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Abstract The Kunwari River Basin (KRB) needs effective management of water resources
for sustainable agriculture and flood hazard mitigation. The Soil and Water Assessment Tool
(SWAT), a semi distributed physically based model, was chosen and set up in the KRB for
hydrologic modeling. SWAT-CUP (SWAT-Calibration and Uncertainty Programs) was used
for model calibration, sensitivity and uncertainty analysis, following the Sequential
Uncertainty Fitting (SUFI-2) technique. The model calibration was performed for the period
(1987–1999), with initial 3 years of warm up (1987–89); then, the model was validated for the
subsequent 6 years of data (2000–2005). To assess the competence of model calibration and
uncertainty, two indices, the p-factor (observations bracketed by the prediction uncertainty)
and the r-factor (achievement of small uncertainty band), were taken into account. The results
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of SWAT simulations indicated that during the calibration the p-factor and the r-factor were
reported as 0.82 and 0.76, respectively, while during the validation the p-factor and the r-factor
were obtained as 0.71 and 0.72, respectively. After a rigorous calibration and validation, the
goodness of fit was further assessed through the use of the coefficient of determination (R2)
and the Nash–Sutcliffe efficiency (NS) between the observed and the final simulated values.
The results indicated that R2 and NS were 0.77 and 0.74, respectively, during the calibration.
The validation also indicated a satisfactory performance with R2 of 0.71 and NS of 0.69. The
results would be useful to the hydrological community, water resources managers involved in
agricultural water management and soil conservation, as well as to those involved in mitigating
natural hazards such as droughts and floods.
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1 Introduction

Water resources management problems involve complex processes from the surface and
subsurface level to their interface regimes (Sophocleous 2002; Srivastava et al. 2013b). The
hydrogeologic characteristics within the watershed system are heterogeneous in nature with
respect to time and space (Blöschl and Sivapalan 1995; Strayer et al. 2003), making water
resources management very challenging. Distributed hydrological watershed models are very
useful and effective tools in water resources management (Patel and Srivastava 2013, 2014),
particularly in assessing the impacts, effects and influence of land use/land cover and climate
change on water resources (Narsimlu et al. 2013; Patel et al. 2012; Srivastava et al. 2008,
2013a). Several other applications, for example hydrological impact of forest fires, have also
been assessed for runoff prediction and water balance using the SWAT model (Batelis and
Nalbantis 2014).

Among semi-distributed hydrological models, SWAT model was originally developed for
prediction of discharge from ungauged basins (Arnold et al. 1998). SWAT model with a spatial
database has been successfully used to simulate flows, sediment, and nutrient loadings of a
watershed (Rosenthal and Hoffman 1999). SWAT has been extensively used in many countries
worldwide for discharge prediction as well as for soil and water conservation (Patel and
Srivastava 2013; Spruill et al. 2000; Zhang et al. 2010). Fiseha et al. (2014) have applied
SWAT for the study of the hydrological responses to climate change in the Upper Tiber River
basin using bias corrected daily Regional Climate Model (RCM) outputs. Srinivasan et al.
(2010) have evaluated the SWAT model performance for hydrologic budget and crop yield
simulations in Upper Mississippi River Basin without calibration (ungauged basin). Gosain
et al. (2006) have applied SWAT for hydrological modeling of 12 major river basins in India,
namely the Ganga, the Cavery, the Krishna, the Godavari and the Mahanadi, among others.
Spruill et al. (2000) have calibrated and validated SWAT model in a small experimental
watershed in Kentucky, USA and stated that monthly flows were predicted more accurately.
Arnold and Allen (1996) have successfully validated surface runoff, groundwater flow,
groundwater recharge parameters in three Illinois watersheds. Further, Santhi et al. (2006)
have performed an extensive validation of SWAT over two watersheds in Texas (USA).

