using the
Malvern Zetasizer. Its main aim was to measure the magnitude of the electrostatic charges of
particles, which is vital to explain the attractive or repulsion forces that exist between particles
during POME treatment.

2.4 Modelling with ANN

An artificial neural network (ANN) is a computational model inspired by the concept of
human brain consisted of units called neuron. In the present study, modelling was carried out
using MATLAB 2016a software. Generally, a neural network consists of 3 layers namely
input, hidden and output layers. Each layer is connected through neurons via weight matrices.
Figure 1 shows a single layer network where an input vector P is connected to neuron input
through weight w that is usually associated with vectors and nodes. The input is multiplied by
weight to form a product wp. The sum of weighted input and bias b form a transfer function of
net input which determines the activation of neurons, and finally, forming an output after
processing the transfer function f. Activation function or transfer function usually used is the
sigmoid, which is logistic sigmoid (logsig) and hyperbolic tangent sigmoid (tansig) function.
There are several types of neural network techniques, namely feedforward, recurrent, recur-

sive, convolution. Feedforward backpropagation neural network (FFNN) is the most com-
monly used among all multilayer perception (MLP) networks because in this network the
information moves only from the input layer directly through the hidden layers to the output
layer without any cycles or loops.

2.4.1 ANN Structure

The ANN is composed of 3 layers which are the input layer, the hidden layer, and the output
layer. The input layer contained four neurons since four parameters were manipulated in this
study, namely pH, mixing speed (MX), fenugreek dosages (FD) and okra dosages (OD),
whereas the output layer had three neurons as three parameters were controlled, namely TSS,

Fig. 1 Schematic neural network
block
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TUR and COD removal percentages. There are a total of three transfer functions that were
used in this study, namely tansig, logsig and purelin. Through trial and run method, it was
found that the ‘tansig-purelin’ combination function results in the best regression, R value and
lowest MSE value for all the three outputs. Thus, the neurons in the hidden layer used the ‘tan
sigmoid’ function, whereas the output neurons used the ‘purelin’ function. The proposed
network topology is 4-N-3, as illustrated in Fig. 2. The number of nodes in the input layer is
four, and N is the number of neurons in the hidden layers, and three is the number of neurons
in the output layer.

2.4.2 Data Division and Collection

Twenty five trial runs were obtained from Design Expert™ software, as presented in Table 2.
The network was trained using these 25 runs. All the data needed to be normalized, and once
the input and target data were normalized, it was divided into three sets of data which were
training, validation and testing data through the ‘divideblock’ function. 50% of the data were
used for training, 25% used for testing and 25% used for validation. The training dataset was
used to train the model for adjusting the weights and biases, whereas the validation set was
used to minimize overfitting. The data for the testing set was used to evaluate the prediction
performance of the network.

2.4.3 Data Normalization

Input and output were normalized so that all data were in the uniform range for each parameter.
This was to enhance the network performance and stability, since each variable, either input,
output or target, was composed of varied ranges. The data was normalized in uniform range
within an interval of -1 to 1 using the min-max normalization approach as shown in Eq. (2):

y −1;1½ � ¼ ymax−yminð Þ x−xmin
xmax−xmin

þ ymin ð2Þ

where x = actual data; xmin= minimum value of actual data; xmax= maximum value of actual
data; y= minimum value in normalized data (default=-1); ymax= maximum value in normalized
data (default=1)

Fig. 2 Structure of the FFNN model
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2.4.4 Hidden Neuron Selection

The number of hidden neurons and hidden layers play a significant role in the performance of
the network, especially for the MSE, MAE and MAPE values. Therefore, the network was
trained using a trial-and-error method with hidden neurons varying from 1 to 25, in order to
determine the optimum hidden neurons with the least error. Excessive number of neurons may
cause overfitting of the network, whereas insufficient number of neurons may cause inaccu-
racy of performance.

2.4.5 Training Algorithm

Training of data is essential as it determines the optimal weights and bias points of the network
to minimize the error between the output and target data. Backpropagation was used generally
to calculate derivatives of performance through weight and bias variable; it functions by
calculating the output layer first then propagate it backward.

Backpropagation algorithms can be categorized into six classes which are: (1) Adaptive
momentum; (2) Self-adaptive learning rate; (3) Resilient backpropagation; (4) Conjugate
gradient; (5) Quasi-Newton; and (6) Bayesian regularization. A further explanation of these
algorithms is given in Sect. 2.3.5.1 till 2.3.5.7.

Adaptive Momentum (Training Function: GD, GDm) Gradient descent backpropagation
(GD): GD is the batch steepest descent training algorithm in which the weights and biases
are updated in the negative gradient direction. The algorithm used seven training parameters
namely epochs, show, goal, time, lr, min_grad and max_fail.

Self-adaptive Learning Rate (Training Function: GDx, GDa) Gradient descent with momen-
tum and adaptive learning rate backpropagation (GDx): ‘GDx’ states that the algorithm
converges much slower than the other training algorithms, therefore, it is recommended to
use this algorithm in training networks with early stopping since it will let the network to
converge much slower to minimize the error.

Resilient Backpropagation (Training Function: trainrp) The resilient backpropagation (RP)
is used generally to eliminate harmful effects of partial derivatives magnitudes. The advantage
of this algorithm is that the algorithm is much faster than the standard descent algorithm.

Conjugate Gradient (Training Function: traincgf, traincgp, traincgb, trainscg) All of the
conjugate gradient algorithms are required to determine the steepest descent direction which is
the negative of the gradient on the 1st iteration since all the algorithms are based on conjugate
directions. The steepest descent gradient can be calculated using Eq. (3). Then, the optimal
distance was calculated using the line search method through Eq. (4). And Eq. (5) is the
general equation that combines new steepest decent direction and previous search direction to
determine a new search direction. The conjugate gradient has moderate memory requirements.

p0 ¼ −g0 ð3Þ

xkþ1 ¼ xkαkpk ð4Þ
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pk ¼ −gk þ βkpk−1 ð5Þ

Conjugate Gradient Algorithms

(i) Polak-Ribiere Update (CGP): For CGP, the search iteration was determined using Eq. (5)
with computing new constant of βk (Eq. 6) in Eq. (5). It is stated that the algorithm has
performance similar to CGF. The storage requirement of CGP (4 vectors) is slightly larger
than CGF (3 vectors):

βk ¼
ΔgTk−1−gk
gTk−1gk−1

ð6Þ

(ii) Powell-Beale Restarts (CGB): It is stated that the CGB algorithm has better performance
than the CGP algorithm and the storage requirement for CGB (6 is larger than CGP (4
vectors).

