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Abstract
Longitudinal dispersion coefficient (LDC) is a key element in pollutant transport
modeling in streams. Several empirical and data-driven models have been proposed
to evaluate this parameter. In this study, sensitivity analysis was performed on four
key parameters affecting the LDC including: channel width, flow depth, mean flow
velocity and shear velocity. In addition, Monte Carlo simulation was used to
generate new datasets and evaluate performance of LDC estimation methods based
on uncertainty of input parameters. Sensitivity indices of the input parameters in
selected empirical equations and differential evolution model follow almost the
same trend, where mean flow velocity is the most sensitive parameter among input
parameters and the prediction accuracy depends heavily on the value of this
parameter. In above mentioned models, shear velocity had a negative value and
a reverse effect on LDC estimation. Channel width and mean flow velocity have
the highest sensitivity in M5 model for narrow and wide streams, respectively.
Based on sensitivity indices, the efficiency of empirical and data-driven models in
different conditions, according to uncertainties in the input parameters, has been
investigated. Result of LDC estimation based on the data of Monte Carlo simula-
tion, showed that most LDC estimation models have a high uncertainty for upper
LDC values.
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1 Introduction

In recent years much attention has been paid to the environment, especially river and lake
pollution. Rivers and streams are usually receiving the outlet of sewage systems which may
cause pollutant levels to rise (Haghiabi 2016). Pollutant dispersion is a key element in water
quality modeling (Antonopoulos et al. 2015) and the longitudinal dispersion coefficient (LDC)
is an important factor in stream pollution modeling due to its effect on pollutant mixing
intensity. The pollution is affected by advective and dispersive processes, and is dispersed
longitudinally, transversely and vertically (Seo and Cheong 1998). Most of the experimental
studies on dispersion coefficient in streams are based on routing tracer concentration along the
river (Atkinson and Davis 2000; Davis et al. 2000; Velísková et al. 2014; Disley et al. 2015;
Parsaie and Haghiabi 2017). Estimation of the dispersion coefficient directly, using tracers in
rivers, is very difficult, expensive and time-consuming. Mixing is a three-dimensional process
near the pollution point source. After total mixing far from the injection point, only longitu-
dinal dispersion is used to describe the dispersion phenomenon (Chatila 1997; Velísková et al.
2014; Haghiabi 2017). Therefore, to predict longitudinal dispersion, researchers have devel-
oped different equations based on experimental and field measurements. These equations use
hydraulic and geometric parameters such as width of the channel, mean flow velocity, shear
velocity and depth of flow (Alizadeh et al. 2017). Several researchers have used as input
parameters the ratio of channel width to flow depth (W/H) and mean velocity to shear velocity
(U/U∗) to estimate LDC based on their correlation with dimensionless dispersion coefficient
(Kx HU∗) (Noori et al. 2017). Table 1 presents some empirical equations for LDC estimation.
These equations have been derived using different methods and in some cases different set of
data, and result in various performances based on stream conditions. In this regard, investiga-
tors have recently used data-driven models to estimate LDC. Some of data-driven models
which include support vector machine, M5 tree algorithm, differential evolution, genetic
algorithms and genetic programming, have been used by Azamathulla and Wu (2011),
Etemad-Shahidi and Taghipour (2012), Li et al. (2013), Sahay and Dutta (2009) and Sattar
and Gharabaghi (2015), respectively. Due to the use of LDC in devising water diversion
strategies, designing treatment plants, intakes and outfalls, and studying the environment (Ho
et al. 2002), an important step is the validation of LDC estimation models under different
condition. It should be noted that, almost all empirical and data-driven models predict
longitudinal dispersion coefficient with simplifying assumptions, which could affect the
accuracy of the model results (Sahin 2014). For accurate estimation of water quality param-
eters, uncertainty and sensitivity analysis must be performed along with water quality model-
ing (Nakhaei and Etemad-Shahidi 2012). Quantification of the error in water quality models
could be used as a first step in evaluation of risk assessment in water resources management
and planning. Uncertainty of model-input, model-structure, model-parameter and measure-
ment could be classified as different sources of uncertainty in water quality management
(Radwan et al. 2004). Monte Carlo simulation in hydrologic models is widely used in
uncertainty analysis (Mishra 2009). This method enables hydrologic modelers to study the
effect of input parameter sets on uncertainty of water quality parameters (Pasha and Lansey
2010). Along with uncertainty analysis, sensitivity analysis assists modelers to evaluate output
range based on range of input parameters, which could be used to determine the most effective
parameters (Nakhaei and Etemad-Shahidi 2012). Non-dimensional sensitivity coefficient is
used by hydrological and environmental scientists, to analyze multivariable models (McCuen
1974; Saxton 1975; Rana and Katerji 1998; Hupet and Vanclooster 2001; Gong et al. 2006).
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This study presents the performance of empirical equations and data-driven models using
statistical analysis. The novelty of this study lies in sensitivity analysis of accurate empirical
and data-driven models, to determine the effect of each parameter on LDC estimation.
Sensitivity indices showed which parameter in each model had the main role on LDC
estimation. Also, uncertainty analysis was performed based on non-repeated, random data
series produced by Monte Carlo simulation to investigate the behavior of empirical and data-
driven models. This can determine the performance of each model considering uncertainty in
input parameters.

2 Theory and Previous Studies

Transverse shear velocity and transverse mixing become in equilibrium after a certain time-
scale (Taylor 1954). The simplified 1-D advection-dispersion equation for steady flow condi-
tions has the following form (Etemad-Shahidi and Taghipour 2012):

∂C
∂t

þ U
∂C
∂x

¼ Kx
∂2C
∂x2

ð1Þ

where C is the cross-sectional average concentration (kg/m3), U is the mean flow
velocity (m/s), x is the direction of the mean flow (m), t is the time (s), and Kx is the
longitudinal dispersion coefficient (m2/s) in the flow direction. Based on Rutherford
(1994), important features of tracer profiles in laboratory and river channels can be
illustrated using Eq. (1).

