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Abstract

Raw palm oil mill effluent (POME) is classified as a highly polluting effluent, which
needs to be treated to an acceptable level before being discharged into water bodies.
Currently, chemical coagulants are widely used in treating POME, but their hazardous
nature has caused several health and environmental problems. Therefore, this research
presents the use of natural materials such fenugreek and okra as bio-coagulants and bio-
flocculants, respectively, for the treatment of POME. Artificial neural network (ANN)
modelling technique was used for the estimation of predicted results of the coagulation-
flocculation process. The responses of the process were the percentage removal of total
suspended solid (TSS), turbidity (TUR) and chemical oxygen demand (COD), while the
inputs were fenugreek dosages, okra dosages, pH and mixing speed. The ANN model
was developed using 12 different training algorithms. Scaled conjugate algorithm (SCG)
proved to be the best training algorithm with lowest mean-squared error (MSE), mean
absolute error (MAE), mean absolute percentage error (MAPE) values for all the three
outputs. The MSE, MAE and MAPE values were: 16.64,2.10, 0.03 for the TSS response;
5.05, 1.03, 0.01 for the TUR response; and 54.59, 3.82, 0.07 for the COD response,
respectively. The ANN model with a regression R of 0.8629 proved to be the best for the
prediction of all the responses in this study. The results proved that ANN can be applied
to predict TSS, TUR and COD of POME.
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1 Introduction

Palm oil mill effluent (POME) is a liquid waste with an unpleasant odour, acidic properties,
and high oxygen demand. These characteristics make it a highly polluting wastewater, hence
cannot be directly released into water bodies (Sethu et al. 2019). The general characteristics of
raw POME are given in Table 1. The values were obtained from a local palm oil mill. There
are several methods used to treat POME, and the most popular one is the ponding method, via
anaerobic, aerobic and facultative treatment ponds. Though efficient, this process takes a very
long time, up to about 6 months to treat and release or reuse the water. Besides that, this
treatment method is not very attractive these days as greenhouse gases are emitted directly into
the environment (Yacob et al. 2006). Thus, a much faster and more efficient method that is
economically and environmentally friendly is required. One such method, which is becoming
popular these days, is coagulation and flocculation with natural materials.

Coagulation and flocculation are widely used in treating wastewater and these coagulants
can be either organic or inorganic in form. Ab Kadir et al. (2004) concluded that chemical
coagulants are the fastest way to treat POME, and proper selection of coagulant and its
optimum dosage succeed in reducing about 60% of BOD and COD content along with 90%
of suspended solids content. Aluminium sulphate (alum) is widely used as coagulant in
wastewater treatment. However, recent studies reported that using alum generates voluminous
sludge and it is linked with health-related issues such as Alzheimer’s disease and senile
dementia (Ugwu et al. 2017). Therefore, natural coagulants are sought by researchers as a
viable alternative in overcoming the drawbacks of using coagulants.

The application of natural coagulants in wastewater treatment has been extensively studied
since natural coagulants produce promising results (Yin 2010; Asad et al. 2020). The advan-
tages of using natural coagulants are that they are eco-friendly, cost-effective, generate a
minimal amount of sludge and have a higher nutritional value which could be used as
fertilizers and as an energy source (Sethu et al. 2019). Bhatia et al. (2007) reported that 99%
removal of suspended solid in POME treatment was achieved using Moringa oleifera seeds
extract as coagulant at optimum pH 5, settling time 114 min, 3469 mg/L of M. oleifera dosage
and 6736 mg/L of flocculant dosage. Freitas et al. (2015) reported that the addition of okra
mucilage as coagulant into textile wastewater treatment was able to increase the COD removal
by 35.74% and reduce the chemical coagulant dosage by 72.5%. Chung et al. (2018) reported
that when peanut coagulant and okra flocculant were used to treat POME, the highest observed
removal efficiencies of TUR, TSS and COD were 92.5%, 86.6% and 34.8%, respectively. The
optimum pH, and coagulant and flocculant dosages were pH 11.6, and 1000.1 mg/L and 135.5
mg/L, respectively. They also reported that for wheat germ coagulant and okra flocculant the
removal efficiencies were 86.6%, 87.5% and 43.6% for TUR, TSS and COD, respectively. The
optimum parameters were pH 12, coagulant dosage 1170.5 mg/L and flocculant dosage 100
mg/L. Choong et al. (2018) utilised chickpea as the natural coagulant and flocculant for the

Table 1 Characteristics of raw POME

Parameter Unit Range Average value
Turbidity (TUR) NTU 7,700-13,700 10,700

Total suspended solid (TSS) mg/L 7,600-13,300 10,450
Chemical oxygen demand (COD) mg/L 23,100-34,400 40,300

pH - 4.4-5.0 4.7
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treatment of POME. They reported that the optimum condition was established at pH of 6.69,
chickpea dosage of 2.6 g/L, and rapid mixing speed of 140 rpm. At the optimum condition, the
removal percentages of TUR, COD and TSS were 86%, 56% and 87%, respectively. Thus,
from all the above studies, it is clear that natural coagulants perform far superior than their
chemical counterparts, hence, the need of the current research. The present work was carried
out to test the efficacy of a natural and abundantly available bio-coagulant (fenugreek), and a
natural bio-flocculant (okra mucilage), to be used for the treatment of POME. Results obtained
were modelled with artificial neural networks (ANN).

Artificial neural network is a simulation technique used for predicting responses of input data and
identify relationships between input and output data. Several researchers have utilized ANN for
modelling various non-linear systems. Ahmad Tajuddin et al. (2015) developed an ANN model to
predict the percent removals of COD, TSS and TDS through five input variables, namely flocculant
dosage, fenugreek dosage, rapid mixing speed, rapid mixing time and pH. Selvanathan et al. (2017)
used ANN modelling for the investigation of biochar derived from rambutan peel via slow pyrolysis
as potential adsorbent for the removal of copper ion Cu (II) from aqueous Haghiri et al. (2018) used
ANN to determine the optimum coagulant dosage for water treatment process by developing two
models, i.e., the first to predict the water quality parameter, and the second to predict the optimal
coagulant dosage. In a separate study, a multilayer feed-forward neural network (FANN) model was
trained with an error back-propagation algorithm to predict char yield from reaction time and
temperature input (Arumugasamy and Selvarajoo 2015). Selvarajoo et al. (2019) focused on
modelling the weight loss due to the effect of temperature and time of banana peels during pyrolysis
thermal degradation. An ANN model was developed based on single layer hidden neurons. The
model was trained based on the backpropagation technique using the Levenberg—-Marquardt (LM)
optimization algorithm.