(iii) Scaled Conjugate Gradient (SCG): The SCG algorithm is used to avoid time-consuming
The algorithm combines LM and conjugate gradient approaches.

Quasi-Newton (Training function: trainbfg, trainoss, trainlm)

(i) BFGS algorithm (BFG): The Newton’s method is considered as an alternative to the
conjugate gradient since it provides fast optimization and convergence. The Newton’s
method is based on the use of Eq. (7):

xkþ1 ¼ xk−A−1
k gk ð7Þ

where Ak
−1 is a Hessian matrix (second derivatives). However, it is not preferable to compute

the matrix in the feedforward network due to its complexity and high cost. BFGS is
recommended to be applied for smaller networks as it requires large storage since it needs
more computation in each iteration.
(ii) One step secant (OSS): OSS method is an alternative to BFGS algorithm as OSS requires

smaller storage and does not involve second derivatives calculation and does not save the
matrix since the algorithm assumes that the Hessian matrix is an identity matrix for each
of the iterations.

(iii) Levenberg-Marquardt (LM): The LM algorithm is commonly used in training a neural
network mainly moderate-sized feedforward network, since LM appears to be the fastest
method. This is presumably due to the efficiency of the matrix shown in Eq. (8), which
reduces the performance function in each of the iteration. The advantage of this
algorithm is that it can also be used for second-order training without computing the
Hessian matrix:

xkþ1 ¼ xk− JT J þ μI
� �−1

JT e ð8Þ
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Bayesian Regularization (Training function: trainbr) Bayesian regularization
backpropagation (BR) is a function used to minimize a combination of squared error
and weight. It adjusts the weight and bias values according to LM optimization through
calculating backpropagation by calculating the Jacobian performance X. This function is
given in Eq. (9):

jj ¼ jX *jX
je ¼ jX *E

dX ¼ − jj ¼ I*muð Þ=je
ð9Þ

2.4.6 Optimization of ANN

ANN modelling is developed based on a trial-and-error method with different numbers of
neurons. This technique is used for different training algorithms. Each training method results
in a regression, R which indicates the relationship among the variables, thus, the R value
should be near 1. Any training with R value of 0.8 to 1.0 is considered as a satisfactory result.
The training process of the network will generate training, validation and testing errors. The
error is calculated as the difference between target and output data. The selection of number of
neurons and training algorithm is based on fitting of the graph with least value of Mean
Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) whose formulae are given by following Eqs. (10) to (13):

MSE ¼ 1

n
∑n

i¼0 EV−PVð Þ2 ð10Þ

MAE ¼ 1

n
∑n

i¼0 EV−PVj j ð11Þ

MAPE %ð Þ ¼ 1

n
∑n

i¼0

EV−PV
EV

����
����100 ð12Þ

AAD %ð Þ ¼ 1

n
∑n

i¼0

PV−EV
EV

� �
100 ð13Þ

where n is the experiment number; EV is the experimental value of ith experiment; PV is the
predicted value of ith experiment.

However, it was found that the network still could not reach regression R higher than 0.8
after conducting several trial-and-run methods. Thus, ‘repmat’ function was added into the
coding in order to multiply the input by 3 which results in total of 75 input data. This is
presumably due to the fact that the network was a multi-input and multi-output (MIMO) model
with limited input data.
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3 Results and Discussion

3.1 Interaction between Process Variables and Responses

3.1.1 Effect of Coagulant Dosage

Figure 3 shows the influence of fenugreek dosage on the removal efficiencies of TSS,
TUR and COD on POME treatment. It can be observed that the increase in coagulant
dosage was able to increase the percent removal of TSS, TUR and COD. Highest percent
removal of TSS, TUR and COD obtained at the above conditions are on average 90%,
80% and 70%, respectively.
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This is probably due to the fact that fenugreek powder has rough and highly
porous surfaces, which increases the overall surface area, thus increasing the adsorp-
tion sites (Chung et al. 2018). Sethu et al. (2015) stated that the fenugreek seed is an
anionic polyelectrolyte and the coagulation process involves adsorption and inter-
bridging mechanisms due to the fact that the seeds have protein that composes amide
group. This statement is further verified by analysing the fenugreek solution with zeta
potential that results in negative net charge of -39.6 mV. The reduction of removal
efficiencies in certain dosages is probably due to that the negatively charged fenu-
greek replaces the anionic groups on POME colloidal particles (Ab Kadir et al. 2004).

3.1.2 Effect of Flocculant Dosage

Figure 4 shows that the TSS, TUR and COD removal increased with increasing okra dosage.
Maximum removal percentage of TSS, TUR and COD were on average 95%, 95% and 70%,
respectively.

The high removal may be due to the protein content in okra that act as active
agent in flocculation process (Fahmi et al. 2013). It was reported that okra that was
extracted with distilled water is an anionic polyelectrolyte composed of galactose,
rhamnose and galacturonic acid which make the okra having acidic property with pH
of 5.8. Okra was reported to mainly flocculate through bridging since the mucilage
has similar composition to cactus (Sethu et al. 2019). This can be explained as both
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Table 3 Zeta analysis of raw POME after pH adjustment

pH Zeta potential (mV) pH Zeta potential (mV)

3 2.06 6 -32.6
4 -23.6 7 -34.3
5 -23.2 8 -36.6
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Table 4 Experiment (EV) and prediction (PV) TSS, TUR and COD data generated by ANN (SCG training
algorithm)

Run FD
(g/L)

OD
(mL/500 mL POME)

pH MX
(rpm)

