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Abstract
Composite indicators are popular tools for assessing and comparing multidimensional
phenomena in different countries. This paper tests the methodology of the Groundwater
Risk Index (GRI), a water vulnerability composite index developed to evaluate groundwater
depletion in the Middle East and North Africa (MENA) region (Lezzaik et al. 2018). A
sensitivity analysis using a one-factor-at-a-time (OFAT) approach is used to determine the
impact of alternate methodological choices on country-level GRI scores and ranks. The
analysis focuses on the GRI sensitivity to: (1) the selection of constituent indicators; (2) the
choice of normalization scheme; and (3) the choice of aggregation method. Results show
that the GRI scores are not impacted by the selection of indicators and the choice of
alternative normalization schemes. Conversely, the GRI was sensitive to arithmetic and
multiplicative aggregation methods. High-income, oil-rich gulf countries exhibited de-
creases in rankings due to an imbalance between water resource allocations and adaptive
capacity parameters, whereas countries with balanced conditions exhibited increases in the
GRI rankings. The sensitivity analysis provides useful insights into the development of GRI
for end-users to assess the effects of groundwater vulnerability against potential changes or
stressors in semi-arid to hyper-arid regions.
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1 Introduction

Composite indicators, also referred to as indices, have expanded in the past decade due to their
increased use by governments, think tanks, national, and international organizations in
assessing multidimensional phenomena such as human development, governance, and envi-
ronmental degradation (Foa and Tanner 2012; Saisana and Tarantola 2002). Water resources
trends in the Middle East and North Africa (MENA) region indicate increasing vulnerability
due to socio-economic factors (Droogers et al. 2012; Sowers et al. 2011). In this paper, the
Groundwater Risk Index (GRI), a composite index developed to evaluate groundwater
depletion in the MENA region (Lezzaik et al. 2018) is considered as a case study (Fig. 1).
The conceptual framework of the GRI assumes that groundwater risk, defined as the proba-
bility of an entity experiencing groundwater depletion, cannot be solely assessed by models of
hydrological systems, mechanics, and limitations. Instead, the GRI assesses groundwater risk
by combining hydrogeological assessments of groundwater reserves and storage changes, with
governance, food security, and energy costs into a composite index.

Composite indices are central tools in policymaking given their ability to comparatively
analyze and benchmark country performance on elusive issues (Cherchye et al. 2008)). A
survey of inter-country composite indices by Bandura (2008) found that of the approximately
180 indices developed, 50% were in the previous five years alone. Composite indicators are
calculated by aggregating indicators into a single index based on a conceptual framework
dictated by what is being measured, under what conditions, and for what intended purpose.
Constructing an index and computing its scores requires normalizing, weighting, and
aggregating constituent indicators into a final index using an aggregative function.

The creation and review of composite indices for groundwater and other environmental factors
has been on the rise in the recent literature. Pires et al. (2017) performed a thorough review of over

Fig. 1 The GRI assessment for the MENA region between 2003 and 2014 by Lezzaik et al. (2018)
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170 current sustainability indicators to assess their quality and reliability. Indicators were
reviewed according to the DPSIR (Driving Forces, Pressures, States, Impacts, and Responses)
framework and concluded that 24 indicators met their objective criteria. The GRI, the authors
suggest, would satisfy at least three of the five driving indicators deeming it a useful indicator. Jeet
et al. (2019) developed a composite hydrologic index for a semi-arid region in India using
principal component analysis and sub-basins for their weighting schemes. Hosseini et al. (2019)
developed an integrated environmentally sustainable groundwater management index (ESGMI)
based on weighted aggregation of thirteen adopted indicators. Lastly, Azizi et al. (2019) devel-
oped their own coastal vulnerability index using a weighting scheme based on expert knowledge
of influential parameters. Additional index development similar to this study can be found in the
literature (Cameron andWhite 2004; Gleeson et al. 2012; Godfrey et al. 2002; Lewis et al. 2012;
Mattas et al. 2014; Preda et al. 2013, among others).