The LDC in streams is affected by a range of parameters. The most important parameters
are density, viscosity, channel width, flow depth, mean flow velocity, shear velocity, bed slope,
bed roughness, horizontal stream curvature (i.e., sinuosity), and bed shape factor (Seo and
Cheong 1998; Guymer 1998; Etemad-Shahidi and Taghipour 2012). Due to the complexity of
measuring these parameters, the researchers have generally applied the hydraulic and geomet-
ric parameters such as channel width, flow depth H, flow velocity U and shear velocity U∗
which have important effects on LDC. Based on the equilibrium between longitudinal shear
velocity and vertical turbulent diffusion, Elder (1959) used Taylor’s results from pipes to open
channels and derived the following equation to estimate the LDC (Deng et al. 2001):

Kx ¼ 5:93HU* ð2Þ
where H and U∗ represent the flow depth (m) and shear velocity (m/s), respectively.

Fischer (1967) suggested that the transverse profile of the velocity is more important than
the vertical profile for dispersion in natural streams and developed the following integral
relation for the dispersion coefficient in natural streams having large width to depth ratios
(Sahay 2011):

Kx ¼ −
1

A
∫W0 Hu

0
∫y0

1

εtH
∫y0Hu

0
dydydy ð3Þ

where A is cross-sectional area (m2); y is the coordinate in the lateral direction (m); u′ is
the deviation of local depth velocity from the cross-sectional mean velocity (m/s); W is

836 Nezaratian H. et al.



channel width (m); and εt is the transverse, turbulent diffusion coefficient (m2/s). Due to
the complexity of Eq. (3), Fischer (1967) developed the following simple and practical
equation:

Kx ¼ 0:011
U2W2

HU*

� �
ð4Þ

Seo and Cheong (1998) proposed an empirical expression based on one-step method devel-
oped by Huber (1981), which is a robust regression method, gives reasonably good estimation
even in the presence of moderately bad leverage points. Seo and Cheong (1998) used 59 sets
of data from 26 U.S. streams to develop the following equation and showed its superiority over
existing expressions:

Kx ¼ 5:915
W
H

� �0:62 U
U*

� �1:428

HU*ð Þ ð5Þ

Deng et al. (2001) developed an analytical method based on Fischer’s triple integral expression for
estimation of LDC in rivers. They assumed that uniform-flow formula is valid for local depth-
averaged parameters. Their equation is theoretically-based and clarifies the dispersionmechanism.
Based on Deng et al. (2001), the velocity is the most sensitive parameter among all input
parameters in Eq. (6); a change of 10% in this parameter causes significant variation in the LDC:

Kx ¼ 0:15

8 εt0

� �
W
H

� �5=3 U
U*

� �2

HU*ð Þ

εt0 ¼ 0:145þ 1

3520

U
U*

� �
W
H

� �1:38 ð6Þ

Kashefipour and Falconer (2002) established an equation for predicting the LDC in natural
channels using 81 sets of field data in the U.S., by relating this process through dimensional
and regression analysis to the main hydraulic parameters such as river depth, width, velocity
and shear velocity. Kashefipour and Falconer (2002) applied multiple regression between
parameter combinations, and a best fit simple equation was derived, as follows:

Kx ¼ 10:612 HUð Þ U
U*

� �
ð7Þ

Kashefipour and Falconer (2002) used a linear combination of Eq. (7) and Seo and Cheong’s
(1998) formulation to develop Eq. (8), which led to a further improved equation for predicting
the LDC in streams:

Kx ¼ 7:428þ 1:775
W
H

� �0:62 U*

U

� �0:572
" #

HUð Þ U
U*

� �
ð8Þ

Zeng and Huai (2014) showed that the product of water depth and cross-sectional mean flow
velocity has a higher linear correlation with the LDC than the product of water depth and shear
velocity. Therefore, with combination of the product of H and U and other two non-
dimensional parameters, a new equation for longitudinal dispersion coefficient was proposed:

Kx ¼ 5:4
W
H

� �0:7 U
U*

� �0:13

HU ð9Þ
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Sahin (2014) proposed an equation based on dimensional and least squares analysis, using 128
field data sets measured in 41 rivers in the U.S. as follows:

Kx ¼ 48
U
U*

� �0:47

RhU ð10Þ

where Rh is the hydraulic radius (m), which was calculated assuming a rectangular
channel section due to the lack of data on cross section shape (Sahin 2014). Disley
et al. (2015) developed an equation to estimate LDC using combined data sets from
five steeper head – water streams and 24 milder and larger rivers. This equation
relates the LDC to hydraulic and geometric parameters of the stream and has been
developed using multiple regression analysis:

Kx ¼ 3:563
U
gH

� �−0:4117 W
H

� �0:6776 U
U*

� �1:0132

HU* ð11Þ

where g is a gravitational acceleration (m/s2).
Data-driven models have widely been used by researchers to estimate LDC in streams.

Sahay and Dutta (2009) developed an equation to estimate the LDC, using the datasets of
Deng et al. (2001) and genetic algorithm:

Kx ¼ 2
W
H

� �0:96 U
U*

� �1:25

HU*ð Þ ð12Þ

Etemad-Shahidi and Taghipour (2012) derived two interpretable equations to estimate LDC
using M5 tree algorithm and 149 datasets from rivers around the world:

I f
W
H

� �
≤30:6; Kx ¼ 15:49

W
H

� �0:78 U
U*

� �0:11

HU*ð Þ ð13� aÞ

I f
W
H

� �
> 30:6; Kx ¼ 14:12

W
H

� �0:61 U
U*

� �0:85

HU*ð Þ ð13� bÞ

Table 1 summarizes selected equations and models for LDC estimation.

3 Materials and Methods

3.1 Data and Statistical Analysis

A collection of distinctive datasets measured in different streams were used in this study
(Fischer 1968; Yotsukura et al. 1970; Godfrey and Frederick 1970; McQuivey and Keefer
1974; Nordin and Sabol 1974; Rutherford 1994; Graf 1995; Seo and Cheong 1998; Disley
et al. 2015). The datasets contained geometric and hydraulic characteristics, which in-
clude: channel width, flow depth, mean flow velocity, shear velocity and longitudinal
dispersion coefficient (Appendix Table 8). Histograms of W, H, U, U∗, Kx, W/H, and U/U∗
are illustrated in Fig. 1. The histogram of W/H implies that the studied cases varied from
narrow rivers (W/H < 10) to very wide rivers (W/H > 100). The friction term in the form of
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U/U∗ (Seo and Cheong 1998) can be considered as the hydrodynamic characteristic of the
river bed (Etemad-Shahidi and Taghipour 2012). The statistical values of parameters are
presented in Table 2.