Pakalapati et al. (2019a) used ANN for the prediction of polycaprolactone (PCL polymer)
conversion. They used five training algorithms of ANN to carry out the modelling. Among the
five, LM proved to be the most appropriate training algorithm. Pakalapati et al. (2019b)
utilized ANN to predict the biopolymer (PCL) polydispersity index from the enzymatic
polymerization process with four different training algorithms, out of which, the LM training
algorithm proved to be most suitable for their work. Wong et al. (2018) modelled the
enzymatic polymerization of e-caprolactone using 11 training algorithms of ANN, and
found LM to be the best algorithm. Pilkington et al. (2014) used ANN to predict the percentage
recovery of artemisinin through the extraction of A. annua. They used extraction temperature,
duration and solvent (petroleum ether) as inputs and leaf proportions on the recovery of
artemisinin from leaf steeped in solvent as output. In the work of Karri and Sahu (2018), a
low-cost adsorbent produced from palm oil kernel shell based agricultural waste was examined
for its efficiency to remove Zn(Il) ions from the aqueous effluent. They made use of ANN for
the study of optimal values of independent process variables to achieve maximum removal
efficiency. The inputs to the ANN model were the factors (initial solution concentration, pH,
adsorbent dosage, residence time and process temperature) and the percentage removal of
Zn(Il) ions was chosen as a response. They had the metaheuristic differential evolution
optimization strategy embedded into the ANN architecture which results in a hybrid of both
methods (termed as ANN-DE). Yogeswari et al. (2019) made use of ANN for the estimation of
hydrogen production from confectionery wastewater. Their input parameters were time,
influent COD, effluent pH and volatile fatty acids (VFA). They concluded that maximum
COD removal efficiency of 99% and hydrogen production rate of 6570 mL/d was achieved at
7.00 kg COD/m3d and 24 h of hydraulic retention time.
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In this research, ANN has been used to evaluate and predict the TSS, TUR and COD
removal efficiency of the coagulation-flocculation process using fenugreek-okra in treating
POME. The objective of this research paper was to determine the performance comparison for
the coagulation-flocculant process in efficiency removal of TSS, TUR and COD under 4
operating conditions, namely fenugreek dosage, okra dosage, pH and mixing speed. ANN
models of the coagulation-flocculation process were developed using Matlab™. ANN was
used to predict TSS, TUR and COD results through regression value (R), mean squared error
(MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). The novelty
of'this research is in terms of modelling, where 12 training algorithms of ANN have been used
instead of only using LM training algorithms which is the most popular training algorithm and
usually found in most of the literature. This comparison of training algorithms provides the
conclusion of the most suitable training algorithm for the obtained data.

2 Materials and Methods
2.1 Preparation of Samples
2.1.1 POME Sample

POME samples were obtained from Jugra Palm Oil, Banting, Selangor, Malaysia. The samples were
collected at a temperature range of 70°C to 80°C from the first anaerobic pond. The samples were
cooled down to room temperature and stored in an airtight container, away from sunlight to avoid
decomposition due to microbial reaction. The characteristics of the POME are given in Table 1.

2.1.2 Fenugreek Coagulant

Fenugreek was purchased from a local supermarket in Semenyih, Malaysia. The fenugreek
was dried in an oven (Memmert GmbH) at 60°C for 24 h. The dried fenugreek was ground into
fine powder using a domestic blender. The fine powder was sieved to a size range of 200 um to
500 um through a sieve shaker and was stored in a sealed beaker and kept in a dry place. The
fenugreek stock solution was prepared by dissolving 10 g of fenugreek powder in 500 ml of
distilled water.

2.1.3 Okra Flocculant

Fresh okra was bought from a local supermarket in Semenyih, Malaysia. The okra was washed
to remove impurities before it was cut into small pieces. The pieces were then immersed in a
container filled with distilled water for 12 h to extract the mucilage. The mucilage was
squeezed using a muslin cloth and stored in an airtight beaker and kept in a cool and dry place.

2.2 Jar Test Experiments

Jar test experiments were performed in batches of six, using the Lovibond flocculator. The
POME samples were homogenized by inverting the plastic container several times before it
was poured into the beaker. Each jar test was carried out using 500 mL of POME and initial

readings, namely pH, TSS, TUR and COD were measured for each jar test. The jar test was
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conducted by following the combination of the four manipulating variables that have been
generated by the Design Expert™ software. Each manipulating variable, namely pH, mixing
speed, fenugreek, and okra dosage were adjusted for each jar test as shown in Table 2.

The pH value of the POME sample was altered to the desired pH value within the range 3 to
8 by adding either 0.1 M of sodium hydroxide (NaOH) or 0.1 M of sulphuric acid (H,SOy).
The coagulation and flocculation process were carried out by adding the fenugreek coagulants
at the beginning, at dosages from 4 to 8 g/L, with rapid mixing for 2 min. The mixing speed
values used were based on the ones given in Table 2. After rapid mixing, the okra flocculants
were added with dosages between 20 and 100 mL, and slow mixing was carried out at 60 rpm
for 30 min. The rapid agitation favours mixing of reagents and destabilization of particles,
while the slow agitation was for stimulating collision of particles to promote agglomeration of
particles. The POME samples were then allowed to settle for 4 h.

2.3 Experimental Analyses

TSS was measured using the Hach DR 3900 spectrophotometer, and turbidity was measured
using the Martini Mi415 turbidity meter. As for COD, 2 mL of the treated POME samples
were mixed with high-range Hach COD vials separately and the samples were digested at 150
°C for 2 h. After that it was cooled to room temperature and the COD reading was taken using
the Hach DR 3900 spectrophotometer. Each experiment was carried out in triplicates to
increase accuracy. Values obtained were averaged and reported. The removal efficiencies of
TSS, turbidity and COD were calculated using Eq. (1):

Table 2 Experiment data generated by Design Expert™

Run Fenugreek dosage-FD Okra dosage-OD pH Mixing speed-MX
(g/L) (mL/500 mL POME) (rpm)
1 54 48.8 8 168
2 4 68 5 180
3 4 26.4 6 150
4 6.4 68 5 150
5 54 48.8 8 168
6 8 44 8 200
7 5.4 48.8 8 168
8 52 100 8 200
9 8 100 3 155
10 8 34 3 200
11 4 20 8 200
12 6.4 68 5 150
13 4.6 929 3 200
14 6.42 20 5 180
15 8 20 8 150
16 4 100 8 150
17 5 100 3 163
18 6.42 20 5 180
19 4 20 3 150
20 8 412 3 165
21 8 100 8 200
22 8 100 4 200
23 4 68 5 180
24 5 40 3 200
25 8 100 8 200
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Final reading — Inital reading 100

Removal efficiency (%) = (1)

Inital reading

Zeta potential analysis was conducted on the fenugreek solution and raw POME using the
Malvern Zetasizer. Its main aim was to measure the magnitude of the electrostatic charges of
particles, which is vital to explain the attractive or repulsion forces that exist between particles
during POME treatment.

2.4 Modelling with ANN

An artificial neural network (ANN) is a computational model inspired by the concept of
human brain consisted of units called neuron. In the present study, modelling was carried out
using MATLAB 2016a software. Generally, a neural network consists of 3 layers namely
input, hidden and output layers. Each layer is connected through neurons via weight matrices.
Figure 1 shows a single layer network where an input vector P is connected to neuron input
through weight w that is usually associated with vectors and nodes. The input is multiplied by
weight to form a product wp. The sum of weighted input and bias » form a transfer function of
net input which determines the activation of neurons, and finally, forming an output after
processing the transfer function f. Activation function or transfer function usually used is the
sigmoid, which is logistic sigmoid (logsig) and hyperbolic tangent sigmoid (tansig) function.

There are several types of neural network techniques, namely feedforward, recurrent, recur-
sive, convolution. Feedforward backpropagation neural network (FFNN) is the most com-
monly used among all multilayer perception (MLP) networks because in this network the
information moves only from the input layer directly through the hidden layers to the output
layer without any cycles or loops.

2.4.1 ANN Structure

The ANN is composed of 3 layers which are the input layer, the hidden layer, and the output
layer. The input layer contained four neurons since four parameters were manipulated in this
study, namely pH, mixing speed (MX), fenugreek dosages (FD) and okra dosages (OD),
whereas the output layer had three neurons as three parameters were controlled, namely TSS,

Fig. 1 Schematic neural ng rk i
bllgck chematic neural netwo ' p (|nput)
(weight) w ¥

Y [+ b (bias) b=1
¥ n Neuron with bias

f
¥

a (output)

a=f(wp +b)
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TUR and COD removal percentages. There are a total of three transfer functions that were
used in this study, namely tansig, logsig and purelin. Through trial and run method, it was
found that the ‘tansig-purelin’ combination function results in the best regression, R value and
lowest MSE value for all the three outputs. Thus, the neurons in the hidden layer used the ‘tan
sigmoid’ function, whereas the output neurons used the ‘purelin’ function. The proposed
network topology is 4-N-3, as illustrated in Fig. 2. The number of nodes in the input layer is
four, and N is the number of neurons in the hidden layers, and three is the number of neurons
in the output layer.

