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Abstract In this study, the co-precipitation method was used to synthesize the cerium oxide
tetraethylenepentamine (CTEPA) hybrid material with the variation of the molar concentration
of the metal oxide. Physicochemical techniques, like FESEM, XRD, FTIR, HR-TEM and
TGA-DSC, were used to characterize the hybrid material. The adsorption experiment was
carried out to estimate the optimum condition for adsorption with the variation of adsorbent
dose, pH of the solution, time and initial concentration of the adsorbate. These variables are
further used to develop an approach for the evaluation of As(III) removal from water by using
evolutionary genetic programming techniques (GP) and least square support vector models
(LS-SVM). GP model was found to be the best performing model for understanding the
nonlinear behavior and prediction of As(III) removal (minimum standard error GPtraining 0.411,
GPtesting 0.658). The adsorption process in this study followed second order kinetics. The
experimental data were best fitted to linearly transformed Langmuir isotherm with an R2

(correlation coefficient) value of >0.99 and having a maximum adsorption capacity of
124.8 mg/g at 25±2 °C. The type of adsorption process was derived from the Dubinin–
Radushkevich isotherm model. A comparison between the model and actual experimental
values gave a high correlation coefficient value (R2

training (GP) 0.988, R
2
testing (GP) 0.977).
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1 Introduction

The availability of fresh drinking water is a focus of major concern throughout the globe. The
presence of arsenic and its compounds makes water unsuitable for drinking purposes. The
contamination of water by arsenic is mainly due to natural or anthropogenic processes such as
oxidation, reduction, biochemical methylation, precipitation, metal plating, glass industries,
mining and fertilizers (Choong et al. 2007; Shevade and Ford 2004). Arsenic usually exists as
arsenic (III) and arsenic (V) in natural water. As(III) species are more harmful than arsenic (V)
because of lower stability and high mobility in the water environment (Wang and Mulligan
2006; Vaughan and Reed 2005; Asli et al. 2013). Research reports have shown that arsenic
poisoning causes skin, lung and liver cancers besides other effects (Jain and Ali 2000). Due to
its detrimental effects on human health, the World Health Organization (WHO) recommends a
maximum permissible limit of 10 μg/L, beyond which water is undesirable for drinking (WHO
2008).

The removal of arsenic from water by a cost effective method is a challenging task that has
gained much attention by researchers. A number of methods and materials have been used for
removal of arsenic: among them adsorption is a promising and attractive process when the
adsorbent is suitable and versatile (Ma et al. 2011; Chandra et al. 2010; Wan Ngah et al. 2011).

In order to study the effectiveness of the process, modeling and optimization of the removal
process is viewed as an important aspect of the study. For example, in the past artificial neural
network, response surface methodology, neuro-fuzzy and swam particle optimization have
been used widely in the prediction of contaminant removal from water systems with reason-
able accuracy (Kotti et al. 2013; Dora et al. 2013; Aleboyeh et al. 2008; Akratos et al. 2008;
Chu 2003; Saha et al. 2010; Elmolla et al. 2010; Khajeh and Modarress 2010); presently some
researchers have tried to develop applications of genetic programming (GP) and support vector
machine (SVM) tools in prediction and optimization of various aspects, such as prediction of
carbon monoxide concentrations by using hybrid Partial Least Square Support Vector Machine
(LS-SVM) models (Garg et al. 2014; Yeganeh et al. 2012), and photovoltaic plant output
forecasting (Russo et al. 2014), vaporization enthalpy of petroleum fractions and pure hydro-
carbon modeling (Parhizgar et al. 2013) and groundwater level prediction and simulation
(Fallah-Mehdipour et al. 2013) by using GP techniques.

However, As(III) removal by cerium oxide tetraethylenepentamine and prediction of As(III)
removal processes by GP and SVM techniques has not been tested yet. Hence, it is necessary
to study it in more detail in order to understand the prediction behavior of both models. The
main motivation behind this study was to investigate the possibility of cerium oxide
tetraethylenepentamine as a low cost hybrid material for As(III) removal by using GP and
LS-SVM techniques. Furthermore, a comparative evaluation was done between the two
models based on statistical techniques, sensitive nature of variables and confirmatory
experiments.

2 Experimental

2.1 Chemicals

All chemicals used were of AR grade and procured fromMerck, Frankfurt, Germany or Sigma
Aldrich, St. Louis, United States of America. Standard solutions were prepared according to
procedures available in literature (Jain and Ali 2000). The glassware used was
obtained from Borosil.
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2.2 Synthesis and Characterization of Adsorbent

A series of hybrid materials were synthesized by following the procedure according to our
previous publication (Mandal et al. 2011). The required pH 9 of the solutions was maintained
by the addition of required amount of 1 M NH4OH. Three different solutions, i.e., solution-A
containing 0.5 M of adipic acid (100 mL), solution-B containing 1 M of cerium oxide
(100 mL) and solution-C containing 2 M (100 mL) tetraethylenepentamine, were added drop
wise to 500 mL round bottomed flask containing 100 mL of distilled water following the
above sequence. The solutions were kept under stirring at a temperature of 50 °C maintaining
inert atmosphere. After a predetermined time of 3 h, the white colored product so obtained was
filtered. The product obtained was kept undisturbed in the oven at 70 °C for drying. Other
hybrid materials were prepared accordingly by changing solution-B (magnesium oxide/
zirconium oxychloride/ calcium chloride). The dried material was calcined at 200 °C for 2 h
and used as adsorbent. The characterizations were carried out using various sophisticated
analytical instruments and techniques as presented in Table S-1 [see Supplemental online
material (S-1)].

