
ORIGINAL ARTICLE

Use of Optimally Pruned Extreme Learning Machine
(OP-ELM) in Forecasting Dissolved Oxygen Concentration
(DO) Several Hours in Advance: a Case Study
from the Klamath River, Oregon, USA

Salim Heddam1

Received: 18 February 2016 /Accepted: 1 June 2016 /Published online: 7 June 2016
# Springer International Publishing Switzerland 2016

Abstract This study presents a new method called optimally pruned extreme learning machine
(OP-ELM) for forecasting dissolved oxygen concentration (DO) several hours in advance. The
forecast time horizon ranges from 24-h ahead (one day) to 168-h ahead (seven days). The
proposed OP-ELM model is compared to the standard multilayer perceptron neural network
(MLPNN) with respect to their capabilities of forecasting DO in the Klamath River at Miller
Island Boat Ramp, Oregon, USA. To demonstrate the forecasting capability of OP-ELM and
MLPNN models, we used a long-term data set of hourly DO data for a ten-year period, from 1
January 2004 to 31 December 2013, collected by the United States Geological Survey (USGS
Stations No: 420,853,121,505,500 [Top] and 420,853,121,505,501 [Bottom]). For developing
the models, we split the data set into a training subset (from 2004 to 2010) that corresponded to
70 %, and a validation (from 2011 to 2013) that corresponded to 30 % of the total data set. We
investigated the performance and accuracy of the proposed two models for three different
horizons, i.e., short-term, medium-term and long-term forecasting; a total of six different models
(FM1 to FM6), having the same data sets as inputs, were developed for short-term (24 h to 48 h),
medium-term (72 h to 96 h) and long-term (120 h to 168 h) horizons. Input variables used in the
six models were the six antecedent DO concentrations at (t-5), (t-4), (t-3), (t-2), (t-1) and (t). The
performance of the OP-ELM and MLPNNmodels in training and validation sets were compared
with the observed data. To get more accurate evaluation of the results of the two models, the
following seven statistical performance indices were used: the coefficient of correlation (R), the
Willmott index of agreement (d), the Nash-Sutcliffe efficiency (NSE), the root mean squared error
(RMSE), the mean absolute error (MAE), the bias error (Bias), and the mean absolute percentage
error (MAPE). The study reveals that OP-ELM and MLPN provided good results and they were
successful in forecasting DO at a high level of accuracy. The reliability of forecasting decreased
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with increasing the step ahead. The measures of model performance fell within the acceptable
ranges for the two stations. Regarding the fact that researches on medium and long-term
forecasting are relatively limited, the present work aims to build and provide a good early warning
system capable of preventing DO depletion and the associated problems of anoxia and hypoxia in
river. Furthermore, the proposed forecasting models, when implemented appropriately, could be
reliably used in detecting future change in DO concentration in rivers.
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1 Introduction

Dissolved oxygen (DO) concentration is an important water quality parameter, which consists
an important indicator of water pollution in rivers (Mohan and Pavan Kumar 2016). DO is
used to assess the trophic state of rivers, canals and lakes (Gikas 2014; Chamoglou et al. 2014;
Mellios et al. 2015). During the last decade, much effort has been devoted to the modelling of
DO in river, lake and stream ecosystems using artificial intelligence (AI) techniques, and much
work has been done on this subject. Of course, and not surprisingly, regarding the capabilities
and usefulness of the AI techniques, the overwhelming attention given to their application is
not just luck. Motivation for using AI techniques in DO modelling has received considerable
attention in the last few years and an in-depth literature review suggests that the following four
types of AI techniques have been broadly applied on the subject:

1. Artificial neural networks based approach (ANNs): generally, there are the following three
types of ANNs that are widely used in modelling DO: (i) generalized regression neural
network (GRNN) (Heddam 2014a; Antanasijević et al. 2013, 2014); (ii) radial basis
function neural network (RBFNN) (Akkoyunlu et al. 2011; Ay and Kisi 2012;
Emamgholizadeh et al. 2014); and (iii) multilayer perceptron neural network (MLPNN)
(Ranković et al. 2010; Areerachakul et al. 2013).

2. Fuzzy logic and neurofuzzy system: generally, the famous adaptive neuro-fuzzy inference
system (ANFIS) is the broadly reported model in modelling DO (Heddam 2014b; Nemati
et al. 2015).

3. Evolutionary models: generally, gene expression programming (GEP) (Kisi et al. 2013),
dynamic evolving neural-fuzzy inference system (DENFIS) (Heddam 2014c), Particle
Swarm Optimization (PSO) (Liu et al. 2014), and genetic algorithm (GA) (Liu et al. 2013)
are the widely used models.

4. Wavelet decomposition models (Evrendilek and Karakaya 2014, 2015).

Although the already developed models for estimating DO have shown good precision and
accuracy, and they offer a good alternative in the absence of direct in situ measurements, these
models suffer from a number of shortcomings and limitations. First, the models are linked to the
water quality variables which already have been used in the calibration of the models; these will
typically involve maintaining the input variables available regularly. Second, the models cannot be
applied without timely and reliable water quality data. It would be interesting to investigate the
capabilities of the AI models in forecasting DO at different level in advance using only the time
series of DO andwithout the need for water quality variables as input to themodels. ForecastingDO
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in river ecosystems is a relatively difficult task, since the concentration of DO varies significantly
over different time periods of the day, especially between morning and evening, within the seasons,
and from year to year. Hence, according to what was stated above, we can define three categories of
forecasting models: short-term, medium-term and long-term forecasting models. Long-term fore-
casting refers tomore than 5 days in advance (120 h) and refers to one of two horizons, one is 5 days
in advance (120 h), the other is 7 days in advance (168 h). In medium-term forecasting, the horizon
is usually three to four days in advance (72 h to 96 h). Finally, short-term forecasting involves a
period of about one to two days (24 h to 48 h). Obviously, for the long-term forecasting horizon,
using a long historical data set, may improve the accuracy of the developed models.

Understanding the concentration and change of DO in freshwater ecosystems is necessary and
of great importance. DO varies depending on many factors, including salinity, temperature and
pressure (USGS 2008). These factors can be classified as follows (Cox 2003a, 2003b): (i)
reaeration from the atmosphere; (ii) enhanced aeration at weirs and other structures; (iii) photo-
synthetic oxygen production; and (iv) the introduction of DO from other sources such as
tributaries. The primary causes of DO depletion are: (i) the oxidation of organic material in the
water column; (ii) degassing of oxygen in supersaturated water; (iii) respiration by aquatic plants;
(iv) oxygen demand exerted by river bed sediments (Cox 2003a, 2003b). Low levels of DO in the
water are accompanied by hypoxia (HY) and anoxia (AX) (Nürnberg 2004). Anoxia is defined as
a condition of zero (a total loss of DO) or very lowDO concentrations, while hypoxia is defined as
a condition of low DO. Seasonal hypoxia, and eventual anoxia, can be caused by high
anthropogenic nutrient loadings (Breitburg et al. 2003). Hypoxia profoundly affects
ecosystem functioning, with strong implications for all ecosystem components, i.e.,
biodiversity, biological and cause physiological stress, and even death, to associated aquatic
organisms, which indicate a stressed environment (Friedrich et al. 2014). Regarding the
importance of the HY and AX processes, it will be very interesting to develop a model that
will be used as an early warning system, and will have the ability to deliver more accurate and
time sensitive information during stress events.