3.2 Sensitivity Analysis

Geometric and hydraulic characteristics such as channel width, flow depth, mean
flow velocity and shear velocity may have some uncertainties in their value
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estimation. Poor estimation procedures, tracer loss, or measurements made in the
advective zone are examples of such uncertainties in Kx values (Etemad-Shahidi and
Taghipour 2012).

Sensitivity analysis was employed in order to identify which parameters have more
influence on the dimensionless longitudinal dispersion coefficient. Model sensitivity is the
rate of change in one factor as output with respect to change in another factor as input while the
other parameters are kept constant (McCuen 1973), or how the variation in the output of a
model (numerical or other) can be apportioned, qualitatively or quantitatively, to different
sources of variation of input parameters (Saltelli et al. 2004).

A logical step in model development is the determination of the most important parameters
affecting the model results. A ‘sensitivity analysis’ of these parameters could serve to help
future studies (Hamby 1994). Computer models used in hydraulic engineering have been
increased, and this has not been accompanied by a corresponding increase in sophistication of
sensitivity analysis (Hall et al. 2009). Estimation of the risk by the coupling of hydrodynamic,
structural reliability and impacts models causes additional motivation for improved sensitivity
analysis (Dawson et al. 2005). However, without a systematic method to exploring the model
response to inputs changes, model developers cannot discover reliable intuitions about the
model behavior and interactions (Hall et al. 2009). Sensitivity analyses have been used to
determine which parameter has the most effect on reducing output uncertainty, and/or which
parameters are negligible and can be eliminated from the final model, and/or which inputs
contribute most to output change, and/or which parameters are strongly correlated with the
output, and/or what are the consequent results from changing each input parameter (Hamby
1994).

Input parameters for sensitivity analysis of LDC models were considered with their average
value; one parameter was changed in a defined domain and this process continued for all of the
remaining parameters. With this mechanism, the output variability was estimated based on
insignificant modifications of each input parameter, and the model sensitivity to each param-
eter variation was predicted. A general LDC model can be defined as follows:

Kx ¼ f V1;V2;…Vnð Þ ð14Þ
where Vi represents input parameters. Based on Beven (1979), the variation of Kx can be
written as:

Kx þΔKx ¼ f V1 þΔV1;V2 þΔV2;…;Vn þΔVnð Þ ð15Þ
Expanding Eq. (15) in Taylor series, and ignoring second-order terms, leads to:

ΔKx ¼ ∂Kx

∂V1
ΔV1 þ ∂Kx

∂V2
ΔV2 þ…þ ∂Kx

∂Vn
ΔVn ð16Þ

Table 2 Statistics of parameters used in this study

Statistical indicator W (m) H (m) U (m/s) U∗ (m/s) W/H U/U∗ Kx HU∗ Kx (m2/s)

Maximum 253.60 8.20 1.73 0.55 403.75 20.25 37,140.74 1486.50
Minimum 1.40 0.14 0.03 0.00 2.20 0.77 3.08 0.20
Average 46.15 1.25 0.47 0.09 46.83 6.70 1116.41 76.11
Standard deviation 47.33 1.30 0.31 0.07 45.06 4.59 3478.76 173.96
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where the differentials ∂Kx
∂Vi

define the sensitivity of the estimated output to each model

parameter. Let us set:

AS ¼ ∂Kx

∂Vi
≈
ΔKx

ΔVi
ð17Þ

where As represents the absolute sensitivity of the output estimation to each input parameter.
The differential analysis is typically much more demanding to implement than other sensitivity
methods and yet provides only comparable results. Using sensitivity analysis as a partial
derivative form is impractical due to its complexity (Gardner et al. 1981). In addition, when
parameter variability takes realistic values this method which is valid for only small changes in
parameter values will be impractical (Hamby 1994).

The magnitude of parameters in the LDC equation varied, therefore, the absolute form of
sensitivity values from Eq. (17) are unsuitable for comparison of sensitivity values. So, relative
sensitivity values were used to compare sensitivity values of input parameters (Mount et al.
2013) in the form:

Rs ¼ ΔKx

ΔVi

Vi

Kx
ð18Þ

Relative changes or errors can be defined as in Saxton (1975):

RE ¼ ΔKx

Kx
ð19Þ

where Rs is a dimensionless coefficient which demonstrates the percentage of the relative
parameter change transmitted to the relative dependent parameter. This may be defined as the
sensitivity coefficient, for example, a sensitivity coefficient of 0.2 means 10% change in Vi as
an input parameter, would cause a 2% change in LDC (ΔKx/Kx) (Saxton 1975).

LDC models are affected by four input parameters which have a wide variation range in
nature and a lot of real data are needed to investigate the performance of LDC estimation. A
sensitivity and error analysis of the empirical and data-driven models are conducted for mean
values of input and output parameters and on the assumption that the interaction between input
parameters is negligible (Deng et al. 2001). Performance of selected models were evaluated by
two approaches of changing each input individually and the whole ones by random and none-
repeating dataset. In addition, global sensitivity based on Saltelli et al. (2008) has been
performed to investigate the interaction between input parameters. Therefore, first-order
sensitivity index (Si) has been estimated for each input parameter. If the sum of all Si was
equal to 1, model is additive and there is not any interaction between input parameters (Saltelli
et al. 2008).