Total suspended
solids (TSS) mg/L

Turbidity (TUR)
NTU

Chemical oxygen
demand (COD)
mg/L

EV PV EV PV EV PV

1 5.4 48.8 8 168 64.77 74.66 79.25 86.57 51.52 54.84
2 4 68 5 180 92.64 83.00 95.53 92.19 68.34 55.54
3 4 26.4 6 150 90.36 90.29 92.74 92.75 59.00 58.98
4 6.4 68 5 150 95.10 95.65 93.12 94.52 57.23 63.48
5 5.4 48.8 8 168 76.14 74.66 87.10 86.57 35.35 54.84
6 8 44 8 200 94.69 94.67 94.30 94.30 71.03 71.06
7 5.4 48.8 8 168 83.08 74.66 93.36 86.57 77.66 54.84
8 5.2 100 8 200 92.55 92.56 90.62 90.63 73.43 73.47
9 8 100 3 155 95.98 95.99 96.97 96.96 70.00 69.98
10 8 34 3 200 96.77 96.80 97.12 97.13 71.96 71.96
11 4 20 8 200 84.19 84.20 88.53 88.54 43.72 43.72
12 6.4 68 5 150 96.01 95.65 95.45 94.52 67.67 63.48
13 4.6 99 3 200 96.01 96.00 97.16 97.15 68.12 68.13
14 6.42 20 5 180 84.31 89.65 94.28 95.00 55.08 60.81
15 8 20 8 150 84.31 84.22 87.48 87.48 69.67 69.66
16 4 100 8 150 94.29 94.31 95.49 95.48 52.50 52.50
17 5 100 3 163 88.49 88.48 89.67 89.67 49.86 49.87
18 6.42 20 5 180 94.97 89.65 95.69 95.00 66.60 60.81
19 4 20 3 150 93.97 93.96 96.11 96.11 63.16 63.17
20 8 41.2 3 165 93.75 93.78 95.03 95.02 44.13 44.12
21 8 100 8 200 93.64 94.02 95.05 95.20 75.62 76.15
22 8 100 4 200 97.16 97.20 97.07 97.08 69.03 69.01
23 4 68 5 180 73.31 83.00 88.86 92.19 42.75 55.54
24 5 40 3 200 98.37 98.36 97.06 97.08 83.79 83.79
25 8 100 8 200 94.85 93.87 95.57 95.11 79.70 78.08
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okra and cactus have galacturonic acid, which acts as an active component that
contributes to the formation of bridging for the particles to adsorb onto (Yin 2010;
Freitas et al. 2015). Therefore, higher dosage of okra should result in achieving higher
removals of TSS, TUR and COD. The okra tends to replace the ionic group on the
colloidal particle of POME which allows hydrogen bonding to occur between the
colloids and okra. The reduction in removal efficiencies may be due to the re-
stabilization of particles since the okra was negatively charged (Sethu et al. 2015).

3.1.3 Effect of pH

The pH was altered within the range of 3 to 8 to determine the effect of pH towards the
removal efficiencies of TSS, TUR and COD. Based on Fig. 5, the removal efficiency slightly
decreased with increasing pH.

This phenomenon can be explained as follows: pH changes usually do not affect
the efficiency of bio-coagulants, thus any change in percent removals of TSS, TUR
and COD must be due to its effect on the constituents of POME (Mishra et al. 2004).
In addition, the reduction in removal efficiencies was due to an increase in

Table 5 Mean absolute error (MAE) of total suspended solids (TSS) (mg/L) for different number of neurons in
different training algorithms

Hidden neuron Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 4.34 5.42 4.90 4.64 4.94 3.83 5.70 4.11 5.00 5.73 4.85 4.61
2 4.63 5.09 8.55 6.10 4.36 6.08 6.23 6.16 4.41 3.74 4.11 3.56
3 4.34 5.19 5.05 4.79 5.52 4.75 3.78 5.16 4.51 4.05 3.41 3.37
4 4.60 4.40 5.99 4.99 7.25 4.70 4.73 4.66 4.53 3.80 3.30 2.93
5 5.91 5.56 3.64 2.80 4.62 4.19 4.50 4.16 4.85 4.31 3.05 2.75
6 5.00 6.29 4.83 4.29 4.77 5.01 3.43 5.31 3.13 3.63 2.93 2.75
7 2.67 3.26 6.50 2.92 3.89 5.16 2.90 6.34 6.72 3.12 2.42 2.41
8 3.22 3.89 7.40 4.61 3.45 3.23 5.24 3.02 5.45 3.13 2.14 2.41
9 2.97 3.36 14.26 4.41 2.90 3.18 3.47 3.43 3.40 4.59 2.01 2.52
10 2.99 3.52 3.19 3.83 2.84 5.72 3.56 5.87 3.66 4.96 2.77 2.36
11 5.42 4.17 3.12 3.24 2.89 3.76 2.80 3.78 3.17 2.72 2.10 2.39
12 2.77 3.33 13.84 3.94 2.59 4.20 3.34 4.06 2.94 2.44 2.61 2.35
13 2.58 7.26 5.61 2.49 2.82 7.54 3.60 2.36 2.91 3.08 2.16 2.38
14 2.38 4.09 2.49 2.68 2.81 2.76 2.99 2.81 2.54 3.79 2.91 2.38
15 2.36 3.57 6.07 3.92 3.09 3.60 3.51 3.76 2.79 2.49 1.98 2.39
16 2.57 3.19 2.86 2.46 2.32 3.95 2.25 4.02 2.70 3.69 1.99 2.44
17 2.34 3.42 2.35 3.16 2.07 2.14 2.20 2.50 2.73 3.02 2.09 2.36
18 2.21 3.34 2.47 2.58 2.46 2.36 2.32 2.13 2.46 4.56 2.21 2.33
19 3.19 3.20 12.46 7.66 2.40 2.46 3.65 2.47 2.20 2.78 2.74 2.33
20 2.32 4.88 2.18 2.30 2.29 2.22 2.42 2.39 4.51 2.36 2.94 2.53
21 2.10 4.07 2.29 2.25 2.47 2.75 4.47 2.67 2.72 2.36 2.19 2.55
22 2.02 3.15 2.93 2.34 2.77 3.82 2.28 3.93 2.43 2.93 2.98 2.44
23 2.23 2.68 8.95 2.11 2.64 2.09 2.28 2.14 3.59 2.58 2.23 2.42
24 2.02 3.26 2.40 2.17 2.57 2.42 2.24 2.40 2.27 2.12 2.31 2.46
25 2.21 3.19 2.33 2.27 2.74 2.18 2.35 2.10 2.30 2.02 2.07 2.56
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concentration of OH− ions. At high pH, the OH− ions tend to compete with organic
molecules for the vacant adsorption site on the coagulant (Ab Kadir et al. 2004).
Under alkaline conditions, any positive charged reagent will tend to be negatively
charged due to increasing of OH− ions, which can be illustrated in Table 3. Based on
Table 3, maximum removals of TSS, TUR and COD achieved at pH 3 are probably
due to occurring charged neutralization since raw POME is positively charged while
the fenugreek solution is negatively charged at pH 3.

