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Abstract A smart learning environment is characterized by the key provision of

personalized learning experiences. To approach different degrees of personalization

in online learning, this article introduces a framework called Smart Competence

Analytics in LEarning (SCALE) that tracks finer-level learning experiences and

translates them into opportunities for customized feedback, reflection, and regula-

tion. The SCALE framework is implemented in four layers: the sensing layer, the

analysis layer, the competence layer, and the visualization layer. The sensing layer

provides the datasets to support context-awareness through state-of-the-art sensing

technologies. The analysis layer, by the means of powerful code analysis tools,

derives performance metrics (e.g., learner coding metrics) which serve as input to

the competence layer to identify proficiency levels of learners. Finally, a learning

analytics dashboard called MI-DASH (visualization layer) allows interaction with

performance and competence metrics. The current SCALE system has been used in

a study to track the habits, performances, and competences of novice programmers.
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Growth of coding competences of first-year engineering students has been captured

in a continuous manner. Students have been provided with customized feedback to

optimize their learning paths. The article describes the analytics-based approach

pursued in the study and highlights key findings.

Keywords SCALE framework � Smart learning environment � Novice

programming � E-learning technologies � Big data learning analytics � Competence

Introduction

Smart learning could mean customized learning that optimizes learning pathways,

engages learners in positive interactions, and guides instruction in a goal-oriented

fashion. While the why (optimal learning through customization), where (ubiquitous

learning interactions), and how (technologies for goal-oriented learning) of smart

learning environments (SLEs) are rather obvious at a coarser level, the degree of

customization, the scalability of ubiquity, and the integration of learning-related data

are still key challenges facing educational technologists. SLEs encompass traditional

classrooms as well as online and distance education. Taking learning anywhere and

everywhere in a consistent fashion requires technologies that move such as the smart

phones supported by 3G and 4G networks (Lee et al. 2012) as well as learning

environments that move such as the flipped classrooms at homes. To provide context-

aware learning (Yu et al. 2009; Hwang et al. 2008), hardware and software sensors are

necessary to recognize the context and the learning needs of the user to tailor learning

content and activities. SLEs are expected to be highly distributed and cloud based to

accommodate federated and goal-oriented study activities. To make a smart learning

environment context-aware, technologies need to collaborate seamlessly, ubiqui-

tously (Ogata and Yano 2004; Hwang et al. 2012), and purposefully in order to

recognize the context, translate the knowledge of the context in a proper learning

recommendation, and provide learning materials based on that recommendation.

Competency is the ability to adequately perform a task. Historically, the number

of years of experience of a person in a given job/role/position used to be the sole

currency of competence. Competences of individuals in an organization are

typically assessed by people corresponding to the hierarchical reporting structure

established within the organization. Contemporary technologies enable the obser-

vation of accomplishments of people at the summative level at the completion of

tasks, or at the formative workflow level during the completion of a task, or at time

intervals set by the organization. These observations could be used as evidences

toward competence analysis. Competence analytics, on the other hand, allow for the

translation of observational evidences from a learning environment into expressions

of competences, where evidences arrive continually and at random times and the

types of evidences need not be structured.

Learning analytics is the science of analysis, discovery, and utilization of

learning traces in emergent and related levels of granularity. Analysis could include

techniques ranging from data mining to machine learning and to big data analysis.
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The discovery of new relations and the discovery of even new data include

unconventional data, for example, the family income of a politically competing

region, inherent economic drivers influenced by a curriculum, and rate of changes in

motivation levels of students with respect to weather. Relations of interest include

sentiments among learners across collaborating groups, inter-institutional credit

transfer policies among institutions, and mutual respect among instructors.

Trace data refer to observable raw data of study activities such as reading,

writing, conceptualizing, critically thinking, solving problems, storytelling, and

visualizing, where a network of study activities leads to a measurable chunk of

learning. Learning measurements can be made using the trace data, and these

measurements can be standardized using IMS Metric Profiles defined under the IMS

Caliper1 specifications.