Now a days, evaluation of parameter uncertainty has gained popularity in sciences, including
hydrological sciences (Beck 1987; Beven and Binley 1992; Yatheendradas et al. 2008), biosci-
ences (Blower and Dowlatabadi 1994), atmospheric sciences (Derwent and Hov 1988), and
structural sciences (Adelman and Haftka 1986). In the present study, a hydrological modeling
procedure was carried out using SWAT model to quantify water balance and to estimate the
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dynamics of hydrology. Model calibration and validation have been evaluated through sensi-
tivity analysis (SA) and uncertainty analysis (UA) (Blasone et al. 2008; Srivastava et al. 2013d;
Wagener and Wheater 2006; Zheng and Keller 2007). The technique of model calibration is a
challenging and rigorous process, which depends on the number of input parameters, model
complexity as well as iterations (Vanrolleghem et al. 2003). SA and UA are essential processes
to reduce the uncertainties imposed by the variations of model parameters and structure (Gupta
et al. 2006; Srivastava et al. 2013c; Wagener and Gupta 2005). Recently developed calibration
and uncertainty analysis techniques for watershed models include: MCMC (Markov Chain
Monte Carlo) method (Vrugt et al. 2008), GLUE (Generalized Likelihood Uncertainty
Estimation) (Beven and Binley 1992), ParaSol (Parameter Solution) (Yang et al. 2008), and
SUFI-2 (Sequential Uncertainty Fitting) (Abbaspour et al. 2004). These techniques (GLUE,
Parasol, SUFI-2 andMCMC) have been linked to SWATmodel through SWAT-CUP algorithm
(Abbaspour et al. 2007), and enable SA and UA of model parameters as well as structure
(Rostamian et al. 2008). Studies on model calibration and UA have emphasized and confirmed
that SWAT model is an effective tool in managing water resources (Tang et al. 2012).
Abbaspour et al. (2004) and Yang et al. (2008) applied the SUFI-2 technique for evaluation
of SWAT model. The SUFI-2 technique needs a minimum number of model simulations to
attain a high-quality calibration and uncertainty results (Yang et al. 2008).

With this background, the main objective of this study was to simulate the streamflow of
the Kunwari River Basin (KRB) using SWAT model integrated with model calibration and
uncertainty analysis by means of SUFI-2 algorithm and to evaluate its applicability for KRB.
This modeling study also provides support to water resource managers in effectively planning
and managing agricultural water resources, soil erosion, as well as natural disasters.

2 Materials and Methods

2.1 Study Area

Kunwari River (also spelled as Kuwari or Kwari River) is a river flowing in Morena and Bhind
district provinces of Madhya Pradesh State in Central India. KRB is a sub-basin of Sind River
Basin, located between latitudes 24° 58′ 18″ N to 27° 02′ 58″ N and longitudes 76° 45′ 40″ E
to 79° 31′ 45″ E (Fig. 1). It is mainly an agricultural watershed with a drainage area of
6821 km2. The altitude varies from 100 m asl in the southwest part to 467 m asl in the
northeast part, with a mean of 222 m asl and a standard deviation of 76 m. Major crops in this
area are wheat, sorghum, soya bean, gram, mustard, rice, sunflower and millet. Most of the
annual precipitation falls during the monsoon period, i.e., from June to September, ranging
from 750 to 1400 mm. Maximum temperature in April and May ranges from 38 to 44 °C,
whereas the minimum temperature occurs during the months of December and January
ranging from 7 to 13 °C.

2.2 Datasets

SWAT was used in this study to derive the parameters that have control on the
hydrologic processes of the KRB. Topography, land use, soil, weather and hydrology
databases were collected from different sources/agencies and are listed in Table 1. The
detailed land use/land cover map is provided in Fig. 2, and the areas of each land use
type and classification system are shown in detail in Table 2. The details of all the
datasets used in this study are summarized in the following sections.
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Fig. 1 Location map of KRB, DEM, basin, streams, precipitation, temperature, reservoirs and Bhind gauge
stations

Table. 1 Description of spatial data used for Kunwari River Basin

S.No. Spatial data Description Source

1 Digital Elevation
Model

90 m×90 m grid DEM has been used
to delineate the boundary of the
watershed and analyze the
drainage patterns of the terrain.

Shuttle Radar Topography Mission
(SRTM) of USGS

2 Land use and
land cover

The NRSC land use data contains crop
specific digital layers, suitable for use
in Geographic Information System (GIS)

National Remote Sensing Centre,
Government of India (GOI).