3.1.4 Effect of Rapid Mixing Speed

Rapid mixing speed plays a significant role in the coagulation-flocculation process, since it is
during the mixing stage when the destabilization reaction and formation of floc particles occur.
Figure 6 shows that the removal efficiency of TSS, TUR and COD increased as the mixing
speed increased from 150 to 200 rpm.

Higher mixing speed causes increasing collision of particles and attachment which
then promotes agglomeration of particles to form larger flocs. Besides, increasing
rapid mixing speed during coagulation causes increasing of shear stress applied on
the flocs which then lead to formation of denser and compact flocs (Ahmad Tajuddin
et al. 2015; Choong et al. 2018). This mainly affected the removal of TSS and TUR,
and not very much the removal of COD. From Fig. 6, it can be seen that the

Table 6 Mean absolute percentage error (MAPE) of total suspended solids (TSS) (mg/L) for different number of
neurons in different training algorithms

Hidden neuron Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 0.05 0.07 0.06 0.06 0.06 0.05 0.07 0.05 0.06 0.07 0.06 0.06
2 0.06 0.06 0.10 0.08 0.05 0.07 0.07 0.07 0.05 0.04 0.05 0.04
3 0.05 0.06 0.06 0.06 0.07 0.06 0.05 0.06 0.05 0.05 0.04 0.04
4 0.05 0.05 0.07 0.06 0.08 0.06 0.06 0.05 0.05 0.05 0.04 0.04
5 0.07 0.07 0.04 0.03 0.06 0.05 0.05 0.05 0.06 0.05 0.04 0.03
6 0.06 0.07 0.06 0.05 0.06 0.06 0.04 0.06 0.04 0.04 0.04 0.03
7 0.03 0.04 0.08 0.04 0.05 0.06 0.04 0.07 0.08 0.04 0.03 0.03
8 0.04 0.05 0.09 0.06 0.04 0.04 0.06 0.04 0.06 0.04 0.03 0.03
9 0.04 0.04 0.16 0.05 0.03 0.04 0.04 0.04 0.04 0.06 0.03 0.03
10 0.04 0.04 0.04 0.05 0.03 0.07 0.04 0.07 0.04 0.06 0.03 0.03
11 0.06 0.05 0.04 0.04 0.03 0.05 0.03 0.05 0.04 0.03 0.03 0.03
12 0.03 0.04 0.16 0.05 0.03 0.05 0.04 0.05 0.04 0.03 0.03 0.03
13 0.03 0.08 0.07 0.03 0.03 0.09 0.04 0.03 0.04 0.04 0.03 0.03
14 0.03 0.05 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.05 0.04 0.03
15 0.03 0.04 0.07 0.05 0.04 0.04 0.04 0.05 0.03 0.03 0.03 0.03
16 0.03 0.04 0.03 0.03 0.03 0.05 0.03 0.05 0.03 0.04 0.03 0.03
17 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03
18 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.03
19 0.04 0.04 0.15 0.09 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03
20 0.03 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.04 0.03
21 0.03 0.05 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.03 0.03
22 0.03 0.04 0.04 0.03 0.03 0.04 0.03 0.05 0.03 0.03 0.04 0.03
23 0.03 0.03 0.10 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03
24 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
25 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
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maximum percent removals of TSS, TUR and COD were found to be on average at
98%, 98% and 85% at a mixing speed of 200 rpm.

3.2 Artificial Neural Network Modelling

The experimental and predicted value from ANN modelling for TSS, TUR and COD with
SCG training algorithm is given in Table 4.

3.2.1 TSS Response

Based on Tables 5, 6 and 7, the lowest MSE, MAE, and MAPE values for TSS response, or the
output from the model, can be determined. Table 5 shows the MSE values for the TSS
response for hidden neurons varying from 1 to 25. Table 5 provides the MSE values for 12
different training algorithms that were used in the study. The lowest MSE of 16.64 (bold font,
Table 5) is obtained for SCG for 25 hidden neurons (HN). The largest MSE is 325.69 (bold
font, Table 5) for GDX when HN is 12. Overall GD, LM and BR have shown lower MSE
values for HN from 1 to 25 consistently. BR has been consistently having MSE values lower
than 20 for HN 4 through 25. On the other hand, GD, GDA and GDX have shown some very

Table 7 Mean-squared error (MSE) of total suspended solids (TSS) (mg/L) for different number of neurons in
different training algorithms

Hidden
neuron

Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 68.29 55.71 46.27 43.54 47.36 34.81 53.93 38.67 46.06 59.90 47.47 41.67
2 66.22 49.01 135.95 90.58 43.24 61.08 59.75 62.38 42.18 26.04 33.84 26.25
3 131.00 47.84 43.28 56.15 57.36 43.11 27.58 48.33 38.77 34.93 25.44 22.01
4 177.97 33.31 57.93 41.34 76.66 38.70 45.58 38.10 33.09 26.91 23.13 19.18
5 25.91 51.22 27.81 21.71 37.29 30.74 32.92 29.93 41.14 34.92 19.90 18.95
6 24.25 59.51 39.54 28.68 41.17 41.21 22.75 44.30 22.00 24.23 19.75 19.92
7 21.95 21.23 90.11 20.32 28.36 45.54 21.61 64.01 67.76 19.88 17.15 17.27
8 19.83 26.67 84.84 48.48 24.71 20.58 40.06 20.83 43.53 20.35 17.21 18.01
9 18.59 22.45 275.78 29.12 18.83 19.91 24.84 21.02 23.62 39.93 17.65 17.57
10 19.52 28.58 27.57 25.51 21.34 54.23 23.86 56.31 26.62 38.97 19.21 17.29
11 20.81 34.52 21.12 22.64 19.15 26.63 18.25 27.48 24.67 18.03 17.08 17.78
12 19.18 25.11 325.69* 31.00 18.91 31.11 25.17 37.37 19.30 17.35 20.16 17.85
13 19.97 111.47 46.86 17.60 20.67 118.63 25.03 18.48 20.70 20.56 17.32 17.26
14 17.52 30.24 17.59 18.32 18.03 21.29 23.77 20.97 17.24 27.03 19.34 17.42
15 18.53 22.63 78.56 27.91 27.23 30.33 27.36 29.04 18.93 17.77 23.80 17.91
16 16.97 21.56 21.66 17.69 17.25 28.00 17.99 26.56 21.49 24.32 17.28 19.08
17 16.94 27.46 19.76 25.16 17.21 17.19 17.35 17.63 18.57 33.72 17.49 17.80
18 17.76 21.78 17.37 17.74 17.36 17.73 17.15 17.61 20.84 30.35 17.71 18.07
19 17.18 28.16 234.62 148.15 19.71 18.24 30.55 18.58 17.83 20.29 23.50 17.02
20 27.61 124.33 16.93 19.67 16.98 17.68 17.08 17.39 74.63 19.21 23.79 17.50
21 20.10 26.98 16.94 17.31 19.03 18.82 31.02 18.52 18.38 17.56 18.32 17.87
22 16.82 23.26 18.69 17.25 19.64 37.18 17.04 38.28 17.41 19.10 35.88 18.12
23 23.56 18.46 119.65 18.04 26.14 18.03 17.13 17.95 25.66 25.69 17.29 17.97
24 17.48 22.50 17.18 17.28 17.53 17.31 17.03 17.23 16.80 18.24 22.65 17.48
25 16.97 20.91 17.64 16.80 22.04 16.67 17.33 16.64* 17.22 16.79 17.31 17.39