2.4.2 Data Division and Collection

Twenty five trial runs were obtained from Design Expert™ software, as presented in Table 2.
The network was trained using these 25 runs. All the data needed to be normalized, and once
the input and target data were normalized, it was divided into three sets of data which were
training, validation and testing data through the ‘divideblock’ function. 50% of the data were
used for training, 25% used for testing and 25% used for validation. The training dataset was
used to train the model for adjusting the weights and biases, whereas the validation set was
used to minimize overfitting. The data for the testing set was used to evaluate the prediction
performance of the network.

2.4.3 Data Normalization

Input and output were normalized so that all data were in the uniform range for each parameter.
This was to enhance the network performance and stability, since each variable, either input,
output or target, was composed of varied ranges. The data was normalized in uniform range
within an interval of -1 to 1 using the min-max normalization approach as shown in Eq. (2):

Y11 = (ymax_ymin) f"_ymin (2’)

where x = actual data; x,,;,,= minimum value of actual data; x,,,,= maximum value of actual
data; y= minimum value in normalized data (default=-1); y,,,,= maximum value in normalized
data (default=1)

Input Layer Hidden Layer Output Layer

Fenugreek dosage

TSS removal percentage
0

Okra dosage

1
TUR removal percentage

COD removal percentage

Stirring speed

Fig. 2 Structure of the FFNN model
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2.4.4 Hidden Neuron Selection

The number of hidden neurons and hidden layers play a significant role in the performance of
the network, especially for the MSE, MAE and MAPE values. Therefore, the network was
trained using a trial-and-error method with hidden neurons varying from 1 to 25, in order to
determine the optimum hidden neurons with the least error. Excessive number of neurons may
cause overfitting of the network, whereas insufficient number of neurons may cause inaccu-
racy of performance.

2.4.5 Training Algorithm

Training of data is essential as it determines the optimal weights and bias points of the network
to minimize the error between the output and target data. Backpropagation was used generally
to calculate derivatives of performance through weight and bias variable; it functions by
calculating the output layer first then propagate it backward.

Backpropagation algorithms can be categorized into six classes which are: (1) Adaptive
momentum; (2) Self-adaptive learning rate; (3) Resilient backpropagation; (4) Conjugate
gradient; (5) Quasi-Newton; and (6) Bayesian regularization. A further explanation of these
algorithms is given in Sect. 2.3.5.1 till 2.3.5.7.

Adaptive Momentum (Training Function: GD, GDm) Gradient descent backpropagation
(GD): GD is the batch steepest descent training algorithm in which the weights and biases
are updated in the negative gradient direction. The algorithm used seven training parameters
namely epochs, show, goal, time, Ir, min_grad and max_fail.

Self-adaptive Learning Rate (Training Function: GDx, GDa) Gradient descent with momen-
tum and adaptive learning rate backpropagation (GDx): ‘GDx’ states that the algorithm
converges much slower than the other training algorithms, therefore, it is recommended to
use this algorithm in training networks with early stopping since it will let the network to
converge much slower to minimize the error.

Resilient Backpropagation (Training Function: trainrp) The resilient backpropagation (RP)
is used generally to eliminate harmful effects of partial derivatives magnitudes. The advantage
of this algorithm is that the algorithm is much faster than the standard descent algorithm.

Conjugate Gradient (Training Function: traincgf, traincgp, traincgb, trainscg) All of the
conjugate gradient algorithms are required to determine the steepest descent direction which is
the negative of the gradient on the 1st iteration since all the algorithms are based on conjugate
directions. The steepest descent gradient can be calculated using Eq. (3). Then, the optimal
distance was calculated using the line search method through Eq. (4). And Eq. (5) is the
general equation that combines new steepest decent direction and previous search direction to
determine a new search direction. The conjugate gradient has moderate memory requirements.

Po = "8o 3)

Xi+1 = Xk Qpy, (4)
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Pk = &k + Bl (5)

Conjugate Gradient Algorithms

(i) Polak-Ribiere Update (CGP): For CGP, the search iteration was determined using Eq. (5)
with computing new constant of 3; (Eq. 6) in Eq. (5). It is stated that the algorithm has
performance similar to CGF. The storage requirement of CGP (4 vectors) is slightly larger
than CGF (3 vectors):

Agi g
ﬁk _ k—1 k

= (6)
gl{—lgk—l

(i) Powell-Beale Restarts (CGB): It is stated that the CGB algorithm has better performance
than the CGP algorithm and the storage requirement for CGB (6 is larger than CGP (4
vectors).

(iii)  Scaled Conjugate Gradient (SCG): The SCG algorithm is used to avoid time-consuming

The algorithm combines LM and conjugate gradient approaches.

Quasi-Newton (Training function: trainbfg, trainoss, trainlm)

(1) BFGS algorithm (BFG): The Newton’s method is considered as an alternative to the
conjugate gradient since it provides fast optimization and convergence. The Newton’s
method is based on the use of Eq. (7):

X1 = XAy g (7)

where A;! is a Hessian matrix (second derivatives). However, it is not preferable to compute

the matrix in the feedforward network due to its complexity and high cost. BFGS is

recommended to be applied for smaller networks as it requires large storage since it needs
more computation in each iteration.

(ii) One step secant (OSS): OSS method is an alternative to BFGS algorithm as OSS requires
smaller storage and does not involve second derivatives calculation and does not save the
matrix since the algorithm assumes that the Hessian matrix is an identity matrix for each
of the iterations.

(iii) Levenberg-Marquardt (LM): The LM algorithm is commonly used in training a neural
network mainly moderate-sized feedforward network, since LM appears to be the fastest
method. This is presumably due to the efficiency of the matrix shown in Eq. (8), which
reduces the performance function in each of the iteration. The advantage of this
algorithm is that it can also be used for second-order training without computing the
Hessian matrix:

Xit1 :x,r[JTJ + ]_1JTe (8)
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Bayesian Regularization (Training function: trainbr) Bayesian regularization
backpropagation (BR) is a function used to minimize a combination of squared error
and weight. It adjusts the weight and bias values according to LM optimization through
calculating backpropagation by calculating the Jacobian performance X. This function is
given in Eq. (9):

B =JjX%5X
Jje=jX*E 9)
dX = —(jj = I*mu)/je

2.4.6 Optimization of ANN

ANN modelling is developed based on a trial-and-error method with different numbers of
neurons. This technique is used for different training algorithms. Each training method results
in a regression, R which indicates the relationship among the variables, thus, the R value
should be near 1. Any training with R value of 0.8 to 1.0 is considered as a satisfactory result.
The training process of the network will generate training, validation and testing errors. The
error is calculated as the difference between target and output data. The selection of number of
neurons and training algorithm is based on fitting of the graph with least value of Mean
Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) whose formulae are given by following Egs. (10) to (13):

MSE = %z;;o (EV-PV)? (10)
MAE = %z;; JJEV=PV| (11)
MAPE (%) = %Z?:o E‘;‘fvl 100 (12)
aaD(s0) = 1o ) 100 (13)

where n is the experiment number; EV is the experimental value of i experiment; PV is the
predicted value of i experiment.

However, it was found that the network still could not reach regression R higher than 0.8
after conducting several trial-and-run methods. Thus, ‘repmat’ function was added into the
coding in order to multiply the input by 3 which results in total of 75 input data. This is
presumably due to the fact that the network was a multi-input and multi-output (MIMO) model
with limited input data.
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Fig. 3 Effect of fenugreek dosage

3 Results and Discussion
3.1 Interaction between Process Variables and Responses

3.1.1 Effect of Coagulant Dosage

Figure 3 shows the influence of fenugreek dosage on the removal efficiencies of TSS,
TUR and COD on POME treatment. It can be observed that the increase in coagulant
dosage was able to increase the percent removal of TSS, TUR and COD. Highest percent
removal of TSS, TUR and COD obtained at the above conditions are on average 90%,
80% and 70%, respectively.