In this study, for each input parameter, 100 random and none-repeating datasets were
produced in a domain of ±10% and ± 20% change of each input parameter for each available
data series. To investigate the effect of all input parameters on LDC estimation, another
random data series were produced based on ±10% and ± 20% change on all parameters. These
datasets have been used for selected models and the minimum and maximum LDC estimation
for each data series of every dataset was derived to analyze the performance of models and
derive the uncertainty curves. It is necessary to mention that for sensitivity and uncertainty
analysis of each input parameter, the other input parameters were kept constant at their average
values.
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3.3 Model Validation

Performance of LDC models have been evaluated using statistical measures, including the
mean absolute error (MAE), the root mean square error (RMSE), and the discrepancy ratio
(DR) and the related accuracy. DR was defined by White et al. (1973) to evaluate the
difference between measured and predicted values. If DR = 0, the predicted and measured
values of the dispersion coefficient are identical, while the model overestimates the measured
values of the dispersion coefficient when DR> 0, and underestimates them when DR< 0.
Accuracy is defined as the proportion of numbers with DR between −0.3 and 0.3 in the total
number of data (Seo and Cheong 1998):

MAE ¼ 1

N
∑ DRij j ð20Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑ DRið Þ2

r
ð21Þ

DR ¼ log
Kxp

Kxm
ð22Þ

where Kxp and Kxm are the predicted and measured LDC, respectively.

4 Results and Discussion

Sensitivity analysis, in addition to statistical analysis, helps the researchers to know limitations
and advantages of LDC models. Statistical measures, including MAE, RMSE and DR of
empirical and data-driven models are given in Table 3. Histogram of DR values for better
comparison between models are also illustrated in Fig. 2.

Table 3 Comparison of the performance of the various models

Model DR <
−0.3

−0.3 < DR
< 0

0 <DR
< 0.3

DR >
0.3

Accuracy MAE RMSE

Empirical Elder (1959) 98.17 1.22 0.61 0.00 1.83 1.81 1.90
McQuivey and Keefer

(1974)
1.83 3.05 6.10 89.02 9.15 1.67 2.04

Fischer (1967) 31.10 16.46 17.68 34.76 34.14 0.57 0.72
Liu (1977) 15.85 22.56 27.44 34.15 50.00 0.43 0.58
Seo and Cheong (1998) 17.07 17.07 29.27 36.59 46.34 0.42 0.58
Deng et al. (2001) 21.34 18.90 26.22 33.54 45.12 0.42 0.56
Kashefipour and Falconer

(2002)
25.00 28.05 21.95 25.00 50.00 0.44 0.63

Sahin (2014) 17.07 25.00 29.88 28.05 54.88 0.43 0.62
Zeng and Huai (2014) 22.56 23.78 26.83 26.83 50.61 0.37 0.51
Disley et al. (2015) 6.71 14.63 33.54 45.12 48.17 0.44 0.62

Data-driven Genetic Algorithm (GA) 18.29 23.78 21.95 35.98 45.73 0.39 0.52
Model Tree (M5) 16.46 26.83 32.93 23.78 59.76 0.33 0.44
Differential Evolution (DE) 25.00 23.17 23.78 28.05 46.95 0.40 0.54
Gene Expression (GE) 8.54 29.88 28.66 32.93 58.54 0.37 0.57
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Table 3 results shows that Elder (1959) equation has the maximum error and
minimum accuracy. This equation is suitable for streams with no transverse shear,
but the accuracy of this equation illustrates the importance of transverse variation
(Etemad-Shahidi and Taghipour 2012). DR < −0.3 for this model is about 98% and
this demonstrates lower estimation of the LDC by Elder equation. McQuivey and
Keefer (1974) model with RMSE equal to 2.04 and accuracy of 9.15% generally
overestimates the LDC values in streams with 89% of DR > 0.3. Error criteria for
Fischer (1967) decreased in comparison with Elder (1959) and McQuivey and Keefer
(1974) and its accuracy has been improved. Sahin (2014) has the highest accuracy
among all empirical models, followed by Zeng and Huai (2014), Liu (1977) and
Kashefipour and Falconer (2002). Disley et al. (2015), Seo and Cheong (1998) and
Deng et al. (2001) models with the accuracy of 48.17%, 46.34 and 45.12%, respec-
tively, have relatively accurate estimation of LDC. Zeng and Huai (2014) has the
lowest RMSE among all empirical formulas. Error estimation of LDC for the
Kashefipour and Falconer (2002) model is more than the corresponding values for
some of the empirical models but its perfect symmetry between lower and upper
estimates make this model suitable for LDC estimation (Etemad-Shahidi and
Taghipour 2012). Liu (1977), Seo and Cheong (1998) and Deng et al. (2001)
overpredict the LDC by 2.15, 2.14 and 1.57 times, respectively, more than the
underpredicted cases. However, for Kashefipour and Falconer (2002), the
overpredicted and underpredicted cases are equal, which make the performance of
this formula to be better on LDC estimation. This result is consistent with Etemad-
Shahidi and Taghipour (2012) findings.

Genetic algorithm has the lowest accuracy among data-driven models, therefore,
this model was eliminated from sensitivity analysis. Based on Table 3, M5 model
has the highest accuracy and lowest RMSE among all LDC estimation models.
Finally, based on statistical analysis three empirical equations, including
Kashefipour and Falconer (2002), Sahin (2014) and Zeng and Huai (2014), and
three data-driven models, including M5, GE and DE have been selected for
sensitivity analysis.
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As it was mentioned above, model sensitivity is the rate of change in LDC with
respect to change in input parameters while the other parameters are kept constant; in
other words, to investigate the direct effect of one parameter on LDC, the effect of
other parameters should be neglected by keeping their values constant. The average of
input parameters for LDC estimation are calculated from the existing datasets, and are
presented in Table 4.

Results of global sensitivity based on Saltelli et al. (2008) are presented in
Table 5. In this table, first-order sensitivity index (Si) has been estimated for all
selected models. Sum of Si for LDC models has been estimated near 1, which
implies that these models are additive with weak interaction between input
parameters.

