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Abstract Determination of the longitudinal dispersion coefficient (LDC) of a river is needed
in studies regarding cleaning the water and protecting its quality when nuclear, chemical or
biological contaminants are discharged into the river. This study presents the development of
an empirical equation for predicting the longitudinal dispersion coefficient in natural streams.
Factors affecting the uniformity of the flow directly affect the LDC. Therefore, the hydraulic
radius, defined as the ratio of the wetted area to the wetted perimeter, was considered as an
important factor in determining the LDC. The presented equation relates the dispersion
coefficient to hydraulic and geometric parameters of the flow, and was derived using dimen-
sional and least squares analysis. The comparison of the predictions using 128 field data sets
measured in 41 rivers in the USA has indicated that the proposed equation is reliable in
predicting longitudinal dispersion coefficients in natural streams.
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1 Introduction

To determine the contamination risk and to control the quality of water in a reach of a stream or
river, one has to estimate the concentration of the contaminants both spatially and temporally.
The periodic mixing of water used for domestic, industrial and irrigation purposes, or the reuse
of this water, the evaluation of the transport capacity of natural streams, the re-aeration of a
stream, and many others, are among the problems needing determination of the dispersion
coefficient. Therefore, the longitudinal turbulent dispersion of a solute in a stream should be
investigated.

The prediction of water quality and contaminant transport fluxes in natural rivers and
channels requires the solution of the mass-transport equation. Contaminants and effluents,
when discharged into a river, undergo stages of mixing as the flowing water transports them
downstream. The effluent is dispersed longitudinally, transversely and vertically by advective
and dispersive processes. Once the cross-sectional mixing is complete, the longitudinal
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dispersion becomes the most important process. In this case, the one-dimensional (1-D)
dispersion equation is widely used for unsteady non-uniform flow. The general form of this
equation, given by Taylor (1954), reads
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where: A is the cross-sectional area of the flow (m2); C is the cross-sectional average
concentration (kg/m3); U is the cross-sectional average velocity (m/s); t is the time (s); x is
the direction of mean flow velocity (m); and D1 is the longitudinal dispersion coefficient (m2/
s). The main assumption of this equation is that the flow is homogeneous or isotropic, and the
channel or river section is uniform. However, sinuosity, and sudden contractions and expan-
sions affect uniformity. Consequently, the models based on Taylor’s analysis have a clear
weakness to determine the real longitudinal dispersion coefficients in rivers. Elder (1959), who
followed Taylor’s analysis, used a logarithmic vertical velocity profile and assumed that
momentum, mass and heat transport are completely analogous to each other; the resulting
model is not very accurate to determine the longitudinal dispersion coefficient in rivers,
because of the adoption of the vertical logarithmic velocity profile, and other simplifications
and assumptions made.

The factors that affect the uniformity of the flow directly affect the LDC. Therefore, in this
work, it is accepted that the hydraulic radius, which is defined as the ratio of the cross-sectional
area of the flow to the wetted perimeter, was considered an important factor in determining
LDC. Consequently, a mathematical model was derived by dimensional analysis using the
hydraulic radius.

A non-dimensional parameter β is proposed for accounting for sudden contractions and
expansions, as suggested by Liu (1977). Parameter β was expressed by Liu (1977) as
follows:

β ¼ α
U �
U

� �γ

ð2Þ

where: U* is the shear velocity (m/s); U is the mean flow velocity (m/s); and α, γ are
empirical coefficients. Liu (1977) determined coefficients α, γ by least-square fitting
to field data provided by Godfrey and Frederick (1970) and others.

The predicted dispersion coefficients calculated in this work were compared with
measured data, as well as with the predictions of the equations by other authors listed
below:

Kashefipour and Falconer (2002):
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and Seo and Cheong (1998):
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Equations (3) and (4) were derived using dimensional and regression analysis, with a high
correlation coefficient. The corresponding correlation coefficients (R2) for the relationships
betweenD1 andH (depth of flow),W (channel width) andU (mean flow velocity) were used to
select the data sets employed in their study. In the regression analysis, they have ignored the
data sets that have strong negative effect on the correlation coefficient in all cases. In their
work, they have used 81 field data sets measured in 30 rivers in the USA. In this work, the
same data set was used to derive a new expression for the longitudinal dispersion equation.
Equation (5) was derived using dimensional analysis and a regression analysis for the one-step
Huber method. 35 out of 59 measured data sets, belonging to 26 rivers in the USA, were used
to establish Eq. (5); then, the equation was verified against the remaining 24 data sets.