Composite indicators are contentious with its supporters and critics (Saisana and Tarantola
2002). In addition to summarizing complex multidimensional phenomena, composite indices
provide a single score of what is measured, which enables ease of interpretation vis-à-vis using
multiple benchmarks (Foa and Tanner 2012). Consequently, indices support decision makers
and facilitate communication with the general public (López-Claros 2010). However, critics
argue that overreliance on composite indices amplifies the risk of extrapolating erroneous
policy recommendations based on simplistic big-picture summarizations of complex phenom-
ena (Saisana et al. 2005). Critics primarily cite the underlying developmental process of
composite indices as the fundamental reason behind their unreliability as policy-informing
tools (Cherchye et al. 2008; López-Claros 2010; Saisana and Tarantola 2002).

Despite some similarities with mathematical or computational models that have universally
accepted scientific rules, composite indices rely on subjective judgments (Cherchye et al.
2008). Key decisions, informed by subjective judgments, are made at the different stages of
index development, ranging from the selection of constituent indicators to the selection of a
normalization method, weighting scheme, and aggregation approach for the composite index.
Due to their increased influence, composite indicator creators are being asked to address the
aforementioned critiques. Indeed, according to Saisana and Tarantola (2002), sensitivity
analyses are included in only a few composite index studies. This paper analyses the
robustness of the GRI by assessing the sensitivity of its country-level scores and its ranking
to the selection of constituent indicators, normalization, and aggregation methods.

2 Review of the GRI Development

2.1 Theoretical Framework and Indicator Selection

Groundwater risk extends beyond hydrogeologic models of groundwater systems to include
societal adaptive capacity criteria. The following section summarizes the rationale and meth-
odology of the GRI development as in Lezzaik et al. (2018). The GRI was developed to help
countries assess the hotspots of groundwater depletion risk in arid environments. Moreover, it
enables countries to compare and benchmark groundwater risk and its determinants by
allowing them to assess their position relative to others. The GRI is a national or regional
screening tool that provides easily interpretable assessments based on a single composite
measure. The GRI results can then be followed-up by an individual country-level analysis of
the factors driving groundwater risk. The design of the index reflects two key concerns. The
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first is the determination of the dominant factors underlying groundwater risk (is it physical
groundwater endowments, politico-economic adaptive capacity, or both?). The second is the
comparison of groundwater risk levels across all countries, and the possible identification and
extrapolation of policy recommendations, especially to poorly ranked, high-risk countries. To
accomplish this, the GRI focuses on five dimensions:

a) Groundwater Storage Reserves: Also known as groundwater supply availability, ground-
water reserves constitute the principle and objective natural framework on which ground-
water risk can be conceptualized and measured. An accurate quantitative assessment of
groundwater reserves was achieved by integrating distributed saturated aquifer thickness
estimates with gridded effective porosity values (Lezzaik and Milewski 2018).

b) Groundwater Storage Changes: Due to human consumption, groundwater is
overburdened with 30% of the world’s largest aquifers currently overstressed and under-
going little to no natural replenishment (Richey et al. 2015a; Richey et al. 2015b).
Groundwater storage change estimates, which inherently included the indirect effects of
climate change over the study period, were calculated by disaggregating GRACE-derived
terrestrial water storage data, using GLDAS-generated land surface parameters (Lezzaik
and Milewski 2018; Voss et al. 2013).

c) Governance: Decentralized pumping, caused by poor governance, is one of the primary
drivers of groundwater depletion. Srinivasan et al. (2012) argue that poor governance
translates into a lack of water reallocation mechanisms and an ineffective control over
water rights and flows, which consequently drives decentralized pumping by rural and
urban dwellers. The World Bank’s Worldwide Governance indicators (Kaufmann et al.
2011) were used to generate aggregate governance scores based on five different dimen-
sions (e.g., the rule of law, government effectiveness).