In this study, ΔVi = 0.1Vi has been used for estimation of relative sensitivity
coefficient and relative error. Sensitivity analysis of selected empirical and data-
driven models are presented in Table 6. Also, the rate of LDC changes based on
±10% and ± 20% change of each input parameter with assuming the other parameters
to be constant are illustrated in Fig. 3. For M5 models, which contain two equa-
tions, the dataset was divided into two domains and used for each equation based on
model criteria. Rs is one of the most important sensitivity indicators for multivari-
able models. Parameters with the large amount of Rs have the great effect on LDC.
The estimated error caused by changing each parameter on LDC is shown by RE

(Table 6).
Mean flow velocity has the maximum of Rs in Kashefipour and Falconer (2002),

and when increasing 10% the velocity, the LDC value increases about 18%, as it is
illustrated in Table 6. Shear velocity has an inverse effect on LDC, where increasing
10% the shear velocity leads to about 6.7% decrease in LDC. The effect of input
parameters changes on LDC computed by Kashefipour and Falconer (2002) equation
is presented in Fig. 3a. According to the contents of Table 6, mean flow velocity
and channel width have the highest and lowest effect on LDC, respectively,
according to Sahin (2014) model. Fig. 3b shows that the channel width has no
influence on LDC using this model. Mean flow velocity, channel width and flow
depth have the highest Rs based on Zeng and Huai (2014) model, respectively,
(Table 6; Fig. 3c). This model has a lowest sensitivity to shear velocity among all
empirical and data driven models.

The M5 algorithm proposed two piecewise equations for LDC estimation. For this
reason, the sensitivity analysis was performed for two nonlinear equations of this
model. Splitting value for W/H is approximately 30, close to the value obtained by
Papadimitrakis and Orphanos (2004). In narrow rivers with W/H ≤ 30.6, the impor-
tance of shear velocity and channel width are more than the flow depth and velocity,

Table 4 Average value of input parameters used for LDC estimation

Average data All data W/H ≤ 30.6 W/H > 30.6

W (m) 46.15 28.92 56.89
H (m) 1.25 1.70 0.98
U (m/s) 0.47 0.48 0.45
U* (m/s) 0.09 0.11 0.07
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therefore W/H is more important than U/U∗ on LDC estimation. In wider rivers,
where W/H > 30.6, mean flow velocity has the highest value of Rs, hence U/U∗
has the main effect on LCD (Table 6). A possible interpretation is that Kx may be
less influenced by the W/H ratio in very wide rivers than in narrow rivers. This result
is in agreement with Papadimitrakis and Orphanos (2004) and Etemad-Shahidi and
Taghipour (2012) findings. In addition, Fig. 3d, e and g for M5 and GE models, show
that the shear velocity has a direct effect on LDC which is not consistent with the
empirical equations. The DE model developed by Li et al. (2013) behaves similarly to
the empirical models, with the mean flow velocity having a highest effect and the
shear velocity an inverse effect on LDC estimation (Table 6; Fig. 3f). It was also
found that in GE model, the most effective parameters on LDC were the flow depth,
the mean flow velocity, the channel width and the shear velocity, respectively, in
descending order of importance. The shear velocity in GE model has an uncommon
effect on LDC, as shown in Fig. 3g, where an increase and decrease of this parameter
has the same impact on LDC. It should be noted that the models developed by GE
have a complicated structure which reduce their interpretation in comparison with
other models.

Table 6 Sensitivity analysis of selected empirical and data driven models

Input Sensitivity
indices

Kashefipour and
Falconer (2002)

Sahin
(2014)

Zeng and Huai
(2014)

M5 Eq.
(13-a)

M5 Eq.
(13-b)

DE
model

GE
model

W ΔV 4.615 4.615 4.615 2.892 5.689 4.615 4.615
ΔK 1.207 0.273 3.393 2.32 3.41 3.43 2.033
Rs 0.283 0.047 0.69 0.772 0.599 0.753 0.363
RE 0.028 0.005 0.069 0.077 0.06 0.075 0.036

H ΔV 0.125 0.125 0.125 0.17 0.098 0.125 0.125
ΔK 3.01 5.49 1.427 0.637 2.157 1.049 4.379
Rs 0.706 0.944 0.29 0.212 0.379 0.23 0.781
RE 0.071 0.094 0.029 0.021 0.038 0.023 0.078

U ΔV 0.047 0.047 0.047 0.048 0.045 0.047 0.047
ΔK 7.676 8.749 5.593 0.317 4.807 6.862 3.645
Rs 1.801 1.504 1.137 0.105 0.844 1.505 0.65
RE 0.18 0.15 0.114 0.011 0.084 0.151 0.065

U* ΔV 0.009 0.009 0.009 0.011 0.007 0.009 0.009
ΔK −2.864 −2.548 −0.606 2.662 0.82 −2.002 0.772
Rs −0.672 −0.438 −0.123 0.885 0.144 −0.439 0.138
RE −0.072 −0.044 −0.012 0.081 0.014 −0.046 0.014

Table 5 First-order sensitivity index (Si) of input parameters for selected models

Model Si ∑Si

W H U U*

Kashefipour and Falconer (2002) 0.12 0.08 0.26 0.50 0.96
Sahin (2014) 0.01 0.15 0.18 0.45 0.79
Zeng and Huai (2014) 0.32 0.11 0.45 0.05 0.93
Model Tree (M5) 0.45 0.08 0.24 0.08 0.85
Differential Evolution (DE) 0.11 0.02 0.19 0.64 0.96
Gene Expression (GE) 0.01 0.06 0.05 0.84 0.96
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Fig. 3 Sensitivity analysis of (a) Kashefipour and Falconer (2002); (b) Sahin (2014); (c) Zeng and Huai (2014);
(d) M5 Eq. (13-a); (e) M5 Eq. (13-b); (f) DE model; (g) GE model

Table 7 Relative sensitivity (Rs) of all models

Models Rs

W H U U*

Kashefipour and Falconer (2002) 0.27 0.70 1.80 −0.67
Sahin (2014) 0.47 0.94 1.50 −0.43
Zeng and Huai (2014) 0.69 0.29 1.13 −0.12
M5-Eq. (13-a), W/H ≤ 30.6 0.77 0.21 0.10 0.88
M5-Eq. (13-b), W/H > 30.6 0.60 0.38 0.84 0.14
DE 0.75 0.23 1.50 −0.44
GE 0.36 0.78 0.65 0.13
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Table 7 and Fig. 4 illustrate Rs values of the selected empirical and data-
driven models for better comparison. Mean flow velocity is the most sensitive
parameter on empirical equations and some of data-driven models (M5-Eq. 13-b,