2.3 Adsorption Experiments

The residual As(III) solution was measured in the solution after separation by filtration after
taking 0.3 g of each hybrid material for 30 min in a series of conical flasks by taking 100 mg/L
of As(III) in order to know the removal efficiency of each material. The adsorption experi-
ments were carried out according to methods available in literature (Vatutsina et al. 2007) by
taking 5 mg/L, 25 mg/L and 50 mg/L As(III) solution without any other ions. Table 1 presents
the experimental parameter settings for As(III) removal by batch process.

In order to understand the behavior of competing ions affecting the removal
efficiency, interaction of the following anions (CO3

2−, SO4
2−, HCO3

2−, NO3
2−, F−,

Cl−) were also studied. The As(III) adsorption capacity and % removal were calculated using
the following relations:

qe ¼
Co−Ceð ÞV

m

� �
ð1Þ

%removal ¼ Co−Ce

Co

� �
� 100 ð2Þ

Table 1 Experimental parameter settings for As(III) removal from water by batch process

Variables studied Ranges

Minimum Maximum

Dose (x1) 0.1 g 1.0 g

pH (x2) 1 12

Time (x3) 10 min 90 min

Temperature (x4) 20 °C 80 °C

Concentration (x5) 5 mg/L 50 mg/L
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where qe is equilibrium adsorption capacity in mg/g, Co and Ce are the initial and equilibrium
concentrations of As(III) in solution (mg/L), m is the adsorbent mass (g) and V is the volume
of solution taken.

The isoelectric point (pHzpc) is determined using electrophoretic mobility in a solution of
ionic strength of 0.01 M NaNO3 and 0.01 M NaCl according to procedure available in
literature (Ma et al. 2011).

3 Computational Modeling Approach

3.1 Computational Models

3.1.1 Genetic Programming

Genetic programming (GPTIPS) is a biological inspired technology (multi gene) based on
Darwinian Theory of evolution and on Herbert Spencer phrase “survival of the fittest” (Garg
et al. 2014). In Genetic programming, the fittest population has to be developed from the best
performing trees of different sizes randomly by performing tasks based on physical data of
mutation and crossover process. The mathematical models generated are represented by the
population size. The models are generated by combining the elements randomly from the
functional and terminal sets. A model example is presented in Fig. S-1a. The performance of
initial population is checked on the training input data based on the fitness function, generally
known as root mean square error (RMSE, See Eq. 3).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X N

i¼1
Ymodel;i−Yactual;i

� �2r
ð3Þ

where Ymodel,i is the value predicted of i
th data sample by GP model, Yactual,i is the actual value

of the ith sample and N is the number of training samples.
Based on the above fact, the genetic algorithm selects model for next genetic operation

known as mutation and crossover. The need of genetic operation is to form the best performing
genetic population that represent a new generation. The phenomenon of generating population
through mutation and crossover continues until the termination criterion is achieved.
Termination criterion is the maximum threshold limit and maximum number of generations.
The parameter setting of genetic programming provides a significant role in implementing the
model efficiently. The selection of parameter settings is done by trial and error method. The
population size and number of generations depend upon the involvement of the input data. A
study by Garg et al. (2014) suggests that minimum error will be achieved for complex data, if
the population size and number of generation values are kept at a higher range.

3.1.2 Support Vector Machines Model

The support vector machines are powerful learning tools for data classification and regression
based on statistical theory (Andrés et al. 2012). The model can easily predict both linear and
non-linear data series by mapping. Least Square Support Vector Machines is an advanced
version of standard SVM, which changes the inequality limits by equality limits in solving the
quadratic equations. Input variables in the lower dimensional space are projected into a higher
dimensional space H so as to convert the regression problem with non-linearity to the linear
regression problem. To assist with such conversion, several transfer function can be used.
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Following the literature (Garg et al. 2014), we have formulated the LS-SVM (See Fig. S-1b)
for prediction in the present study as follows (Garg et al. 2014),

Y ¼ f xð Þ ¼
X N

i¼1
wi∅i xð Þ þ b ¼ wH∅ xð Þ þ b

W ¼ W1W2W3…:WN½ �H and ∅ ¼ ∅1∅2∅3…∅N½ �H
ð4Þ

where xi are the values of i
th input variable and yi are the values calculated numerically. The

function∅ i(x) is the transformed higher dimensional space. The model given by∅(x) is linear
in nature and is a converted form of a nonlinear model in higher dimensional space. In this
study, there are five input variables and one output variable. In the present LS-SVMmodel, the
kernel function is used for learning which minimizes the regularized risk (Lr). Minimizing the
regularized risk is estimated by the weight (w) and bias (b). The Lr equation can be used as
studied by Garg et al. (2014). The parameter setting used in the present study is presented in
Table 2.

The normalization of input and output variables is done by using the following equation
(Garg et al. 2014):

X norm¼0:8� X i‐Xmin

Xmax‐Xmin

� �
þ 0:1 ð5Þ

where Xi is i
th input, Xmin and Xmax are minimum and maximum values of variable Xi. The

problem formulation of As(III) removal by experimental and computational modeling using
GP and LS-SVM models is presented in Fig. 1.