d) Food Security: The globalization and internationalization of trade results in reduced
demands and pressures on local, national, and regional groundwater resources. The food
security indicator is a proxy measure of countries’ capacities to rely on exogenous virtual
water trade to meet their population’s caloric requirements. This would incidentally
include the role of human dependence on groundwater for domestic, agricultural and
industrial use in each country. The three pillars of food security (i.e., affordability,
availability, and dietary diversity) were calculated using data from the World Bank
(2016), FAO (2016), and independent studies, followed by their integration into an overall
measure of country-level food security.

e) Groundwater Extraction Cost: Within the framework of the energy-water nexus, energy
costs influence groundwater extraction rates and affect associated groundwater risk.
Numerous studies have established a negative correlation between increasing energy
prices and groundwater extraction rates (Pfeiffer and Lin 2014; Zhu et al. 2007). The
indicator measures groundwater extraction costs as a function of country-level diesel
energy prices provided by (World Bank 2016) and groundwater table depths modeled
by Fan et al. (2013).

2.2 Normalization

The GRI is composed of indicators with different data classifications and measurement units.
Therefore, aggregating indicators into a composite index requires normalizing the original data
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using a linear transformation method that re-expresses the original value for each indicator on a
unitless scale from 0 to 100, with the following formula:

Nq;c ¼
xq;c−min xq

� �

range xq
� � � 100 ð1Þ

where Nq,c denotes the normalized value of the indicator q for country c, and xq,c denotes the
raw value of the indicator q for country c.

2.3 Weighting

Assigning the relative importance to indicators that determine the phenomenon being mea-
sured is a difficult and subjective design decision undertaken in composing composite indices.
The GRI attaches equal weights to each dimension of groundwater risk. The equal weighting
scheme is indicated for its simplicity in building the model and usefulness for the exchange of
relevant variables (OECD/European Union/JRC 2008).

Alternative weighting indices for sustainability related composite indices are increasing in
use but face criticism regarding bias depending on the quantity, quality, and the collection
methods of the data (Nardo et al. 2005; Sharpe and Andrews 2012). Additional details
regarding the GRI equal weighting scheme is discussed within the methodology section of
this paper and in detail by Lezzaik et al. (2018).

2.4 Aggregation

An additive arithmetic mean model was selected to aggregate the indicators into a final index:

CIc ¼ ∑
n

i¼1
wqNq;c ð2Þ

where CIc denotes the composite score of country c, Nq,c denotes the normalized value of
indicator q for country c, and Wq denotes the weight of the indicator q.

The aggregation method was selected based on the GRI’s theoretical framework that allows
for compensability and trade-offs between the constituent indicators (Aguna and Kovacevic
2010). Moreover, for the purpose of facilitating ease of interpretation, additive aggregation
methods are superior to multiplicative methods, insofar as rendering the GRI effective and
practical for use by different end-users.

3 The GRI Sensitivity Analysis

The GRI was developed as a distributed composite index to assess and evaluate groundwater
depletion risk by combining different environmental and socioeconomic datasets and models.
The GRI was designed as a multi-criteria diagnostic tool to identify and determine the
severity and probability of an area experiencing the adverse effects of groundwater
changes. In the preceding section, we briefly outlined the original GRI model
(GRIoriginal), as one that calculated groundwater risk from a set of indicators that were
rescaled using a min-max normalization, assigned an equal weighting scheme, and
aggregated into a final composite index score using a simple additive arithmetic mean
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function. This section focuses on describing and discussing the steps undertaken to
assess the robustness of the design behind GRIoriginal, by testing the sensitivity of GRI
output values to the index design decision-making and considerations. The GRI design
choices, including adopting an equal weighting scheme and a linear additive aggre-
gation approach, promote structural flexibility that enables the modification, applica-
tion, and implementation of the index in other semi- to hyper-arid regions with a high
level of dependency on groundwater resources.

