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Abstract Artificial neural networks (ANNs) were developed which enable evaluation of long-
term permeability losses that occur in permeable reactive barriers (PRBs) used in groundwater
remediation. The network architectures consist of non-changing input and output layer(s)
while the optimal hidden layer types and structures were determined through trial-and-error.
Fluid residence time within the PRB, pressure drop, inlet volumetric flow rate, dynamic
viscosity of fluid, average porosity, average particle size and the length of the reactor were
selected as the input parameters to estimate the output parameter, namely, permeability. Of all
experimental data available for each ANN structure, 70 % was used for training, 15 % for
validation and the remaining 15 % for testing the ANN. The ANN structures were developed
using a combination of soft computing techniques and mathematical association of varying
physical parameters. Predictions obtained from the optimized ANN structures were compared
with linear and non-linear regression models to assess their performance. The results indicate
that ANN performs significantly better than the regression models and ANN modelling is a
promising tool for the simulation and assessment of the permeability decline in PRBs.

Keywords Artificial neural network (ANN) . Permeability loss . Permeable reactive barrier
(PRB) . Zero-valent iron (ZVI) .Mineral precipitation

1 Introduction

Permeable reactive barrier (PRB) is a well-known technology for groundwater treatment (U.S.
EPA 2002; Das 2002; Chandrappa and Das 2012, 2014). It is a passive in-situ treatment wall
(porous) filled with a reactive material and installed perpendicular to the groundwater flow in
the subsurface (Fig. 1). The PRBs capture the contaminant plumes, break down the
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contaminants and release the treated water into the surroundings. The contaminants are
chemically, physically and/or biologically treated through the main processes of immobiliza-
tion and transformation depending on the type of the reactive material. Conventionally, zero-
valent iron (ZVI) is the reactive material used in PRBs but other materials such as surfactant-
modified zeolites and peat moss have also been used (Chandrappa and Das 2012, 2014). ZVI
has been widely used in PRBs as it is a highly reactive material and is suitable for treatment of
various kinds of contaminants, i.e., heavy metals and hydrocarbons (Scherer et al. 2000;
Vignola et al. 2011). One of the main limitations of this technology has to do with somewhat
unpredictable longevity of the treatment system. This is mainly due to the intricate physico-
chemical processes, which occur in the PRB during the treatment process, one of which is
permeability losses (Phillips et al. 2003; Li et al. 2005; Ruhl et al. 2011; Wilkin et al. 2014).

Permeability decline of ZVI in PRB primarily takes place due to mineral precipitation (Liang
et al. 2003; Hosseini et al. 2011). Apart from participating in reactions that are capable of degrading
the contaminants, ZVI will also react with dissolved oxygen and other mineral constituents in the
groundwater (mainly carbonates) as well as the water itself to form iron hydroxides. The formation
of these secondary precipitates produces a coating on the ZVI particles surface and clogs the pores in
the ZVI barrier. As a result, a decline in the porosity, and therefore, permeability of the ZVI barrier
occurs, and the access of the contaminants to ZVI becomes constrained.

As PRB is a passive treatment system, there are no additional forces that drive the flow of
contaminant plumes through the PRB (Das 2005; Chandrappa and Das 2014). Therefore, the
contaminated groundwater may bypass if the barrier is blocked significantly due to the
reduction in permeability, and thus, the main function of the PRB, i.e., contaminant treatment,
may be lost. As such, it is important to have an idea of the permeability loss over time for
particular design of a PRB. It is evident from several literatures (e.g., Wilkin et al. 2002;
Reardon 2005; Johnson et al. 2008) that the permeability loss occurs after the PRB has been
installed in the subsurface. However, the data collected from field scale are difficult to use
directly to determine the long-term permeability losses due to the fact that there are many
uncontrolled parameters that affect the process. On the other hand, due to the time limitations,
the data collection which is prolonged for many years in laboratory scale studies is often not
practical. In principle, an approach based on computational fluid dynamics (CFD) may be
employed to determine permeability losses (e.g., see, Liu et al. 2011) and the mathematical
modelling should be capable of determining if there is a decline in the permeability (Jeen et al.
2012). However, the CFD tools generally require complex solution procedures for the
governing equations for mass transport and fluid flow besides any other constitutive equations
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Fig. 1 Schematic diagram showing contaminated groundwater flowing through a PRB
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for changes in the physico-chemical properties of the PRB. The CFD models generally assume
that the in-situ processes in the PRB can be described by well-defined parameters and
governing equations; however, this is not necessarily the case.