This article introduces the Smart Competence Analytics in LEarning (SCALE)

system and outlines how it relates to smart learning environments (‘‘SCALE framework

and smart learning’’ in section), following a literature review on SLEs (‘‘Literature

review’’ in section). ‘‘SCALE layers’’ in section delineates the details of the SCALE

framework and describes the application of SCALE in the Java programming domain.

Results of a study are described in ‘‘A study with SCALE’’ section. ‘‘Future work’’ in

section outlines our vision of SCALE and describes the challenges we expect to face

along the way. ‘‘Conclusion’’ in section offers conclusions.

Literature review

Smart learning environments involve context-awareness. However, context may

involve almost anything. Different research projects on SLEs may analyze and focus

on different aspects of a context. The precision with which a context is defined and

recognized by an SLE will significantly influence its overall performance.

One of the early applications of Smart Learning is from a smart cloud computing

framework that uses a model called E4S (Kim et al. 2011). The E4S model consists

of four basic services: pull, prospect, content, and push. The researchers rely on

built-in sensors in mobile devices to define the user’s behavior or environment. The

pull service will extract the type of content to be delivered to the user. The prospect

service is responsible for the preparation of the learning content to comply with the

user’s context. The content service generates the content and establishes the

connection between the server and the target device. Finally, the push service

performs the synchronized delivery of the generated content to the target device.

Another early development toward a smart learning environment is a self-

adapting algorithm for context-aware systems, where ‘‘the algorithm is character-

ized by a closed feedback loop with four phases: monitoring, analyzing, planning,

and execution’’ (Cioara et al. 2010). As part of the monitoring phase, the algorithm

uses the Resources, Actions, Policies (RAP) context model to programmatically

describe the sensed environment. The analyzing phase involves evaluating the

1 Caliper (http://www.imsglobal.org/caliper/).
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changes in the context using the context entropy concept to determine the extent to

which the context follows a predefined set of policies. The planning phase selects

appropriate adaptation action with respect to changes in the context. The execution

phase implements the adaptation action.

Yu et al. (2009) discuss a semantic infrastructure, the Semantic Learning Space,

for context-aware e-learning. The Semantic Learning Space ‘‘supports semantic

knowledge representation, systematic context management, interoperable content

integration, expressive knowledge query, and adaptive content recommendation.’’

They recognize the need to adapt the learning content to the user’s context, which is

a challenge quite distinct from flexible content delivery. They define the e-learning

context as ‘‘a user’s prior knowledge, learning style, speed of learning, current

activities, goals, available learning time, location and interests.’’ For example, in a

smart learning environment, the system will track the knowledge gap between the

current user’s knowledge and the targeted learning outcomes and provide the user

with the proper learning content to fill that gap taking into account the user’s

context. In another article, Yu et al. (2007) proposed an ontology-based approach

for semantic content recommendation. The recommender goes through the

following sequence of steps: semantic relevance calculation, recommendation

refining, learning path generation, and recommendation augmentation. While going

through these steps, the recommender takes into account knowledge about the

learner, knowledge about content, and knowledge about the learning domain in

order to offer highly contextualized content.

With a view to provide contextual information to instructors, the Teacher

ADVisor (TADV) framework (Kosba et al. 2005) uses Learning Content

Management System (LCMS) tracking data to elicit student, group, and class

models, and uses these models to help instructors gain better understanding of their

distance students. It uses a set of predefined conditions to recognize situations that

require educators’ intervention. When such a condition is met, TADV generates an

advice for the educator, as well as a recommendation for what is to be sent to

students. While TADV is focused on the educators’ day-to-day activities, SCALE

aims at helping them rethink the quality of the employed learning content and

learning design. SCALE also encourages students to share their learning experience,

reuse additional learning resources collected by their peers, receive fine-grained

feedback about their progress, and regulate individually or in groups.

Sherlock (Lesgold et al. 1991), an intelligent computer-based training system,

offered smart training environments for technicians to troubleshoot USAF F-15

aircraft’s electronic modules. When F-15 modules were suspected of malfunction,

technicians attached those modules to test stations to diagnose the modules. About

95 % of the technicians’ tasks were considered routine while the real work

environment offered very little experience to deal with more complex problems.