First, we identified and assessed the sources of sensitivity. Generally, when developing a
composite index, sensitivities arise from some or all of the following steps involving subjective
judgment and decision-making for the design process:

i. indicator selection
ii. data selection and editing
iii. data normalization
iv. indicator weighting scheme
v. index aggregation function

In this work, we focus on three sources of sensitivity within the GRI framework: (1) indicator
selection; (2) normalization scheme; and (3) aggregation scheme. The indicator weighting
scheme was not selected because an equal weighting scheme was deemed the most
appropriate based on the lack of access to subjective weightings and the conceptual
impediments to multivariate analysis. As noted in Lezzaik and Milewski (2018),
determining the relative importance and the proper balancing of the plurality of
perspectives through the weighting of different indicators is the most contentious
problem in building composite indices. Conventional participatory schemes, in which
weights are assigned on the basis of expert consultation, are criticized for their bias
and subjectivity or motivated to reflect the pre-existing beliefs of the stakeholders
(Booysen 2002; Nardo et al. 2005). The Analytic Hierarchy Process (AHP) is one such
participatory method where results depend on evaluator selection and the experimental setting
(Saaty 1987). The AHP and other participatory methods may not be ideal in cases where
indicators span a disparate set of disciplines, a lack of resources, or a lack of consensus exists on
alternative solutions (Sharpe and Andrews 2012).

In regard to weighting approaches based on statistical models, complex multivariate
statistical analyses sacrifice the functionality of composite indices by imposing a conceptual
rigidity on the selection and weighting of indicators and by inhibiting the ease of the index
results interpretation (Cox et al. 1992; Ginsburg et al. 1986). Beyond the limitations of
normative and statistical weighting methods, the GRI was limited by a lack of resources to
access societal and expert viewpoints, necessary to assign weights using participatory
approaches such as the AHP.

Hagerty and Land (2007) recommended adopting an equal weighting scheme for composite
indices that do not qualify for subjective of statistical weighting schemes. While an equal
weighting scheme is the norm for many composite indices (OECD/European Union/JRC
2008), as well as the one chosen for the GRI, the authors acknowledge that any weighting
scheme is a value judgment. In the case of the equal weighting scheme, the fidelity and
correlation of the variable data for each indicator was neither rewarded nor punished. As a
result, the sensitivity analysis of the indicator weighting scheme is considered beyond the
scope of this paper.
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3.1 Indicator Selection

Composite indices are developed, and their indicators selected, based on the underlying
theoretical framework and empirical observations of the phenomenon being assessed. Conse-
quently, the GRI indicator choices are debatable and present a source of sensitivity to the
underlying phenomenon being assessed.

To assess the sensitivity associated due to the choice of indicators, the authors exercised the
inclusion/exclusion of individual indicators. The process involves a one-at-a-time exclusion of
an individual indicator, followed by an execution of the composite index, and an examination
of the differences in the resultant index scores between the original (baseline) and modified
GRI scores for each country:

Δscorec ¼ scoreoriginial; c−scoreexclq;c ð3Þ
where Δscorec denotes the change in score for country c, scoreoriginal, c denotes the original GRI
score for country c, and scoreexcl.q, c denotes the modified GRI score for country c after the
exclusion of indicator q.

Additionally, shifts in country ranks will be explored, following the exclusion of individual
indicators:

Δrankc ¼ rankoriginial; c−rankexclq;c ð4Þ
where Δrankc denotes the change in rank for country c, rankoriginal, c denotes the original GRI
rank for country c, and scoreexcl.q, c denotes the modified GRI rank for country c after the
exclusion of indicator q.

The investigation of Δscorec and Δrankc will be the scope of the sensitivity analysis
targeting GRI robustness against its indicator selection.

3.2 Normalization

In GRIoriginal, a min-max re-scaling (Eq. 1) was adopted as the method of normalization to
transform indicator datasets into a common scale. The choice was based on multiple consid-
erations. First, as a linear transformation, min-max rescaling preserves the data in the data
original values (OECD/European Union/JRC 2008). Second, the ease of communicating index
data and outputs lying within an identical and bounded range [0,100] facilitates GRI’s
functionality by enabling easy interpretation of index results. However, since data normaliza-
tion involves the transformation of data, the use of different normalization schemes could
influence index outputs. Therefore, an examination of the sensitivity posed by the choice of
normalization schemes is necessary.