3 Soils data The soil data has been obtained from
NBSSLUP -ICAR

National Bureau of Soil Survey
and Land Use Planning- Indian
Council of Agricultural Research,
GOI

4 Weather data Precipitation: 0.5 km×0.5 km regridded
data Temperature: 1.0 km×1.0 km
regridded data

Indian Meteorological Department,
Pune, India

5 Hydrological
data

Gauge data at Bhind gauge station. Central Water Commission, Ministry
of Water Resources, GOI
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2.2.1 Land Use/Land Cover and Soil Properties

The land use/land cover (LULC) dataset is used to understand the hydrological processes and
governing system (Singh et al. 2014; Srivastava et al. 2012). Crop specific digital layers for the
preparation of LULC map have been obtained from the National Remote Sensing Centre
(NRSC), Hyderabad, India. The main land uses in the KRB have been classified as agriculture

Fig. 2 Land use/land cover map of Kunwari River Basin (refer to Table 2 for legend)
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(52.47 %), followed by wasteland/brusland (22.93 %), barren land (10.53 %), deciduous forest
(4.35 %), grassland/rangelands (3.67 %), water bodies (0.41 %) and urban with medium
density (0.35 %). Another important layer for understanding hydrological response is soil type
and texture (Paudel et al. 2014; Srivastava et al. 2014). The major soil groups are alluvial soils
mixed in red and black. The colours of these soils are pale yellow to yellowish brown in Bhind
and parts of Morena district. The surface texture varies from sandy loam to loam, clay loam
and even to clay. The alleviation of finer particles ensures fine texture of the middle horizons.
Soils are neutral to alkaline in soil reaction.

2.2.2 Digital Elevation Model (DEM)

The Digital Elevation Model (DEM) helps in understanding the flow behavior and flow
pattern. Further, it also plays an important role in fast and slow runoff processes (Patel et al.

Table. 2 Land use and land cover map for the Kunwari River Basin using NRSC data layers

S.
No.

SWAT
class

Description Area ha %
Area

Sub-
class

Prefix Details

1 URMD Urban 2366.01 0.35 AGRL A Rainfed/Dryland Agriculture

2 FRSD Forest- Decidious 29703.51 4.35 DTCU B Double/Triple Crop Conjunctive

3 FRST Forest-Mixed 36066.06 5.29 DTGW C Double/Triple Crop Groundwater

4 RNGE Grassland/
Rangeland

25058.97 3.67 DTSI D Double/Triple Crop Surface
Irrigation

5 SWRN Barren land 71850.24 10.53 FALL E Current fallow

6 RNGB Wasteland/
Brushland

156420.72 22.93 KHCU G Kharif Crop Conjunctive Use

7 WATR Water 2827.71 0.41 KHGW H Kharif Crop Groundwater

8 AGRL 357998.43 52.47 KHSI I Kharif Crop Surface Irrigation

RBCU L Rabi Crop Conjunctive Use

RBGW M Rabi Crop Groundwater

RBSI N Rabi Crop Surface Irrigation

Suffix

109 Bhind

120 Gwalior

129 Morena

143 Sheopur

144 Shivpuri

201 Auraiya

218 Etawah

Ex. 231 Jalaun

Value Land
use

109 A109 The pixel in the land use having a value of 109 belongs to A (Rainfed/Dryland Agriculture) in
District (109) Bhind

231 N231 The pixel in the land use having a value of 231 belongs to N (Rabi Crop Surface Irrigation) in
District (231) Jalaun
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2013; Wagener and Wheater 2006; Yadav et al. 2013). In this study, 90 m×90 m SRTM digital
layer (DEM) was obtained from the USGS (http://srtm.usgs.gov/) and has been used as SWAT
input for watershed delineations and topographic parameterization (Fig. 1). The KRB has been
divided into 20 sub-basins and 271 Hydrological Response Units (HRUs) based on uniform
soil, land use and slope with a threshold area of 15,000 ha. The two reservoirs have been
identified on the main stream of the KRB and used with the Arc SWAT interface.

2.3 SWAT-CUP Model

SWAT is a semi-distributed, watershed scale, continuous time model that operates on a daily
time series and evaluates the land management practices impacts on water, sediment and
agricultural chemical yields in unguaged basins (Arnold et al. 1998). This model is capable of
uninterrupted simulation over a long period of time. SWAT can simulate flows (surface and
subsurface), sediment, pesticide and nutrient movement through the hydrologic cycle of the
watershed system. The hydrologic processes within the model comprise infiltration, percola-
tion, evaporation, plant uptake, lateral flows and groundwater flows including snowfall and
snowmelt (Neitsch et al. 2005). The Modified SCS (Soil Conservation Service) curve number
(CN) method is used for the estimation of surface runoff volume (Mishra and Singh 2003).
Lateral flow is simulated by kinematic storage model and return flow is estimated by creating a
shallow aquifer (Arnold et al. 1998). Channel flood routing is predicted by the Muskingum
method and transmission losses, evaporation, return flow etc., are adjusted for estimation of
outflow from a channel (Baymani-Nezhad and Han 2013). The water balance Eq. (1), which
governs the hydrological components of SWAT model (Neitsch et al. 2005), is as follows