There are many equations to predict longitudinal dispersion in natural rivers in the
literature. Unfortunately, the predictions of LDC are not very accurate, and the predictions
vary greatly from one equation to the other. In this work, an empirical equation was developed
by dimensional analysis and least square analysis to accurately predict the LDC, which is one
of the key parameter in contamination and ecosystem modeling.

2 Evaluation of Previous Work

Estimation of the longitudinal dispersion coefficient has received considerable attention for a
long period of time (e.g., Fischer et al. 1979; Liu 1977; Seo and Cheong 1998; Guymer 1998;
Kashefipour and Falconer 2002; Shucksmith et al. 2010). Various experimental studies have
explored different aspects of the longitudinal dispersion (e.g., Fukuoka and Sayre 1973;
Guymer 1998; Murphy et al. 2007). Moreover, regression and dimensional based analysis,
along with data-driven methods, have been employed for the prediction of the dispersion
coefficients, which have a wide range of variations (e.g., Seo and Cheong 1998; Kashefipour
and Falconer 2002; Fischer 1968). More recently, Shahidi and Taghipour (2012) suggested a
model tree (MT) which can be regarded as a robust method for classification and prediction.

Fischer (1967, 1975) investigated the dispersion mechanism and the role of sinuosity in
natural streams, and derived theoretical and empirical equations. Fischer (1967) presented an
equation to predict the longitudinal dispersion coefficient, as follows:

D1 ¼ −17A
Z
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where: U′ is the spatial deviation of the velocity from the cross-sectional mean velocity (m/s),
as a function of distance in the y–direction; W is the channel width (m), y is the cartesian
coordinate in the transverse flow direction; and εy is the lateral turbulent mixing coefficient in
the y-direction, which has been found experimentally to be typically in the region of 0.23HU*

to 0.7HU*. This relation is based on integrating the resultant of mass balance equation
according to the boundary conditions. Fischer (1975) developed the following simple equation
by introducing a reasonable approximation of triple integration, velocity deviation and trans-
verse turbulent diffusion coefficient:

D1 ¼ 0:07U2λ2

εy
ð7Þ

where: λ is the distance from the point of maximum velocity to the most distant bank. Fischer
(1975) found that U*

2/U2 varied typically from 0.17 and 0.25, with the mean value of 0.2, and
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λ was typically equal to 0.7 W. By substituting these two values and setting εy=0.6 HU*, he
concluded that D1 could be obtained from the following equation:

D1 ¼ 0:11
W 2

H

� �
U2

U*

� �
ð8Þ

Liu (1977) derived a dispersion coefficient equation using Fischer’s Eq. (8), by
taking into account the role of lateral velocity gradients in dispersion in natural
streams, as follows:

D1 ¼ β
0:011U2W 2

HU�
ð9Þ

in which: β is a function of both the channel cross section shape and the velocity
distribution across the stream. He suggested that the parameter β can be determined
by considering sinuosity, sudden contractions and expansions, and dead zones in a
natural stream. By least-square fitting to the field data obtained by Godfrey and
Frederick (1970) and others, he deduced the following expression:

β ¼ 0:18
U�
U

� �1:5

ð10Þ

Soft computing methods have also been applied by several investigators for the estimation
of the LDC; fuzzy logic (Toprak and Savci 2007), adaptive neuro-fuzzy inference system
techniques (Riahi-Madvar et al. 2009; Noori et al. 2009), support vector machine (Noori et al.
2009; Azamathulla and Ghani 2011) and genetic programming (Azamathulla and Wu 2011)
are examples of these approaches. It is worth mentioning that artificial neural network (ANN)
models have also been employed to predict the LDC (e.g., Tayfur and Singh 2005; Toprak and
Cigizoglu 2008; Sahay 2011).