In addition to min-max rescaling, there are two main normalization methods (Mazziotta
2013): standardization (Z-score) and indicization (distance to a reference). The standardization
method converts the indicators to a common scale of mean zero and a standard deviation of
one. Consequently, the Z-score method rewards exceptionally higher than average scores:

Sq;c ¼
xq;c−mean xq

� �

std xq
� � ð5Þ

where Sq,c denotes the standardized value of the indicator q for country c, and xq,c denotes the
raw value of the indicator q for country c.
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Indicization takes the ratio of an indicator for a specific country xq,c with respect to a
reference country. In our case, the highest scoring country will be taken as a reference, such
that an indicator score for each country will be divided by the indicator score of the
best ranking country. The ‘distance-to-largest-value’ (DLV) is calculated using the
following formula:

DLVq;c ¼ xq;c
xq;ref

ð6Þ

where DLVq,c denotes the normalized value of the indicator xq for country c, xq,c
denotes the raw value of the indicator xq for country c, and xq,ref denotes the raw
value of the indicator xq for the highest ranking reference country.

GRI was executed separately with different normalization schemes to assess normalization-
related sensitivities in terms of shifts in country rank (Eq. 7):

Δrankc ¼ rankmin−max;c−rankz−score=DLV ;c ð7Þ
where Δrankc denotes a rank change in country c, rankmin-max,c denotes the original GRI rank
for country c using a min-max rescaling scheme, rankz-score / DLV,c denotes the modified GRI
rank for country c using alternative normalization schemes.

3.3 Aggregation

The two main aggregation methods are additive arithmetic mean and multiplicative geometric
mean. The methodological choice between the two models rests upon an index theoretical
framing of how indicator performances are rewarded and punished (Nardo et al. 2005). The
GRI aggregated its indicators using an additive arithmetic mean model, based on the assump-
tion of perfect substitutability and the superiority of additive models insofar their effectiveness
in facilitating easy interpretation and adoption by experts and the public alike.

A geometric mean aggregation, however, reflects and awards trade-offs between different
indicators by allowing for partial or imperfect substitutability, where a negative performance
by one indicator cannot fully compensate for a positive performance by another. Moreover,
geometric aggregation rewards balanced indicator scores and severely penalizes poor perfor-
mance in one or more indicators (Aguna and Kovacevic 2010).

To account for the sensitivity associated with aggregation methods, the authors executed
GRI using a geometric mean formula:

CIc ¼ ∏n
i¼1 qc½ �1=n ð8Þ

where CIc denotes the composite score of country c, and qc denotes indicator q score for
country c.

Sensitivities inherent to the choice of aggregation function were evaluated through shifts in
country-level groundwater risk score and rank.

4 Results and Discussion

Sensitivity analyses are rarely reported in composite index studies. Consequently, the index
robustness is questioned, and adoption by end-users is compromised. In this study, sensitivity
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analyses at different developmental stages were conducted to test GRI robustness. The paper
adopts a one-factor-at-a-time (OFAT) sensitivity approach to examine the effects of the
indicator selection, normalization schemes, and aggregation methods on groundwater risk
scores and ranks. Sensitivity results associated with indicator choice, normalization schemes,
and aggregation methods are presented in Tables 1, 2 and 3, respectively.

4.1 Indicator Sensitivity Analysis

The sensitivity analysis of GRI indicator selection on its score and rank outputs shows that the
original selection of constituent indicators provides a robust measure that is not biased from
potential participatory methods. This is evident by country ranks generated by different
indicator combinations (Table 1). Countries within the 75th percentile or higher group with
very low groundwater risk (Israel and PT, Qatar, UAE, and Kuwait), were not sensitive to any
individual indicator: they consistently ranked similarly within their quantile group with the
exclusion of each individual indicator. The same applies to the 25th or lower quantile group
with Syria, Yemen, Libya, and Iraq slightly shifting positions within their quantile group with
different indicator combinations Examining the GRI sensitivity to each indicator confirms the
aforementioned observations, with relatively small shifts in country rank, ranging between one
and two positions, and little to no change in the overall ranking structure of the 16 countries.
The only exception is the governance indicator, whose exclusion led to larger shifts in the
country ranking than its counterparts (e.g., Saudi Arabia, Syria, and Libya). On the basis of
average ranking shifts across countries per indicator exclusion, the GRI sensitivity relative to

its constituent indicators is in the following decreasing order: governance (GOV) (ΔRank =