Few studies have attempted to develop forecasting models for DO time series without the
need of using the water quality variable as input to the models. Alizadeh and Kavianpour
(2015) compared two ANNs models, the standard MLPNN and wavelet-neural network
(WNN), in forecasting DO at hourly and daily time steps, at the Hilo Bay on the east side
of the Big Island of Hawaii, Pacific Ocean. DO at different time lags were considered as input
variables for the MLPNN and WNN models. They have tested four forecasting models having
different input combinations: DO(t-1), DO(t-2), DO(t-3) and DO(t-4). The models developed
had only one output: the DO at (t + 1). The t corresponds to the DO at the present time (day or
hour), and the (t-1) until (t-4) correspond to the four previous values of DO. As a result of the
study, for the models at daily time step, they have obtained a correlation coefficient (R) of 0.66
and 0.72 for the models having two inputs (i.e., (t-1) and (t-2)) and the models having four
inputs (i.e., (t-1), (t-2), (t-3) and (t-4)), respectively. At hourly time step, the authors reported
excellent results with an R of 0.94 in the validation phase. An et al. (2015) proposed a new
forecasting model using the nonlinear grey Bernoulli model (NGBM (1, 1)) in forecasting DO
in the Guanting reservoir (inlet and outlet), located at the upper reaches of the Yongding River
in northwest Beijing, China. The authors used DO at weekly time step. Altunkaynak et al.
(2005) examined the potential of fuzzy logic-based model (FL) to forecast monthly DO in the
Golden Horn in Istanbul, Turkey. The authors have used two inputs (i.e., DO(t-1) and DO(t-2))
and one output (DO(t)). As a result of the study, it was seen that one can forecast the next
month’s DO concentration from antecedent measurements within acceptable relative error
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limits. Wang et al. (2013) compared the bootstrapped wavelet neural network (BWNN) as a
new tool in forecasting monthly DO in Harbin, China. The proposed BWN model has been
compared with the standard MLPNN and the wavelet neural network models (WNN). They
have compared three types of models: using only DO(t-1) as input; using only DO(t-3) as input
and using DO(t-1) and DO(t-3) as inputs. In all three developed models the output was the
DO(t). As a result of the study the authors reported a high Nash-Sutcliffe efficiency (NSE)
value equal to 0.85 in the validation phase. Faruk (2010) applied the MLPNN in forecasting
monthly DO time series using the data for the period between 1996 and 2004 from the Büyük
Menderes basin, Turkey, and has obtained a NSE coefficient equal to 0.91.

As indicated above, a literature review demonstrates that modelling DO is broadly
discussed and several kinds of models have been developed worldwide. However, few studies
have been devoted to forecasting DO and many more are needed. In the previous forecasting
studies, we can report the following drawbacks: (i) the time-step chosen is often constrained by
the availability of DO data, and the majority of the models use data at monthly, weekly or
infrequently daily time step, which is not really efficient as the amount of DO varies rapidly;
(ii) in all reported models, the forecast horizon is generally the value at the next time (t + 1),
and none of the studies has investigated a long term forecasting horizon. Therefore, in
this paper we present the OP-ELM as a new and powerful tool in forecasting hourly
dissolved oxygen concentration (DO) several hours in advance. The proposed model
is compared to the standard MLPNN in order to demonstrate its superiority and
usefulness. We test this new model with data from the Klamath River at Miller Island Boat
Ramp, Oregon, USA, to illustrate how the proposed model can forecast DO very well. To the
author’s knowledge, DO forecasting with OP-ELM is the first study in the literature. Therefore,
the present study investigates the use of OP-ELM in the development of a robust model for DO
forecasting.

2 Materials and Methods

2.1 Study Area and Data Set

Historical hourly DO data from 1 January 2004 to 31 December 2013 were used in this study;
they are available at the United States Geological Survey (USGS) website: http://or.water.usgs.
gov/cgi-bin/grapher/table_setup.pl?site_id. Two stations were chosen: at Klamath, River
Miller Island Boat Ramp, Oregon USA [Top] (USGS ID: 420,853,121,505,500; Latitude
42°08′53″N; Longitude 121°50′55″E; NAD83); and at Klamath, River Miller Island Boat
Ramp, Oregon USA [Bottom] (USGS ID:420,853,121,505,501). Figure 1 shows the locations
of the stations. For the two stations, the data set was divided into two sub-data sets: (i) training
set (70 %); and (ii) validation set (30 %). Hence, the first seven years (2004 to 2010) were
chosen for training and the last three years (2011–2013) for validation. Data were stored in a
table, in which each row corresponded to one hour (one pattern) and contained a measured DO
value. In some hours, the DO variable was not available, in which case we removed the
incomplete patterns. A detailed description of the original and final patterns is reported in
Table 1. From Table 1, for the top station a total of 1047 patterns were missing and for the
bottom station a total of 3763 patterns were missing. Figures 2 and 3 show the plot of the DO
time series for the training and validation, for the two stations. Table 2 summarizes the
descriptive statistics of the data set, where Xmean, Xmax, Xmin, Sx and Cv denote the mean,
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the maximum, the minimum, the standard deviation, and the coefficient of variation, respec-
tively. All the data derived were normalized to have zero mean and unit variance using the Z-
score method, calculated by the following formula:

xni;k ¼ xi;k−mk

SdK
ð1Þ

where xni, k is the normalized value of the variable k (input or output) for each sample i. xi,k
is the original value of the variable k (input or output). mk and Sdk are the mean value and
standard deviation of the variable k (input or output). Normalization is an important process,
which increases significantly the performance of the models (Kingston et al. 2005; Heddam
et al. 2011, 2012, 2016; Heddam 2016a, 2016b).

2.2 Multilayer Perceptron Neural Network (MLPNN)

Artificial neural networks (ANNs) are an information processing system which belongs to the
category of nonlinear models (Haykin 1999). ANNs are inspired from the function of the

Fig. 1 Map showing the study area, Klamath River at Miller Island Boat Ramp [Top and Bottom] stations,
Oregon, USA. (Adopted from Sullivan et al. 2012, 2013a, 2013b)
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Table 1 Dataset presentation includes years of available data, the description of the starting and ending dates
covering the period of the study, the total patterns available, the incomplete patterns removed from the table, the
final patterns used, and separating the data to the subset for training and validation

Station Year Begin Date End Date Total
Patterns

Incomplete
Patterns

Final
Patterns

Subset

Klamath River at Miller
Island Boat Ramp [Top]
(420,853,121,505,500)

2004 01/01/2004 12/31/2004 8784* 0382 8402 Training

2005 01/01/2005 12/31/2005 8760** 0119 8641 Training

2006 01/01/2006 12/31/2006 8760 0238 8522 Training

2007 01/01/2007 12/31/2007 8760 0022 8738 Training

2008 01/01/2008 12/31/2008 8784 0097 8687 Training

2009 01/01/2009 12/31/2009 8760 0023 8737 Training

2010 01/01/2010 12/31/2010 8760 0002 8758 Training

2011 01/01/2011 12/31/2011 8760 0004 8756 Validation

2012 01/01/2012 12/31/2012 8784 0154 8630 Validation

2013 01/01/2013 12/31/2013 8760 0006 8754 Validation

Klamath River at Miller
Island Boat Ramp [Bottom]
(420,853,121,505,501)

2004 01/01/2004 12/31/2004 8784 0403 8381 Training

2005 01/01/2005 12/31/2005 8760 1381 7379 Training

2006 01/01/2006 12/31/2006 8760 0191 8569 Training

2007 01/01/2007 12/31/2007 8760 0603 8157 Training

2008 01/01/2008 12/31/2008 8784 0413 8371 Training

2009 01/01/2009 12/31/2009 8760 0180 8580 Training

2010 01/01/2010 12/31/2010 8760 0047 8713 Training

2011 01/01/2011 12/31/2011 8760 0151 8609 Validation

2012 01/01/2012 12/31/2012 8784 0015 8769 Validation

2013 01/01/2013 12/31/2013 8760 0379 8381 Validation

*8784 patterns correspond to: [7 months ×31 days × 24 h] = 5208+ [4months ×30 days × 24 h] =8088 + [1 month
× 29 days × 24 h] =8784. **only February with 28 days, while the others all had 30 or 31 days