*Numbers in bold are the lowest and highest MSE values
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high values of MSE of 177.97 for HN = 4, 124.33 for HN = 20, 135.95 for HN = 2,
respectively.

Table 6 presents the MAE values for TSS response. MAE values for the hidden
neurons from 1 to 25 are given in Table 6 for the 12 training algorithms. Lowest MAE
values of 1.98 is obtained for LM with HN = 15. Highest MAE of 14.26 is obtained for
GDX with HN = 9. LM and BR have shown good performance in terms of MAE whereas
GD, GDA, and GDX are the worst performers with GDA showing very high MAE
values of 13.84 and 12.46.

Table 7 shows the MAPE values for the TSS response. Lowest MAPE value of 0.03 and
highest MAPE value of 0.16 is obtained for GDX with HN= 12. As an overall, the LM, BR
and CGF have shown lower MAPE values, whereas GDA and GDX have shown higher values
of MAPE.

3.2.2 TUR Response

Based on Tables 8, 9 and 10, lowest and highest MSE, MAE, MAPE values are determined
for the TUR response for the 12 training algorithms. Table 8 shows the MSE values for the
12 training algorithms. BR and LM show better performance than other training

Table 8 Mean-squared error (MSE) of turbidity (TUR) (NTU) for different number of neurons in different
training algorithms

Hidden neuron Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 17.68 15.75 12.95 10.66 12.36 9.34 12.34 9.96 12.71 16.82 12.62 10.83
2 19.12 12.95 14.06 20.35 11.67 16.51 17.01 16.48 11.55 9.00 7.69 8.40
3 28.98 14.35 12.03 8.42 16.71 11.82 10.65 12.10 11.12 11.58 8.04 7.16
4 73.68 8.03 20.32 8.51 17.18 11.66 11.15 11.56 8.12 6.72 6.68 6.97
5 7.25 14.09 7.48 8.59 7.98 8.70 7.92 8.52 9.99 10.56 7.11 6.31
6 7.16 19.56 12.33 7.21 10.90 11.49 7.52 12.40 6.38 7.20 7.24 6.38
7 6.37 6.77 24.67 6.72 6.28 13.62 6.14 14.39 18.02 6.22 5.30 5.78
8 6.55 7.60 67.99 11.92 7.36 7.33 13.07 7.66 10.78 6.70 5.18 5.36
9 6.17 6.52 72.35 7.02 5.94 6.00 7.02 6.03 7.15 9.53 5.19 5.41
10 5.94 8.93 6.63 6.99 5.88 15.65 6.82 15.10 7.96 11.18 5.93 5.49
11 5.83 7.58 7.93 8.32 6.19 5.58 5.80 5.51 8.09 5.76 5.29 5.30
12 5.63 6.73 26.58 7.55 9.96 7.15 8.34 8.49 5.41 5.23 6.21 5.47
13 5.44 26.91 13.82 5.40 6.80 25.36 5.81 5.71 6.44 6.01 5.18 5.46
14 5.32 11.28 5.40 5.73 5.32 6.08 5.50 6.07 5.16 5.80 6.29 5.45
15 5.67 6.12 18.41 11.96 7.33 7.40 9.80 7.14 5.86 6.00 5.24 5.51
16 5.10 6.03 7.77 5.34 5.49 8.58 5.14 7.61 6.14 6.98 5.25 6.05
17 5.19 6.60 6.76 6.60 5.20 5.21 5.30 5.56 6.39 5.24 5.30 5.29
18 5.27 6.89 5.36 5.14 5.16 5.68 5.37 5.55 5.27 15.09 5.72 5.32
19 5.27 6.06 49.51 32.39 6.03 6.22 9.82 6.27 5.29 6.07 6.11 5.32
20 8.13 8.57 5.19 5.37 5.19 6.04 5.17 6.28 7.99 5.38 6.20 5.46
21 7.70 5.77 5.06 5.28 6.62 5.30 14.27 5.29 5.29 5.31 5.73 5.46
22 5.20 6.69 5.74 5.29 5.24 9.94 5.08 10.21 5.09 5.84 12.78 5.64
23 6.40 6.45 36.35 5.42 5.87 5.15 5.13 5.18 6.00 6.51 5.20 5.45
24 5.18 6.44 5.42 5.05 6.79 5.08 5.15 5.08 5.11 5.50 8.49 5.54
25 5.12 5.43 5.32 5.05 5.42 5.06 5.20 5.05 5.21 5.17 5.21 5.49
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algorithms. GDX is the worst performer of all. SCG shows the lowest MSE value of 5.05
for HN = 25 and highest MSE value of 73.68 for GD with HN = 4. Table 9 shows the MAE
values for HN 1 through 25. LM and BR show good performance whereas GDA and GDX
show poor performance. Lowest MSE value of 1 is obtained for LM with HN = 15.
Highest MSE of 6.89 is for GDX with HN = 9. Table 10 shows the MAPE values for
HN 1 through 25. LM shows good results compared to other training algorithms with
multiple training algorithms showing lowest MAPE value of 0.01. The highest MAPE
value of 0.07 is obtained for GDX HN = 9.