Sherlock enabled trainees to learn a wide array of problems in a simulation

environment and to receive help from a computer-based coach when necessary.

Sherlock reviewed trainees’ performance, criticized them, compared their actions

against an expert’s actions, and provided explanations of the expert actions.

Sherlock’s team claims that ‘‘independent field tests by the Air Force showed that
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20–25 h of training on the system was roughly equivalent to four years of on- the-

job experience.’’

A collaborative intelligent tutoring system for medical problem-based learning

called COMET (Suebnukarn and Haddawy 2007) was developed to track individual

and group knowledge and learning activities in order to sharpen the clinical-

reasoning skills of students in problem-based learning. COMET leveraged Bayesian

networks to track the knowledge and activity of individuals or groups and used

generic tutoring algorithms to provide guidance to students. Suebnukarn and

Haddawy (2004) had previously performed a laboratory study which had revealed a

high degree of agreement between COMET and human tutors. A second experiment

was later conducted with COMET involving 36 second-year medical students.

Students were divided into six groups according to their background knowledge.

Three groups were tutored by COMET, while the other three groups were tutored by

experienced human tutors. All groups participated in a two-hour problem-solving

session. The session was preceded by a pretest and followed by a posttest to measure

the improvement in clinical-reasoning skills. The tests were evaluated by 10

volunteer general practitioners to ensure a uniform level of difficulty which was

critical to measure accurately knowledge gains. Table 1 shows that the mean scores

and standard deviations of both types of groups in the pretest were very close to each

other, but the mean score of the COMET-tutored groups (65.12) was significantly

higher than the mean score of the human-tutored groups (59.46) in the posttest.

As part of the European Air Traffic Management Programme’s (EATMP)

initiative to increase traffic capacity and improve safety and efficiency simulta-

neously, a computer-based training (CBT) system for novice air traffic controllers

called MemPAC was developed. Its goal was ‘‘to increase the ability of controllers

to recognize the basic mechanisms and limitations of the cognitive processes

involved in Air Traffic Control (ATC) tasks’’ (Bellorini et al. 1999). MemPAC

training consisted of presenting everyday life scenarios through interactive

exercises, videos, games, and so on. During that training, students participated in

classroom lectures, CBT, visits to the real working environment, simulation, and on-

the-job training. An experiment has been conducted in the first MemPAC release

with eight novice controllers and two participants completely unrelated to ATC.

Participant’s subject knowledge was tested using questionnaires before and after the

MemPAC training course. The results of the experiment showed that the number of

right answers increased from 135 to 184, that wrong answers decreased from 64 to

45, and that ‘‘I don’t know’’ answers decreased from 31 to 1.

The literature reveals that competence-based analysis and competence-based

analytics are now viable. While ‘analysis’ caters to summative and formative

Table 1 Mean scores for all

clinical-reasoning problems

(Suebnukarn and Haddawy

2007)

Cohort Mean score (SD)

Pretest Posttest

Comet (all) 36.36 (0.42) 65.12 (0.38)

Human tutor (all) 36.54 (0.44) 59.46 (0.31)
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datasets, analytics caters to continuously arriving, semi-structured datasets. This

research specifically targets an analytics-oriented competency management system

that tracks both cognitive and task-specific learning processes, at real-time, to

identify and address gaps in competences with the goal to optimize the effectiveness

and efficiency of learning.

SCALE framework and smart learning

Smart Competence Analytics in LEarning is a mixed-initiative learning analytics

framework aimed at collecting learning traces from a variety of learning domains

and analyzing learning traces to extract underlying competence levels exhibited by

learners. The SCALE framework has been designed for seamless integration with

different types of learning-related artifacts such as the Moodle2 learning manage-

ment system, the Web-CAT3 suite of automated grading and testing tools, or the

NetBeans4 integrated development environment (IDE). The current SCALE system

does not focus as much on the physical context of a student (e.g., classroom,

instructor availability) as it does with the student’s learning context (e.g., learners’

background knowledge, learner motivation).