100
i N
g 80
g 70
©
£ 60
g 50
8 s TSS
= 40
3 e TUR
g 30
x 20 e COD
10
0
20 26.4 34 40 44 48.8 68 99
Okra dosage (ml/500 ml)

Fig. 4 Effect of okra dosage
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Fig. 5 Effect of pH

This is probably due to the fact that fenugreek powder has rough and highly
porous surfaces, which increases the overall surface area, thus increasing the adsorp-
tion sites (Chung et al. 2018). Sethu et al. (2015) stated that the fenugreek seed is an
anionic polyelectrolyte and the coagulation process involves adsorption and inter-
bridging mechanisms due to the fact that the seeds have protein that composes amide
group. This statement is further verified by analysing the fenugreek solution with zeta
potential that results in negative net charge of -39.6 mV. The reduction of removal
efficiencies in certain dosages is probably due to that the negatively charged fenu-
greek replaces the anionic groups on POME colloidal particles (Ab Kadir et al. 2004).

3.1.2 Effect of Flocculant Dosage

Figure 4 shows that the TSS, TUR and COD removal increased with increasing okra dosage.
Maximum removal percentage of TSS, TUR and COD were on average 95%, 95% and 70%,
respectively.

The high removal may be due to the protein content in okra that act as active
agent in flocculation process (Fahmi et al. 2013). It was reported that okra that was
extracted with distilled water is an anionic polyelectrolyte composed of galactose,
rhamnose and galacturonic acid which make the okra having acidic property with pH
of 5.8. Okra was reported to mainly flocculate through bridging since the mucilage
has similar composition to cactus (Sethu et al. 2019). This can be explained as both

Table 3 Zeta analysis of raw POME after pH adjustment

pH Zeta potential (mV) pH Zeta potential (mV)
3 2.06 6 -32.6
4 -23.6 7 -34.3
5 2232 8 -36.6
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Table 4 Experiment (EV) and prediction (PV) TSS, TUR and COD data generated by ANN (SCG training

algorithm)
Run FD  OD pH MX  Total suspended Turbidity (TUR)  Chemical oxygen

(gL) (mL/500 mL POME) (rpm) solids (TSS) mg/L  NTU demand (COD)

mg/L
EV PV EV PV EV PV

1 54 488 8 168  64.77 74.66 7925 8657  51.52 54.84
2 4 68 5 180 92.64 83.00 95.53 92.19 68.34 55.54
3 4 26.4 6 150  90.36 90.29 9274 9275  59.00 58.98
4 6.4 68 5 150  95.10 95.65 9312 9452 5723 63.48
5 54 488 8 168  76.14 74.66 87.10  86.57 3535 54.84
6 8 44 8 200 94.69 94.67 9430 9430  71.03 71.06
7 54 48.8 8 168 83.08 74.66 93.36 86.57 77.66 54.84
8 52 100 8 200 9255 92.56 90.62  90.63  73.43 73.47
9 8 100 3 155 95.98 95.99 9697 9696  70.00 69.98
10 8 34 3200 96.77 96.80 9712 97.13 7196 71.96
11 4 20 8 200 84.19 84.20 88.53 8854 4372 43.72
12 64 68 5 150  96.01 95.65 9545 9452  67.67 63.48
13 46 99 3200 96.01 96.00 97.16  97.15  68.12 68.13
14 642 20 5 180  84.31 89.65 9428 9500 55.08 60.81
15 8 20 8 150  84.31 84.22 8748 8748  69.67 69.66
16 4 100 8 150  94.29 94.31 9549 9548 5250 52.50
17 5 100 3 163 88.49 88.48 89.67  89.67 49.86 49.87
18 642 20 5 180  94.97 89.65 95.69 9500  66.60 60.81
19 4 20 3 150  93.97 93.96 96.11  96.11  63.16 63.17
20 8 41.2 3 165  93.75 93.78 95.03 9502 44.13 44.12
21 8 100 8 200 93.64 94.02 95.05 9520 75.62 76.15
22 8 100 4 200 97.16 97.20 97.07  97.08  69.03 69.01
23 4 68 5 180  73.31 83.00 88.86 92.19 4275 55.54
24 5 40 3200 9837 98.36 97.06  97.08  83.79 83.79
25 8 100 8 200 94.85 93.87 9557  95.11 79.70 78.08
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Table 5 Mean absolute error (MAE) of total suspended solids (TSS) (mg/L) for different number of neurons in
different training algorithms

Hidden neuron  Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 434 542 490 4.64 494 383 570 411 500 573 485 4.6l
2 4.63 5.09 855 610 436 6.08 623 6.16 441 374 411 356
3 434 5.19 505 479 552 475 378 516 451 405 341 337
4 4.60 4.40 599 499 725 470 473 466 453 380 330 293
5 591 556 364 280 462 419 450 416 485 431 3.05 275
6 5.00 6.29 483 429 477 501 343 531 313 3.63 293 275
7 2.67 3.26 650 292 389 516 290 634 672 312 242 241
8 322 3.89 740 4.61 345 323 524 3.02 545 313 214 241
9 297 336 1426 441 290 3.18 347 343 340 459 201 252
10 299 3.52 319 383 284 572 356 587 366 496 277 236
11 542 417 312 324 289 376 280 378 317 272 210 239
12 277 333 1384 394 259 420 334 406 294 244 261 235
13 258 7.26 561 249 282 754 360 236 291 3.08 216 238
14 238  4.09 249 268 281 276 299 281 254 379 291 238
15 236 3.57 6.07 392 3.09 360 351 376 279 249 198 239
16 257 3.19 286 246 232 395 225 402 270 3.69 199 244
17 234 342 235 316 207 214 220 250 273 3.02 209 236
18 221 334 247 258 246 236 232 213 246 456 221 233
19 319 320 1246 766 240 246 3.65 247 220 278 274 233
20 232 4.88 218 230 229 222 242 239 451 236 294 253
21 2.10  4.07 229 225 247 275 447 267 272 236 219 255
22 202 3.15 293 234 277 382 228 393 243 293 298 244
23 223 2.68 895 211 264 209 228 214 359 258 223 242
24 202 3.26 240 217 257 242 224 240 227 212 231 246
25 221 3.9 233 227 274 218 235 210 230 202 207 256

okra and cactus have galacturonic acid, which acts as an active component that
contributes to the formation of bridging for the particles to adsorb onto (Yin 2010;
Freitas et al. 2015). Therefore, higher dosage of okra should result in achieving higher
removals of TSS, TUR and COD. The okra tends to replace the ionic group on the
colloidal particle of POME which allows hydrogen bonding to occur between the
colloids and okra. The reduction in removal efficiencies may be due to the re-
stabilization of particles since the okra was negatively charged (Sethu et al. 2015).

3.1.3 Effect of pH

The pH was altered within the range of 3 to 8 to determine the effect of pH towards the
removal efficiencies of TSS, TUR and COD. Based on Fig. 5, the removal efficiency slightly
decreased with increasing pH.