In a different context, it can be seen that several researchers have applied the artificial neural
networks (ANNs) in predicting the permeability for porous domains (e.g., oil reservoirs, mem-
brane filters for water treatment) and have concluded that ANN performed well and provided
accurate results (Afshari et al. 2014; Inthata et al. 2013; Karimpouli et al. 2010). The ANN is a
computational tool composed of simple elements working in parallel commonly known as
neurons (Hanspal et al. 2013), which imitate the workings of the human brain and nervous
system. The neurons are grouped into three interconnected layers (the input, hidden and output
layers) (Modrogan et al. 2010; Deka and Quddus 2014). It is used as an alternative to logistic
regression, which is a statistical technique with the same goal of predicting an outcome variable
based on pre-determined set of input parameters. However, ANN is not a physically based
approach and it relies on the network’s ability to understand given information and/or outputs
from physically based relationships derived using other methods, e.g., CFD and/or experiments
(Tu 1996; Deka and Quddus 2014). For example, ANN architectures were developed to
determine dynamic capillary pressure effects in two-phase flow in heterogeneous porous domains
which used data from computational flow physics-based studies (Das et al. 2015).

In the context of this work, ANN is an attractive option as it can be used to determine the
slow process of permeability decline in PRB much beyond the span of typical laboratory
experiments. ANN allows a continuous learning process where the input data can continuously
be updated creating a larger database for better training and validation of the ANN structure,
hence, enabling better predictions. The input and output parameters for the ANN structures can
be controlled and varied to simulate a process where data are missing or only discreet data
points are available, e.g., see the work by Zargari et al. (2013). Zargari et al. claimed that the
most accurate permeability data from the laboratory experiments do not provide a continuous
profile along the line of measurement. Therefore, they used ANN to predict the porosity and
permeability of their porous domain of interest which were then compared with the experi-
mental results. It was concluded that the ANN models provided lower errors and the results
from porosity modelling is better than from the permeability modelling.

Motivated by the above background, this work aims to develop artificial neural networks
(ANNs) for predicting the permeability losses in PRB. The main objective is to develop the
ANNs and use them to model the permeability losses that take place in zero-valent iron permeable
reactive barriers (PRBs). Avariety of single and double hidden layer ANN structures were designed
to predict permeability decline at different pressure points of a laboratory scale PRB which was
carried out mainly by varying the number of neurons in the hidden layer(s). Bearing in mind that
increasing the number of neurons and the number of hidden layers do not necessarily determine how
good an ANN structure is, a statistical analysis of the obtained results was carried out to identify the
best ANN structures by comparing them to regression models.

2 Methodology

2.1 Data Collection

The reference datasets used for the development and implementation of the ANN were
obtained from well-defined in-house laboratory experiments. For this purpose, two clear
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acrylic square tubes (Hindleys Ltd., Sheffield, UK) with the dimensions of 10 cm height×
4.45 cm width×4.45 cm length and wall thickness of 0.63 cm were packed with ZVI of two
different particle sizes, namely, coarse (2.35±0.01 mm) and fine (0.40±0.02 mm) sizes. The
density of then ZVI particles obtained from pycnometer measurement was 7.25 g/cm3. For the
fine and coarse ZVI beds, the initial porosities at the time of packing the particles were 0.62
and 0.52, respectively.