SCALE’s layered architecture consists of a sensing layer, an analysis layer, a

competence layer, and an interactive visualization layer. The sensing layer is

implemented through the Hackystat5 framework which provides a collection of

customizable sensors embeddable in learning-related tools. The analysis layer consists

of parsers and analysis tools pertaining to the learning domain. For instance, SCALE’s

analysis layer applied in the programming domain consists of compilers and static/

dynamic code analysis tools. The output of the analysis is then automatically converted

and stored in a competence ontology. The competence layer associates competences

with learning outcomes and shows evidences on students’ learning progressions.

Ontologies, implemented using Semantic Web technologies, along with inference

engines pave the way toward discovering new patterns and trends in the learning styles

and learning paths of students. Competence ontologies hold and define the knowledge

background of students, a prerequisite to offer customized learning materials. Finally,

the interactive visualization layer provides a graphical interface consisting of a set of

visualization and communication tools to play back the student’s performance, display

the student’s competences in relation to recent learning activities, provide an

environment where all learning stakeholders (e.g., instructors, students, peers, parents,

recruiters, etc.) can meet and create shared goals and explore strategies to achieve

them, and give the student the opportunity to comment on his/her learning. The

framework offers a plug-and-play architecture to allow any data-centric learning-

oriented application to be able to easily plug into SCALE.

2 Moodle (http://moodle.org).
3 Web-CAT (http://web-cat.org/group/web-cat).
4 NetBeans (http://netbeans.org).
5 Hackystat (https://code.google.com/p/hackystat/).
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We aim to make SCALE context-aware in terms of user’s prior knowledge,

regulated learning (self-regulated and co-regulated), learning style, learning

efficiency, current activities, goals, available learning time, location, and interests,

as partly defined by Yu et al. (2009). Programming is by far one of those easily

traceable (not necessarily analyzable) domains due to the availability of explicit data

that identify stepwise progressions made by programmers as they complete their

coding tasks. In other words, the number of sensing hours spent by the system to track

and update the learning context of the student may be much greater than in a chemistry

course (depending on how e-learning is applied to the chemistry field). Due to the

great number of environments in which Hackystat sensors (one of the SCALE

components) may be embedded, the system is expected to have a better representation

of learners’ context across a number of study activities in various subject domains.

One important question concerns the degree of ubiquity of SCALE. This may be a

tricky question to answer. Consider the Java programming domain as an example. We

have integrated multiple programming tools within the SCALE system to capture

coding-related activities of learners—for example, Eclipse IDE sensor, SCRL

regulation tools, NetBeans IDE sensor, GEOIA conversation analyzer, Virtual

Programming Lab6 (VPL) IDE sensor, and Mixed-initiative learning analytics

tutoring and training environment (MI-LATTE) reflection and regulation sensor. The

dilemma is about the number of disparate learning environments offered to students

and the learning effectiveness of the combination of these environments. To

contribute positively to the development of ‘good’ coding habits and competences,

should SCALE prescribe a subset of available tools? This remains an open-ended

question for the time being. The ubiquitous nature of the SCALE framework allows it

to be pluggable with any tool or system that could supply raw learning traces data.

The SCALE system guarantees reliable data collection through the Hackystat

sensors despite low-speed Internet connections and inevitable connectivity issues.

In the future, we plan to provide students with a gamut of recommendations

about learning paths, career orientations, job interview preparations, cognitive

development, and soft skills. Currently, SCALE provides students with minimalist

recommendations about programming concepts that require a deeper understanding

to maximize their successful application in the upcoming assignments or exams.

The SCALE framework is a work in progress, and the current implementation will

incrementally add new functionalities.

SCALE layers

Data collection and storage

Smart Competence Analytics in LEarning is a framework collecting and analyzing

data from a set of learning tools with the key goal of translating student’s

6 Virtual Programming Lab (http://vpl.dis.ulpgc.es/) and C. The reader should note that the current

implementation of SCALE could be straightforwardly adapted to many other programming languages

supported by the IDE.
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performance into a competence portfolio. In this section, we exemplify the universal

nature of the system by describing SCALE’s implementation in introductory

programming courses in Java.

Any open-source code editor or IDE can fit into the SCALE framework to give

SCALE the capability to monitor several types of software engineering activities.