This phenomenon can be explained as follows: pH changes usually do not affect
the efficiency of bio-coagulants, thus any change in percent removals of TSS, TUR
and COD must be due to its effect on the constituents of POME (Mishra et al. 2004).
In addition, the reduction in removal efficiencies was due to an increase in
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Table 6 Mean absolute percentage error (MAPE) of total suspended solids (TSS) (mg/L) for different number of
neurons in different training algorithms

Hidden neuron  Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 0.05  0.07 0.06 0.06  0.06 0.05 0.07 0.05 0.06 0.07 0.06  0.06
2 0.06  0.06 0.10 0.08  0.05 0.07 0.07 0.07 0.05 0.04 0.05  0.04
3 0.05  0.06 0.06 0.06  0.07 0.06 0.05 0.06 0.05 0.05 0.04  0.04
4 0.05  0.05 0.07 0.06  0.08 0.06 0.06 0.05 0.05 0.05 0.04  0.04
5 0.07  0.07 0.04 0.03  0.06 0.05 0.05 0.05 0.06 0.05 0.04 0.03
6 0.06  0.07 0.06 0.05  0.06 0.06 0.04 0.06 0.04 0.04 0.04  0.03
7 0.03  0.04 0.08 0.04  0.05 0.06 0.04 0.07 0.08 0.04 0.03  0.03
8 0.04  0.05 0.09 0.06  0.04 0.04 0.06 0.04 0.06 0.04 0.03  0.03
9 0.04  0.04 0.16 0.05  0.03 0.04 0.04 0.04 0.04 0.06 0.03  0.03
10 0.04  0.04 0.04 0.05  0.03 0.07 0.04 0.07 0.04 0.06 0.03  0.03
11 0.06  0.05 0.04 0.04  0.03 0.05 0.03 0.05 0.04 0.03 0.03  0.03
12 0.03  0.04 0.16 0.05  0.03 0.05 0.04 0.05 0.04 0.03 0.03  0.03
13 0.03  0.08 0.07 0.03  0.03 0.09 0.04 0.03 0.04 0.04 0.03  0.03
14 0.03  0.05 0.03 0.03  0.03 0.03 0.04 0.03 0.03 0.05 0.04  0.03
15 0.03  0.04 0.07 0.05  0.04 0.04 0.04 0.05 0.03 0.03 0.03  0.03
16 0.03  0.04 0.03 0.03  0.03 0.05 0.03 0.05 0.03 0.04 0.03  0.03
17 0.03  0.04 0.03 0.04  0.03 0.03 0.03 0.03 0.03 0.04 0.03  0.03
18 0.03  0.04 0.03 0.03  0.03 0.03 0.03 0.03 0.03 0.05 0.03  0.03
19 0.04  0.04 0.15 0.09  0.03 0.03 0.04 0.03 0.03 0.03 0.03  0.03
20 0.03  0.06 0.03 0.03  0.03 0.03 0.03 0.03 0.05 0.03 0.04  0.03
21 0.03  0.05 0.03 0.03  0.03 0.03 0.05 0.03 0.03 0.03 0.03  0.03
22 0.03  0.04 0.04 0.03  0.03 0.04 0.03 0.05 0.03 0.03 0.04  0.03
23 0.03  0.03 0.10 0.03  0.03 0.03 0.03 0.03 0.04 0.03 0.03  0.03
24 0.03  0.04 0.03 0.03  0.03 0.03 0.03 0.03 0.03 0.03 0.03  0.03
25 0.03  0.04 0.03 0.03  0.03 0.03 0.03 0.03 0.03 0.03 0.03  0.03

concentration of OH~ ions. At high pH, the OH™ ions tend to compete with organic
molecules for the vacant adsorption site on the coagulant (Ab Kadir et al. 2004).
Under alkaline conditions, any positive charged reagent will tend to be negatively
charged due to increasing of OH~ ions, which can be illustrated in Table 3. Based on
Table 3, maximum removals of TSS, TUR and COD achieved at pH 3 are probably
due to occurring charged neutralization since raw POME is positively charged while
the fenugreek solution is negatively charged at pH 3.

3.1.4 Effect of Rapid Mixing Speed

Rapid mixing speed plays a significant role in the coagulation-flocculation process, since it is
during the mixing stage when the destabilization reaction and formation of floc particles occur.
Figure 6 shows that the removal efficiency of TSS, TUR and COD increased as the mixing
speed increased from 150 to 200 rpm.

Higher mixing speed causes increasing collision of particles and attachment which
then promotes agglomeration of particles to form larger flocs. Besides, increasing
rapid mixing speed during coagulation causes increasing of shear stress applied on
the flocs which then lead to formation of denser and compact flocs (Ahmad Tajuddin
et al. 2015; Choong et al. 2018). This mainly affected the removal of TSS and TUR,
and not very much the removal of COD. From Fig. 6, it can be seen that the
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Table 7 Mean-squared error (MSE) of total suspended solids (TSS) (mg/L) for different number of neurons in
different training algorithms

Hidden Training algorithm

neuron
GD GDA GDX  RP CGF CGP CGB SCG BFG OSS LM BR

1 68.29 55.71 4627  43.54 4736 34.81 5393 38.67 46.06 59.90 47.47 41.67
2 66.22  49.01 13595 90.58 4324 61.08 59.75 6238 42.18 26.04 33.84 26.25
3 131.00 47.84 4328  56.15 5736 43.11 27.58 4833 38.77 3493 2544 22.01
4 17797 3331 5793 4134 76.66 38.70 4558 38.10 33.09 2691 23.13 19.18
5 2591 5122 2781 21.71 3729 30.74 3292 2993 41.14 3492 19.90 18.95
6 2425 59.51 3954  28.68 41.17 4121 2275 4430 22.00 2423 19.75 19.92
7 2195 21.23  90.11 2032 2836 4554 21.61 6401 67.76 19.88 17.15 17.27
8 19.83  26.67 84.84 4848 2471 20.58 40.06 20.83 43.53 2035 17.21 18.01
9 18.59 2245 27578  29.12 1883 1991 2484 21.02 23.62 3993 17.65 17.57
10 19.52 2858 2757 2551 2134 5423 2386 5631 26.62 3897 1921 17.29
11 20.81 3452 21.12  22.64 19.15 26.63 1825 2748 24.67 18.03 17.08 17.78
12 19.18 25.11 325.69* 31.00 1891 31.11 25.17 37.37 1930 17.35 20.16 17.85
13 1997 111.47 46.86 17.60 20.67 118.63 25.03 18.48 20.70 20.56 17.32 17.26
14 17.52 3024 17.59 1832 18.03 21.29 23.77 2097 1724 27.03 19.34 17.42
15 18.53 22,63 7856 2791 2723 3033 2736 29.04 1893 17.77 23.80 17.91
16 1697 21.56 21.66 17.69 1725 28.00 17.99 26.56 2149 2432 17.28 19.08
17 1694 2746 1976  25.16 1721 17.19 1735 17.63 18.57 33.72 17.49 17.80
18 1776 21.78 17.37 17.74 1736 17.73 17.15 17.61 20.84 3035 17.71 18.07
19 17.18 28.16 234.62 14815 19.71 1824 30.55 18.58 17.83 20.29 23.50 17.02
20 27.61 12433 1693 19.67 1698 17.68 17.08 1739 74.63 19.21 23.79 17.50
21 20.10 2698 16.94 1731 19.03 18.82 31.02 1852 1838 17.56 1832 17.87
22 16.82 2326 18.69 1725 19.64 37.18 17.04 3828 17.41 19.10 3588 18.12
23 23.56  18.46 119.65 18.04 26.14 18.03 17.13 1795 25.66 25.69 17.29 17.97
24 17.48 2250 17.18 1728 17.53 1731 17.03 1723 16.80 1824 22.65 17.48
25 1697 2091 17.64 16.80 22.04 16.67 17.33 16.64* 17.22 16.79 17.31 17.39

*Numbers in bold are the lowest and highest MSE values

maximum percent removals of TSS, TUR and COD were found to be on average at
98%, 98% and 85% at a mixing speed of 200 rpm.

3.2 Artificial Neural Network Modelling

The experimental and predicted value from ANN modelling for TSS, TUR and COD with
SCG training algorithm is given in Table 4.