Fig. 2 Time series plot of dissolved oxygen concentration (DO) for the USGS [Top] (420,853,121,505,500)
station, covering the period of the study. Here the beginning and ending dates are in the training phase from to 01/
01/2004 at 01:00 until 12/31/2010 at 24:00; and in the validation phase from to 01/01/2011 at 01:00 until 12/31/
2013 at 24:00
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human brain. In ANNs, the neurons are tightly interconnected and organized into
different layers. There are three types of layers, i.e., an input layer, one or more
hidden layers, and an output layer. The layers are connected by weights (Haykin
1999). Multilayer perceptron neural network (MLPNN) (Rumelhart et al. 1986) is the
most widely used type of ANNs reported in the literature, considered as a powerful
tool in modeling nonlinear processes. The number of neurons contained in the input
and output layers, is related to the problem that must be resolved. Each neuron in the
input layer corresponds to a single variable, and the output neurons represent the
solution of the problem being solved. Figure 4 presents the structure of the MLPNN
models used in the present study. It consist of three layers: the input layer with six
variables, denoted as x1 to x6 and corresponding to the DO at (t-5), (t-4), (t-3), (t-2),
(t-1) and (t); the hidden layer with a number of neurons defined by trial and error;
and finally, the output layer with only one neuron: the DO at (t + 24) to (t + 168),
according to the model developed. The MLPNN are capable of approximating any
function with a finite number of discontinuities (Hornik et al. 1989) and are consi-
dered as a universal approximator (Hornik et al. 1989; Hornik 1991). Let us denote
with k the number of input variables, and m the number of neurons in the hidden layer; the

Fig. 3 Time series plot of dissolved oxygen concentration (DO) for the USGS 420853121505501 [Bottom]
station, covering the period of the study. Here the beginning and ending dates are in the training phase from to 01/
01/2004 at 01:00 until 12/31/2010 at 24:00; and in the validation phase from to 01/01/2011 at 01:00 until 12/31/
2013 at 24:00

Table 2 Statistical parameters of data set for forecasting models

Station Period Unit Xmean Xmax Xmin Sx Cv N

Klamath River at Miller
Island Boat Ramp

[Top] (420,853,121,505,500)

Training mg/L 7.527 23.40 0.000 3.802 0.505 60,485

Validation mg/L 8.527 20.00 0.000 3.130 0.367 26,140

Whole period mg/L 7.829 23.40 0.000 3.641 0.465 86,625

Klamath River at Miller
Island Boat Ramp [Bottom]
(420,853,121,505,501)

Training mg/L 6.581 14.90 0.000 4.097 0.623 58,150

Validation mg/L 7.332 13.30 0.000 3.514 0.479 25,759

Whole period mg/L 6.812 14.90 0.000 3.943 0.579 83,909

Abbreviations: Xmean, mean; Xmax, maximum; Xmin, minimum; Sx, standard deviation; Cv, coefficient of
variation; N, number of patterns
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mathematical structure of the MLPNN from the input to the output can be formulated as
follows:

Α j ¼ β j þ
Xk

i¼1

wij � xi ð2Þ

where Aj is the weighted sum of the j hidden neuron, k is the total number of inputs, wij

denotes the weight characterising the connection between the nth input to the mth hidden
neuron, and βj is the bias term of each hidden neuron. The output of the mth hidden neuron is
given by

Υ j ¼ f A j
� � ð3Þ

The activation function f adopted in the present study was the sigmoid, given by Eq. (4):

f Αð Þ ¼ 1

1þ e−A
ð4Þ

The neural network output is then given by:

Οk ¼ β0 þ
Xm

j¼1

wjk � Y j ð5Þ

where wjk denotes the weight characterising the connection between the mth hidden neuron
to the pth output neuron,m the total number of hidden neurons, and β0 is the bias term. A linear
activation function is most commonly applied to the output layer.

During the last few years, AI techniques are largely used by scientists in developing
different kind of models, and the ANNs are the most applied form of AI. Typical applications

x1DO (t)

DO (t-1)

DO (t-2)

DO (t-3)

DO (t-4)

DO (t-5)

DO (t+24)

DO (t+48)

DO (t+72)

DO (t+96)

DO (t+120)

DO (t+168)

Input Layer Hidden Layer Output Layer

Wij

Wjk

Bias : 
Bias : 

x2

x3

x4

x5

x6

Fig. 4 Multilayer Perceptron Neural Network (MLPNN) structure used in forecasting dissolved oxygen
concentration. The structure in this figure is valid for the two stations
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include the following, among many others: predicting the dispersion coefficient (D) in a river
ecosystem (Antonopoulos et al. 2015); modelling the permeability losses in permeable
reactive barriers (Santisukkasaem et al. 2015); estimating the reference evapotranspi-
ration (ET0) in India (Adamala et al. 2015); calculating the dynamic coefficient in
porous media (Das et al. 2015); predicting Indian monsoon rainfall (Azad et al. 2015);
modeling of arsenic (III) removal (Mandal et al. 2015); predicting effluent biochem-
ical oxygen demand (BOD) in a wastewater treatment plant (Heddam et al. 2016);
modeling Secchi disk depth (SD) in river (Heddam 2016a); and predicting phycocy-
anin (PC) pigment concentration in river (Heddam 2016b).

Unsurprisingly, regarding the high capabilities of ANNs in developing environmental
models, they have rapidly gained much popularity. But even with this, ANNs models are
not without criticism. The performance of the ANNs models depends mainly on (Maier and
Dandy 2000; Maier et al. 2010): (i) the selection of the appropriates input; (ii) data division
(the best selection of the splitting ratio between training and validation); (iii) the model
structure (the number of hidden neurons, number of hidden layers and the type of transfer
function); (iv) model calibration; and finally (v) model evaluation using different kind of
statistical metrics. Some important details about the appropriate application of the ANN
models can be found in: Bowden et al. (2005a, 2005b); Maier and Dandy (2000); and Maier
et al. (2010).

2.3 Optimally Pruned Extreme Learning Machine (OP-ELM)

Extreme learning machine (ELM) has been proposed by Huang et al. (2006a, 2006b)
for training single hidden layer feedforward neural networks (SLFN) (Huang et al.
2015). ELM is a universal function approximator (Huang and Chen 2007, 2008). In
SLFN, we have two weight matrices, from the input layer to the hidden layer (input
layer weights) and from the hidden layer to the output layer (output layer weights).
These two matrices must be optimized during the training process, generally using the
backpropagation training algorithm. According to Huang et al. (2006a, 2006b), when
using the ELM algorithm, the input layer weights do not need to be tuned iteratively
and to be generated randomly; however, the output layer weights are determined
analytically using least-squares method (Huang et al. 2015). The ELM algorithm is
presented briefly below.

Let be N arbitrary training samples represented by (xi, yi), where xi = [xi1, xi2,…, xiD]
T∈RD

and [yi1, yi2,…, yiD]
T∈RD. Single hidden layer feedforward neural networks with L hidden

nodes and activation function f(x) are mathematically presented as (Huang et al. 2006a,
2006b):

XL

i¼1

βi f i x j
� � ¼

XL

i¼1

βi f i wi⋅x j þ bi
� � ¼ oj ð6Þ

where j = 1, 2,…, N. Here wi = [wi1, wi2,…, wiD]
T is the weight vector connecting the ith

hidden node and the input nodes, βi = [βi1, βi2,…, βik]
T is the weight vector connecting the ith

hidden node and the output nodes, and bi is the threshold of the ith hidden node (Zeng et al.
2013). The standard SLFN with L hidden nodes with activation function f(x) can be written as:

Hβ ¼ T ð7Þ
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where:

H ¼
f 1 w1⋅x1 þ b1ð Þ ⋯ f L wL⋅x1 þ bLð Þ

⋮ ⋮ ⋮
f 1 w1⋅xN þ b1ð Þ ⋯ f L wL⋅xN þ bLð Þ

2
4

3
5 ð8Þ

β ¼
βT
1

⋮
βT
L

2
4

3
5 and T ¼

tT1
⋮
tTL

2
4

3
5 ð9Þ

Different from the conventional gradient-based solution of SLFN, ELM simply solves the
function by:

β ¼ HþT ð10Þ
where H+ is the Moore-Penrose generalized inverse of matrix H (Zeng et al. 2013). More

details about ELM can be found in: Huang et al. (2006a, 2006b); Huang et al. (2011, 2015);
and Huang (2015).