3.2 Model Performance

Several statistical methods are used for validation of model performance (Garg et al. 2014;
Andrés et al. 2012; Pai et al. 2011). These methods are the: mean square error (MSE), mean
absolute percentage error (MAPE), average absolute relative error (AARE), normalized bias

Table 2 Parameter settings for GP and LS-SVM modeling for As(III) removal

Parameters GP values Parameters LS-SVM values

Inputs 5 Inputs 5

Runs 20 Datasets 131

Population size 200 Grain 6

Generations 300 Iteration 3

Method Tour Kernel function RBF Kernel

Tournament size 2 Optimization method grid search

Max tree depth 6 Data splitting method cross validate

Function Times, minus, plus, multiply,
tan, sin, cos

Gam 803.507

Max genes 5 Sig2 22.96

Constant range [−10,10] F(x) 186.75

Crossover probability rate 0.85

Reproduction probability rate 0.10

Mutation probability rate 0.50

Seed value 2.053
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(NB), standard deviation (σ), chi square (χ2) and correlation coefficient (R2), which are
described in Eq. (6) to (12):

MSE ¼ 1

N

X N

i¼1
Ymodel;i−Yactual;i

� �2 ð6Þ

MAPE ¼ 1

N

X N

i¼1

Ymodel;i−Yactual;i

� �
Yactual;i

				
				� 100 ð7Þ

AARE ¼ 1

N

X N

i¼1

Ymodel;i−Yactual;i

� �
Yactual;i

				
				 ð8Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX N

i¼1

1

N−1
Ymodel;i−Yactual;i

� �
Yactual;i

				
				−AARE

� �2s
ð9Þ

χ2 ¼
X N

i¼1

Ymodel;i−Yactual;i

� �
Yactual;i

2

ð10Þ

Fig. 1 Problem formulation of modeling of arsenic (III) removal
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NB% ¼
X N

i¼1

Ymodel;i−Yactual;i

� �
=Yactual;i

N
ð11Þ

R2 ¼
X N

i¼1
Yactual:i−Ymodel;mean

� �2−X N

i¼1
Ymodel;i−Yactaul;i

� �2
X N

i¼1
Yactual;i−Ymodel;mean

� �2 ð12Þ

where Yactual,i is experimental value of % removal, Ymodel,i is predicted % removal by the
model, Ymodel,mean is the average value of model % removal prediction, and N is the number of
experiments.

4 Results and Discussion

According to initial adsorption experiments, cerium oxide tetraethylenepentamine (CTEPA) hybrid
material exhibited maximum removal of As(III) from water as compared to other materials, and
hence the CTEPAwas selected for further study. The ion exchange capacity, specific surface area
and removal percentage of all hybrid materials synthesized are presented in Table 3.

The thermogravimetric analysis (TGA) of the materials is represented in Fig. 2.
From Fig. 2, it is clear that there is a rapid weight loss of 53 % in the temperature
range 230–300 °C, and the corresponding endothermic DSC peak is due to the
decomposition of organic component present in the material. Another weight loss of
8.1 % is observed in the range of temperature 150–230 °C, which may be due to the
loss of free and/or bonded water molecules present in the material. The other weight loss of
15.9 % is observed in the range of 300–350 °C, which is due to the decomposition of residual
organic components present in the material. The above observations indicate that the organic
component of the material tetraethylenepentamine is an essential component of the material
either in bonded or adsorbed form on the cerium oxide gel.

Phase analysis of CTEPA and As(III) adsorbed CTEPA have been carried using the
obtained X-ray diffraction pattern, as shown in Fig. 3. A series of sharp and intense peaks
can be seen with (111) as the highest intense and sharp peak with clear reflections at low 2
theta values. This characteristic peak is observed for mesoporous cerium oxide (Laha and

Table 3 Selection of best hybrid material towards As(III) removal efficiency

Various
hybrid
materials

BET
surface
area
(m2/g)

Particle
size
(nm)

Zero point
charge

Porosity
(%) (dry)

Bulk
density
(g/cm3)

Percentage
removal of
As(III) from
100 mg/L
As(III) solution

0.01 M NaNO3 0.01 M NaCl

MgTEPA 144 200–450 3.3 3.7 18 % 2.32 47 %

CaTEPA 178 200–350 6.2 6.1 21 % 1.86 58 %

CTEPA 394 20–100 6.3 6.9 68 % 0.22 81.2 %

ZTEPA 96 300–500 4.7 4.5 8 % 2.87 44 %

MnTEPA 65 400–700 5.2 5.8 2 % 3.14 37 %

LaTEPA 238 100–250 8.7 9.1 34 % 1.22 60.4 %
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Ryoo 2003) that matches well with JCPDS No. 810972. The sharp peaks suggest high
crystalline nature of the hybrid material before and after adsorption. Presence of arsenic is
seen at lower 2 theta values with small peaks. After adsorption, slight shift of peaks to higher
angle is observed suggesting inter-planar rearrangements due to the introduction of arsenic
species and formation of complex framework with CTEPA hybrid material, as marked in
figure. The peak intensity of (111) increases after arsenic adsorption relating to increase in
crystallite size of the particles. The crystallite sizes are calculated using Debye Scherrer
equation (Holzwarth and Gibson 2011):

D ¼ 0:9λ=βcos θ ð13Þ
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where β is the full width half maximum at 2θ value. The average crystallite size
before and after adsorption is calculated to be 21 nm and 102 nm, respectively. The
above results suggest increase in crystallite size due to adsorption of arsenic on the
material sites.

Field emission scanning electron microscopy (Fe-SEM) images of CTEPA hybrid material
and As(III) adsorbed material are presented in Fig. 4, along with EDS micrographs. CTEPA is
observed to have highly porous spongy structure with non-uniform pore structure. Presence of
high amount of cerium and oxygen in EDS micrograph attributes to the absence of any other
adsorbed impurities before the adsorption. After adsorption, a fairly high amount of
arsenic is found from EDS micrograph supporting the particle flood on CTEPA
surface with small fine agglomerated particles indicating possible adsorption of
As(III). High Resolution TEM (Fig. 5) has been carried to better understand the
morphology of CTEPA hybrid material. CTEPA is seen to be mesoporous in nature
with low crystallinity as observed in corresponding selected area electron diffraction
(SAED) pattern showing major concentric circles. As(III) adsorption is confirmed
from high-resolution transmission electron microscopy (HR-TEM) image showing
small particles having hard agglomeration over the surface of CTEPA material with

a

b

Fig. 4 Fe-SEM and EDS micrographs of CTEPA material a before and b after adsorption of arsenic (III)
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high crystallinity. All the above results support the adsorption of arsenic species on
the surface active sites of the adsorbent.