3.2.1 TSS Response

Based on Tables 5, 6 and 7, the lowest MSE, MAE, and MAPE values for TSS response, or the
output from the model, can be determined. Table 5 shows the MSE values for the TSS
response for hidden neurons varying from 1 to 25. Table 5 provides the MSE values for 12
different training algorithms that were used in the study. The lowest MSE of 16.64 (bold font,
Table 5) is obtained for SCG for 25 hidden neurons (HN). The largest MSE is 325.69 (bold
font, Table 5) for GDX when HN is 12. Overall GD, LM and BR have shown lower MSE
values for HN from 1 to 25 consistently. BR has been consistently having MSE values lower
than 20 for HN 4 through 25. On the other hand, GD, GDA and GDX have shown some very
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Table 8 Mean-squared error (MSE) of turbidity (TUR) (NTU) for different number of neurons in different
training algorithms

Hidden neuron Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 17.68 1575 1295 10.66 1236 934 1234 996 1271 16.82 12.62 10.83
2 19.12 1295 14.06 2035 11.67 16.51 17.01 16.48 11.55 9.00 7.69 8.40
3 28.98 14.35 12.03 842 16.71 11.82 10.65 12.10 11.12 11.58 8.04 7.16
4 73.68 8.03 2032 851 17.18 1l1.66 11.15 11.56 812 6.72 6.68 6.97
5 725 1409 748 859 798 870 792 852 999 1056 7.11 @ 6.31
6 7.16 19.56 1233 721 1090 11.49 7.52 1240 638 720 724 6.38
7 637 6777 2467 672 628 13.62 6.14 1439 18.02 622 530 5.78
8 6.55 7.60 6799 11.92 736 733 13.07 7.66 10.78 6.70 5.18 5.36
9 6.17 652 7235 7.02 594 600 702 603 715 953 519 541
10 594 893 6.63 699 588 1565 682 1510 796 11.18 593 549
11 583 758 793 832 619 558 580 551 809 576 529 530
12 563 673 2658 755 996 7.5 834 849 541 523 621 547
13 5.44 2691 13.82 540 6.80 2536 581 571 644 6.01 518 546
14 532 11.28 540 573 532 6.08 550 6.07 516 580 629 545
15 5.67 612 1841 1196 733 740 980 7.14 586 6.00 524 5.51
16 510 6.03 7.77 534 549 858 514 761 6.14 698 525 6.05
17 519 660 676 6.60 520 521 530 556 639 524 530 529
18 527 6.89 536 514 516 568 537 555 527 1509 572 532
19 527 6.06 4951 3239 6.03 622 982 627 529 6.07 6.11 532
20 813 857 519 537 519 6.04 517 628 799 538 620 546
21 770 577 506 528 6.62 530 1427 529 529 531 573 546
22 520 6.69 574 529 524 994 508 1021 509 584 1278 5.64
23 6.40 645 3635 542 587 515 513 518 6.00 6.51 520 545
24 518 6.44 542 505 679 508 515 508 511 550 849 554
25 512 543 532 505 542 506 520 505 521 517 521 549

high values of MSE of 177.97 for HN =4, 124.33 for HN =20, 135.95 for HN =2,
respectively.

Table 6 presents the MAE values for TSS response. MAE values for the hidden
neurons from 1 to 25 are given in Table 6 for the 12 training algorithms. Lowest MAE
values of 1.98 is obtained for LM with HN = 15. Highest MAE of 14.26 is obtained for
GDX with HN =9. LM and BR have shown good performance in terms of MAE whereas
GD, GDA, and GDX are the worst performers with GDA showing very high MAE
values of 13.84 and 12.46.

Table 7 shows the MAPE values for the TSS response. Lowest MAPE value of 0.03 and
highest MAPE value of 0.16 is obtained for GDX with HN=12. As an overall, the LM, BR
and CGF have shown lower MAPE values, whereas GDA and GDX have shown higher values
of MAPE.

3.2.2 TUR Response
Based on Tables 8, 9 and 10, lowest and highest MSE, MAE, MAPE values are determined
for the TUR response for the 12 training algorithms. Table 8 shows the MSE values for the

12 training algorithms. BR and LM show better performance than other training
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Table 9 Mean absolute error (MAE) of turbidity (TUR) (NTU) for different number of neurons in different
training algorithms

Hidden neuron  Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 248 3.09 275 251 257 226 265 234 265 297 274 246
2 247 268 239 384 239 309 312 3.08 280 211 201 203
3 228 267 257 204 298 248 238 2,68 251 243 205 1.77
4 248 208 358 220 3.06 252 239 251 211 186 173 1.69
5 2.68 3.11 1.83 1.99 209 222 201 217 239 238 190 170
6 224 353 270 1.87 241 250 184 259 173 176 1.88 1.54
7 1.69 185 394 177 174 270 150 283 295 148 124 153
8 .69 178 565 281 1.82 191 279 197 228 169 105 134
9 1.64 169 689 1.79 158 1.63 177 164 18 231 101 139
10 1.43 202 169 1.82 159 28 176 275 186 249 139 140
11 273 184 187 197 154 146 138 144 176 142 1.05 129
12 1.49 172 413 1.97 171 191 187 212 128 120 146 133
13 1.31 395 3.07 129 167 401 147 121 162 149 109 129
14 .09 234 129 134 131 150 130 144 119 159 166 1.28
15 121 164 3.03 235 159 175 182 173 143 166 1.00 1.35
16 1.38 155  2.01 124 128 216 114 189 150 186 1.01 1.40
17 125 149 124 174 104 110 112 133 156 119 106 1.23
18 1.17 180 136 1.14 115 122 126 1.11 120 282 1.13 127
19 1.40 149 557 444 120 148 191 149 119 135 131 134
20 1.20 212 1.09 115 115 137 1.19 160 1.82 1.1 152 1.40
21 .12 158 1.09 1.13 148 117 297 114 126 125 107 136
22 1.06 1.62 151 .30 121 193 111 188 1.12 138 1.63 1.4l
23 .08 172 456 108 116 1.04 116 1.11 152 136 110 1.32
24 1.04 167 131 1.03 173 1.06 1.09 107 113 107 122 145
25 1.16  1.25 122 108 131 106 1.17 103 1.09 1.05 1.04 135

algorithms. GDX is the worst performer of all. SCG shows the lowest MSE value of 5.05
for HN =25 and highest MSE value of 73.68 for GD with HN =4. Table 9 shows the MAE
values for HN 1 through 25. LM and BR show good performance whereas GDA and GDX
show poor performance. Lowest MSE value of 1 is obtained for LM with HN =15.
Highest MSE of 6.89 is for GDX with HN =9. Table 10 shows the MAPE values for
HN 1 through 25. LM shows good results compared to other training algorithms with
multiple training algorithms showing lowest MAPE value of 0.01. The highest MAPE
value of 0.07 is obtained for GDX HN =9.