-1

0

1

2

3

W H U U*

R
s

Kashefipour and Falconer (2002) Sahin (2014)
Zeng and Huai (2014) M5-Eq. (13-a), W/H ≤ 30.6
M5-Eq. (13-b), W/H > 30.6 DE
GE

Fig. 4 Histogram of relative sensitivity of all models
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and DE), which is consistent with the findings of Deng et al. (2001) and
Haghiabi (2017). Therefore, the performance of the formulas mentioned above,
depends heavily on the velocity value. Comparison of the two equations devel-
oped by M5 model shows that the role of mean flow velocity becomes more
pronounced in relatively wide rivers than narrow rivers, which is in agreement
with Rutherford (1994) findings. In addition, shear velocity is the most sensitive
parameter among the four input parameters in narrow streams. This has been
reported by Tayfur and Singh (2005), who stated that ANN model can yield
satisfactory predictions of the LDC in narrow streams, if the shear velocity was
used as the only input parameter.

Table 7 shows that the channel width is the most sensitive parameter in M5 Eq.
(13-a) model, while Kashefipour and Falconer (2002) has the least sensitivity to
channel width. Flow depth has the most impact on Sahin (2014) formula, while
M5-Eq. (13-a) has the least sensitivity to flow depth among all models of LDC
estimation. Velocity has the highest effect on Kashefipour and Falconer (2002) and
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this parameter is the least sensitive parameter in M5-Eq. (13-a). M5-Eq. (13-a) and
Zeng and Huai (2014) have the most and the least sensitivity to shear velocity
among others.

Uncertainty curves based on Monte Carlo simulation, which have been used to
produce new data set based on ±10% and ± 20% changes of each input parameter for
the empirical and data-driven models are presented in Figs. 5, 6, 7, 8, 9 and 10. For
interpretation of the figures, all data were arranged in descending order based on
LDC values.

According to the Monte Carlo simulation (Figs. 5, 6, 7, 8, 9 and 10), Zeng
and Huai (2014) equation had the lowest sensitivity to parameter changes, and
showed a smooth curve. Uncertainty of this equation in comparison with other
models, for all input parameters, was negligible. Two other empirical models,
those by Kashefipour and Falconer (2002) and Sahin (2014), showed a high
uncertainty for higher LDC values. LDC estimated for ±20% changes in all
input parameters, for high LDC values, were more than the LDC calculated for
the original data values at about 80 and 60% for Kashefipour and Falconer
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(2002) and Sahin (2014), respectively. This was also observed for DE and GE
models. The M5 models are very sensitive to parameter changes, based on Fig.
8. The W/H ratio would change with variation in flow depth and channel width,
and in some cases, the stream is converted from narrow to wide and vice versa.
In such cases, the other equation of the M5 model would be used for the new
dataset, which makes a high differences between LDC estimated for the original
dataset and the new data generated by the Monte Carlo simulation for the same
dataset (sudden jump). The GE model has a non-smooth uncertainty curve for
high LDC values due to the model’s complexity.

The results of the uncertainty analysis based on Monte Carlo simulation showed
that the Zeng and Huai (2014) equation demonstrates less uncertainty to input
parameter changes and is more reliable for estimation of LDC in comparison with
the other models.
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5 Conclusions

Due to the complexity of measuring and the time-consuming tracer studies, em-
pirical and data-driven models have been developed by many scientists to estimate
the longitudinal dispersion coefficient, in order to apply in mathematical models
for water quality modelling. Based on statistical analysis, M5 algorithm has the
best accuracy and the least computational error compared to other studied empir-
ical and data-driven models. Sensitivity analysis on selected empirical and data-
driven models showed that the Kashefipour and Falconer (2002) equation has the
least sensitivity to channel width, which could be used for rivers with variety in
width or uncertainty in measuring this parameter. In this case, uncertainty in this
parameter would have the least effect on LDC estimation. M5-Eq. (13-a), DE and
Zeng and Huai (2014) may be used for conditions with fluctuations in flow depth.
Also, M5 has the least sensitivity to velocity for narrow rivers which makes
this model suitable for narrow streams with fluctuation in depth and velocity,
such as meandering rivers. The results of Monte Carlo simulation showed that

0

2000
1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

K
x(m

2 /s
)

Data number

Variable (W)

0

2000

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

K
x(m

2 /s
)

Data number

Variable (H)

0

2000

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

K
x(m

2 /s
)

Data number

Variable (U)

0

2000

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

K
x(m

2 /s
)

Data number

Variable (U*)

0

2000

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163

K
x(m

2 /s
)

Data number

Variable (all parameters)
(-20%) Simulated Kx

(-10%) Simulated Kx

Computed Kx

(+10%) Simulated Kx

(+20%) Simulated Kx

Fig. 9 Performance of DE using Monte Carlo simulation

Sensitivity Analysis of Empirical and Data-Driven Models on Longitudinal... 851



uncertainty of Kashefipour and Falconer (2002), Sahin (2014), DE and GE models
are very high for high LDC values. The M5 model results have some sudden
jumps for W/H ratios around 30.6. It seems through this threshold (W/H=30.6),
that the M5 model is forced to exploit two equations (Eqs. 13) for the original and
the new dataset, making significant difference between the LDC estimated for the
two datasets. Some jumps occurred in GE model for high LDC values due to the
complexity of the equation of GE model. These jumps could have negative effect
on performance of LDC estimation. However, this amount of measured data is a
relatively small dataset to properly describe nonlinear processes. The effect of key
factors will be better captured using empirical models by continuing to measure
longitudinal dispersion in a wide range of streams (Gharabaghi and Sattar 2017).
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Appendix

Table 8 Geometric, hydraulic and dispersion coefficient datasets used in this study