Figure 2 illustrates the schematic diagram of the experimental setup where water flowed
through the column at the initial flow rates of 0.29 and 0.24 mL/min for coarse and fine ZVI,
respectively. The fluid pressure was measured using pressure meters at different time intervals
from the 4 pressure measuring ports, P1, P2, P3 and P4. The differential pressure used in this
study is denoted as ΔP with the subscript of port location, i.e. ΔP12 means the difference in
pressure between P1 and P2. The permeability values at any particular time were calculated
from Darcy’s law (Holdich 2002; Das et al. 2005; Nassehi and Das 2007) using the measured
data from the experiments. Please note that although the data are collected from laboratory
scale (small) experiments, the designed set up represent real field scale values. This is because
the relevant parameters were kept similar to the field conditions as far as possible. For
example, the flow rate was set to simulate typical groundwater flow and the ZVI packing in
the cell was similar to a real PRB.

2.2 ANN Modeling

In this study, MATLAB’s ANN toolbox was used to develop single and double hidden layer
ANNs. The reference data were imported into MATLAB using appropriate calling functions
after which each network was trained. The training was carried out by dividing the collected
data into three sets: 70 % for training, 15 % for validation and 15 % for testing the ANN
structures. During training, the number of neurons hidden layer(s) was varied from 2 to 12
neurons to determine the optimum architecture. A correlation coefficient, R, and slope, m, with
values close to 1 and an intercept value close to 0, were the criteria used to indicate a good
ANN structure. Each structure was trained at least 20 times and an average of the best 10
network training data results were further analysed to determine the best single- and double-
hidden-layered structures for each of the 4 sets of data. Details of the extensive analysis carried
out on the results obtained are discussed in the following sections.

Before training the neural networks, some default processing functions were altered by
changing some of the network parameters to scale the input and targets to be within the desired
range. The epoch limit was set to 200 iterations, the goal for error was set to 0 and the
{mapstd} function (i.e., the function that processes the data matrices by mapping each row’s
means and deviations to the default value) was used to normalise the training dataset values to
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Fig. 2 Schematic diagrams of a experimental setup for collecting data of permeability losses over time and b
location of pressure ports
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lie between 0 and 1. In addition, regression analysis was carried on the reference experimental
data to validate the ANN performance, details of which will be discussed subsequently.

As shown in Table 1, the input variables include fluid residence time, pressure
drops at four (4) measuring ports in the ZVI filled cells representing small laboratory
scale PRBs (see Fig. 2), inlet flow rate, dynamic viscosity of fluid, average porosity
(initial values), average particle size (initial values) and the length of the laboratory
scale reactor, while permeability was the output variable. The input and output
variables were selected as they are known to affect the flow of a fluid through the
porous materials and hence, the permeability losses.

In artificial neural networking, the output values can be determined at a time from
the given set of input variables, combining the pressure drop results obtained from the
4 measuring ports (ΔP12, ΔP13, ΔP34 and ΔP24). The fine and coarse ZVI data were
combined in order to have a substantial number of datasets. However, the process of
developing the ANN architectures would be very complex, and could introduce
artificial over-fitting of the data. Hence, relatively simple ANN structures, shown in
Fig. 3, were used for single-hidden-layer model and double-hidden-layer model with
seven inputs. The mentioned structures were used to model the permeability decline in
the PRB utilising the data obtained from the 4 pressure measuring ports separately
using the same six other input variables in the input layer of the ANN architecture.

2.3 Performance Testing

After developing various ANNs, the data collected were used as the testing data. Utilizing
Microsoft Excel, the following criteria were employed to compare the performance of the
ANN and regression models: average absolute relative error, sum squared error, threshold
statistics, correlation coefficient, and Nash-Sutcliffe efficiency. These are discussed below.

2.3.1 Average Absolute Relative Error (AARE)

This measure of accuracy is the average of the relative errors usually expressed as a percentage
and is defined as follows:

AARE ¼ 1

N

X N

i¼1

Scal−Sobs
Sobs

����

����� 100 ð1Þ

where N is the total number of data points predicted; Sobs and Scal are the observed and
calculated permeabilities, respectively. Good model performances are indicated by lower
AARE values.