So far, SCALE has been tested in real study environments with Eclipse IDE, VPL,

and MI-LATTE (specialized tutoring software guiding students’ one line of code at

a time in a set of programming exercises). VPL and MI-LATTE provide highly

scaffolded learning environments for the novice programmer to reduce the first

programming experiences to simplest forms. Afterward, students can move forward

with the professional and full-fledged Eclipse IDE or any other IDE supported by

SCALE. SCALE, through its plug-and-play architecture, empowers instructors to

build a unified dataset from all the course tools.

Sensing layer: Hackystat

Hackystat is an open-source framework for collection, analysis, visualization,

interpretation, annotation, and dissemination of software development process and

product data. Hackystat offers sensing technology with pre-built sensors (e.g.,

Eclipse and Visual Studio sensors) for the software engineering domain and a

generic sensorshell to create custom sensors for a number of other domains.

Hackystat sensors collect data of different types, which are sent to a sensorbase

repository. The Hackystat protocol, which regulates the communication between the

sensors and the sensorbase, requires that for every sensed data instance, the

following pieces of information should be provided: timestamp, runtime, sensor

data type (SDT), tool, owner, resource, and properties. The properties are a set of

key-value pairs storing learning-trace data as strings, while the other fields serve as

metadata for the learning-related data.

Hackystat provides a generic user interface to visualize data as well as a Java

library to programmatically handle the retrieval of project data.

The sensorshell enables systems to sense customized data types and transmit

them reliably to the sensorbase, in an online environment. It means that if it

recognizes any failure in the Internet connection, it will store the data in their

original XML format on the client computer awaiting re-transmission once the

Internet connection is re-established. Sensors can be hosted both on the client side

and the server side according to the security, reliability, and interoperability needs

of the system at hand.

But what is the value of such an unstructured dataset? First, this makes up a good

starting point to convert data and store them into different data storage technologies

such as SQL databases, RDF/OWL ontologies, object-oriented, and document-

oriented databases. Relations across such converted data could provide valuable

insights about competences of learners and the growth patterns of such

competences.

How can those data be queried in order to convert them in the proper format?

Querying happens through project creation. Projects are merely datasets. In a
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learning context, projects represent universities, departments, courses, students,

assignments, or any learning object of interest.

Data instances within a project are identified with URIs. As indicated before, a

data instance, in order to comply with the Hackystat protocol, must provide, among

other pieces of information, a Resource string. By specifying locator(s), name(s), or

both, one may build his/her own dataset for further analysis. Data collection may

occur explicitly and implicitly. In the former case, it means that the generation and

collection of data are triggered by an explicit (or intentional) action of the student in

his/her learning environment. In the latter case, the data are passively collected

according to a time frame (e.g., 50 data instances per minute). We may want to

differentiate those data in URIs accordingly for more accurate interpretation of the

collected data.

Data types

During the development of SCALE, we enhanced the Hackystat Eclipse sensor to

collect more data types about students’ problem-solving processes in well-defined

programming assignments. This sensor is referred to as Eclipse IDE Extension

(EIDEE). The data types collected by EIDEE can be classified into SourceCode,

Edit, Build, and Debug. Basically, an Edit data type stores information about

changes made to an Eclipse project or a file as well as the API of a class. It can also

track code progression at the following granularity: characters, statements, and

methods. The Build data type records all compile-time errors generated when the

student saves or compiles his/her code. The Debug data type captures the steps

taken by a student when debugging his/her code. Stepping into code blocks,

stepping over code blocks, setting/unsetting breakpoints as well as starting and

ending debugging sessions are among the debugging activities recorded by EIDEE.

Finally, the most important data type collected by EIDEE is the SourceCode.

Eclipse captures the student’s source code as he/she progresses through the

assignment.

As previously mentioned, EIDEE can be configured to change the frequency of

code capture sensed per minute either to improve the accuracy of analyses or to

alleviate the processing load. SCALE is purposefully designed to compile and parse

the student’s source code at short and regular time intervals as the student

progresses in an assignment problem. The source code is therefore compiled

programmatically and separately by the Eclipse JDT compiler. All errors are stored

in a central repository. Thus, students can view the progression of their errors in all

their assignment problems.