The isotherm t-plot and pore size distribution of the material are represented in
Fig. 6. The material exhibits the specific surface area of 394 m2/g, micropore volume
of 0.522 cm3/g and average micropore diameter of 17.332 A°. A specific surface area
(24.59 m2/g) of the material after adsorption of As(III) is found to be reduced, which
indicates that the pores may be closed due to adsorption of As(III). The material
shows Type II and Type III isotherm before and after adsorption, indicating indefinite
multi-layer formation after completion of the monolayer. A study by Chandra et al.
(2010) suggests the possibility of the above observation.

4.1 Batch Adsorption Experiments

4.1.1 Influence of Dose and Solution pH on Adsorption Process

The influence of adsorbent dose on percentage removal of As(III) ions from aqueous
solution is graphically represented in Fig. S-2. It is observed from the figure that the
removal of As(III) increased from 16 to 95.6 %, 11.8 to 87.1 % and 7.36 to 79.2 %
for 0.1–0.9 g/L of the material of initial concentration 5 mg/L, 25 mg/L and 50 mg/L

(a) (b)

(d)(c) 

Fig. 5 SAED and TEM pattern of CTEPA hybrid material a-b before and c-d after adsorption of arsenic (III)
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As(III) solution, respectively. The optimum dose is found to be 0.7 g/L, as there is no
noticeable change in percentage removal of As(III) beyond this dose. This dose was
used for further adsorption studies.

The effect of pH on removal of As(III) ions and zeta potential of the material was studied
and presented in Fig. S-3a-b. The isoelectric point of CTEPA is found to be 6.7 and 6.9 for
0.01 M NaCl and 0.05 M NaCl solutions, respectively.

The removal of As(III) was examined with a change in solution pH from 1 to 12. The
percentage removal of As(III) rapidly decreases from 97.8 to 12.4 %, 90.6 to 3.5 % and 87.1 to
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2.7 % with an increase in pH from 8 to 12, for initial As(III) concentrations of 5 mg/L, 25 mg/
L and 50 mg/L, respectively, which indicates that pH plays an important role in the adsorption
process. With increase in pH, the OH− ion concentration increases in the solution which may
be competing for the adsorption with As(III) species. The suitable pH for removal of As(III)
species is between pH 6 and 7, which is in good agreement with the obtained isoelectric
(pHzpc) values. The above experimental data for variable pH and adsorbent dose is trained by
best fit model, and is found that the best fit model satisfactorily predicts the observation of the
experimental data.

4.1.2 Effect of Temperature

The effect of temperature on percentage removal of As(III) with initial concentration of 5 mg/
L, 25 mg/L and 50 mg/L onto the material was studied using optimum dose and pH. The
results are graphically presented in Fig. S-4, the percentage removal of As(III) increases from
73.2 to 96.8 % (5 mg/L), 46.6 to 96.2 % (25 mg/L) and 47.3 to 97.1 % (50 mg/L), respectively
in the temperature range of 20 °C to 70 °C. The above observations are further supported by
calculating thermodynamic parameters. The following parameter (free energy (ΔG), change in
enthalpy (ΔH) and change in entropy (ΔS)) of adsorption process are calculated using the
following equations (Asli et al. 2013):

logKC ¼ Δs

2:303R
−

ΔH

2:303RT
ð14Þ

ΔG ¼ ΔH−TΔS ð15Þ
A plot of log Kc versus 1/T for initial As(III) concentration of 5 mg/L, 25 mg/L and

100 mg/L was found to be linear in nature. The value of Kc was calculated using the following
equation (Asli et al. 2013):

Kc ¼ C1=C2 ð16Þ
where C1 is the amount of As(III) ion adsorbed per unit mass of CTEPA and C2 is
the concentration of As(III) in aqueous phase. The values obtained are presented in
Table 4. For a chemical reaction to occur, bonds must break before new bonds can be
formed. The bond breaking and forming is a process of energy absorption

Table 4 Thermodynamic parameters obtained for As(III) removal using CTEPA, As(III) concentration of 5 mg/
L, 25 mg/L and 50 mg/L

Initial As(III)
concentration

ΔH (kJ/
mol)

ΔS (kJ/
mol)

ΔG(kJ/mol) R2

20 °C 25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C

5 mg/L −32.14 0.25 −0.38 −0.39 −0.39 −0.40 −0.40 −0.41 −0.41 −0.41 0.994

25 mg/L −92.27 0.43 −0.80 −0.80 −0.81 −0.82 −0.83 −0.83 −0.84 −0.85 0.991

50 mg/L −100.03 0.45 −0.85 −0.85 −0.86 −0.87 −0.88 −0.89 −0.90 −0.90 0.991

Best fit model (Predicted)

5 mg/L −33.32 0.25 −0.39 −0.39 −0.40 −0.40 −0.41 −0.41 −0.42 −0.42 0.983

25 mg/L −85.25 0.40 −0.74 −0.75 −0.76 −0.77 −0.77 −0.78 −0.79 −0.79 0.985

50 mg/L −93.00 0.43 −0.80 −0.81 −0.82 −0.83 −0.84 −0.84 −0.85 −0.86 0.976
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(endothermic, +ΔH) and release (exothermic, −ΔH), respectively. So, possibly new
bond formation takes place between As(III) and adsorbent resulting to negative enthalpy
(exothermic nature) of the ongoing reaction. The positive value of ΔS suggests the structural
modification in the system and increases the affinity of adsorbent for As(III) species. The
positive value of entropy indicates the increase in randomness in the system. Negative value of
ΔG at each temperature indicates the spontaneous nature and feasibility of ongoing adsorption.
A decrease in values of ΔG with increase in temperature suggests more impulse of As(III)
adsorption at higher temperature.