3 Development of a New Equation

From a review of the key literature in this field, most studies relate the longitudinal dispersion
coefficient to the fluid properties, hydraulic characteristics and geometric parameters of the
channel. Thus, it can be postulated that:

D1 ¼ f U ;H ;W ;U*; v; Sfð Þ ð11Þ

where ν is the kinematic viscosity and Sf a shape factor (Kashefipour and Falconer 2002).
To solve Eq. (1) analytically, it is necessary to simplify this equation under some assump-

tions. Because of the non-linearity of the problem, a great amount of assumptions were made
to solve Eq. (1) analytically. In most cases, these assumptions prevent accurate estimations of
LDC. These assumptions and simplifications can be expressed as follows, according to studies
in this field:

& The molecular diffusion is neglected;
& The dispersed matter is conserved;
& The flow is only in one (x) direction;

& The longitudinal turbulent diffusion term εx∂
2C
∂x2 is neglected (Elder 1959);
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& ∂c0
∂x≅0;

∂Cm
∂x ≅constant (Taylor 1953, 1954)

& ∂C
∂t

¼ 0

& The lateral turbulent mixing coefficient εy, plays a much more important role than the
turbulent mixing coefficient in the vertical direction εz (Fischer 1967). For this reason εz is
neglected.

& Since the flow in natural rivers and channels is generally fully turbulent and the wall is
rough, with Reynolds number effects generally being negligible, the kinematic viscosity in
Eq. (11) can be ignored.

To compute the direct effect of the shape factor on the longitudinal dispersion coefficient,
extensive information is required regarding the bed and wall features of a river. Furthermore,
the main hydraulic parameters used to estimate D1, such as the shear velocity, are also related
to the shape factor. Dimensional analysis shows that there are many different combinations of
H, U, W and U*, which can lead to the same dimensions as D1 (Kashefipour and Falconer
2002). In this work, because of the computation difficulties of Sf, the hydraulic radius was
considered instead of Sf in determining LDC. Therefore, the main form of the new equation
should be as follows:

D1 ¼ RhU ð12Þ
Because the dimension of D1 is m

2/s and the dimension of the hydraulic radius Rh is m, the
dimension of the right-hand-side of the Eq. (12) for the LDC must be m2/s which implies U is
the cross-sectional velocity.

In order to incorporate the sinuosity, sudden contractions and expansions, and dead
zones in the dispersion mechanism in rivers, a β parameter is included in Eq. (12).
This parameter was expressed using Eq. (2), as Liu (1977) suggested, and the
numerical values of the coefficient α and γ were determined by using least squares
analysis, calculating the best β value using the discrepancy ratio criteria (see section 4
for definition of discrepancy ratio) using 81 field data sets measured in 30 rivers in
the USA. The data were taken from Kashefipour and Falconer (2002). The following
equation was developed for the β parameter:

β ¼ 48
U

U*

� �0:47

ð13Þ

The β parameter was incorporated in Eq. (12) to end up with the following equation for the
LDC:

D1 ¼ βRhU ð14Þ

Due to the lack of data on cross section shape, the Rh was calculated assuming a rectangular
channel section.

The river names demonstrated with bold font belong to new rivers which were
used to verify the proposed equation results. KF1, KF2 and SC are the shortening of
Kashefipour and Falconer (2002)-Eq. (3), Kashefipour and Falconer (2002)-Eq. (4)
and Seo and Cheong (1998)-Eq. (5), respectively. There are measurements of 47 data
sets belonging to 11 new rivers in the additional data sets presented in Table 1. The
predictions of the new equation and the three equations are presented in Table 2 to
see and to compare the results.

An Empirical Approach for Determining Longitudinal Dispersion 281



Table 1 Summary of hydraulic properties, and measured and predicted longitudinal dispersion coefficients for
47 field data at 24 rivers (the data were taken from Shahidi and Taghipour 2012)

Hydraulic measurements and Dm data Equation Predictions (Dp)