3.2.3 COD Response

Tables 11, 12 and 13 present MSE, MAE and MAPE values, respectively, for the COD
response. Table 11 shows the MSE values for HN 1 through 25. Lowest MSE value of
54.59 was obtained for SCG HN = 25. Highest MSE value of 586.36 is obtained for GDX
for HN = 23. BR has shown multiple lowest values of MSE for HN 6 through 25. GDX has
shown multiple high values of MSE. Table 12 shows the MAE values with the lowest
being 3.62 for LM with HN = 16. Highest MAE of 19.58 is for GDX with HN = 12. LM
and BR have shown good performance where as GDX is worst performer with very high

Table 9 Mean absolute error (MAE) of turbidity (TUR) (NTU) for different number of neurons in different
training algorithms

Hidden neuron Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 2.48 3.09 2.75 2.51 2.57 2.26 2.65 2.34 2.65 2.97 2.74 2.46
2 2.47 2.68 2.39 3.84 2.39 3.09 3.12 3.08 2.80 2.11 2.01 2.03
3 2.28 2.67 2.57 2.04 2.98 2.48 2.38 2.68 2.51 2.43 2.05 1.77
4 2.48 2.08 3.58 2.20 3.06 2.52 2.39 2.51 2.11 1.86 1.73 1.69
5 2.68 3.11 1.83 1.99 2.09 2.22 2.01 2.17 2.39 2.38 1.90 1.70
6 2.24 3.53 2.70 1.87 2.41 2.50 1.84 2.59 1.73 1.76 1.88 1.54
7 1.69 1.85 3.94 1.77 1.74 2.70 1.50 2.83 2.95 1.48 1.24 1.53
8 1.69 1.78 5.65 2.81 1.82 1.91 2.79 1.97 2.28 1.69 1.05 1.34
9 1.64 1.69 6.89 1.79 1.58 1.63 1.77 1.64 1.89 2.31 1.01 1.39
10 1.43 2.02 1.69 1.82 1.59 2.88 1.76 2.75 1.86 2.49 1.39 1.40
11 2.73 1.84 1.87 1.97 1.54 1.46 1.38 1.44 1.76 1.42 1.05 1.29
12 1.49 1.72 4.13 1.97 1.71 1.91 1.87 2.12 1.28 1.20 1.46 1.33
13 1.31 3.95 3.07 1.29 1.67 4.01 1.47 1.21 1.62 1.49 1.09 1.29
14 1.09 2.34 1.29 1.34 1.31 1.50 1.30 1.44 1.19 1.59 1.66 1.28
15 1.21 1.64 3.03 2.35 1.59 1.75 1.82 1.73 1.43 1.66 1.00 1.35
16 1.38 1.55 2.01 1.24 1.28 2.16 1.14 1.89 1.50 1.86 1.01 1.40
17 1.25 1.49 1.24 1.74 1.04 1.10 1.12 1.33 1.56 1.19 1.06 1.23
18 1.17 1.80 1.36 1.14 1.15 1.22 1.26 1.11 1.20 2.82 1.13 1.27
19 1.40 1.49 5.57 4.44 1.20 1.48 1.91 1.49 1.19 1.35 1.31 1.34
20 1.20 2.12 1.09 1.15 1.15 1.37 1.19 1.60 1.82 1.11 1.52 1.40
21 1.12 1.58 1.09 1.13 1.48 1.17 2.97 1.14 1.26 1.25 1.07 1.36
22 1.06 1.62 1.51 1.30 1.21 1.93 1.11 1.88 1.12 1.38 1.63 1.41
23 1.08 1.72 4.56 1.08 1.16 1.04 1.16 1.11 1.52 1.36 1.10 1.32
24 1.04 1.67 1.31 1.03 1.73 1.06 1.09 1.07 1.13 1.07 1.22 1.45
25 1.16 1.25 1.22 1.08 1.31 1.06 1.17 1.03 1.09 1.05 1.04 1.35
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values of MAE for many HN’s. Table 13 shows the MAPE values with lowest being 0.06
for LM with HN = 17. Highest MAPE of 0.34 is obtained for GDX with HN = 12. Best
MAPE performance has been seen in BR and LM and worst MAPE is for GDX with
multiple high values of MAPE for various HN’s.

Based on the response of all the 3 outputs from Tables 3, 4, 5, 6, 7, 8, 9, 10 and
11, it can be concluded that the 25 hidden neurons were the optimal number of
neurons in the hidden layer since most of the training algorithms for TSS response
results in lowest value of MSE, MAE and MAPE value for 25 hidden neurons. The
same holds for TUR and COD response. Through the 3 outputs, the selection of the
training function is mostly based on COD response since the minimal MSE value that
can be reached was 54.71 compared to TSS (16.64) and TUR (5.06) responses. Then,
the best training algorithms for COD response is then further sorted by comparing the
chosen training algorithm in TSS and TUR response which also gives the least value
of MSE, MAE and MAPE values.

Four best training algorithms were identified namely Levenberg-Marquardt (LM),
Bayesian regularization (BR), one step secant (OSS) and scaled conjugate gradient
(SCG) training function. These four best algorithms were further sorted based on
training algorithm that results in the least value of MSE, MAE and MAPE for each

Table 10 Mean absolute percentage error (MAPE) of turbidity (TUR) (NTU) for different number of neurons in
different training algorithms

Hidden neuron Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03
2 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02
3 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
4 0.03 0.02 0.04 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
5 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02
6 0.02 0.04 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.02 0.02 0.02
7 0.02 0.02 0.04 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.01 0.02
8 0.02 0.02 0.06 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.01 0.01
9 0.02 0.02 0.07 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02
10 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.02
11 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
12 0.02 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.01
13 0.01 0.04 0.03 0.01 0.02 0.04 0.02 0.01 0.02 0.02 0.01 0.01
14 0.01 0.03 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01
15 0.01 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02
16 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.02
17 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01
18 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01
19 0.02 0.02 0.06 0.05 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.01
20 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.02
21 0.01 0.02 0.01 0.01 0.02 0.01 0.03 0.01 0.01 0.01 0.01 0.02
22 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02
23 0.01 0.02 0.05 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01
24 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02
25 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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data sets namely the training (TR) data set, the testing (TS) data set and the validation
(VL) data set for all the 3 outputs.