4.1.3 Effect of Contact Time and Adsorption Kinetics

The effect of contact time on percentage removal of As(III) is graphically presented in
Fig. S-5. It is evident from the figure that the removal of As(III) increased from 42.6
to 95.8 %, 47.1 to 90.6 % and 41.5 to 90.8 % for a contact time of 10 to 50 min for
initial As(III) concentration of 5 mg/L, 25 mg/L and 50 mg/L, respectively. It is clear
that about 40 % removal took place within 10 min, and equilibrium is established
after 40 min. The rapid removal during the first 10 min may be due to availability of
vacant sites and high concentration gradient. Further, kinetics of adsorption and mass
transfer was also computed using different mathematical models such as pseudo first-
order, second-order and intraparticle diffusion (Weber-Morris equation) for initial
As(III) concentration of 5 mg/L, 10 mg/L and 50 mg/L. The integrated form of the
pseudo-first order rate equation can be represented as:

log qe−qtð Þ ¼ logqe−K1
t

2:303


 �
ð17Þ

t

qt
¼ 1

K2q2e

� �
þ 1

qe

� �
t ð18Þ

qt ¼ Kpt
1=2 þ C ð19Þ

where qe and qt (mg/g) are the amounts of As(III) adsorbed at equilibrium and at time
‘t’, respectively. K1, K2 and Kp are first-order rate constant, second-order rate constant
and intraparticle diffusion rate constant, respectively. The values are calculated from
their respective slope and intercept (Fig. S-5b-d). The data obtained are presented in
Table 5. Due to poor regression coefficient (R2) values obtained for pseudo-first order
and intraparticle diffusion, it may be considered that the adsorption process is best
fitted with second-order rate equation. The contact time and kinetic data were trained
with the best fitted model and it was found that the model predicts satisfactorily with
high correlation values. The trend of observation is presented in respective plots
(Fig. S-5b-d).

It is observed from Fig. S-5d that there is a deviation of line from the origin which
indicates that the intraparticle transport is not the only rate limiting step, but the
transport of adsorbate through the pores of the adsorbent and adsorption on the
surface of the material are also responsible. Subsequently, the acceleration of the
adsorption process indicates that the diffusion is not consecutive due to pore size
(Erhan et al. 2004). At the final phase of adsorption process, the rate of diffusion
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remains constant due to exhaustion of pores in the material. When the Kp value is
higher, the rate of adsorption is increased, but when the C value is higher, the
adsorption is better due to better bonding between adsorbate and adsorbent. The
concentration gradient decides the flow of particles into the pores of material. With
the increase in the concentration of As(III), the Kp value increases, suggesting that the
intraparticle diffusion is considered as the concentration diffusion (Erhan et al. 2004;
Biyan et al. 2009).

4.1.4 Impact of Adsorbate Concentration and Adsorption Isotherms

The effect of initial concentration on % removal of As(III) from aqueous solution is
graphically presented in Fig. 7a, which presents the impact of concentration of
adsorbent on the removal efficiency of the material. It is evident from the graph that
with increasing initial concentration of As(III) from 1 to 180 mg/L in the solution, the
removal efficiency decreases from 92 to 55.2 % due to the lack of active sites at
higher concentration of As(III).

To understand the adsorption behaviour, adsorption data obtained from initial
concentration was fitted to linear transformed Langmuir (Eq. 20), Freundlich
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(Eq. 21) and Dubinin-Radushkevich (D-R) (Eq. 22) adsorption isotherms, as presented
in the following equations (Foo and Hameed 2010):

1

qe
¼ 1

qobCe
þ 1

qo
ð20Þ

logqe ¼ logK f þ 1

n
logCe ð21Þ

lnqe ¼ lnqm−Kε
2 ð22Þ

where qo is the maximum amount of the As(III) ion adsorbed per unit weight of the
material to form a complete monolayer on the surface (adsorption capacity), qe is the
amount of As(III) adsorbed at equilibrium (mg/g), Ce is the equilibrium adsorbate
concentration (mg/L), and b is the binding energy constant. Kf and 1/n are the
constants representing Freundlich adsorption capacity and adsorption intensity, respec-
tively. The Polanyi potential is represented as ε and is equal to RT ln(1+1/Ce), qm is
the theoretical adsorption capacity, K is the constant and T is the temperature in
degrees Kelvin. The plots of Langmuir, Freundlich and D-R isotherms are presented
in Fig.7b-d.

The values of different parameters are calculated from the slope and intercept of the plot
and are presented in Table 5. The high correlation coefficient (R2) value suggests that the
adsorption data were best fitted to Langmuir adsorption isotherm with a maximum adsorption
capacity of 124.8, 201.4 and 358.4 mg/g for 25, 50 and 75 °C, respectively. The mean free
energy of adsorption (E) is calculated from the constant K using the relation (Foo and Hameed
2010)

E ¼ 2Kð Þ−1=2 ð23Þ
It is defined as the change in free energy when 1 mol of ion is transferred from the solution

to the surface of the solid. The value of E is very useful in predicting the type of adsorption.
The different types of adsorption processes are: (a) Physical (< 8 kJ/mol); (b) ion exchange (8
<16 kJ/mol); and (c) chemisorption (> 16 kJ/mol). As presented in Table 5, the value obtained
at different temperatures is higher than 16 kJ/mol, suggesting chemisorption nature of the
adsorption process.