W(m) H(m) U(m/s2) U*(m/s2) Dm(m
2/s) Eq.(14) SC KF1 KF2

Antietam Creek 10.97 0.52 0.21 0.075 17.5 7.8 6.7 3.2 8.8

Antietam Creek 23.47 0.7 0.52 0.101 101.5 35.5 38.2 19.8 88.2

Antietam Creek 24.99 0.45 0.41 0.081 25.9 18.3 26.3 9.9 57.1

Antietam Creek 12.8 0.3 0.42 0.057 17.5 14.8 18.0 9.9 59.8

Antietam Creek 21.03 0.48 0.52 0.069 25.9 29.6 36.5 20.0 124.4

Monocacy river 48.7 0.55 0.26 0.05 37.8 14.6 27.6 7.9 60.1

Monocacy river 49.99 0.95 0.32 0.075 29.6 27.8 39.1 13.8 71.6

Monocacy river 33.53 0.58 0.16 0.041 66.5 8.1 12.1 3.8 19.8

Conococheague Creek 43.28 0.69 0.22 0.064 40.8 12.6 19.9 5.6 28.5

Conococheague Creek 63.7 0.46 0.1 0.056 29.3 2.9 7.4 0.9 4.9

Conococheague Creek 59.44 0.76 0.68 0.072 53.3 69.4 119.1 51.6 500.7

Chattahoochee river 99.97 2.5 0.3 0.105 166.9 56.1 68.4 22.7 84.1

Difficult run 11.58 0.4 0.22 0.087 1.9 6.1 6.2 2.3 7.0

Comite river 15.7 0.2 0.36 0.04 69 9.5 16.3 6.9 65.3

Comite river 6.1 0.49 0.25 0.058 69 10.1 6.5 5.6 14.4

Tangipahoa River 42.98 1.28 0.26 0.068 45.1 28.3 30.8 13.5 52.2

Tangipahoa River 31.7 0.76 0.36 0.053 44 30.8 37.1 19.6 112.8

Red River 253.6 0.81 0.48 0.072 45.1 45.2 182.7 27.5 499.5

Red River 161.5 0.4 0.34 0.02 44 24.6 111.7 24.5 873.8

Red River 248.11 4.82 0.31 0.065 143.8 43.6 198.3 75.4 406.6

Copper Creek 16.7 0.5 0.2 0.08 16.8 7.0 7.7 2.7 8.5

Copper Creek 18.3 0.4 0.15 0.12 20.7 3.1 4.2 0.8 2.2

Powell River 36.8 0.9 0.13 0.05 15.5 8.4 10.4 3.2 11.6

Clinch River 28.7 0.6 0.35 0.07 10.7 20.6 27.2 11.1 59.3

Copper Creek 19.6 0.8 0.49 0.1 20.8 36.7 33.3 20.4 75.8

Clinch River 57.9 2.5 0.75 0.1 40.5 213.6 184.3 149.2 659.0

Conchelaa Canal 24.7 1.6 0.66 0.04 5.9 167.6 113.1 184.9 968.2

Clinch river 33.53 0.78 0.19 0.049 10.7 12.8 16.1 6.0 26.7

Clinch river 55.78 2.26 0.69 0.099 36.93 172.6 154.7 115.6 510.0

Clinch river 53.2 2.4 0.66 0.11 36.9 161.9 137.8 100.9 391.6

Copper Creek 16.8 0.5 0.24 0.08 24.6 9.1 10.0 3.8 13.3

Bayou Anacoco 25.9 0.9 0.34 0.07 32.5 28.9 28.6 15.8 63.3

Wind/Bighom rivers 59.4 1.1 0.88 0.12 41.8 114.3 159.3 75.3 519.8

Colorado River 106.1 6.1 0.79 0.089 181 581.4 428.0 458.0 1898.2

Colorado River 71.6 8.2 1.2 0.337 243 698.3 384.3 372.1 753.8

Irrigation 1.4 0.19 0.38 0.11 9.6 4.9 2.5 2.6 5.0

Irrigation 1.5 0.14 0.33 0.1 1.9 3.3 2.0 1.6 3.5

Puneha 5 0.28 0.26 0.21 7.2 3.5 2.8 1.0 1.7

Kapuni 9 0.3 0.37 0.15 8.4 7.6 8.0 2.9 8.7

Kapuni 10 0.35 0.53 0.17 12.4 14.2 14.3 6.1 20.0

Manganui 20 0.4 0.19 0.18 6.5 3.6 5.2 0.9 2.3

282 S. Sahin



4 Comparison of the Results

The longitudinal dispersion coefficient varies with the shape and geometry of the channel and
the parameters of the flow. Consequently, a large relative error may occur in predicting this
parameter. The comparison method used follows.

The Discrepancy Ratio (Dr) was used which is defined by White et al. (1973) as follows:

Dr ¼ log 10ð Þ
Dp

Dm

where: Dp is the predicted dispersion coefficient; and Dm is the measured dispersion coeffi-
cient. If the discrepancy ratio is between −0.3 and 0.3, the longitudinal dispersion coefficient is
predicted accurately. Accuracy was defined for this study as the proportion of numbers for
which the discrepancy values is between −0.3 and 0.3. The discrepancy ratio (Dr) is one of the
most widely used comparison criterion method in the literature. Dr compares the predicted
longitudinal dispersion coefficient from the corresponding measured values according to the
maximum acceptable error range. This approach is considered as the most proper comparison
criterion in this work. Accuracy of each equation according to the 81 field data is listed in
Table 2. Among 128 data sets 81 measured data sets were selected to derive Eq. (14) and 47
measured data sets (see Table 1) were used to verify the new dispersion equation.