3.2.3 COD Response

Tables 11, 12 and 13 present MSE, MAE and MAPE values, respectively, for the COD
response. Table 11 shows the MSE values for HN 1 through 25. Lowest MSE value of
54.59 was obtained for SCG HN =25. Highest MSE value of 586.36 is obtained for GDX
for HN =23. BR has shown multiple lowest values of MSE for HN 6 through 25. GDX has
shown multiple high values of MSE. Table 12 shows the MAE values with the lowest
being 3.62 for LM with HN = 16. Highest MAE of 19.58 is for GDX with HN=12. LM
and BR have shown good performance where as GDX is worst performer with very high
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Table 10 Mean absolute percentage error (MAPE) of turbidity (TUR) (NTU) for different number of neurons in
different training algorithms

Hidden neuron  Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 0.03 0.03 003 003 003 002 003 003 003 0.03 003 0.03
2 0.03 0.03 003 0.04 003 003 003 0.03 0.03 002 002 0.02
3 0.03 0.03 003 0.02 003 003 003 0.03 0.03 003 002 0.02
4 0.03 0.02 004 002 0.03 003 003 003 002 0.02 002 0.02
5 0.03 0.03 002 0.02 002 002 002 0.02 0.03 003 002 0.02
6 0.02 0.04 003 002 0.03 003 002 003 002 0.02 002 0.02
7 0.02 0.02 004 0.02 002 003 002 0.03 0.03 002 001 002
8 0.02 0.02 006 0.03 002 002 003 0.02 0.03 0.02 0.0l 001
9 0.02 0.02 007 0.02 002 002 002 0.02 0.02 003 0.01 0.02
10 0.02 002 002 002 002 003 002 003 002 003 002 0.02
11 0.03 0.02 002 0.02 002 002 002 0.02 0.02 0.02 0.0 001
12 0.02 002 004 002 0.02 002 002 002 001 001 002 0.01
13 0.01 0.04 003 001 0.02 004 002 001 002 002 001 0.01
14 0.01 003 001 001 0.01 002 001 002 001 002 002 0.01
15 0.01 002 003 003 0.02 002 002 002 002 002 001 0.02
16 0.02 0.02 002 001 0.01 002 001 002 002 002 001 0.02
17 0.01 002 0.01 002 0.01 0.01 001 001 002 001 001 0.01
18 0.01 002 0.02 001 0.01 0.01 001 001 001 003 001 0.01
19 0.02 002 006 005 0.01 002 002 002 001 002 001 0.01
20 0.01 0.02 001 0.01 001 002 001 0.02 0.02 001 002 0.02
21 0.01 002 001 001 0.2 001 003 001 001 001 001 0.02
22 0.01 002 002 001 0.1 002 001 002 001 002 002 0.02
23 0.01 002 005 001 0.01 0.01 001 001 002 002 001 0.01
24 0.01 002 001 001 0.2 001 001 001 001 001 001 0.02
25 0.01 0.01 001 0.01 001 001 001 0.01 0.01 001 0.0 001

values of MAE for many HN’s. Table 13 shows the MAPE values with lowest being 0.06
for LM with HN = 17. Highest MAPE of 0.34 is obtained for GDX with HN = 12. Best
MAPE performance has been seen in BR and LM and worst MAPE is for GDX with
multiple high values of MAPE for various HN’s.

Based on the response of all the 3 outputs from Tables 3, 4, 5, 6, 7, 8, 9, 10 and
11, it can be concluded that the 25 hidden neurons were the optimal number of
neurons in the hidden layer since most of the training algorithms for TSS response
results in lowest value of MSE, MAE and MAPE value for 25 hidden neurons. The
same holds for TUR and COD response. Through the 3 outputs, the selection of the
training function is mostly based on COD response since the minimal MSE value that
can be reached was 54.71 compared to TSS (16.64) and TUR (5.06) responses. Then,
the best training algorithms for COD response is then further sorted by comparing the
chosen training algorithm in TSS and TUR response which also gives the least value
of MSE, MAE and MAPE values.

Four best training algorithms were identified namely Levenberg-Marquardt (LM),
Bayesian regularization (BR), one step secant (OSS) and scaled conjugate gradient
(SCG) training function. These four best algorithms were further sorted based on
training algorithm that results in the least value of MSE, MAE and MAPE for each
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Table 12 Mean absolute error (MAE) of chemical oxygen demand (COD) (mg/L) for different number of
neurons in different training algorithm

Hidden neuron Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

1 997 10.02 9.01 1042 89 953 1074 939 928 10.70 836 9.46
2 859 838 975 1166 950 9.04 1012 9.19 905 861 7.84 854
3 8.05 979 923 1054 1053 936 796 948 9.13 8.66 727 8.09
4 826 886 9.62 854 10.15 780 922 768 763 756 746 6.12
5 933 1005 7.63 618 786 684 763 699 777 850 573 531
6 879 983 11.08 6.57 814 1012 694 997 560 722 566 493
7 613 729 972 634 7.2 883 498 10.61 10.74 538 430 4.64
8 488 7.60 1551 890 807 694 780 7.01 778 6.06 391 4.52
9 6.09 655 1486 631 563 6838 729 671 640 856 3.76 445
10 581 623 598 751 568 937 573 878 6.69 673 493 482
11 995 723 549 626 492 630 438 633 479 512 400 4.76
12 475 6.09 1958 632 627 673 578 7.3 582 440 549 455
13 425 10.12 1255 448 477 1213 653 439 575 536 3.82 473
14 439 676 432 515 513 530 634 524 416 7.17 483 470
15 489 646 1134 658 682 773 773 785 444 470 3.86 4.52
16 503 740 543 484 471 819 408 807 496 685 3.62 4.69
17 426 7.3 428 696 410 410 394 534 474 426 3.64 443
18 417 628 452 429 393 425 440 401 406 683 3.81 4.37
19 555 605 1370 7.70 399 458 7.13 462 416 484 425 436
20 479 6.63 425 451 400 415 429 441 522 394 540 475
21 406 525 448 420 470 465 9.03 454 473 430 4.10 4.88
22 394 465 451 420 457 593 439 572 421 426 413 458
23 398 492 1671 4.07 418 380 434 389 576 397 422 470
24 429 480 425 400 498 457 4.06 441 415 422 3.76 4.60
25 422 516 434 409 447 396 420 382 390 395 375 4.68

data sets namely the training (TR) data set, the testing (TS) data set and the validation
(VL) data set for all the 3 outputs.

3.3 Optimization and Validation of the Experimental Results

In order to determine the best training algorithm among the four selected training functions, the
MSE, MAE, and MAPE values were analysed. Based on Figs. 7 and 8, as well as Tables 14,
15 and 16, the scaled conjugate gradient (SCG) training algorithm proved to be the best
training algorithm among all, since it has the most optimal MSE, MAE and MAPE values for
the training, testing and validation data for all the 3 responses. For the TSS output, SCG results
in MAE, MAE and MAPE values of 18.18, 2.26, 0.03 for training data set, 8.44, 1.24, 0.03 for
testing data set and 21.53, 1.24, 0.03 for validation data set. In terms of the TUR output, SCG
results in MAE, MAE and MAPE values of 6.18, 1.20, 0.01 for training data set, 0.73, 0.35,
0.004 for testing data set and 6.94, 1.34, 0.02 for validation data set.

For the COD output, SCG results in MAE, MAE and MAPE values of 64.87, 4.37, 0.08 for
training data set, 13.91, 1.71, 0.03 for testing data set and 73.02, 4.75, 0.09 for validation data
set. Besides, it is stated that SCG algorithm is capable in performing well in diverse problem
(Wong et al. 2018). For instance, the convergence performance of SCG was nearly similar to
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Table 13 Mean absolute percentage error (MAPE) of chemical oxygen demand (COD) (mg/L) for different
number of neurons in different training algorithms