The dimensionless equilibrium parameter r is calculated by using the following equation
(Foo and Hameed 2010):

r ¼ 1

1þ bCo
ð24Þ

where Co is initial As(III) concentration in mg/L, where values of r<1 indicate
favourable adsorption process. The values of r are found to be 0.340, 0.094 and
0.020 for initial concentrations of 5 mg/L, 25 mg/L and 50 mg/L, respectively, which
indicates a favourable adsorption system. A similar trend of observation has been
observed with high correlation value when the above isotherm and concentration data
are trained by using best fitted model. The observations at prediction are presented in
their respective plots (Fig. 7a-d).
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4.1.5 Competitive Ions and Regeneration Studies

All the above studies were conducted by synthetic As(III) solution only. However, in real
water, several other anions exist, which may compete for the adsorption. In order to understand
the effect of anions on adsorption of As(III), a mixture of common anions such as hydroxide,
nitrate, chloride, phosphate, sulphate, fluoride, carbonate and bicarbonate were added in
known quantities of As(III) solution. The initial concentrations of As(III) were kept fixed at
5 mg/L, 25 mg/L and 50 mg/L, while the concentrations of the other anions are varied from 5
to 100 mg/L. The observation is reported in the form of a plot in Fig. S-6.

It is understood from the figure that presence of these anions highly reduces the As(III)
removal efficiency. The anions reduced the As(III) adsorption in the order of hydroxide>
bicarbonate>carbonate>phosphate>nitrate>fluoride>sulphate>chloride. This analysis de-
picts that hydroxides, bicarbonates and carbonates has the most and sulphate has the least
effect on the removal of As(III) by the material. It is found that the percentage removal of
As(III) is reduced by >71 % in the presence of hydroxide, bicarbonate and carbonate in As(III)
solution. This may be due to material having higher interaction and strong attraction towards
hydroxide, bicarbonate and carbonate ions as they have a tendency to form correspondingly
hydroxide, carbonates and bicarbonates. Presence of sulphate and chloride reduces As(III)
removal<15 %. It can be concluded that this material can be used for As(III) removal in the
presence of chloride and sulphate at high concentrations; however, presence of hydroxide,
bicarbonate and carbonate can affect the removal percentage. So, the alkalinity test must be
carried out before using CTEPA for As(III) removal.

A desorption and a regeneration study was carried out in order to understand the reusability
of the material. The results obtained are presented in Table S-2.

Generally, poor desorption occurs, when the adsorption process is of chemical nature and
this happens because in chemisorption process, adsorbate and adsorbent are associated with
stronger bonds (Ma et al. 2011). The data obtained suggest the chemisorption nature of the
adsorption process, which is in good agreement with the above data presented in free energy.

Adsorbents are usually regenerated in acidic or alkali medium. In the present study, the
material is unstable in extreme acidic conditions (below pH of 3), so the regeneration tests are
carried out between pH 8 and 11. It is observed from Table S-2 that regeneration is less than
10 % at different pH values. This suggests poor regeneration of CTEPA material. Studies by
Ma et al. (2011) suggest the possibility of above regeneration and desorption studies.

4.1.6 Mechanism of As(III) Adsorption

The FTIR spectra of CTEPA before and after adsorption are shown in Fig. 8. Broad and
intense bands at ~3128 cm−1 indicate the presence of overlapped O-H and NH2 stretching
vibration groups (Ma et al. 2011). The band at ~1383 cm−1 corresponds to carbonate anion
which may be due to absorption of atmospheric CO2 gas. Few lattice vibrations of metal-
oxygen bonds M-O are also observed at ~661 cm−1 and ~486 cm−1 (Hameed et al. 2006). Two
new peaks appear at ~1625 cm−1and ~560 cm−1 after As(III) adsorption onto the material,
possibly indicating the formation of surface complexation (M-O-X) (where X=HAsO3

3−,
H2AsO4

−, AsO2
−). It is well known that As(III) species are adsorbed via electrostatic attraction

and complexation (Ma et al. 2011). The presence of M-OH and M-NH2
+ functional groups

plays an important role in the adsorption process according to FTIR spectra. Possibly, there is
electrostatic attraction between negatively charged As(III) species and positive surface of the
adsorbent (NH2

+), since the solution pH is below the isoelectric point (pHzpc) (See
Section 4.1.1). At low pH, surface hydroxyl groups are protonated and provide the
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complexation process, because –OH2+is easier to displace from the metal binding system than
OH functional groups (Ma et al. 2011). At the active adsorption sites, As(III) species replaced
the hydroxyl groups which are then released to the water solution. The adsorption process
could be described in two steps, as illustrated in Fig. 9: (a) electrostatic interaction between
positively charged center (nitrogen) and negatively charged arsenite molecule in solution; and
(b) complexation between positively charged surface hydroxyl group and arsenite. Table 6
presents the comparison of adsorption capacity of As(III) ions with that of various other hybrid
materials reported in the literature, also showing pH range.