Since it was proposed, ELM has received much popularity and several modifications were
proposed to the original algorithm. Among them, we could name: the optimally pruned
extreme learning machine (OP-ELM) (Miche et al. 2008, 2010); online sequential extreme
learning machine (OS-ELM) (Liang et al. 2006); Bidirectional extreme learning machine B-
ELM (Yang et al. 2012); Evolutionary extreme learning machine SaDE-ELM (Cao et al.
2012); Fully Complex Extreme Learning Machine C-ELM (Li et al. 2005); and others. In the
present study we focused on the famous OP-ELM.

The optimally pruned extreme learning machine was developed by Miche et al. (2008,
2010). It is simply called OP-ELM (Miche et al. 2008, 2010; Sorjamaa et al. 2008), and is a
modified version of the original extreme learning machines (ELM). According to Pouzols and
Lendasse (2010a, 2010b), OP-ELM is designed for use for up to three different types of kernel
functions, i.e., Gaussian, sigmoid and linear kernels, and the creation of an OP-ELM model
occurs in three stages. Considering the fact that the original ELM suffer from an important
drawback, which is the presence of irrelevant or correlated variables in the training data set,Miche
et al. (2008, 2010) introduced the OP-ELMmodel as a good solution for pruning away irrelevant
variables, thereby, further improving the reliability and efficiency of the ELM approach.

Given a training set (xi, yi), xi∈Rd1 and yi∈Rd2; OP-ELM implies three important steps
(Grigorievskiy et al. 2014): (i) build a regular ELM model with initially large number of
neurons; (ii) rank neurons using multiresponse sparse regression (MRSR) (Similä and Tikka
2005) or least angle regression (LARS) (Efron et al. 2004) if the output is one-dimensional;
and (iii) use leave-one-out (LOO) validation to decide how many neurons to prune (Fig. 5). In
the first step, a construction of a SLFN using the original ELM algorithm with a large number
of neurons is made (by default one hundred neurons). It is important to note that while the
ELM use only sigmoid kernels, the OP-ELM offers three possibilities of kernel types: sigmoid,

Variables Selection  Build ELM Ranking of Neurons using LARS

Selection of Neurons using LOO 

Fig. 5 The important steps in developing an OP-ELM (From Sorjamaa et al. 2008)
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Gaussian and linear (Pouzols and Lendasse 2010a, 2010b). Ranking the hidden neurons
according to their accuracy is done in the second step using the MRSR algorithm. Hereafter,
we present theMRSR algorithm briefly, according to Similä and Tikka (2005). Suppose that the
targets are denoted by an n × p matrix T = [t1… tp] and the regressors are denoted by an n × m
matrix X = [x1… xm]. The MRSR algorithm adds sequentially active regressors to the model:

Υ k ¼ XWk ð11Þ

such that the n × p matrix Yk = [y1
k… yp

k] models the targets T appropriately. The m × p
weight matrix Wk includes k nonzero rows at the beginning of the kth step. Each step
introduces a new nonzero row and, thus, a new regressor to the model. It is reported that
MRSR is a variable ranking rather than selection algorithm (Pouzols and Lendasse 2010a).
Finally, the third and last step in OP-ELM is the application of the leave-one-out (LOO)
validation method where the decision over the actual best number of neurons for the model is
taken. According to Grigorievskiy et al. (2014), using the so-called application of the PRESS
(PREdiction Sum of Squares) statistic, provides an exact LOO.

Since it was proposed, OP-ELM has gained much popularity in engineering applications
during the past few years. Moreno et al. (2014) compared the ELM and the OP-ELM for the
classification of remote sensing hyperspectral data; Grigorievskiy et al. (2014) compared the OP-
ELMwith the linear model and the Least-Squares Support Vector Machines (LS-SVM) for long-
term time series prediction; Akusok et al. (2015) applied the OP-ELM for the identification of the
likeliest samples in a dataset to bemislabelled; and Sovilj et al. (2010) compared the OP-ELMand
optimally pruned k-nearest neighbors OP-KNN for long-term time series prediction.

2.4 Model Performance Indices

In the present study, we used seven performance indices in order to evaluate performance and
compare the developed models. These seven indices are: the coefficient of correlation (R)
(Eq. 12) (Legates and McCabe 1999), the Willmott index of agreement (d) (Eq. 13) (Willmott
1982; Willmott et al. 1985), the Nash-Sutcliffe efficiency (NSE) (Eq. 14) (Nash and Sutcliffe
1970; Dawson and Wilby 2001), the root mean squared error (RMSE) (Eq. 15) (Chai and
Draxler 2014; Dawson et al. 2002), the mean absolute error (MAE) (Eq. 16) (Dawson et al.
2002; Gebremariam et al. 2014), the bias error (Bias) (Eq. 17) (Dawson et al. 2007), and the
mean absolute percentage error (MAPE) (Dawson et al. 2007) (Eq. 18):

NSE ¼ 1−

XN

i¼1

Οi−Pi½ � 2

XN

i¼1

Οi−Οm½ � 2
ð12Þ

d ¼ 1−

XN

i¼1

Ρi−Οið Þ 2

XN

i¼1

Ρi−Οmj j þ Οi−Οmj jð Þ 2

ð13Þ
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where N is the number of data points, Oi is the measured value and Pi is the corresponding
model prediction, and Om and Pm are the average values of Oi and Pi. The Willmott index of
agreement (d) is an indicator of model performance. It carries a value from 0 to 1, where a
value of 1 indicates perfect agreement (Willmott 1982). The bias error (Bias), also reported as
the mean error (ME), for a perfect match has the value zero. A bias index expresses the
tendency of the model to underestimate (positive value) or overestimate (negative value).
According to Dawson et al. (2007), a low value for the Bias does not necessarily indicate a
good model in terms of accurate forecasts, since positive and negative errors will tend to cancel
out each other; for this reason, MAE is often preferred to Bias. The Nash-Sutcliffe efficiency
(NSE) is a measure of statistical association, which indicates the percentage of the observed
variance that is explained by the predicted data (Nash and Sutcliffe 1970). NSE ranges
between -∞ and 1, with NSE = 1 being the optimal value (Moriasi et al. 2007). The R statistic
describes the degree of colinearity between the observed and predicted values. A perfect model
has an R equal to 1; typically, values greater than 0.70 are considered acceptable (Moriasi et al.
2007). Both RMSE and MAE describe the difference between model simulations and obser-
vations in the units of the variable. For both, values close to zero indicate perfect fit. Some
advantages of MAE over RMSE in the evaluation and comparison of model performance can
be found in Willmott and Matsuura (2005). The MAPE, also called MARE (Dawson et al.
2007) or average absolute percentage error (AAPE) (Maier and Dandy 1996; Bowden et al.
2002), is one of the most widely used measures of forecast accuracy for developing models
(Kim and Kim 2016; Deo et al. 2016). The MAPE has no upper bound and for a perfect match
the result would be zero (Dawson et al. 2007). Although some researchers worldwide already
recommend the use of the MAPE as a measure of forecast accuracy, the MAPE has some
advantages and disadvantages. One of the most important disadvantages of the MAPE is that it
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produces infinite or undefined values for zero or close-to-zero measured (observed) values
(Kim and Kim 2016), which is the case in many environmental case studies. According to
Dawson et al. (2007), the MAPE is subject to Bpotential fouling by small numbers in the
observed record^. The MAPE is susceptible to outliers and it tends to overstate forecast error
(Tayman and Swanson 1999; Rayer 2007). If the observed values are very small, MAPE yields
extremely large percentage errors (outliers), while zero actual values result in infinite MAPE
(Kim and Kim 2016). Hence, when the observed values are close to zero, the MAPE value can
explode to a huge number, and if averaged with the other values, it can give a distorted image
of the magnitude of the error (Chase 2013).