1.37), groundwater extraction cost (GWEC) (ΔRank= 0.75), groundwater reserves (GWR)

(ΔRank= 0.75), food security (FS) (ΔRank= 0.25), and groundwater storage change (GWSC)

(ΔRank= 0.12). The average rank changes suggest that the relative, normalized values of each

Table 3 Sensitivity analysis results for the choice of aggregation method. Countries exhibiting an upward
movement in rank are highlighted in green and show the resultant final rank and number of rank changes in
parentheses. Countries exhibiting a downward movement in the ranking are highlighted in red

Country Weighted Arithmetic Mean (GRIoriginal) Weighted Geometric Mean

Score Rank Quantile Rank Score Rank Quantile Rank

Israel and PT 68.1 1 75th or higher 65.2 1 75th or higher
UAE 56.4 3 75th or higher 44.3 2 (−1) 75th or higher
Qatar 66 2 75th or higher 33.2 7 (+5) 50th to 74th
Lebanon 46.5 6 50th to 74th 43.7 3 (−3) 75th or higher
Kuwait 56 4 75th or higher 32.4 9 (+5) 25th to 49th
Morocco 47.3 5 50th to 74th 40.7 4 (−1) 75th or higher
Jordan 44.8 7 50th to 74th 36.5 5 (−2) 50th to 74th
Tunisia 42.5 9 25th to 49th 34.9 6 (−3) 50th to 74th
Oman 44.2 8 50th to 74th 33.2 8 50th to 74th
Egypt 36.2 11 25th to 49th 29.4 10 (−1) 25th to 49th
Saudi Arabia 36.9 10 25th to 49th 22.5 13 (+3) 24th or lower
Algeria 33.5 12 25th to 49th 24.9 12 25th to 49th
Syria 32.6 13 24th or lower 25.3 11 (−2) 25th to 49th
Yemen 28.9 15 24th or lower 22.5 14 (−1) 24th or lower
Libya 29.8 14 24th or lower 17.6 15 (+1) 24th or lower
Iraq 25.6 16 24th or lower 17.1 16 24th or lower
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indicator do not affect the overall country rankings similar to Villholth (2013), who developed
a groundwater drought risk index in sub-Saharan Africa using both natural and human
indicators with a similar approach, indicators and weighting scheme.

4.2 Normalization Sensitivity Analysis

To test for the robustness of minimum-maximum rescaling schemes, GRI was executed using
alternative normalization methods (i.e., Z-score standardization, Indicization methods), and
alternate GRI outcomes were compared to the original results. Comparable country rank
outcomes generated by the different normalization methods confirm GRI independence to
normalization scheme selection and affirm the robustness of the min-max rescaling method
(Table 2). Countries are more robust to the choice of normalization scheme, if they are among
the best (75th or higher quantile) or worst (25th or lower quantile) performers, and relatively
more sensitive to normalization schemes within the 25th to 75th quantiles. For instance,
Lebanon and Morocco undergo three and two downward shifts in rank with Z-score standard-
ization scheme, and four and two downward shifts in rank with an indicization scheme,
respectively. One explanation behind the higher sensitivities exhibited in the central quantiles
could be the smaller differences in country scores within these quantiles as opposed to the
score of the highest and lowest performing countries. Nevertheless, average ranking shifts–
relative to the original ranking with min-max rescaling scheme caused by Z-Score standard-
ization (= 0.75) and DLV Indicization (= 0.93), clearly indicate the GRI overall independence
and insensitivity to the choice of normalization scheme.