4.2 Computational Modeling Approach

4.2.1 GP and LS-SVM Models

In the GP and LS-SVM modeling, input and output variables are normalized first in order to
achieve the uniformity level of individual factors. The models are executed on the basis of trial
and error method, as discussed in Section 3. Figures 10a and b illustrate the prediction of
arsenic removal at training and testing using GP and LS-SVM model. As seen in both figures,
there is a good agreement between models and experimental results and the models represent
reasonable prediction of the system behaviour. The LS-SVM prediction is terminated after
satisfying the optimized parameters (dF=0.1129, dX=0.13198, X=6.6667, F(X)=174.2688,
Hyper parameter (gamma=785.7, sig2=40.24)) and the best-so-far GP model (see Eq. 25)
obtained after satisfying the termination criteria is:

ypred ¼ 15:71 � x1ð Þ−0:5959 � x3ð Þ þ 0:5959 � x4ð Þ−0:7665 � x5ð Þ þ
0:6579� tan x3ð Þ � cos x3ð Þ − x5ð Þ þ 0:9605ð Þ − 0:03035� tan x2ð Þ � x5−ð
1:148Þ þ 0:7665� cos x1ð Þ þ 15:71� cos x3ð Þ þ 0:5959� cos x5ð Þ−15:71�
sin x2ð Þ−0:5959� cos sin x5ð Þ � sin x1ð Þ � x1ð Þ− x3ð Þð Þ þ 0:03035� x3ð Þ�
x5ð Þ � sin x5ð Þ− x3ð Þ � tan x1ð Þð Þ þ 0:4997 � x1ð Þ � x3ð Þ � x5ð Þ þ 10:85

ð25Þ

The equation obtained through genetic programming satisfied the proposed parameter
settings, as presented in Table 2. In Eq. (25), x1, x2,x3,x4, and x5 denote normalized values
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of dose, pH, time, temperature and concentration, respectively. The execution time of running
the GP and LS-SVM algorithm for the present study was approximately 10 min on Dell
OPTIPLEX 980 (core i5, RAM 4GB, Windows 7). The number of experimental runs and its
prediction behaviour by the GP and LS-SVM model is illustrated in Fig. S-7a-b.

The residuals versus experimental run for both models (GP and LS-SVM) (See Fig. 11a-b
presents uniform nature of residues at training and testing, suggesting that the models were
drifting slowly to lower values as the prediction continued. The distribution of points scattered
randomly about −10 to +10 and −20 to +40 for GP and LS-SVM, respectively, regardless of
the size of the fitted value, but the residual values may increase with the increase in the size of
the fitted value. Having this condition, the residual points appear to be “funnel shaped” as
larger end toward larger fitted values. This is due to the fact that with the increase in the value
of the response, the residuals have larger and larger scatter. In the present investigation the
position of residuals is well within the range of values used for prediction in genetic
programming, but the residuals obtained by using LS-SVM was somewhat higher than the
GP model because LS-SVM was found unable to capture satisfactorily the relationship
between the process variables.

The percentage error distribution at prediction for both models at training and testing is
presented in Fig. S-8a-b. The % error distribution lies within the range of +25 and −25 for GP
and −70 to +60 for LS-SVM. In order to understand the reliability and performance of the
models, a comparison among the models is discussed in Section 4.2.2.

4.2.2 Comparison and Performance of the Models

A separate comparison at prediction data for thermodynamic parameter, kinetic parameter and
isotherm parameters are presented and discussed in Section 4.1. In this section the overall
performance of both models in prediction of As(III) removal at batch studies are done by the
statistical parameters presented in Section 3.3. The obtained values are presented in Table 7.
The values (MSE, RMSE, MAPE, AARE, chi square, NB% and standard deviation) suggest
that the GP model has impressively well learned the non-linear relationship between the input
and output process variables with high correlation coefficient values (R2) of 0.988 and 0.977 at
the training and testing phases, respectively. Compared to the LS-SVM model, the GP model
has shown better performance. A statistical comparison based on box plots of relative error (%)

Fig. 9 Mechanism of arsenic (III) removal by CTEPA hybrid material
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for the two models at training and testing (Fig. 12) is done by using the following relation (See
Eq. 26):

Relative error %ð Þ ¼
modeli−actuali
			 			

actuali
� 100 ð26Þ

where modeli and actuali are the average values of predicted and actual quantities,
respectively. A lower mean relative error of 3.48 % and 3.86 % at training and testing,
respectively, shows that GP is able to capture the relationship between process variables
satisfactorily. The descriptive statistics of the errors are shown in Table 7. The table illustrates
mean, standard error, standard deviation, median, maximum and minimum errors. Lower
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range of confidence intervals at training and testing for the proposed GP model indicates that
overall the GP model performance is found to be better than LS-SVM model. Thus, from the
statistical comparison presented, it can be concluded that the proposed evolutionary GP model
is better compared to LS-SVM in prediction of As(III) removal from water by CTEPA hybrid
material.

4.2.3 Sensitivity Analysis

Once the prediction and selection of best model is done by establishing the relationship
between input and output, the assessment of impact of each input on output is done by using
the following Eq. (27) (Elmolla et al. 2010):

SCO ¼ Scaled Outputfor 10% increase in inputð Þ– Scaled Output f or 10% decrease in inputð Þ
2

ð27Þ

The scaled change in output (SCO) is calculated with the current input increased
by 10 % and the current input decreased by 10 %. Thus, the results obtained are the
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scaled output change per 10 % change in input. Increase/decrease of an input from its
base value results in increase/decrease performance level. Logically, the net effect of
change in input results in a positive score for average scaled change in output. The
data obtained from sensitivity analysis is presented in Table 8.