3.3 Optimization and Validation of the Experimental Results

In order to determine the best training algorithm among the four selected training functions, the
MSE, MAE, and MAPE values were analysed. Based on Figs. 7 and 8, as well as Tables 14,
15 and 16, the scaled conjugate gradient (SCG) training algorithm proved to be the best
training algorithm among all, since it has the most optimal MSE, MAE and MAPE values for
the training, testing and validation data for all the 3 responses. For the TSS output, SCG results
in MAE, MAE and MAPE values of 18.18, 2.26, 0.03 for training data set, 8.44, 1.24, 0.03 for
testing data set and 21.53, 1.24, 0.03 for validation data set. In terms of the TUR output, SCG
results in MAE, MAE and MAPE values of 6.18, 1.20, 0.01 for training data set, 0.73, 0.35,
0.004 for testing data set and 6.94, 1.34, 0.02 for validation data set.

For the COD output, SCG results in MAE, MAE and MAPE values of 64.87, 4.37, 0.08 for
training data set, 13.91, 1.71, 0.03 for testing data set and 73.02, 4.75, 0.09 for validation data
set. Besides, it is stated that SCG algorithm is capable in performing well in diverse problem
(Wong et al. 2018). For instance, the convergence performance of SCG was nearly similar to

Table 12 Mean absolute error (MAE) of chemical oxygen demand (COD) (mg/L) for different number of
neurons in different training algorithm

Hidden neuron Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 9.97 10.02 9.01 10.42 8.90 9.53 10.74 9.39 9.28 10.70 8.36 9.46
2 8.59 8.38 9.75 11.66 9.50 9.04 10.12 9.19 9.05 8.61 7.84 8.54
3 8.05 9.79 9.23 10.54 10.53 9.36 7.96 9.48 9.13 8.66 7.27 8.09
4 8.26 8.86 9.62 8.54 10.15 7.80 9.22 7.68 7.63 7.56 7.46 6.12
5 9.33 10.05 7.63 6.18 7.86 6.84 7.63 6.99 7.77 8.50 5.73 5.31
6 8.79 9.83 11.08 6.57 8.14 10.12 6.94 9.97 5.60 7.22 5.66 4.93
7 6.13 7.29 9.72 6.34 7.12 8.88 4.98 10.61 10.74 5.38 4.30 4.64
8 4.88 7.60 15.51 8.90 8.07 6.94 7.80 7.01 7.78 6.06 3.91 4.52
9 6.09 6.55 14.86 6.31 5.63 6.88 7.29 6.71 6.40 8.56 3.76 4.45
10 5.81 6.23 5.98 7.51 5.68 9.37 5.73 8.78 6.69 6.73 4.93 4.82
11 9.95 7.23 5.49 6.26 4.92 6.30 4.38 6.33 4.79 5.12 4.00 4.76
12 4.75 6.09 19.58 6.32 6.27 6.73 5.78 7.13 5.82 4.40 5.49 4.55
13 4.25 10.12 12.55 4.48 4.77 12.13 6.53 4.39 5.75 5.36 3.82 4.73
14 4.39 6.76 4.32 5.15 5.13 5.30 6.34 5.24 4.16 7.17 4.83 4.70
15 4.89 6.46 11.34 6.58 6.82 7.73 7.73 7.85 4.44 4.70 3.86 4.52
16 5.03 7.40 5.43 4.84 4.71 8.19 4.08 8.07 4.96 6.85 3.62 4.69
17 4.26 7.13 4.28 6.96 4.10 4.10 3.94 5.34 4.74 4.26 3.64 4.43
18 4.17 6.28 4.52 4.29 3.93 4.25 4.40 4.01 4.06 6.83 3.81 4.37
19 5.55 6.05 13.70 7.70 3.99 4.58 7.13 4.62 4.16 4.84 4.25 4.36
20 4.79 6.63 4.25 4.51 4.00 4.15 4.29 4.41 5.22 3.94 5.40 4.75
21 4.06 5.25 4.48 4.20 4.70 4.65 9.03 4.54 4.73 4.30 4.10 4.88
22 3.94 4.65 4.51 4.20 4.57 5.93 4.39 5.72 4.21 4.26 4.13 4.58
23 3.98 4.92 16.71 4.07 4.18 3.80 4.34 3.89 5.76 3.97 4.22 4.70
24 4.29 4.80 4.25 4.00 4.98 4.57 4.06 4.41 4.15 4.22 3.76 4.60
25 4.22 5.16 4.34 4.09 4.47 3.96 4.20 3.82 3.90 3.95 3.75 4.68
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Table 13 Mean absolute percentage error (MAPE) of chemical oxygen demand (COD) (mg/L) for different
number of neurons in different training algorithms

Hidden neuron Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 0.18 0.18 0.16 0.19 0.16 0.17 0.19 0.16 0.16 0.19 0.15 0.17
2 0.15 0.15 0.17 0.21 0.17 0.16 0.18 0.16 0.17 0.15 0.14 0.16
3 0.14 0.18 0.16 0.18 0.19 0.17 0.14 0.17 0.17 0.16 0.13 0.14
4 0.15 0.16 0.17 0.15 0.19 0.14 0.17 0.14 0.13 0.14 0.14 0.11
5 0.16 0.18 0.14 0.11 0.14 0.13 0.14 0.13 0.14 0.15 0.11 0.10
6 0.16 0.18 0.19 0.12 0.14 0.18 0.12 0.18 0.10 0.13 0.10 0.09
7 0.11 0.13 0.19 0.11 0.12 0.16 0.09 0.19 0.18 0.10 0.08 0.09
8 0.09 0.14 0.27 0.16 0.14 0.12 0.14 0.13 0.14 0.11 0.07 0.08
9 0.11 0.11 0.27 0.12 0.10 0.13 0.13 0.12 0.12 0.16 0.07 0.08
10 0.11 0.11 0.11 0.13 0.11 0.17 0.10 0.16 0.11 0.11 0.09 0.09
11 0.17 0.13 0.10 0.12 0.09 0.11 0.08 0.11 0.09 0.09 0.08 0.09
12 0.08 0.11 0.34 0.11 0.11 0.12 0.10 0.13 0.11 0.08 0.10 0.08
13 0.08 0.18 0.22 0.09 0.09 0.22 0.11 0.08 0.11 0.10 0.07 0.09
14 0.09 0.13 0.08 0.09 0.09 0.10 0.12 0.10 0.08 0.13 0.09 0.09
15 0.09 0.12 0.19 0.12 0.13 0.15 0.14 0.15 0.08 0.08 0.07 0.08
16 0.09 0.13 0.09 0.09 0.08 0.15 0.08 0.15 0.10 0.12 0.07 0.09
17 0.07 0.13 0.08 0.13 0.08 0.08 0.07 0.10 0.08 0.08 0.06 0.08
18 0.08 0.11 0.08 0.08 0.07 0.08 0.08 0.08 0.08 0.12 0.07 0.08
19 0.11 0.11 0.23 0.14 0.07 0.09 0.14 0.09 0.08 0.09 0.08 0.08
20 0.09 0.11 0.08 0.08 0.07 0.08 0.08 0.08 0.09 0.07 0.10 0.09
21 0.08 0.10 0.09 0.08 0.09 0.09 0.16 0.08 0.08 0.08 0.08 0.09
22 0.07 0.08 0.09 0.07 0.09 0.11 0.08 0.10 0.08 0.07 0.08 0.09
23 0.07 0.09 0.30 0.08 0.08 0.07 0.08 0.07 0.10 0.08 0.08 0.09
24 0.08 0.09 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.08
25 0.08 0.09 0.08 0.08 0.08 0.07 0.08 0.07 0.07 0.08 0.07 0.09