2.3.2 Sum Squared Error (SSE)

This represents the total squared deviation between the observed and calculated values. It is
also used as a measure of variation within a group of data. It is defined by the formula

SSE ¼
X N

i¼1
Sobs−Scalð Þ2 ð2Þ

If all model results were identical the SSE would be 0.
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2.3.3 Threshold Statistics (TS)

Here, a set of threshold values are used to distinguish ranges of values when the predicted
behavior of a model varies in an important way. The threshold statistics for a level of absolute
relative error (ARE) of x% is defined by the formula

TS ¼ Nx

N
ð3Þ

where Nx is the predicted number of data points for which the absolute relative error falls
below the x%. The percentages used in this work are 5, 10, 25, 50 and 100 %. This equation
measures the consistency in prediction errors. Large threshold values indicate better model
performance.

Fig. 3 The two proposed ANN structures containing seven inputs a single-hidden-layer model and b double-
hidden-layer model
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2.3.4 Correlation Coefficient (R)

The Pearson product moment coefficient R is defined by the equation

(4)

where and are the average observed and calculated permeability values, k. This
equation was used to show the dependency between simulated and observed data. A good
model is indicated by having R-values nearing 1.0.

2.3.5 Nash-Sutcliffe Efficiency (E)

The Nash-Sutcliffe efficiency coefficient E is defined by the formula:

(5)

Values of E nearing unity signify high accuracy of predicted data and hence, indicate a good model.

2.4 Multiple Regression Analysis

Multiple regression analysis (MRA) is a statistical analysis method. It construes the variance of
a dependent variable using given independent variables. In order to find the best permeability-
predicting model, MRA was employed by using experimentally collected and observed
permeability results to serve as independent and dependent variables, respectively. In this
paper, both linear and non-linear MRA were adopted. They were used as comparisons to the
predictions acquired using ANN. The regression data analysis tool of Microsoft Excel was
utilized for all regression modelling work.

2.4.1 Linear multiple regression (LMR)

LMR was employed to generate a mathematical relationship that describes variations on the
permeability, regressed against all seven independent input parameters

k ¼ β0 þ β1x1 þ β2x2…þ β7x7 ð6Þ

where: k is the permeability;β0→β7 are the regression coefficients to be estimated using theANOVA
regression tool; and x1→ x7 are the independent variables which are all raised to the power of 1.

2.4.2 Non-linear multiple regression (NLMR)

In this work the non-linear multiple regression (NLMR) was also applied to evaluate
the ANN result. By applying the same variables as in LMR, NLMR uses a polyno-
mial range of different orders as investigated by Jain and Indurthy (2003). The
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general forms of the equations for NLMR have been chosen as recommended by Jain
and Indurthy (2003), where the permeability values are regressed as shown below.

k ¼ β0 þ β1 x1ð Þ0:05 þ β2 x2ð Þ0:05…þ β7 x7ð Þ0:05 ð7Þ

k ¼ β0 þ β1 x1ð Þ0:5 þ β2 x2ð Þ0:5…þ β7 x7ð Þ0:5 ð8Þ

k ¼ β0 þ β1 x1ð Þ1:25 þ β2 x2ð Þ1:25…þ β7 x7ð Þ1:25 ð9Þ

3 Results and Discussion

3.1 Data Collection

The experimentally determined plot of flow rate at the outlet (mL/h) versus time (day) for both
coarse and fine ZVI particles is shown in Fig. 4. For the same inlet flow rate, and, hence, fluid
pressure at the inlet, it can be seen that the outlet flow rate is continuously decreasing with
time. The outlet flow rate is significantly reduced for both particle sizes, i.e., from 18 and from
14.5 to 8 mL/h for the coarse and fine ZVI particles, respectively. This indicates that the
permeability is decreasing, thus reducing the flow rate for the same imposed inlet fluid
pressure.