SWt ¼ SW 0 þ
Xt

i¼1

Rday−Qsurf −Ea−Wseep−Qgw

� �
ð1Þ

where: SWt is the final soil water content (mm); SW0 is the initial soil water content on day i
(mm); Rday is the amount of precipitation on day i (mm); Qsurf is the amount of surface runoff
on day i (mm); Ea is the amount of evapotranspiration (ET) on day i (mm);Wseep is the amount
of water entering the vadose zone from the soil profile on day i (mm); Qgw is the amount of
return flow on day i (mm).

The process of SWAT automatic calibration includes uncertain model parameters,
model simulations and extraction of output results (Bekele and Nicklow 2007;
Eckhardt and Arnold 2001). The major components of the model include weather,
hydrology, soil erosion, soil temperature and land management practices (Arnold and
Allen 1996). SWAT divides the basin into sub-basins with chosen threshold area and
joined by the stream network. Further, these sub-basins are divided into HRUs with
unique attributes of land cover, slope and soils (Patel and Srivastava 2013). These
HRUs are non-spatially distributed and account for diversity in SWAT model. HRU
demarcation can reduce the SWAT runs by lumping similar soil and land use areas
into a single unit (Neitsch et al. 2005).

2.4 SUFI-2 Algorithm

SWAT-CUP is specially developed by Abbaspour et al. (2007) to interface with the
SWAT model. Any calibration/uncertainty or sensitivity program can easily be linked to
SWAT model by using this generic interface. In this study, the SUFI-2 algorithm was
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used to investigate sensitivity and uncertainty in streamflow prediction. A multiple
regression system with Latin hypercube samples by means of objective function values
was used in calculating the responsive parameter sensitivities, with the detailed method
specified by Yang et al. (2008). Different ways of formulating an objective function
may lead to different results (Legates and McCabe 1999).

Several objective functions have been used for estimating model performance,
which include the Root Mean Square Error (RMSE), the absolute difference, the
logarithm of differences, the R2, the Chi-square and the Nash-Sutcliffe Efficiency
(NS). Several objective functions have been utilized to reduce the non-uniqueness
problem in the model characterization (Duan et al. 2006). The average changes in the
objective functions were estimated based on the consequential changes and sensitivity
of each parameter, referred to here as the relative sensitivities. It provides partial
information about the sensitivity of the objective function and is based on linear
approximation of the model parameters. Further, to estimate the level of significance
between the datasets, a t-test was applied to identify the relative significance of each
parameter. The t-test and the p-values were used to provide a measure and the
significance of the sensitivity, respectively. The larger absolute values are more
sensitive than the lower ones, while a value closer to zero has more significance.
Robustness of the SUFI-2 algorithm was tested through the SA with and without
observations.

2.5 Performance Indices

Four parameters have been used for evaluation of model performance, namely R2, NS,
p-factor and r-factor. The R2 and NS were used as a likelihood measure for the rainfall
runoff model (SWAT model) following the SUFI-2 approach between the observed and
predicted streamflow. The NS (Nash and Sutcliffe 1970) was calculated using the
following Eq. (2):

NS ¼ 1−

Xn

i¼1

yi−xi½ �2

Xn

i¼1

xi−x
h i2 ð2Þ

where: xi are the ground-based measurements; yi are the model predicted data; and x is
the mean of the ground-based measurements.