No Stream W (m) H (m) U (m/s) U* (m/s) Kx (m2/s)
1 Copper Creek, VA (below gauge) 15.900 0.490 0.210 0.079 19.520
2 Copper Creek, VA (below gauge) 18.300 0.840 0.520 0.100 21.400
3 Copper Creek, VA (below gauge) 16.200 0.490 0.250 0.079 9.500
4 Clinch River, TN (below gauge) 46.900 0.860 0.280 0.067 13.930
5 Clinch River, TN (below gauge) 59.400 2.130 0.860 0.104 53.880
6 Clinch River, TN (below gauge) 53.300 2.090 0.790 0.107 46.450
7 Copper Creek, VA (above gauge) 18.600 0.390 0.140 0.116 9.850
8 Power River, TN 33.800 0.850 0.160 0.055 9.500
9 Clinch River, VA 36.000 0.580 0.300 0.049 8.080
10 Green and Duwamish 21.770 1.580 0.310 0.058 6.500
11 Green and Duwamish 29.610 1.080 0.360 0.048 0.500
12 Bayou Anacoco 19.800 0.410 0.290 0.044 13.940
13 Nooksack River 86.000 2.940 1.200 0.514 153.290
14 Antietam Creek 15.800 0.390 0.320 0.060 9.290
15 Antietam Creek 19.800 0.520 0.430 0.069 16.260
16 Antietam Creek 24.400 0.710 0.520 0.081 25.550
17 Monocacy River 35.100 0.320 0.210 0.040 4.650
18 Monocacy River 36.600 0.450 0.320 0.050 13.940
19 Monocacy River 47.500 0.870 0.440 0.070 37.160
20 Missouri River 182.900 2.230 0.930 0.065 464.520
21 Missouri River 201.200 3.560 1.270 0.082 836.130
22 Missouri River 196.600 3.110 1.530 0.077 891.870
23 Wind/Bighom River 67.100 0.980 0.880 0.110 41.810
24 Elkhom River 32.600 0.300 0.430 0.046 9.290
25 Elkhom River 50.900 0.420 0.460 0.046 20.900
26 John day River 25.000 0.560 1.010 0.137 13.940
27 Comite River 12.500 0.260 0.310 0.043 6.970
28 Comite River 15.800 0.410 0.370 0.055 13.940
29 Amite River 36.600 0.810 0.290 0.068 23.230
30 Amite River 42.400 0.800 0.420 0.068 30.190
31 Sabine River 103.600 2.040 0.560 0.054 315.870
32 Sabine River 127.400 4.750 0.640 0.081 668.900
33 Muddy Creek 13.400 0.810 0.370 0.077 13.940
34 Muddy Creek 19.500 1.200 0.450 0.093 32.520
35 Sabine River,Texas 35.100 0.980 0.210 0.041 39.480
36 White River 67.100 0.550 0.350 0.044 30.190
37 Chattahoochee River 65.500 1.130 0.390 0.075 32.520
38 Susquehanna River 202.700 1.350 0.390 0.065 92.900
39 Antietam Creek 10.970 0.520 0.210 0.075 17.500
40 Antietam Creek 23.470 0.700 0.520 0.101 101.500
41 Antietam Creek 24.990 0.450 0.410 0.081 25.900
42 Antietam Creek 12.800 0.300 0.420 0.057 17.500
43 Antietam Creek 24.080 0.980 0.590 0.098 101.500
44 Antietam Creek 11.890 0.660 0.430 0.085 20.900
45 Antietam Creek 21.030 0.480 0.520 0.069 25.900
46 Monocacy River 48.700 0.550 0.260 0.050 37.800
47 Monocacy River 92.960 0.710 0.160 0.050 41.400
48 Monocacy River 51.210 0.650 0.620 0.040 29.600
49 Monocacy River 97.540 1.150 0.320 0.058 119.800
50 Monocacy River 49.990 0.950 0.320 0.075 29.600
51 Monocacy River 33.530 0.580 0.160 0.041 66.500
52 Monocacy River 40.540 0.410 0.230 0.040 66.500
53 Conococheague Creek 42.210 0.690 0.230 0.064 40.800
54 Conococheague Creek 49.680 0.410 0.150 0.081 29.300
55 Conococheague Creek 42.980 1.130 0.630 0.081 53.300
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No Stream W (m) H (m) U (m/s) U* (m/s) Kx (m2/s)