As shown in Fig. 2, the pressure drop values were measured across 4 different reference
points of ΔP12, ΔP14, ΔP13 and ΔP24. The permeability (k) values were calculated from the
directly measured data from the experiment using Darcy’s law. Figure 5 illustrates the
permeability across the 4 different reference points at different time periods for the coarse
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Fig. 4 Outlet flow rate (mL/h) versus time (day) for ZVI beds consisting of coarse and fine ZVI particles. Please
note that data are presented starting from 2 days as the PRBs take approximately 2 days to reach steady values
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and fine particles. The trend is more obvious for coarse particles but it can still be observed that
the permeability is decreasing in the similar patterns for both particle sizes. As the reactor is
small, the differences in the losses in permeability values at different locations are small and it
seems that the permeability values are quite close to each other as well. These permeability
values are used as a reference data for developing the ANN structure which will be discussed
in the following section.

3.2 ANN Modeling

3.2.1 Training and validation of ANN structures

Figure 6 depicts typical plots for training and post-training analysis of an ANN structure for a
selected pressure point, i.e., ΔP13. It was observed that the mean-square errors decreased as the
network training process progressed.

The number of iterations (epochs) was varied for all ANN models trained. This was due to
the fact that the validation test stops the training of the network when the peak performance is
achieved. It can be seen from Fig. 6(b) that the post-training analysis provided the best linear
fit of the data points (shown in red linear line) between the plot of the outputs (Y) on the y-axis
and the targets (T) on the x-axis. It is also confirmed by the high R value of 0.997. The line of

0

5E-12

1E-11

1.5E-11

2E-11

2.5E-11

3E-11

3.5E-11

4E-11

4.5E-11

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Pe
rm

ea
bi

lit
y 

(K
, m

2 )

Time (day)

(a) P12

P34

P13

P24

0

5E-12

1E-11

1.5E-11

2E-11

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

Pe
rm

ea
bi

lit
y 

(K
, m

2 )

Time (day)

(b)
P12

P34

P13

P24

Fig. 5 The intrinsic permeability values (k, m2) versus time (day) for a coarse and b fine ZVI particles

300 U. Santisukkasaem et al.



best fit is then used to determine the correlation coefficient, slope and intercept which were the
results used to decide the best ANN structure. Table 2 shows the post analysis results of the

Fig. 6 a Trained network analysis and (b) post-training analysis for ANN [7-4-6-1] model of ΔP13 data

Table 2 Post training data of the best ANN structures using experimental data from 4 different pressure points

ANN structure Correlation coefficient, R Slope, m Intercept, c

ΔP12 7-2-1 0.9167 0.7476 7.42E-13

7-4-1 0.9211 0.8350 4.88E-13

7-6-1 0.9161 0.8720 5.28E-13

7-2-4-1 0.9113 0.8450 8.21E-13

7-4-6-1 0.9328 0.8310 7.05E-13

7-6-8-1 0.9304 0.8220 7.41E-13

ΔP13 7-2-1 0.9730 0.8650 6.58E-13

7-8-1 0.9718 0.9520 2.39E-13

7-10-1 0.9485 0.9030 3.66E-13

7-4-6-1 0.9926 0.9730 8.73E-15

7-8-10-1 0.9752 0.9330 2.68E-13

7-10-12-1 0.9639 0.9170 4.74E-13

ΔP34 7-2-1 0.9782 0.9810 4.62E-14

7-4-1 0.9745 0.9520 1.50E-13

7-6-1 0.9723 0.9670 1.05E-13

7-2-4-1 0.9696 0.9020 8.73E-15

7-4-6-1 0.9534 0.9070 3.86E-13

7-10-12-1 0.9732 0.9400 1.86E-13

ΔP24 7-2-1 0.4732 0.2165 4.76E-12

7-6-1 0.4098 0.1878 6.06E-12

7-10-1 0.5082 0.2740 5.13E-12

7-2-4-1 0.5519 0.3443 4.69E-12

7-8-10-1 0.6261 0.4180 3.78E-12

7-10-12-1 0.6383 0.4590 4.01E-12
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best ANN structures using each of the 4 sets of reference data. Generally, good results were
obtained using the ΔP12, ΔP13 and ΔP34 but not with the ΔP24 data. We believe this is due to the
shortage of data points, but as more experimental data become available in the future, better
prediction would be achieved.