The p-factor (percentage of measured data bracketed by the 95 % prediction bound-
ary), often referred to as 95PPU, was used to quantify all the uncertainties associated
with the SWAT model. The Latin hypercube sampling method was employed for 95PPU
and for obtaining the final cumulative distribution of the model outputs. These are
calculated at the level of 2.5 and 97.5 % prediction limit. During the initialisation of
model parameters, SUFI-2 assumes a large parameter uncertainty and then decreases this
uncertainty through the p-factor and the r-factor performance statistics. The range of the
p-factor varies from 0 to 1, with values close to 1 indicating a very high model
performance and efficiency, while the r-factor is the average width of the 95PPU band
divided by the standard deviation of the measured variable and varies in the range 0–1
(Abbaspour et al. 2007; Yang et al. 2008). The p- and r-factors are closely related to each
other, which indicates that a larger p-factor can be achieved only at the expense of a

86 B. Narsimlu et al.



higher r-factor. After balancing these two factors, and at an acceptable value of the r-
and p-factors, the calibrated parameter ranges can be generated. The r-factor is given by
Eq. (3) (Yang et al. 2008):

r−factor ¼
1

n

X n

ti¼1
yMti;97:5%−y

M
ti;2:5%

� �

σobs
ð3Þ

where: yMti;97:5% and yMti;2:5% are the upper and lower boundaries of the 95UB; and σobs is

the standard deviation of the observed data.

3 Results and Discussion

3.1 Evaluation of Hydro-meteorological Datasets

The comparisons among the time series of rainfall, ET, and streamflow demonstrate a
high temporal consistency with seasons and follow a strong seasonal cycle, peaking
normally from July to September. Typically, a very high rainfall and streamflow occurs
during the period of September. The periods of August-September have witnessed the
maximum rainfall intensities, which was connected with some moderately high-duration
storms. The period of March-April was slightly drier compared to other months, as
suggested by high ET and low rainfall. The period May-August witnessed a progressive
drying of the soil because of rising temperature, which leads to high evaporation. The
low discharge is obtained in the period from November to January due to lesser rainfall
(Fig. 3). The behavior of ET indicates that quite lower values were obtained during the
winter season, however, after the mid of April, a gradual increase can be seen in the
graph. Increasing ET during the summer was attributed to high solar radiation and
temperature, which lead to development of high soil moisture deficit. The study
indicates that in this catchment the rainfall and discharge are very responsive to each

Fig. 3 Time series plot for a rainfall b discharge (flow) and c ET
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other with similar pattern over the entire study period. Some higher ET values, also
obtained during the period July to September, could be due to strong influence by net
radiation and temperature.

The Mann-Kendall trend analysis was applied on weather datasets to find out the existing
trends in rainfall, ET and streamflow. Figure 3 shows the mean monthly observed data with the
highest and lowest values of streamflow, ET and rainfall. If the probability (p’) is less than the
significant value (0.05) of α (alpha) then the Null hypothesis (Ho) is rejected, which means

Fig. 4 95% probability uncertainty plot and observed streamflow during a calibration (1990–1999) and b
validation 2000–2005
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that there is a trend in the time series and suggests that the results are statistically significant.
Further, if the p’-value is more than the significant value of α, then the Ho is accepted, which
means that there is no trend in the times series which indicates insignificant results. If the p’-
value is less than 10 % or 0.01 then the trend is significant and if this value is more than 0.01
then the trend is insignificant. The Mann-Kendall Score (S) values with negative sign indicate
a decreasing trend whereas values with positive sign show an increasing trend. According to
the values in Table 3, rainfall has shown an increasing trend in the months of January, April,
May, June and December, while in the other months it shows a decreasing trend. Overall, the
annual trend for the rainfall is decreasing with time. Similarly for streamflow, the monthly and
annual trends were found decreasing with time. In case of discharge, the decreasing trend was
observed for the months of February, August, September and December.

3.2 Model Initialization

In defining HRUs, the minor land use/land cover, slope and soil types were ignored by setting
a threshold of 10 %, to avoid unnecessary large number of HRUs in the analysis (Neitsch et al.
2005). SWAT has been calibrated for monthly streamflow by comparing with the observed
streamflow at the Bhind gauge station located near the outlet of KRB. The model was run for a
period of 18 years (1987–2005) by considering the first 3 years as warm up time of the model.
The period 1990–1999 was used for calibration (see Fig. 4a), whereas the remaining 6 years of
the dataset, i.e., 2000–2005, were employed for validating the model (see Fig. 4b). The SWAT-
CUP (calibration and uncertainty programs) have been applied for model sensitivity, calibra-
tion and uncertainty analysis.

In this work, we have provided a rigorous calibration based on sensitivity analysis of model
parameters (Abbaspour et al. 2007), following the SWAT-CUP documentation (Neitsch et al.
2005). For calibration of SWATmodel, a total of 18 SWAT parameters were selected for model
calibration and uncertainty analysis for streamflow prediction based on earlier studies and
SWAT documentation (Neitsch et al. 2002).