In addition to all the reported seven performance indices, we also calculated the so-called
RPD (Eq. 19) (ratio of standard deviation to RMSE), the scatter index (SI) (Eq. 20), also
reported as the normalized objective function (NOF) (Gikas 2014), and the ratio of
the mean absolute error to the standard deviation (RMAE) (Eq. 21). The RPD is an
important index of model accuracy; in general, RPD values less than one are
unacceptable while values greater than 3 are considered excellent (Chang et al. 2001;
Ackerson et al. 2015). A value of the RMAE less than 0.5 may be considered low, acceptable
and appropriate for model evaluation (Singh et al. 2004; Moriasi et al. 2007). For the scatter
index (SI), a perfect model has a SI equal to 0.0 (Gikas 2014), and for values between 0.0 and
1.0, the model predictions are acceptable (Boskidis et al. 2010, 2011; Gikas et al. 2006;
Pisinaras et al. 2010).

RPD ¼ SX
RMSE

ð19Þ

SI ¼ RMSE
Om

ð20Þ

RMAE ¼ MAE
SX

ð21Þ

Finally, we report a comparison between measured and calculated mean and standard
deviation of DO, in the training and validation phases.

3 Results and Discussion

An attempt has been made in this study to develop a robust model for forecasting DO several
hours in advance, in the Klamath River, USA, using OP-ELM model. To draw robust
conclusions, it is interesting to compare the results using OP-ELM with the results obtained
using the standard MLPNN. We have developed six forecasting models called FM1 to FM6
using the same input data and having different outputs. The structures are shown in Table 3.
The six models correspond to three different horizons: short-term (FM1 and FM2), medium-
term (FM3 and FM4) and long-term forecasting horizons (FM5 and FM6). Forecasting DO
time series refers to estimating the future values at different hour intervals by using a set of
previous observed values. This will be interesting, as we use only the time series of DO
without any other input variables. For the OP-ELM, we used the implementation available
from www.cis.hut.fi/projects/tsp/index.php. In the present study, we applied the OP-ELM with
all possible kernels, i.e., linear, sigmoid, and Gaussian, using a maximum number of 100
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neurons (Fig. 6). For all the six models developed, the relationship among the inputs and the
output can be defined by Eq. (22):

DO t þ nð Þ ¼ f DO t−5ð Þ;DO t−4ð Þ;DO t−3ð Þ;DO t−2ð Þ;DO t−1ð Þ;DO tð Þ½ � ð22Þ

For example, for model FM1, the output corresponds to DO at (t + 24), and the forecasting
process is the following: with the N observations of the time series of DO at (t = 1, t = 2, t = 3,
t = 4,…, t = N), using a model with n input nodes (6 inputs in our study), we have a training data
composed of N-n training patterns, in which the first patterns will be composed of DO at (t = 1, 2,
3,…, n) as inputs and DO (n + 24) as the output; the second pattern will contain DO at (t = 2, 3,
4,…, n + 1) as inputs and DO (n + 25) as the output, and the last pattern will be DO (N-(n-6 + 24),
N-(n-5 + 24),N-(n-4 + 24),…,N-(n-1 + 24)) as inputs andDO (N) as the output, whereN is the total

Table 3 Combinations of input variables considered in developing forecasting models

Forecasting
horizons

Model Input structure Output

Short-Term FM1 DO (t-5), DO (t-4), DO (t-3), DO (t-2) , DO (t-1) , DO (t) DO (t + 24): +24 h ahead

FM2 DO (t-5), DO (t-4), DO (t-3), DO (t-2) , DO (t-1) , DO (t) DO (t + 48): +48 h ahead

Medium-Term FM3 DO (t-5), DO (t-4), DO (t-3), DO (t-2) , DO (t-1) , DO (t) DO (t + 72): +72 h ahead

FM4 DO (t-5), DO (t-4), DO (t-3), DO (t-2) , DO (t-1) , DO (t) DO (t + 96): +96 h ahead

Long-Term FM5 DO (t-5), DO (t-4), DO (t-3), DO (t-2) , DO (t-1) , DO (t) DO (t + 120):+120 h ahead

FM6 DO (t-5), DO (t-4), DO (t-3), DO (t-2) , DO (t-1) , DO (t) DO (t + 168):+168 h ahead

Fig. 6 Block diagram of the OP-ELM Toolbox (From Miche et al. 2008)
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number of patterns. It is clear from the proposed structure that for the FM6 model that has DO at
(t + 168) as output, we have a training data composed of (N-168) training patterns, in which the first
patternswill be composed of DO at (t= 1, 2, 3, 4, 5,6) as inputs andDO (t= 172) as the output. This
structure is valuable for the all six developed models. Therefore, all the six developed models are
basically approximators of the general equation (19). In the following sections, the forecasting
capabilities of the two proposed models (OP-ELM and MLPNN) are presented and compared.

3.1 Forecasting DO Concentration at the USGS 420853121505500 [Top] Station

According to the seven indices for assessing the performance of the models, the optimal model
should have the lowest RMSE, MAE, MAPE and Bias, and the values of NSE, R and d should
be close to 1. Table 4 displays the RMSE, MAE, MAPE, Bias, NSE, R and d model
performance statistics for both the training and validation sets. The two models (OP-ELM

Table 4 Performance indices for the OP-ELM and MLPNN forecasting models in the training and validation
phases several hours in advance for USGS 420853121505500 [Top] station

Station: Klamath River at Miller Island Boat Ramp [Top] (420,853,121,505,500)