4.3 Aggregation Sensitivity Analysis

Finally, a sensitivity analysis on the choice of aggregation formula was conducted by execut-
ing the GRI using a geometric mean aggregation method and comparing its outcomes to those
produced by the original GRI with its arithmetic mean formula. Unlike indicator selection and
choice of normalization scheme, the GRI outcomes were found to be sensitive to the selection
of the aggregation formula. This is not surprising given how both methods represent and
simulate indicator substitutability, score balance, and performance differently (Aguna and
Kovacevic 2010). Out of the 16 countries considered in the GRI, 12 experienced a shift in
rank. Moreover, seven countries underwent a shift outside their quantile group into another,
thus reflecting not only minor shifts in rank but an overall reconfiguration of groundwater risk
ranking amongst the MENA countries. To demonstrate, Qatar and Kuwait ranked highly in the
75th or higher quantile with low groundwater risk in the original GRI. When using the
geometric aggregation method, both countries experienced five downward movements in rank
into lower quantile groups (Table 3). Meanwhile, Lebanon and Morocco experienced rises in
rank position to three and one in the highest quartile. This significant restructuring in rank
order relates to how arithmetic and geometric mean aggregations reflect tradeoffs. For
example, when using the arithmetic mean aggregation, Qatar and Kuwait scored highly,
despite their low scorings on the groundwater reserve and storage change indicators. This is
explained by the compensability of very high scores on governance and food security that
offset poor performance in groundwater reserves and storage changes. A similar outcome was
realized in Jemmali and Sullivan (2014) through a sensitivity analysis for the Water Poverty
Index where a lack of institutional capacity in economically poor but water rich countries
increases their vulnerability risk. On the other hand, when geometric mean aggregation was
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implemented, Qatar’s and Kuwait’s scores declined from 66 and 56 to 33 and 32, respectively,
which resulted in a downward movement in rank. This is explained by the mathematical base
of the geometric mean that rewards balance and penalizes differences between indicator
values. Alternatively, Lebanon and Morocco experienced upward movement in rank with
the implementation of a geometric mean due to their balanced indicator performance and the
lack of a distinctive poor performance in one or more indicators. A general observation in
Fig. 2 is that countries with well-distributed indicator performance reflected in relatively lower
in-group standard deviation values, such as Lebanon, Tunisia and Morocco, which experi-
enced upward rank movements. Inversely, countries displaying poor performance in one or
more indicators with higher in-group standard deviation values are penalized, and experience
decreases in rank, such as Qatar, Kuwait and Saudi Arabia.

Indeed, countries that exhibited the most downward movement in rank with geometric
aggregation are high-income, oil-rich gulf countries (e.g., Saudi Arabia, Kuwait, and Qatar).
Under conditions of full compensability simulated by arithmetic aggregation, these countries
scored well due to the effect of wealth and governance on offsetting poor water endowments.
But under conditions of partial compensability, simulated by geometric mean aggregation, oil-
rich gulf countries are penalized for the imbalance between water resource allocations and
adaptive capacity parameters. Similarly, countries with more balanced conditions exhibited
rises in rank, as was the case with Lebanon and Tunisia. Developing a sound and coherent

Fig. 2 Bar graphs displaying the effects of balanced indicator performance on country-level score and rank when
using multiplicative geometric mean aggregation
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theoretical framework that reflects the complexity of what is being measured and the interac-
tion between the different dimensions that create it is the most pertinent step in the construction
of a good composite index. The selection of an aggregation method is central to that
framework, particularly as it relates to understanding and simulating the interactions between
different indicators in driving a specific phenomenon. In the GRI case, executing the index
using both arithmetic and geometric means resulted in outputs that are complementary to each
other that highlight different perspectives on groundwater depletion risk. For instance, based
on what has been discussed above, the penalizing effect of geometric aggregation on the oil-
rich gulf countries stresses the reliance on oil income in mitigating groundwater risk, and raises
inquiries on the sustainability of low risk scores produced by the index under full compensa-
bility conditions.