Fig. 5 Results of Dotty plots with objective function of NS coefficient against each aggregate SWAT parameter
optimization
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3.3 Model Calibration and Sensitivity Analysis

Dotty plots were used here to depict the sensitivity of the model parameters used for the
calibration of SWAT (Fig. 5). These are the results of model run with NS as an objective

Table 4 Sensitive SWAT parameters included in the final calibration, initial and final ranges, and t-Stat and p -
Values

S. No. Parameter name Definition t-Stat P-Value Fitted_Value Min_value Max_value

1 v__ALPHA_BNK.rte Baseflow alpha factor
for bank storage (days)

−9.01 0 0.4193 0.0620 0.9712

2 v__ESCO.hru Soil evaporation
compensation factor

4.71 0 0.9819 0.9341 1.0456

3 v__CH_K2.rte Effective hydraulic
conductivity in main
channel alluvium
(mm/hr)

−3.41 0 27.8394 18.7187 103.9592

4 r__CN2.mgt Initial SCS runoff curve
number for moisture
condition II

2.63 0.01 −0.0748 −0.2410 −0.0013

5 v__EPCO.hru Plant uptake
compensation factor

−2.72 0.01 −0.1490 −0.8150 0.1379

6 r__HRU_SLP.hru Average slope
steepness (m/m)

1.93 0.05 0.1665 0.1079 0.2128

7 v__CH_N2.rte Manning’s n value for
the main channel

−1.91 0.06 −0.0195 −0.0888 0.0885

8 v__ALPHA_BF.gw Baseflow alpha factor
(days)

1.68 0.09 −0.5921 −0.7217 0.1851

9 v__SFTMP.bsn Snowfall
temperature (0C)

−1.32 0.19 −1.1381 −2.6893 0.8767

10 v__GW_DELAY.gw Groundwater delay (days) 1.1 0.27 436.1767 81.5580 476.0170

11 r__OV_N.hru Manning’s n value for
overland flow

0.8 0.42 −0.0655 −0.1663 −0.0389

12 r__SLSUBBSN.hru Average slope length (m) 0.77 0.44 0.2039 0.1324 0.2681

13 v__GW_REVAP.gw Groundwater revap
coefficient

−0.4 0.69 0.1879 0.1560 0.3056

14 v__GWQMN.gw Threshold depth of water
in the shallow aquifer
for return flow to occur
(mm H2O)

−0.37 0.71 1.3371 −0.0073 1.5187

15 r__SOL_AWC(1).sol Available water capacity
of the first soil layer
(mm/mm)

−0.18 0.85 −0.1390 −0.1457 0.1453

16 r__SOL_K(1).sol Saturated hydraulic
conductivity of first
soil layer (mm/hr)

−0.15 0.88 0.8204 0.1377 0.9879

17 v__REVAPMN.gw Threshold depth of water
in the shallow aquifer
for revap to occur
(mm H2O)

0.06 0.95 4.8796 1.5244 6.0645

18 r__SOL_BD(1).sol Moist bulk density of
first soil layer (Mg/m3)

−0.02 0.98 0.5836 0.0543 0.6958
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function during calibration. The dotty plot conditioned in SUFI-2, and all these sampled
parameter sets were taken as behavioral samples with the NS threshold value of 0.5.
When a sharp and clear peak is observed for the parameter, it can be treated as parameter
with highest likelihood. Similarly, the insensitive parameters were obtained by diffused
peak represented by cumulative distributions, which in turn indicate that parameter was
less skilled in discharge prediction in KRB. The SA of model parameters indicated that
some lower performances may be caused by structural inadequacies in model compo-
nents. The results indicate that, most of the observations with different parameters are
bracketed by the 95PPU (for NS value 0.6 to 0.8), signifying that SUFI-2 is capable of
capturing the model behavior. The SWAT simulations results look satisfactory for the
prediction of discharge, and the final parameter ranges were the best solution obtained
for the KRB. Most of the observed values during the calibration and validation were
within the boundaries of 95PPU, which indicates that SWAT model uncertainties were
falling within the permissible limits. Hence, this calibrated model can be used for
different applications, such as impact on streamflow in KRB of climate change, water
resources planning and management, and LULC changes.