Fig. 7 Actual and predicted results of TSS and TUR response using 4 best training algorithms
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LM on solving approximation problems, and the same goes for the solving of pattern
recognition problems, which result in faster convergence as RP. Figs. 7 and 8 show the
comparison of target and output data for each response using the SCG training algorithm.

3.3.1 TSS Response

Fig. 8 Actual and predicted results using 4 best training algorithms

Table 14 Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) for training, testing, and validation data for Total Suspended Solids (TSS) (mg/L) output

Data Error Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

Training MSE 17.55 23.36 20.66 18.33 21.97 18.24 19.82 18.18 18.67 18.39 17.45 18.80
MAE 2.22 3.43 2.62 2.41 2.87 2.34 2.55 2.26 2.44 2.19 2.18 2.74
MAPE 0.02 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Testing MSE 10.75 9.18 7.07 8.88 19.47 8.21 6.71 8.44 8.91 8.38 10.99 9.49
MAE 1.37 2.17 1.49 1.48 2.21 1.34 1.37 1.24 1.44 1.21 1.26 1.78
MAPE 0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.01 0.02 0.02

Validation MSE 21.93 27.34 21.68 21.39 24.75 21.72 22.53 21.53 22.39 21.77 23.33 22.24
MAE 2.58 3.71 2.55 2.74 3.01 2.67 2.89 1.24 2.88 2.49 2.66 2.93
MAPE 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.04
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3.3.2 TUR Response

3.3.3 COD Response

Table 16 Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) for training, testing, and validation data for Chemical Oxygen Demand (COD) (mg/L) output

Data Error Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

Training MSE 65.41 68.93 68.41 65.08 70.11 64.84 67.24 64.87 65.40 66.65 70.98 66.26
MAE 4.50 5.67 4.94 4.59 4.92 4.50 4.74 4.37 4.42 4.55 4.21 5.11
MAPE 0.09 0.09 0.10 0.08 0.09 0.08 0.09 0.08 0.08 0.09 0.07 0.09

Testing MSE 20.87 19.82 13.33 14.87 25.51 14.26 12.74 13.91 13.61 13.45 18.17 16.64
MAE 2.18 3.42 2.38 2.12 2.79 1.89 2.19 1.71 1.77 1.68 1.73 2.89
MAPE 0.04 0.04 0.06 0.04 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.05

Validation MSE 73.46 75.41 72.94 72.68 78.79 72.93 73.14 73.02 73.95 75.13 83.30 74.49
MAE 4.82 5.80 5.00 4.97 5.21 4.88 5.02 4.75 4.89 4.94 4.76 5.51
MAPE 0.09 0.09 0.11 0.09 0.10 0.09 0.09 0.09 0.09 0.10 0.09 0.10

Table 15 Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) for training, testing, and validation data for Turbidity (TUR) (NTU) output

Data Error Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

Training MSE 6.13 6.42 6.62 6.17 6.42 6.18 6.43 6.18 6.37 6.33 6.25 6.67
MAE 1.20 1.39 1.43 1.25 1.48 1.23 1.36 1.20 1.27 1.22 1.21 1.51
MAPE 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02

Testing MSE 1.13 1.38 0.74 0.77 1.26 0.73 0.64 0.73 0.70 0.72 1.00 1.01
MAE 0.44 0.66 0.60 0.42 0.61 0.38 0.47 0.35 0.35 0.37 0.35 0.68
MAPE 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.004 0.00 0.00 0.00 0.01

Validation MSE 6.91 7.36 7.09 6.92 7.41 6.94 7.10 6.94 7.18 7.12 7.18 7.40
MAE 1.31 1.54 1.41 1.37 1.63 1.36 1.45 1.34 1.42 1.35 1.37 1.65
MAPE 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Fig. 9 Comparison of actual and predicted results of TSS, TUR and COD response using SCG
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3.4 Evaluation on the Performance of ANN

The rule of thumb is that regression, R should approach 1, as the R value measures the
correlation between actual and predicted value.

Figure 9 compare experimental TSS, TUR and COD with predicted values. The
plot indicates that the training algorithm SCG has been successful in predicting the
TSS, TUR and COD values as the graphs of predicted results match well with the
experimental values. These plots give the best results of the study carried out.

Figure 10 depicts the R values obtained for the SCG training algorithm, with training,
testing and validation data showing acceptable R values. This indicates the good fitting of the
experimental data in the ANN model

Fig. 10 Regression (R) values for the training, testing, validation and overall data with SCG training algorithm
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4 Conclusions

Performance of coagulation-flocculation process using fenugreek-okra in treating POME was
studied to evaluate the removal efficiency of TSS, TUR and COD. The results were further
optimized using ANN modelling technique. ANN was used to evaluate the accuracy of the
predicted results. The process involved four parameter inputs namely pH, stirring speed,
fenugreek dosage and okra dosage, and three parameter outputs namely TSS, TUR and
COD removal percentages. Optimum parameters determined were pH 3.2, 4.09 g/L of
fenugreek dosage, 58 mL/500 mL POME of okra dosage and stirring speed of 197 rpm in
order to yield maximum TSS, TUR and COD removal efficiencies of 92.7%, 94.97%, and
63.11%. An FFNN backpropagation model was developed using tangent-purelin transfer
function and trained using 12 different training algorithms and 1 to 25 number of hidden
neurons. It was observed that the SCG algorithm was the best training function for the
coagulant-flocculant process with optimal MSE, MAE and MAPE values for all three outputs.
From the present study, it was found that the ANN model has been successfully used to predict
the TSS, TUR and COD with an R value of 0.8629.
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