Model Forecasting RMSE MAE Bias MAPE NSE R d

Interval (mg/L) (mg/L) (mg/L) (%) / / /

Training Phase

Short-Term OP-ELM +24 h 1.081 0.648 0.0000 0.337 0.919 0.959 0.979

+48 h 1.292 0.839 0.0000 0.442 0.884 0.940 0.969

MLPNN +24 h 1.054 0.635 −0.0001 0.315 0.923 0.961 0.980

+48 h 1.277 0.832 0.0005 0.429 0.887 0.942 0.969

Medium-Term OP-ELM +72 h 1.427 0.962 0.0000 0.527 0.859 0.927 0.961

+96 h 1.538 1.052 0.0000 0.596 0.836 0.914 0.954

MLPNN +72 h 1.406 0.950 0.0007 0.515 0.863 0.929 0.962

+96 h 1.512 1.037 0.0059 0.599 0.842 0.918 0.955

Long-Term OP-ELM +120 h 1.641 1.136 0.0000 0.675 0.814 0.902 0.946

+168 h 1.785 1.268 0.0000 0.784 0.779 0.883 0.935

MLPNN +120 h 1.613 1.122 −0.0021 0.644 0.820 0.906 0.949

+168 h 1.741 1.241 0.0033 0.750 0.790 0.889 0.938

Validation Phase

Short-Term OP-ELM +24 h 1.225 0.665 0.0430 0.176 0.848 0.922 0.959

+48 h 1.446 0.854 0.0344 0.237 0.788 0.888 0.940

MLPNN +24 h 1.270 0.697 0.1055 0.210 0.836 0.919 0.958

+48 h 1.527 0.888 0.1336 0.237 0.763 0.882 0.938

Medium-Term OP-ELM +72 h 1.588 0.969 0.0661 0.248 0.744 0.865 0.928

+96 h 1.751 1.082 0.0920 0.279 0.688 0.837 0.913

MLPNN +72 h 1.594 0.980 0.0172 0.267 0.742 0.862 0.925

+96 h 1.720 1.088 0.0176 0.315 0.699 0.837 0.909

Long-Term OP-ELM +120 h 1.784 1.151 0.0279 0.325 0.676 0.824 0.902

+168 h 1.930 1.258 0.0816 0.333 0.621 0.794 0.887

MLPNN +120 h 1.794 1.139 0.0913 0.291 0.672 0.825 0.905

+168 h 1.933 1.264 0.0479 0.342 0.619 0.791 0.883
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and MLPNN) displayed the highest level of accuracy for both training and validation. For the
OP-ELMmodel, in the training phase, the RMSE, MAE and Bias ranged from 1.081 to 1.785,
0.648 to 1.268, and 0, respectively. The NSE, R and d ranged from 0.779 to 0.919, 0.883 to
0.959, and 0.935 to 0.979, respectively. Likewise, for MLPNN, the RMSE, MAE and Bias
ranged from 1.054 to 1.741, 0.635 to 1.241, and −0.0001 to 0.0033, respectively. The NSE, R
and d ranged from 0.790 to 0.923, 0.889 to 0.961, and 0.938 to 0.980, respectively. From
Table 4, it can be observed that model FM1, whose output is the DO at (t + 24), performed
better than the other models in training; while the worst results were obtained for FM6 model,
whose output is the DO at (t + 168). In the validation phase, both MLPNN and OP-ELM
models performed quite well in forecasting hourly DO. According to Table 4, for the OP-ELM
model, the RMSE, MAE and Bias ranged from 1.225 to 1.930, 0.665 to 1.258, and 0.0430 to
0.0920, respectively. The NSE, R and d ranged from 0.621 to 0.848, 0.794 to 0.922, and 0.887
to 0.959, respectively. Likewise, for MLPNN, the RMSE, MAE and Bias ranged from 1.270 to
1.933, 0.697 to 1.264, and 0.0479 to 0.1055. The NSE, R and d ranged from 0.619 to 0.836,
0.791 to 0.919, and 0.883 to 0.958, respectively. From Table 4, we conclude that the accuracies
of the OP-ELM model predictions were usually slightly better than those of the MLPNN
model. This demonstrates that the OP-ELM model is more suitable for forecasting DO.

For reasons explained earlier in the section on model performance indices, an analysis of
the MAPE is required to be presented. In the training phase, as shown in Table 4, the values of
the MAPE ranged from 0.337 % to 0.784 % for OP-ELM and from 0.315 % to 0.750 % for
MLPNN. For all the models, the MAPE of the OP-ELM shows slightly larger value than that
of MLPNN models. In the validation phase, as shown in Table 4, the MAPE values ranged
from 0.176 % to 0.333 % for OP-ELM and from 0.201 % to 0.342 % for MLPNN. For all the
models, the MAPE values of the MLPNN were slightly larger than those of OP-ELM models.
However, generally OP-ELM models performed better than MLPNN in the validation phase.
To sum up, among the six forecasting models (FM1 to FM6), OP-ELM models showed the
best performances in the validation phase. Examination of the MAPE values is another way to
evaluate the developed models, and an important question must be answered: although the
performances of the models are good according to the others six performance criteria (i.e.,
RMSE, MAE, Bias, R, NSE and d), why the values of the MAPE are very high, especially in
the training phase? First, using the MAPE, the performance of the model can be easily judged.
The MAPE is only 0.5 % if the measured value is 0.10 mg/L and the predicted value is
0.105 mg/L. But MAPE is 84 % if the measured value is 0.10 mg/L and the predicted value
0.184mg/L. Second, as mentioned, the disadvantages of theMAPE include that it can assume a
very high value (the case of the present study) if the actual measured value is very small (Kim
and Kim 2016; Dawson et al. 2007; Tayman and Swanson 1999; Rayer 2007). For example, for
a measured DO of 0.10 mg/L, which is frequently observed in the present study, and a
calculated DO value of 8.567 mg/L, theMAPE is 8467%, which is very high and unacceptable.

In order to demonstrate the capabilities and usefulness of the proposed approaches, we
present in Table 5 a comparison between measured and calculated mean and standard
deviation, the RPD index, the SI and the RMAE. Values of the RMSE and MAE less than
half of the standard deviations (SD) of the observations may be considered low (Singh et al.
2004; Moriasi et al. 2007). As stated above, all RPD values less than one are unacceptable
while values greater than 3 are considered excellent. According to Table 5, for both training
and validation, there were small differences between model estimates and measured DO
values, according to the mean and standard deviation. All RMAE values were less than half
of the standard deviation and all RPD values were higher than 1.60. It can be seen from
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Table 5, in the validation phase, for the MLPNN and OP-ELM models, that all the differences
between the mean of the measurements and the corresponding calculated DO values are less
than 1.0 %. However, it is worth noting that there are only 5 cases in which the difference
between the measured and the corresponding calculated standard deviations are higher than
10 % with a maximum of 13.72 % and a minimum of 0.6 %. This finding implies that the
proposed models are very good with a high level of accuracy and robustness.

For a final verification of the accuracy of the developed forecasting models, we also present
in Table 5 the values of the SI index in the training and validation phases, for both MLPNN
and OP-ELMmodels. In the training phase, the SI of the six developed models (FM1 to FM6)
ranged between 0.144 and 0.238 for the OP-ELM models, and between 0.140 and 0.232 for
the MLPNN models. Furthermore, for all the developed models, the SI was less than 0.240

Table 5 Comparison between Mean and Standard deviation of the measured (Mes) and forecasted (Cal) DO
values, ratio of standard deviation (Sx) to RMSE (RPD), scatter index (SI) and ratio of the mean absolute error to
standard deviation (RMAE), for USGS 420853121505500 [Top] station

Station: Klamath River at Miller Island Boat Ramp [Top] (420,853,121,505,500)

Horizon Models Forecasting Xmean SX RPD RMAE SI

Interval Cal Mes Cal Mes

Training Phase

Short-Term OP-ELM +24 h 7.516 7.516 3.645 3.802 3.610 0.167 0.144

+48 h 7.516 7.516 3.575 3.801 2.976 0.219 0.172

MLPNN +24 h 7.516 7.516 3.652 3.802 3.521 0.170 0.140

+48 h 7.515 7.516 3.580 3.801 2.941 0.221 0.170

Medium-Term OP-ELM +72 h 7.516 7.516 3.523 3.801 2.703 0.250 0.190

+96 h 7.515 7.515 3.476 3.801 2.513 0.273 0.205

MLPNN +72 h 7.515 7.516 3.531 3.801 2.667 0.253 0.187

+96 h 7.509 7.515 3.483 3.801 2.469 0.277 0.201

Long-Term OP-ELM +120 h 7.515 7.515 3.428 3.800 2.358 0.295 0.218

+168 h 7.515 7.515 3.355 3.800 2.183 0.327 0.238

MLPNN +120 h 7.517 7.515 3.442 3.800 2.315 0.299 0.215

+168 h 7.512 7.515 3.376 3.800 2.128 0.334 0.232

Validation Phase

Short-Term OP-ELM +24 h 8.477 8.520 3.023 3.139 2.564 0.212 0.144

+48 h 8.484 8.518 2.882 3.138 2.169 0.272 0.170

MLPNN +24 h 8.414 8.520 3.142 3.139 2.469 0.222 0.187

+48 h 8.385 8.518 3.136 3.138 2.053 0.283 0.202

Medium-Term OP-ELM +72 h 8.451 8.517 2.920 3.137 1.976 0.309 0.149

+96 h 8.423 8.515 2.956 3.136 1.792 0.345 0.179

MLPNN +72 h 8.499 8.517 2.816 3.137 1.969 0.312 0.210

+96 h 8.497 8.515 2.734 3.136 1.821 0.347 0.227

Long-Term OP-ELM +120 h 8.485 8.513 2.728 3.135 1.757 0.367 0.186

+168 h 8.428 8.509 2.791 3.133 1.623 0.402 0.206

MLPNN +120 h 8.422 8.513 2.859 3.135 1.748 0.363 0.211

+168 h 8.461 8.509 2.703 3.133 1.621 0.403 0.227
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which indicates excellent modeling results. Similarly, in the validation phase, the SI of the six
models ranged between 0.144 and 0.206 for the OP-ELM models, and between 0.187 and
0.227 for the MLPNN models. Furthermore, for all developed models, the SI was less than
0.230, which indicates excellent modeling results. Once again, according to the SI, the OP-
ELM is again better. In conclusion, according to the results obtained in the validation phase,
the OP-ELM models must be ranked as best. Figures 7 and 8 show scatter plots of the
calculated versus observed DO for the OP-ELM and MLPNN models, respectively, in the
validation phase. Figures 9 and 10 show the comparison between the calculated and measured
DO for OP-ELM and MLPNN models, respectively, in the validation phase.