Table 4 presents the summary and details of the parameters being applied for sensitivity
analysis. The results of SA have confirmed that all the 18 sensitive parameters are considered
to be applicable to surface runoff, groundwater, channel routing, snow processes, and soil
properties. A number of SWAT model parameters were used in model calibration, which
include CN2, ALPHA_BF, GWQMN, ESCO, CH_K2, CH_N2, REVAPMN, SOL_AWC,
HRU_SLP, SOL_K, SOL_BD, SLSUBBSN, GW_REVAP, EPCO, GW_DELAY, SFTMP,
ALPHA_BNK and OV_N. Additional details about these parameters are provided in Table 4.
In this study, the result of global sensitivity analysis with the t-test indicates that the most
sensitive parameters are ALPHA_BNK, ESCO followed by CH_K2 and CN2.

3.4 Uncertainty in Streamflow Prediction

The performance indices for the model parameters were derived using a window size of
monthly time steps and are shown in Table 5. The calibration results (Fig. 4a) revealed that the
observed peak values in years 1992 and 1995, and during validation in 2003, were not
falling under 95PPU band. This may be due to the reason that the SWAT model is
unable to simulate extreme events and under predicts the large flows in KRB (Tolson
and Shoemaker 2007). It is concluded from Fig. 4a–b that the key information
regarding the model parameters emerged during the wet periods only. During the
calibration period from 1990 to 1999, the p-factor was 0.82 and the r-factor was
0.76, and through the validation from 2000 to 2005 they were obtained as 0.71 and
0.72, respectively (Table 5). The percentage of observed data being bracketed by
95PPU during calibration was 82 % and during validation 76 %, which indicates a

Table. 5 Statistical index for evaluation of monthly calibration (1990–1999) and validation (2000–2005)

Index Calibration Validation

Coefficient of determination (R2) 0.77 0.71

Nash and Sutcliffe Coefficient (NS) 0.74 0.69

p- factor 0.82 0.71

r- factor 0.76 0.72
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good performance of the model (Fig. 4). The reduction in 95PPU (p-factor) from 0.82
to 0.71 during validation (Fig. 4b) indicates the uncertainties in input driving variables
such as rainfall. Careful examination of calibration and validation results showed that
the observed data is not falling under 95PPU band at the base flow part. This may be
due to the limitation of SWAT model for simulating groundwater flow (Rostamian
et al. 2008). The parameter uncertainties were acceptable, when the parameter ranges
of the p-factor and the r-factor reach the desired limits. Further, goodness of fit can
be quantified by the R2 and NS (Nash and Sutcliffe 1970) between the observed and
the final simulated data. According to Nash and Sutcliffe (1970), when the NS value
is greater than 0.75, the simulation results are good, and when NS is greater than
0.36, the simulation results are satisfactory. For the results during the calibration
period, the values of R2 and NS obtained were 0.77 and 0.74, respectively, while
during validation the R2 and NS values obtained were 0.71 and 0.69, respectively,
which indicates that the model can be accepted for KRB. The probable reasons for
some low performance at some parts of the model could be attributed to rainfall,
which was measured at only one gauge station. For such a large area generally one
gauge station is not sufficient. Hence, this can be considered as a major limitation of
this study.

4 Conclusions

For hydrological prediction, such as discharge, a careful model calibration is required for an
efficient result. For a good modeling practice, it is required to report the uncertainties in the
model prediction along with the results. In this study, SWAT model was applied in the KRB to
simulate streamflow in the period 1987 to 2005 by following a rigorous calibration and
validation analysis using the SUFI-2 technique. SUFI-2 is a popular algorithm which estimates
the sensitivity and uncertainty of a hydrological model. Thus, it is beneficial in communicating
fairly accurate results to the end-users and in obtaining persuasive model predictions. The
outcomes of the sensitivity and uncertainty analysis using SWAT and SUFI-2 indicate that the
model is appropriate for streamflow prediction in the KRB. The results of this study indicate
that the SWAT-CUP is useful in forecasting flow and estimating underlying uncertainties and
related assumptions in the field of water resources. Based on the final results of calibration and
validation, the model has closely simulated the observed streamflow. The results of this study
would be practical in agricultural water management and soil and water conservation, as well
as in mitigating natural hazards such as drought and flood. This calibrated model can be used
in further assessment of climate change and land use/land cover impact assessment on water
resources. It is suggested in future studies, to use more uncertainty techniques in model
calibration, sensitivity and uncertainty analysis.
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