Hidden neuron

Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR
1 0.18 0.18 016 0.19 0.16 0.17 0.19 0.16 0.16 0.19 0.15 0.17
2 0.15 015 017 021 0.17 0.16 0.18 0.16 0.17 0.15 0.14 0.16
3 0.14 0.18 016 0.18 0.19 0.17 0.14 0.17 0.17 0.16 0.13 0.14
4 0.15 0.16 0.17 0.15 0.19 0.14 0.17 0.14 0.13 0.14 0.14 0.11
5 0.16 0.18 014 o0.11 0.14 0.13 0.14 0.13 0.14 0.5 0.11 0.10
6 0.16 0.18 0.19 0.12 0.14 0.18 0.12 0.18 0.10 0.13 0.10 0.09
7 0.11 013 019 o011 0.12 0.16 0.09 019 0.18 0.10 0.08 0.09
8 0.09 0.14 027 0.16 0.14 0.12 0.14 0.3 0.14 0.11 0.07 0.08
9 0.11 0.11 0.27 0.12  0.10 0.13 0.13 0.12 0.12 0.16 0.07 0.08
10 0.11 0.11 0.11 0.13 0.11 0.17 0.10 0.16 0.11 0.11 0.09 0.09
11 0.17 013 010 0.12 0.09 0.11 0.08 0.11 0.09 0.09 0.08 0.09
12 0.08 0.11 034 0.11 011 012 010 013 0.11 0.08 0.10 0.08
13 0.08 0.18 022 009 0.09 022 0.11 0.08 0.11 0.10 0.07 0.09
14 0.09 0.13 008 009 0.09 0.10 0.12 0.10 0.08 0.13 0.09 0.09
15 0.09 0.12 019 012 0.13 0.15 0.14 0.15 0.08 0.08 0.07 0.08
16 0.09 0.13 009 009 0.08 0.5 008 0.15 0.10 0.12 0.07 0.09
17 0.07 0.13 008 0.13 0.08 0.08 0.07 0.10 0.08 0.08 0.06 0.08
18 0.08 0.11 0.08 0.08 007 008 008 008 008 012 0.07 0.08
19 0.11  0.11 0.23 0.14 0.07 0.09 0.14 0.09 0.08 0.09 0.08 0.08
20 0.09 0.11 0.08 0.08 007 008 008 008 009 007 0.10 0.09
21 0.08 0.10 009 008 0.09 0.09 0.16 0.08 0.08 0.08 0.08 0.09
22 0.07 0.08 009 007 0.09 0.11 0.08 0.10 0.08 0.07 0.08 0.09
23 0.07 0.09 030 008 0.08 0.07 0.08 0.07 0.10 0.08 0.08 0.09
24 0.08 0.09 008 008 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.08
25 0.08 0.09 008 008 0.08 0.07 0.08 0.07 0.07 0.08 0.07 0.09
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Fig. 7 Actual and predicted results of TSS and TUR response using 4 best training algorithms
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Fig. 8 Actual and predicted results using 4 best training algorithms

LM on solving approximation problems, and the same goes for the solving of pattern
recognition problems, which result in faster convergence as RP. Figs. 7 and 8 show the
comparison of target and output data for each response using the SCG training algorithm.

3.3.1 TSS Response

Table 14 Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MARPE) for training, testing, and validation data for Total Suspended Solids (TSS) (mg/L) output

Data Error  Training algorithm

GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR

Training MSE  17.55 23.36 20.66 1833 21.97 1824 19.82 18.18 18.67 1839 1745 18.80
MAE 222 343 262 241 287 234 255 226 244 219 218 274
MAPE 0.02 0.04 0.03 0.03 004 0.03 003 0.03 003 003 0.03 0.03

Testing MSE 1075 9.18 7.07 888 19.47 821 6.71 844 891 838 1099 9.49
MAE 137 217 149 148 221 134 137 124 144 121 126 178
MAPE 0.03 0.02 0.02 0.02 003 0.02 002 003 002 001 002 0.02

Validation MSE 2193 2734 21.68 21.39 24.75 21.72 2253 21.53 2239 21.77 2333 22.24
MAE 258 3.71 255 274 301 267 28 124 288 249 266 293
MAPE 0.03 0.04 003 0.03 004 0.03 004 003 004 003 0.03 0.04
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3.3.2 TUR Response

Table 15 Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) for training, testing, and validation data for Turbidity (TUR) (NTU) output

Data Emror  Training algorithm
GD GDA GDX RP CGF CGP CGB SCG BFG 0SS LM BR
Training MSE 6.13 642 6.62 6.17 642 6.18 643 6.18 6.37 6.33 625 6.67
MAE 120 1.39 1.43 1.25 148 1.23 1.36 1.20 1.27 1.22 121 1.51
MAPE 0.0 0.02 0.02 0.01  0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02
Testing MSE 1.13 138 0.74 0.77 126 0.73 0.64 0.73 0.70 0.72 1.00 1.01
MAE 044 0.66 0.60 042  0.61 0.38 047 0.35 0.35 0.37 035 0.68
MAPE  0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.004  0.00 0.00 0.00 0.01
Validation ~MSE 691 736 7.09 692 741 6.94 7.10 6.94 7.18 7.12 7.18  7.40
MAE 131 154 1.41 1.37  1.63 1.36 145 134 142 1.35 1.37  1.65
MAPE 0.01 0.02 0.02 0.02  0.02 0.02 0.02 0.02 0.02 0.02 0.02  0.02
3.3.3 COD Response
Table 16 Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) for training, testing, and validation data for Chemical Oxygen Demand (COD) (mg/L) output
Data Error  Training algorithm
GD GDA GDX RP CGF CGP CGB SCG BFG OSS LM BR
Training MSE 6541 6893 6841 6508 70.11 6484 6724 64.87 6540 66.65 7098 66.26
MAE 4.50 5.67 4.94 459 492 450 474 437 442 4.55 421 5.11
MAPE  0.09 0.09 0.10 0.08 0.09 0.08 0.09 0.08 0.08 0.09  0.07 0.09
Testing MSE 20.87 19.82  13.33 1487 2551 1426 12.74 1391 13.61 1345 1817 16.64
MAE 2.18 342 238 2.12 2.79 1.89 2.19 1.71 1.77 1.68 1.73 2.89
MAPE  0.04 0.04 0.06 0.04 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.05
Validation MSE 7346 7541 7294 7268 7879 7293 73.14 73.02 7395 7513 8330 7449
MAE 4.82 5.80 5.00 497 521 4.88 5.02 4.75 489 494 476 5.51
MAPE  0.09 0.09 0.11 0.09 0.10 0.09 0.09 0.09 0.09 0.10  0.09 0.10
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Fig. 9 Comparison of actual and predicted results of TSS, TUR and COD response using SCG
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Fig. 10 Regression (R) values for the training, testing, validation and overall data with SCG training algorithm

3.4 Evaluation on the Performance of ANN

The rule of thumb is that regression, R should approach 1, as the R value measures the
correlation between actual and predicted value.

Figure 9 compare experimental TSS, TUR and COD with predicted values. The
plot indicates that the training algorithm SCG has been successful in predicting the
TSS, TUR and COD values as the graphs of predicted results match well with the
experimental values. These plots give the best results of the study carried out.

Figure 10 depicts the R values obtained for the SCG training algorithm, with training,
testing and validation data showing acceptable R values. This indicates the good fitting of the
experimental data in the ANN model
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4 Conclusions

Performance of coagulation-flocculation process using fenugreek-okra in treating POME was
studied to evaluate the removal efficiency of TSS, TUR and COD. The results were further
optimized using ANN modelling technique. ANN was used to evaluate the accuracy of the
predicted results. The process involved four parameter inputs namely pH, stirring speed,
fenugreek dosage and okra dosage, and three parameter outputs namely TSS, TUR and
COD removal percentages. Optimum parameters determined were pH 3.2, 4.09 g/L of
fenugreek dosage, 58 mL/500 mL. POME of okra dosage and stirring speed of 197 rpm in
order to yield maximum TSS, TUR and COD removal efficiencies of 92.7%, 94.97%, and
63.11%. An FFNN backpropagation model was developed using tangent-purelin transfer
function and trained using 12 different training algorithms and 1 to 25 number of hidden
neurons. It was observed that the SCG algorithm was the best training function for the
coagulant-flocculant process with optimal MSE, MAE and MAPE values for all three outputs.
From the present study, it was found that the ANN model has been successfully used to predict
the TSS, TUR and COD with an R value of 0.8629.

Acknowledgements The author would like to acknowledge Jugra Palm Oil Sdn. Bhd. (Selangor, Malaysia) for
providing the POME samples throughout the studies.
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