3.2 Forecasting DO Concentration at the USGS 420853121505501 [Bottom] Station

The MLPNN and OP-ELM models with the same input and different outputs were compared
based on their performance in training and validation sets. The results are summarized in Tables 6
and 7. It is observed that all models generally gave low values of the RMSE, MAE and bias, and
high values of R, d and NSE. Generally, the performances of both the MLPNN and OP-ELM
models in DO forecasting were very satisfactory. The first important conclusion is that the two
models (MLPNN and OP-ELM) showed higher accuracy in prediction and performed better
compared to the results obtained in Top station. Overall, they deliver a higher degree of reliability.
It can be seen from the results that the values of all seven performance indices change with respect
to the step ahead. Therefore, the two models appear to be performing at the same level of
accuracy, but the OP-ELM offers more accuracy in the validation phase. In the training phase, for
the OP-ELMmodel, the RMSE, MAE, and bias ranged from 0.662 to 1.534, 0.425 to 1.084, and
0, respectively. The NSE, R, and d ranged from 0.860 to 0.974, 0.927 to 0.987, and 0.961 to
0.993, respectively. Likewise, for MLPNN, the RMSE, MAE, and bias ranged from 0.656 to

(a) (b) (c)

(e) (f)(d)

Fig. 7 Scatterplots of calculated versus measured values of dissolved oxygen (DO) in the validation phase, using OP-
ELMmodel for theUSGS420853121505500 [Top] Station: a+24 h, b+48 h, c+72 h,d+96 h, e+120 h, and f+168 h
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1.502, 0.421 to 1.065, and −0.0042 to 0.0198, respectively, and the NSE, R, and d ranged from
0.865 to 0.974, 0.930 to 0.987, and 0.963 to 0.993, respectively. In the validation phase, both
MLPNN and OP-ELM models performed quite well in forecasting hourly DO. According to

(a) (b) (c)

(e) (f)(d)

Fig. 8 Scatterplots of calculated versus measured values of dissolved oxygen (DO) in the validation phase, using
MLPNN model for the USGS 420853121505500 [Top] Station: a +24 h, b +48 h, c +72 h, d +96 h, e +120 h,
and f +168 h

(a)

(c)

(e) (f)

(d)

(b)

Fig. 9 Comparison between the calculated and measured data of dissolved oxygen (DO) in the validation phase,
using OP-ELM model for the USGS 420853121505500 [Top] Station: a +24 h, b +48 h, c +72 h, d +96 h, e
+120 h, and f +168 h
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Table 6, for the OP-ELMmodel, the RMSE,MAE, and bias ranged from 0.708 to 1.454, 0.425 to
0.995, and 0.00 to −0.0736, respectively, and the NSE, R and d ranged from 0.829 to 0.960, 0.911
to 0.980, and 0.952 to 0.990, respectively. Likewise, for MLPNN, the RMSE, MAE, and bias
ranged from 0.730 to 1.489, 0.455 to 1.057, and −0.0582 to −0.1224, respectively, and the NSE,
R and d ranged from 0.821 to 0.957, 0.906 to 0.979, and 0.948 to 0.989, respectively. According
to Table 6, for all six models, the performance in the training phase was better than the
performance in the validation phase. Nevertheless, the FM1 model DO output at (+24 h) must
be considered as the best model developed. The FM6 model (+168 h) performed poorer than all
the other models in terms of the seven performance indices. For the OP-ELM models, in the
training phase, the lowest values of the RMSE, MAE, and Bias of forecasting models were 0.662
(mg/L), 0.425 (mg/L), and 0.00 (mg/L) (for OP-ELMFM1), and the highest values of the NSE, R
and d were 0.974, 0.987 and 0.993 (for OP-ELM FM1). Table 6 indicates that the OP-ELM
(FM1) had the lowest values of the RMSE and MAE (0.708 mg/L, 0.425 mg/L), and the highest
NSE, R and d (0.960, 0.980, and 0.990) in the validation phase. According to Table 6, for the
MLPNN models, the lowest values of the RMSE, MAE, and Bias of forecasting models were
0.656 (mg/L), 0.421 (mg/L), and −0.0042 (mg/L) (in MLPNN FM1), and the highest values of
the NSE, R, and d were 0.974, 0.987 and 0.993 (in MLPNN FM1). Table 6 indicates that the
MLPNN (FM1) had the lowest values of the RMSE andMAE (0.730mg/L, 0.455mg/L), and the
highest NSE, R and d (0.957, 0.979 and 0.989) in the validation phase. From the results of
training and validation, all six models developed in this study were evaluated all together, and
results are conspicuous. In the validation phase, the OP-ELM models outperformed MLPNN
models in terms of the various performance criteria. Finally, we report again the MAPE values in
the training and validation phases. In the training phase, as shown in Table 6, MAPE values
ranged from 0.243% to 0.825% for OP-ELM and from 0.244% to 0.783% forMLPNN.MAPE
values for all OP-ELM models were slightly larger than those for MLPNN models. In the
validation phase, as shown in Table 6, MAPE values ranged from 0.118 % to 0.278 % for OP-

(a) (b)

(c)

(e)

(d)

(f)

Fig. 10 Comparison between the calculated and measured data of dissolved oxygen (DO) in the validation
phase, using MLPNN model for the USGS 420853121505500 [Top] Station: a +24 h, b +48 h, c +72 h, d +96 h,
e +120 h, and f +168 h

928 S. Heddam



ELM and from 0.134 % to 0.295 % for MLPNN. MAPE values for all MLPNN models were
slightly larger compared to those for OP-ELM models. However, generally OP-ELM performed
better than MLPNN in the validation phase. To sum up, among the six forecasting models (FM1
to FM6), OP-ELMmodels showed better performances in the validation phase. In conclusion, the
OP-ELM models are better for DO forecasting.

We present in Table 7 a comparison between measured and calculated mean and standard
deviation, the RPD index, the SI and the ratio of the RMAE. According to Table 7, for both
training and validation there were small differences between model estimates and measured
DO values, based on the mean and standard deviation. In the training phase, all the ratios of
RMAE were less than 0.5 and all the RPD were higher than 3, except for the FM6 model for
both OP-ELM and MLPNN. It can be seen from Table 7, in the validation phase, for both
MLPNN and OP-ELM models, that all the difference between the mean of the measurements
and the corresponding calculated DO values were less than 1.0 %. However, it is worth noting

Table 6 Performance of the OP-ELM and MLPNN forecasting models in the training and validation phases
several hours in advance for USGS 420853121505501 [Bottom] station

Station: Klamath River at Miller Island Boat Ramp [Bottom] (420,853,121,505,501)