According to the results of Table 2, the percentage of discrepancy ratio values between 0.0
and 0.3 was 43.2 % for Eq. (5), 29.6 % for Eq. (4) and 18.5 % for Eq. (3). These results show
that Eq. (5) generally overestimated the predicted longitudinal dispersion coefficients, whereas
Eqs. (3) and (4) underestimated it. On the other hand, for the proposed Eq. (14), the percentage
of discrepancy values ranging between 0.0 and 0.3 were 41.9 % and between −0.3 and 0.0

Table 1 (continued)

Hydraulic measurements and Dm data Equation Predictions (Dp)

W(m) H(m) U(m/s2) U*(m/s2) Dm(m
2/s) Eq.(14) SC KF1 KF2

Waiongana 13 0.6 0.48 0.24 6.8 17.5 15.4 6.1 14.5

Stony 10 0.63 0.55 0.3 13.5 19.6 14.7 6.7 13.6

Waiotapu 11.4 0.75 0.41 0.061 8 31.9 22.2 21.9 74.3

Manawatu 59 0.72 0.37 0.07 32 27.3 49.4 14.9 110.0

Manawatu 63 1 0.32 0.094 22 26.5 41.7 11.6 58.9

Manawatu 60 0.95 0.46 0.092 47 43.3 67.3 23.2 143.5

Table 2 Comparison of various models using the proportion of discrepancy ratio values percentage and
accuracy according to the 81 field data used to derive Eq. (14)

Equation Dr proportion (%) Accuracy (%)

<−0.3 −0.3–0.0 0.0–0.3 >0.3

Eq. (5) 9.8 19.8 43.2 27.2 63.0

Eq. (3) 28.4 42.0 18.5 11.1 60.5

Eq. (4) 18.5 34.5 29.6 17.3 64.2

Eq. (14) 12.4 28.4 41.9 17.3 70.3
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were 28.4 %. These results indicate that the predictions of the proposed Eq. (14) are slightly
more accurate. This is an expected result because the whole data was used to calibrate Eq. (14).

Additional 47 field data sets from 24 rivers were used to verify Eq. (14). The results are
presented in Table 3. According to these results, the proposed equation’s predictions are still
more accurate than those of the other models. Interestingly, Eq. (4) model overestimated the
predicted longitudinal dispersion coefficients. Eq. (5) showed the second best performance in
the verification process. According to the testing and verification results of the longitudinal
dispersion equations, the proposed equation’s results are more reliable than the other equations
used in this study.

5 Conclusions

The main conclusions from this study can be summarized as follows:

1. For predicting longitudinal dispersion in natural rivers, the following must be taken into
account in developing accurate models:

– Both vertical and lateral velocity gradients
– Non-uniformity of the river cross-section
– Secondary flows

2. Unfortunately, it is not possible to predict the longitudinal dispersion coefficient without
simplifications and assumptions. Obviously, these simplifications and assumptions affect
the accuracy of the models in the literature. Therefore, empirical approaches have been
widely used in this field. It is thought that less assumptions and simplifications is
fundamental for a highly successful model.

3. Due to lack of experimental data, the hydraulic radius was calculated with the assumption
of a rectangular channel section. However, the new equation is very simple and easy to
apply. Additional experimental studies are needed to fully assess the value of the new
equation. However, the results of the new equation are promising. It is considered that
knowing the cross section of the channel improves the success of the model.

4. The comparison of the results by using 128 sets of field data from 41 rivers in USA has
indicated that the new equation is more accurate in predicting longitudinal dispersion
coefficients in natural streams. In the comparisons of the results section, it is shown that
the new equation calculates LDC with an accuracy of 70.3 % and 50.9 % in calibration
and verification phases of the testing, respectively.

Table 3 Comparison of various models using the proportion of discrepancy ratio values percentage and
accuracy according to the 47 field data used to verify Eq. (14)

Equation Dr proportion (%) Accuracy (%)

<−0.3 −0.3–0.0 0.0–0.3 >0.3

Eq. (5) 27.8 14.9 29.7 27.6 44.6

Eq. (3) 55.3 23.4 8.5 12.8 31.9

Eq. (4) 14.9 17.0 17.0 51.1 34.0

Eq. (14) 27.9 29.7 21.2 21.2 50.9
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