3.2.2 ANN Performance Testing

From the AARE plots depicted in Fig. 7, it is evident that the ANN structures have AARE
values with a magnitude 10 times lower than that of the regression models, i.e., the ANN
structures performed significantly better than the linear and non-linear regression models.
However, there were two exceptions where the ANN structures designed with the ΔP12 and
ΔP24 data performed in a similar manner to the non-linear regression (Fig. 7a) and linear
regression (Fig. 7d), respectively, possibly due to data shortage (74 data points). Nevertheless,
the ANN [7-10-12-1] model showed some improvement. It can be seen from Fig. 7b that the
ANN [7-4-6-1] model had a low value when the ΔP13 data was used, while in Fig. 7a the
AARE values for the ANN structures designed using the ΔP12 data are all of similar
magnitudes. Also, from Fig. 7c, it can be observed that the ANN [7-2-1] performed notably
better than the other ANN structures having a value of 15.61 when the ΔP34 data was utilized.

Figure 7 illustrates the SSE comparisons and it signifies that the regression models perform
poorly for all the 4 datasets. Particularly, the x0.05 non-linear regression model performed the
worst in all 4 cases with errors of 1.19×10−20, 2.96×10−20, 2.79×10−21 and 6.15×10−20. From
Fig. 8a, it can be seen that the ANN structures designed using the ΔP12 data performed
similarly with the exceptions of ANN [7-2-1] which had higher error of 2.61×10−22. This trend
with the ANN [7-2-1] model was also seen with the ΔP13 data as shown in Fig. 8b with the
value of 3.55×10−22, the ANN [7-4-6-1] model is seen to perform the best using the ΔP13 data
with the value of 1.56×10−23. From Fig. 8c, it can be observed that the ANN [7-10-12-1]

(a) ∆P12 (b) ∆P13

(c) ∆P34 (d) ∆P24

Fig. 7 Comparisons of the AARE of the regression (linear and non-linear) and ANN structures at different
reference points a ΔP12; b ΔP13; c ΔP34; and d ΔP24
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performed well with the ΔP34 data (error: 1.20×10−25). In terms of the ANN structures
designed with the ΔP24 data, although the SSE values were higher than anticipated, the double
hidden layer structures are seen to perform better than the single layer structures. The results
improved as the number of neurons in the double hidden layer was increased, i.e., ANN [7-10-
12-1] performed the best with an error value of 7.74×10−21.

Comparisons between the regression (linear and non-linear) and ANN models using
efficiency (E) and correlation coefficient (R) as presented in Fig. 9 also highlight how
poorly the regression models performed with the non-linear regression models performing
the worst. For example from Fig. 9d, the x0.05 non-linear regression model is seen to
have an efficiency E of −0.267 and a correlation coefficient R of 0.000121, which are
very low values. On the other hand, the ANN structures had high efficiency and
correlation coefficient values, with most values nearing 1 except the models designed
using the ΔP24 data with the highest efficiency and correlation coefficient values being
0.7072 and 0.6383, respectively. It is logical to expect that the ANNs would perform
better than the LR and NLR models as the ANNs are trained to the data obtained while
the LR and NLR are simply regressed using the available data points. The data collected
from the experiments are governed by Darcy’s law which is a linear relationship between
permeability and other factors that affect the flow hydrodynamics (e.g., pressure drop).
However, the permeability losses in the PRBs seem to be a non-linear process and
consequently, none of the LR and NLRs performs well.

Observing the threshold statistics plots, the underperformance of the regression models is
again apparent as Fig. 10 shows. From Fig. 10a, the poor performance of the NLR (x0.05) is
visible where none of the AARE values fell into the threshold statistics categories. In contrast,
it can be seen that the ANN [7-4-1] structure performed the best with a TS-5 value of 87.84
and 100 % of its AARE values were within the TS-100 category. The TS values obtained from
the ΔP24 data were again lower than anticipated. Even for TS-100, the highest value obtained

(a) ∆P12 (b) ∆P13

(c) ∆P34
(d) ∆P24

Fig. 8 Comparisons of the SSE between regression and ANN structures at different reference points (a) ΔP12;
(b) ΔP13; (c) ΔP34; and (d) ΔP24
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was only 48.65 obtained by both ANN [7-8-10-1] and [7-10-12-1]; these might be due to the
data shortage as discussed previously.