The percentage relative contribution of each input variable in removal percentage is
calculated using the following equation (Bring 1996):

Relative contribution %ð Þ ¼ variancex
variancex totalð Þ

� 100 ð28Þ

The relative contribution of input variables in As(III) removal is presented in Fig. 13. The
variables such as dose, pH and time are important influencing variables, which effect As(III)
removal at highest. However, the sensitivity data suggest that variable concentration is more
sensitive than others, but its contribution towards removal percentage is low, which makes it a
less significant variable.
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Fig. 12 Statistical comparison based on box plots of relative error (%) for GP and LS-SVM models at training
and testing

Table 8 Net sensitivity at output and relative contribution of input variables affecting removal percentage of
arsenic (III)

Variables Average removal
(%) experimental

Average removal (%)
with increase and
decrease in variable
standards

Scaled changed
in output

Change in correlation (R2) value

+10 % −10 % ±10(%) Experimental +10(%) −10(%)

Dose 55.1 53.4 54.8 −0.7 0.991 0.967 0.977

pH 46.8 45.9 46.7 −0.4 0.983 0.978 0.966

Time 82.1 81.6 81.6 0 0.983 0.977 0.970

Temperature 79.2 79.3 79.3 0 0.998 0.999 0.997

Concentration 64.0 60.7 64.1 −1.7 0.971 0.974 0.974
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4.2.4 Best Optimal Settings

In the present study, a best optimal setting was obtained by feeding all possible experimental
runs of batch studies in GP model (parameters used, as presented in Table 2). The optimum
removal of 99.7 % is achieved with a dose=0.7 g/L, pH=6, time=50 min, temperature=65 °C,
and initial concentration=25 mg/L. The best-so-far GP model for predicting the optimized
value is:

ypred ¼ 11:79� cos sin x1ð Þ � x4ð Þð Þ þ tan x3ð Þ þ x5ð Þð Þ − 1:127ð Þ −
5:952� cos cos x2ð Þ þ 0:8083ð Þð Þ − 11:8� sin x3ð Þ − 5:221� sin x4ð Þð Þ −
3:516� x1ð Þ � x1ð Þ − 3:504ð Þ þ 5:952� sin x3ð Þ − x5ð Þð Þ þ 6:278�
tan sin sin x3ð Þ � x4ð Þð Þ � x2ð Þ þ 0:8083ð Þð Þð Þ − 0:1955�
tan 5:221� cos x2ð Þ þ 0:8083ð Þ − x1ð Þ −3:504ð Þ � x2ð Þ − 0:7015ð Þð Þ − 10:92�
sin 3:516� x1ð Þ � x1ð Þ −3:504ð Þ þ 5:221� x1ð Þ � x4ð Þ þ 0:7015ð Þ − 5:952�
tan 3:516� x2ð Þð Þ þ 7:442� tan sin x1ð Þ � x4ð Þð Þ − 0:9009� x2ð Þð Þ − 0:4905�
x1ð Þ − 3:516ð Þ � cos x2ð Þ � x4ð Þð Þ − 0:7015ð Þ � x1ð Þ − x2ð Þ þ x4ð Þð Þ þ 1:667�
x1ð Þ−3:504ð Þ � cos x2ð Þ � x4ð Þð Þ−0:7015ð Þ �
cos x2ð Þ þ 0:8083ð Þ þ cos x2ð Þ � x4ð Þð Þ þ 7:352ð Þ þ 88:72 ð29Þ

The GPmodel has impressively learned the nonlinear relationship between input and output
with correlation coefficient (R2) of 0.987 at the optimization stage. The above observations
suggest that, if optimized input combinations are followed, then it is possible to achieve
maximum removal percentage.

4.2.5 Confirmatory Experiments

After finding out the best optimal settings from the modeling, ten numbers of actual experi-
ments are performed with the same conditions in the laboratory to confirm the model adequacy
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Fig. 13 The relative contribution of input variables in arsenic (III) removal by CTEPA hybrid material
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and predictive relationship. The 95 % confidence interval of confirmation experiments (CICE)
is calculated by using the equation reported by Ross (1988), Roy (1990) and Krishnaiah and
Shahabudeen (2012). Confidence interval is estimated as 34.78. Therefore, the predicated
confidence interval for the confirmatory experiments is in the range of:

34:78 < μ < 99:7

The actual average of ten removal experiments of confirmation test is found to be 96.52. As
the overall average values of the confirmatory experimental test fall well within the 95 % CICE,
the confidence interval obtained by using the equation reported by Ross (1988), Roy (1990)
and Krishnaiah and Shahabudeen (2012) suggests the accuracy of genetic modeling in
prediction of removal percentage.

5 Conclusions

The hybrid material cerium oxide tetraethylenepentamine (CTEPA) was successfully synthesized
by co-precipitation method and was characterized using analytical techniques. This study presents
an alternate approach using genetic programming and least square support vector machine tools to
investigate removal percentage of As(III) ions from water using the hybrid material with a
maximum removal percentage (97.2 %). The XRD study confirms the crystalline nature of the
material having average crystallite size of 21 and 120 nm before and after adsorption, respectively.
The porous nature of thematerial was confirmed from Fe-SEM studies andAs(III) adsorption was
confirmed from corresponding EDS. The thermodynamic study indicated that the adsorption
process is exothermic, spontaneous and feasible in nature. The kinetic study indicated that the
adsorption process is of second order. The Langmuir isotherm was found to best fit the
experimental data resulting in high correlation coefficient of R2>0.98, with maximum adsorption
capacity of 124.8 mg/g at 25 °C. The chemisorption nature of the adsorption process was
confirmed by D-R isotherm studies. The FTIR studies suggested the mechanism of electrostatic
attraction and complexation for As(III) ions onto the hybrid material. The least values of MSE,
RMSE, MAPE, AARE, chi square, NB%, standard deviation and high correlation coefficient
values (R2) (0.988 and 0.977) suggested that the genetic programming (GP) was best fitted to the
experimental data and had higher predictive capability than LS-SVM. The variable concentration
has the highest sensitivity among other variables, but it has the least contribution to the removal
percentage. The study concludes that GP modeling can be used as effective prediction tool in
As(III) removal fromwater. The results also indicate the superiority of genetic programming tools
in capturing the nonlinear behaviour of the adsorption system. Based on the above findings, the
study can be used as a guide for prediction of As(III) removal from water.
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