4.4 Combined Sensitivity Analyses Impacts

The preceding analysis examined the effects of different potential sources of sensitivity on the
GRI output separately, with results displaying varying levels of sensitivity by indicator
selection and choice of normalization and aggregations schemes. For a complete sensitivity
analysis, an aggregation of the sources of sensitivity was conducted. The GRI country scores,
generated with each of the sensitivity tests, were arithmetically averaged into a modified GRI
output (GRIModified) reflecting country scores and ranks, as defined by alternative indicator,
normalization scheme, and aggregation method selection. The results (Table 4) display the
robustness of the GRI and its insensitivity to the discussed methodological alterna-
tives. In terms of country scores, modified GRI values are negligibly different from
original ones (ΔGRI Score) with the score shifts not exceeding 6 points on a [0, 100] scale, as is
the case with Libya, Israel and the Palestinian Territories. In terms of country ranks, modified
GRI values were also negligible, with 11 out of 16 countries experiencing no rank change (Δ
GRI Rank). The remaining five countries only exhibited one shift in rank, except for Lebanon,
which fell two ranks.

Moreover, the GRI modified results did not significantly alter the overall analysis,
interpretations and conclusions of the original GRI results in the MENA region. Lezzaik
et al. (2018) interpreted GRI results through the framework of a typological classification
(Fig. 3) that grouped countries according to both their groundwater resource allotments and
their governance and income levels. According to our interpretation, countries with effective
governance and high incomes exhibited the lowest groundwater risk, while countries with poor
governance and low incomes exhibited increased groundwater risk. Meanwhile, groundwater
allotments proved inconsequential in determining risk conditions. The results of the modified
GRI are consistent with the aforementioned analysis (Fig. 3). Of the five countries
that experienced rank shifts, none moved outside their quantile group, thus maintain-
ing the overall structure of country ranking order. Consequently, GRI modified results
affirm the insensitivity of the index to alternative indicator selections, normalization
schemes and aggregation methods.

5 Conclusions

This paper examines the sensitivity of the GRI to the methodological judgments that were
made during its development by determining the effects of alternative methodological methods
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on country-level groundwater risk scores and rank. A one-factor-at-a-time (OFAT) sensitivity
analysis was used to measure the robustness of indicator selection, choice of normalization
scheme, and choice of aggregation method. The results have shown that GRI provides a robust
measure that is not biased by either the selection of the index indicators or by the
choice of normalization scheme. On the other hand, the choice of aggregation
methods between an additive arithmetic mean and a multiplicative geometric mean,
presented a source of significant sensitivity to the GRI. This was expected given the
differences in how they reflect the interactions and trade-offs between different
indicators. The GRI sensitivity to the choice of aggregation method affirms the need
for a representative theoretical framework that correctly simulates the interactive
process between different factors contributing to groundwater risk.

Overall, however, the GRI index is explicitly insensitive to the discussed alternative
methodological choices. The implication of our sensitivity analysis is significant, as
it allows for the customized use of the GRI index outside the MENA region, in which
alternative methodological choices, taken to fit unique regional conditions, do not
significantly distort the GRI outcomes. This includes the substitution or addition of
other indicators or dimensions depending on the local governance of a region as in
Seward and Xu (2019), or in other semi-arid to hyper-arid transboundary aquifer
systems like the MENA region.

The common thread between composite indices for groundwater and other environmental
factors is the general need to evaluate groundwater or environmental sustainability, resilience,
or vulnerability against potential changes or stressors. Indices may vary in their approach with
different indicators, weighting schemes, or datasets, which further underscores the point that
no perfect index or approach exists. Rather each one will have advantages and tradeoffs, tuned
specifically for the purpose of a particular site or state variable. This paper further solidifies the

Fig. 3 A modified typology of MENA countries by hydrological systems and political economies. The figure
shows GRIoriginal country rank (in parenthesis). Countries experiencing a rank shift with a GRImodified are denoted
with an arrow, followed by the number of shifts and the modified rank
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robustness of the original method (Lezzaik et al. 2018) and demonstrates a non-participatory
approach that shows little sensitivity in weighting schemes. In the future, the authors recom-
mend variance-based measures of sensitivity that explores and accounts for simultaneous
variations and interactions between different input factors.
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