Model Forecasting RMSE MAE Bias MAPE NSE R d

Interval (mg/L) (mg/L) (mg/L) (%) / / /

Training Phase

Short-Term OP-ELM +24 h 0.662 0.425 0.0000 0.243 0.974 0.987 0.993

+48 h 0.883 0.597 0.0000 0.365 0.954 0.977 0.988

MLPNN +24 h 0.656 0.421 −0.0042 0.244 0.974 0.987 0.993

+48 h 0.874 0.591 0.0024 0.357 0.954 0.977 0.988

Medium-Term OP-ELM +72 h 1.057 0.724 0.0000 0.455 0.933 0.966 0.983

+96 h 1.201 0.825 0.0000 0.524 0.914 0.956 0.977

MLPNN +72 h 1.042 0.716 0.0028 0.442 0.935 0.967 0.983

+96 h 1.173 0.809 0.0027 0.510 0.918 0.958 0.978

Long-Term OP-ELM +120 h 1.313 0.912 0.0000 0.611 0.897 0.947 0.972

+168 h 1.534 1.084 0.0000 0.825 0.860 0.927 0.961

MLPNN +120 h 1.300 0.906 −0.0037 0.602 0.899 0.948 0.973

+168 h 1.502 1.065 0.0198 0.783 0.865 0.930 0.963

Validation Phase

Short-Term OP-ELM +24 h 0.708 0.425 −0.0304 0.118 0.960 0.980 0.990

+48 h 0.916 0.594 −0.0383 0.167 0.932 0.966 0.982

MLPNN +24 h 0.730 0.455 −0.0692 0.134 0.957 0.979 0.989

+48 h 0.954 0.635 −0.0870 0.181 0.927 0.963 0.980

Medium-Term OP-ELM +72 h 1.057 0.700 −0.0336 0.192 0.910 0.954 0.976

+96 h 1.171 0.784 0.0000 0.215 0.889 0.943 0.970

MLPNN +72 h 1.087 0.738 −0.0591 0.202 0.905 0.951 0.974

+96 h 1.181 0.820 −0.0476 0.225 0.887 0.942 0.969

Long-Term OP-ELM +120 h 1.308 0.912 −0.0736 0.259 0.862 0.929 0.961

+168 h 1.454 0.995 −0.0036 0.278 0.829 0.911 0.952

MLPNN +120 h 1.379 0.969 −0.1224 0.271 0.847 0.922 0.955

+168 h 1.489 1.057 −0.0582 0.295 0.821 0.906 0.948
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that there were only 2 cases were the difference between the measured and its corresponding
calculated standard deviation were higher than 10 % (FM5 and FM6 for MLPNN), with a
maximum of 11.81 % and a minimum of 2 %. This finding implies that the proposed models
are very good with a high level of accuracy and robustness. We also present in Table 7 the SI
index values in the training and validations phases, for both MLPNN and OP-ELMmodels. In
the training phase, the SI of the six developed models (FM1 to FM6) ranged between 0.101
and 0.183 for OP-ELM models, and between 0.159 and 0.229 for MLPNN models. Further-
more, for all developed models, the SI was less than 0.240, which corresponds to excellent
modeling. Similarly, in the validation phase, the SI of the six developed models ranged
between 0.097 and 0.160 for OP-ELM models, and between 0.148 and 0.204 for MLPNN
models. Furthermore, for all developed models, the SI was less than 0.210, which corresponds

Table 7 Comparison between Mean and Standard deviation of the measured (Mes) and forecasted (Cal) values
of DO, ratio of standard deviation (Sx) to RMSE (RPD), scatter index (SI), and ratio of the mean absolute error to
standard deviation (RMAE), for USGS 420853121505501 [Bottom] station

Station: Klamath River at Miller Island Boat Ramp [Bottom] (420,853,121,505,501)

Horizon Models Forecasting Xmean SX RPD RMAE SI

Interval Cal Mes Cal Mes

Training Phase

Short-Term OP-ELM +24 h 6.570 6.570 4.044 4.097 6.173 0.104 0.101

+48 h 6.569 6.569 4.000 4.097 4.630 0.146 0.134

MLPNN +24 h 6.574 6.570 4.060 4.097 6.250 0.103 0.159

+48 h 6.566 6.569 4.006 4.097 4.695 0.144 0.179

Medium-Term OP-ELM +72 h 6.568 6.568 3.957 4.096 3.876 0.177 0.100

+96 h 6.568 6.568 3.915 4.095 3.413 0.201 0.133

MLPNN +72 h 6.565 6.568 3.957 4.096 3.937 0.175 0.200

+96 h 6.565 6.568 3.922 4.095 3.497 0.198 0.234

Long-Term OP-ELM +120 h 6.567 6.567 3.879 4.095 3.115 0.223 0.161

+168 h 6.566 6.566 3.795 4.094 2.667 0.265 0.183

MLPNN +120 h 6.571 6.567 3.875 4.095 3.155 0.221 0.198

+168 h 6.546 6.566 3.811 4.094 2.725 0.260 0.229

Validation Phase

Short-Term OP-ELM +24 h 7.350 7.320 3.434 3.522 4.975 0.121 0.097

+48 h 7.357 7.319 3.368 3.522 3.846 0.169 0.125

MLPNN +24 h 7.389 7.320 3.374 3.522 4.831 0.129 0.148

+48 h 7.406 7.319 3.284 3.522 3.690 0.180 0.161

Medium-Term OP-ELM +72 h 7.352 7.319 3.352 3.522 3.333 0.199 0.100

+96 h 7.318 7.318 3.363 3.521 3.003 0.223 0.130

MLPNN +72 h 7.378 7.319 3.288 3.522 3.236 0.210 0.179

+96 h 7.366 7.318 3.279 3.521 2.985 0.233 0.199

Long-Term OP-ELM +120 h 7.391 7.317 3.196 3.521 2.688 0.259 0.144

+168 h 7.319 7.315 3.254 3.520 2.421 0.283 0.160

MLPNN +120 h 7.440 7.317 3.105 3.521 2.551 0.275 0.188

+168 h 7.374 7.315 3.126 3.520 2.364 0.300 0.204
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to excellent modeling. Once again, according to the SI values, the OP-ELM is better. In
conclusion, according to the results obtained in the validation phase, the OP-ELMmodel must
be ranked as better model. Figures 11 and 12 show scatter plots of the calculated versus

(a) (b) (c)

(d) (e) (e)

Fig. 11 Scatterplots of calculated versus measured values of dissolved oxygen (DO) in the validation phase,
using OP-ELM model for the USGS 420853121505501 [Bottom] Station: a +24 h, b +48 h, c +72 h, d +96 h, e
+120 h, and f +168 h

(a) (b) (c)

(f)(d) (e)

Fig. 12 Scatterplots of calculated versus measured values of dissolved oxygen (DO) in the validation phase,
using MLPNN model for the USGS 420853121505501 [Bottom] Station: a +24 h, b +48 h, c +72 h, d +96 h, e
+120 h, and f +168 h

Optimally Pruned Extreme Learning Machine in Forecasting DO 931



observed DO for OP-ELM and MLPNN models, respectively, in the validation phase.
Figures 13 and 14 show the comparison between the calculated and measured DO for OP-
ELM and MLPNN models, respectively, in the validation phase.

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 13 Comparison between the calculated and measured data of dissolved oxygen (DO) in the validation
phase, using OP-ELM model for the USGS 420853121505501 [Bottom] station: a +24 h, b +48 h, c +72 h, d
+96 h, e +120 h, and f +168 h

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 14 Comparison between the calculated and measured data of dissolved oxygen (DO) in the validation
phase, using MLPNN model for the USGS 420853121505501 [Bottom] station: a +24 h, b +48 h, c +72 h, d
+96 h, e +120 h, and f +168 h
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4 Conclusions

In this paper, we presented and compared two models to forecast DO several hours in advance,
MLPNN and OP-ELM, which are based on artificial intelligence paradigm. To show the
applicability of the proposed methods, actual values of measured DO in Klamath River at
Miller Island Boat Ramp, Oregon, USA were used. The data were collected from 2004 to
2013, at an hourly time step. The study showed the development of a powerful tool,
forecasting DO values at good accuracy (R between 0.91 and 0.98) in the validation
phase. The results are very encouraging because the development of these tools was
undertaken to support the actual methods and models for estimating DO in rivers
without using other water quality parameters. This is the first publication that we are
aware of, which demonstrates the use of OP-ELM and MLPNN, in forecasting DO
several hours in advance up to (7 days). In the validation phase, the results show that for both
stations, Top and Bottom, the OP-ELM model ensured more accurate forecasting than the
MLPNN model.
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