56 Conococheague Creek 43.280 0.690 0.220 0.064 40.800
57 Conococheague Creek 63.700 0.460 0.100 0.056 29.300
58 Conococheague Creek 59.440 0.760 0.680 0.072 53.300
59 Chattahoochee River 75.600 1.950 0.740 0.138 88.900
60 Chattahoochee River 91.900 2.440 0.520 0.094 166.900
61 Chattahoochee River 99.970 2.500 0.300 0.105 166.900
62 Salt Creek 32.000 0.500 0.240 0.038 52.200
63 Difficult Run 14.500 0.310 0.250 0.062 1.900
64 Difficult Run 11.580 0.400 0.220 0.087 1.900
65 Bear Creek 13.700 0.850 1.290 0.553 2.900
66 Little Pincy Creek 15.900 0.200 0.390 0.053 7.100
67 Bayou Anacoco 17.500 0.450 0.320 0.024 5.800
68 Bayou Anacoco 25.900 0.940 0.340 0.067 27.600
69 Bayou Anacoco 36.600 0.910 0.400 0.067 40.200
70 Comite River 15.700 0.200 0.360 0.040 69.000
71 Comite River 6.100 0.490 0.250 0.058 69.000
72 Bayou Bartholomew 33.400 1.400 0.200 0.030 54.700
73 Bayou Bartholomew 37.490 2.070 0.100 0.040 54.700
74 Amite River 21.300 0.500 0.540 0.027 501.400
75 Amite River 46.020 0.530 0.410 0.043 501.400
76 Tickfau River 14.900 0.590 0.270 0.080 10.300
77 Tickfau River 41.450 1.040 0.070 0.090 10.300
78 Tangipahoa River 31.400 0.810 0.480 0.072 45.100
79 Tangipahoa River 29.900 0.400 0.340 0.020 44.000
80 Tangipahoa River 42.980 1.280 0.260 0.068 45.100
81 Tangipahoa River 31.700 0.760 0.360 0.053 44.000
82 Red River 253.600 0.810 0.480 0.072 45.100
83 Red River 161.500 0.400 0.340 0.020 44.000
84 Red River 152.400 1.620 0.610 0.032 143.800
85 Red River 155.100 3.960 0.290 0.060 130.500
86 Red River 248.110 4.820 0.310 0.065 143.800
87 Sabine River, LA 116.400 3.660 0.450 0.057 227.600
88 Sabine River, LA 160.300 1.740 0.470 0.036 177.700
89 Sabine River, TX 14.200 1.650 0.580 0.054 131.300
90 Sabine River, TX 12.200 2.320 1.060 0.054 308.900
91 Sabine River, TX 21.300 0.500 0.130 0.037 12.800
92 Sabine River, TX 21.640 0.610 0.080 0.042 12.800
93 Sabine River, TX 17.370 1.230 0.040 0.050 14.700
94 Sabine River, TX 31.390 1.430 0.130 0.041 24.200
95 Wind/Bighom Rivers 44.200 1.400 0.990 0.140 184.600
96 Wind/Bighom Rivers 85.300 2.400 1.730 0.150 464.600
97 Copper Creek 16.700 0.500 0.200 0.080 16.800
98 Clinch River 48.500 1.200 0.210 0.070 14.800
99 Copper Creek 18.300 0.400 0.150 0.120 20.700
100 Powell River 36.800 0.900 0.130 0.050 15.500
101 Clinch River 28.700 0.600 0.350 0.070 10.700
102 Copper Creek 19.600 0.800 0.490 0.100 20.800
103 Clinch River 57.900 2.500 0.750 0.100 40.500
104 Conchelaa Canal 24.700 1.600 0.660 0.040 5.900
105 Clinch River 33.530 0.780 0.190 0.049 10.700
106 Clinch River 55.780 2.260 0.690 0.099 36.930
107 Clinch River 53.200 2.400 0.660 0.110 36.900
108 Coachell Canal, CA 23.770 1.600 0.670 0.040 5.960
109 Coachell Canal,CA 24.990 1.540 0.660 0.037 5.920
110 Copper Creek 16.800 0.500 0.240 0.080 24.600
111 Missouri River 180.600 3.300 1.620 0.080 1486.500
112 Bayou Anacoco 25.900 0.900 0.340 0.070 32.500
113 Bayou Anacoco 36.600 0.900 0.400 0.070 39.500
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No Stream W (m) H (m) U (m/s) U* (m/s) Kx (m2/s)

114 Nooksack River 64.000 0.800 0.670 0.270 34.800
115 Wind/Bighom Rivers 59.400 1.100 0.880 0.120 41.800
116 Wind/Bighom Rivers 68.600 2.200 1.550 0.170 162.600
117 John Day River 34.100 2.500 0.820 0.180 65.000
118 Yadkin River 70.100 2.400 0.430 0.100 111.500
119 Yadkin River 71.600 3.800 0.760 0.130 260.100
120 Colorado River 106.100 6.100 0.790 0.088 181.000
121 Colorado River 71.600 8.200 1.200 0.337 243.000
122 Albert 100.000 4.400 0.029 0.002 0.200
123 Dessel-Herentals 35.000 2.500 0.037 0.002 0.200
124 Yuma Mesa A 7.600 3.450 0.680 0.047 0.500
125 Bocholt-Dessel 35.000 2.500 0.107 0.006 1.400
126 Villemsvaart 34.000 2.500 0.130 0.008 1.700
127 Chicago Ship Canal 49.000 8.070 0.270 0.019 3.000
128 Irrigation 1.400 0.190 0.380 0.110 9.600
129 Irrigation 1.500 0.140 0.330 0.100 1.900
130 Puneha 5.000 0.280 0.260 0.210 7.200
131 Kapuni 9.000 0.300 0.370 0.150 8.400
132 Kapuni 10.000 0.350 0.530 0.170 12.400
133 Manganui 20.000 0.400 0.190 0.180 6.500
134 Waiongana 13.000 0.600 0.480 0.240 6.800
135 Stony 10.000 0.630 0.550 0.300 13.500
136 Waiotapu 11.400 0.750 0.410 0.061 8.000
137 Manawatu 59.000 0.720 0.370 0.070 32.000
138 Manawatu 63.000 1.000 0.320 0.094 22.000
139 Manawatu 60.000 0.950 0.460 0.092 47.000
140 Tarawera 25.000 1.210 0.730 0.084 27.000
141 Tarawera 20.000 1.920 0.620 0.123 11.500
142 Tarawera 25.000 1.380 0.770 0.091 20.500
143 Tarawera 25.000 1.400 0.780 0.091 15.500
144 Tarawera 25.000 1.570 0.830 0.096 18.000
145 Tarawera 85.000 2.600 0.690 0.060 52.000
146 Waikato 120.000 2.000 0.640 0.050 67.000
147 Miljacka 11.000 0.290 0.350 0.058 2.700
148 Upper Tame 9.900 0.830 0.460 0.090 5.500
149 Upper Tame 9.900 0.920 0.520 0.100 5.100
150 Credit River 11.210 0.240 0.660 0.160 5.350
151 Credit River 10.990 0.210 0.490 0.140 6.050
152 Credit River 10.820 0.200 0.410 0.130 2.350
153 Credit River (West Credit) 5.570 0.310 0.260 0.090 2.440
154 Credit River (West Credit) 5.540 0.300 0.150 0.090 3.020
155 Credit River (West Credit) 5.100 0.250 0.140 0.090 2.530
156 Credit River (Main Credit) 21.640 0.560 0.380 0.090 10.200
157 Credit River (Main Credit) 20.740 0.480 0.290 0.090 7.370
158 Credit River (Main Credit) 20.310 0.450 0.260 0.080 6.000
159 Credit River (Main Credit) 20.970 0.310 0.980 0.110 8.180
160 Credit River (Main Credit) 19.390 0.260 0.740 0.090 5.510
161 Credit River (Main Credit) 17.170 0.220 0.520 0.090 7.130
162 Credit River (Black Creek) 3.770 0.270 0.230 0.120 2.350
163 Credit River (Black Creek) 3.570 0.200 0.150 0.100 1.900
164 Credit River (Black Creek) 3.580 0.190 0.140 0.100 1.140
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