It is evident from the performance testing by comparing the results from ANN prediction to
that of the regression models (both linear and non-linear) that the ANN has higher accuracy.
From the comparisons of all ANN models and the error statistics, it also seems that the best
performing models are single-hidden-layer model ANN [7-2-1] with the data at the pressure

(a) ∆P12 (b) ∆P13

(c) ∆P34 (d) ∆P24

Fig. 10 Comparison of threshold values between regression and the ANN structures at different reference points
a ΔP12; b ΔP13; c ΔP34; and d ΔP24

(a) ∆P12 (b) ∆P13

(c) ∆P34 (d) ∆P24

Fig. 9 Comparisons of E and R between regression and ANN structures at different reference points a ΔP12; b
ΔP13; c ΔP34; and d ΔP24
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point of ΔP34 and double-hidden-layered model ANN [7-4-6-1] with the data at the pressure
point of ΔP13. In order to demonstrate how the permeability data compare, Fig. 11 is prepared
which depicts the permeability versus time plots using the data from one of these ANN
structures, namely: (a) single-hidden-layered model ANN [7-2-1] and the regression models;
and (b) double-hidden-layered model ANN [7-4-6-1] and regression models. The structures of
these two ANNs are shown in Fig. 3 which we used to explain the proposed ANNs. The data
from these ANNs were compared with the reference permeability data correspondingly to
determine the accuracy of the ANN and regression models. The figure reflects that the
predictive abilities of regression (linear and non-linear) models are significantly poor.
Although the linear regression models performed slightly better than the non-linear regression
models, they do not provide sufficient representation of the reference permeability data. On the
other hand, ANN structures, both single and hidden layer equally provide a much more
accurate depiction of the characteristic behavior of the reference permeability data. In
Fig. 11, the LR and NLR equations at ΔP34 are given by k=3.75E-12+7.51E-15 (X1) -
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Fig. 11 The plot of permeability versus time for: aReference data, ANN [7-2-1], LR and NLR (0.5) models at
ΔP34; and b Reference data, ANN [7-4-6-1], LR and NLR (0.5) models at ΔP13
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2.74E-12(X2)+5.02E-12(X7) and k=3.75E-12+7.51E-15(X1
0.5)-2.74E-12(X2

0.5)+5.02E-
12(X7

0.5), respectively. The LR and NLR equations are k=8.997E-12-1.47E-13(X1)-2.44E-
12(X2)+1.11E-11(X7) and k=8.997E-12-1.47E-13(X1

0.5)-2.44E-12(X2
0.5)+1.11E-11(X7

0.5) at
ΔP13, respectively.

4 Conclusions

The main objective of this study, i.e., to create a permeability-predicting ANN structure has
been achieved. ANNs (single and double hidden layered) and regression (linear and non-
linear) models were attempted and the complex relationships between the observed perme-
ability decline and the physical parameters characterizing the process were determined. The
deployed data used for model development, network training, performance evaluation and
further analysis were gathered from in-house experiments data. Permeability loss is one of the
main limitations of the ZVI-PRB technology, and it has been established that ANNs can model
these permeability losses better than regression models. From the performance statistics
parameters, which comprise the average absolute relative error (AARE), sum squared errors
(SSE), threshold statistics (TS), correlation coefficient (R) and efficiency (E), the high
performance of ANN for predicting the permeability decline in PRBs is demonstrated. It can
be seen from the correlation coefficient value in the post-training data that the best
single and double-hidden-layer ANN structures are ANN [7-2-1] at ΔP34 and ANN [7-
4-6-1] at ΔP13, respectively. According to all performance comparison criteria, these
two structures reflect the best results. In addition, these structures are matched with
the proposed ANN structures. In summary, ANN is shown to be a reliable tool in
predicting the permeability loss in PRB system and the best ANN structures that
should be adopted are ANN [7-2-1] and ANN [7-4-6-1].
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