The Eclipse JDT allows SCALE to identify approximately 561 error types, with

each detected error being assigned an error type and a customized error message.

MI-DASH provides a set of visualization tools to visualize these metrics and report

to the student the error types which he/she seems to be struggling most with.

Moreover, the Eclipse JDT enables to build the abstract syntax tree (AST) of every

source code capture to enable SCALE to analyze the growth of the tree as the

student works through a specific programming exercise.
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Source code is arranged into an AST by breaking it down into 84 programming

constructs. These 84 programming constructs (or concepts) can then be mapped to a

Java competence ontology to translate the student’s performance into proficiency

levels.

Source code processing

In order to provide useful information to students about various aspects of their

performance, SCALE retrieves all datasets pertaining to the programming problem

at hand. Besides, due to the huge amount of data and the expensive processing to

transform those big data into meaningful information, the system provides different

levels of abstraction. For example, by default, SCALE retrieves approximately 50

source code captures distributed as equally as possible over the development time of

that particular assignment problem. The student also has the capability to modify

this abstraction level to fine-tune his/her view of his/her performance. Note that

EIDEE could sense student’s code at almost every keystroke. Hence, when the

student completes a programming exercise in one of the assignments, the system

could have collected several thousand captures of the source code. Compiling every

capture consumes a significant amount of computing power and produces little

benefit to the student. The 50-instance approach indicates to be a reasonable balance

between processing speed and analysis accuracy.

This approach also fits well with the processing of the StateChange data type.

This is a subtype of the Edit data type, and it tracks the number of characters,

programming statements, and methods (defining the API of a Java class) at a given

point in the problem-solving process of an assignment problem. Perhaps thousands

of StateChange data instances will be generated during the development of a

solution to a coding problem. As before, SCALE will pick up an equally distributed

data subset over time to show the progression of a student’s code.

For each code capture (approximately 50 for each problem), SCALE has the

ability to construct an AST and retrieve its enclosed errors. The system, by default,

shows the tree of the latest version of the student’s source code for a given problem.

As an extension, MI-DASH enables the student to view the growth of his/her AST

for the entire duration of the coding episode.

As for the errors generated for each compilation, every error is stored in a

database along with the related source code build. Other compile-time data being

collected include error type, error message, start and end character positions, and

source line number. Error types can then be aggregated as a list of errors ordered by

pedagogical priorities of the instructor or the student.

While low-level bugs are directly and automatically detected, the detection of

higher-level misconceptions requires other reasoning mechanisms. SCALE,

currently, employs a rule-based approach to record specific misconceptions or

concepts. For example, SCALE can recognize code corresponding to Recursion or a

Software Design pattern.
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Analysis layer

Mixed-initiative learning analytics tutoring and training environment tutors provide

a guided environment for solving a programming exercise one line of code at a time.

The embedded software agent offers instructions for each line of code. Tutoring

consists of five different types of feedback: instructions, error detection feedback,

compile-time errors, corrective actions, and solution code snippets. There are

different instances of MI-LATTE tutors for different problems. MI-LATTE tutors

support students to write a valid piece of code one line at a time. So, it is quite

natural to capture code every time the student presses the return key. Moreover, MI-

LATTE builds the code every time the student requests one of the five feedback

types. For example, a programming exercise consisting of 18 lines of code could

have generated a total of 36 builds, of which 18 are for each line of code and 18 are

for the instruction requests for each line of code. Figures 1 and 2 show the number

of errors observed in the code during the problem-solving process and the number of

lines of code written so far for each build. If the number of errors at the last build is

zero, then MI-LATTE assumes that the student has written a valid code. The

students’ requests for feedback, the contexts in which they are made, and the types

of feedback (i.e., the students’ interaction with the software agent) are all recorded

by the system. If there exists a plateau as noted in Fig. 2, MI-LATTE infers that the

student requires help with that specific line of code. These types of analysis are also

provided for each assignment problem solved from within the Eclipse IDE.

MI-DASH can be used to compare the completion percentage of a student’s

assignment problem in relation to a proposed model solution and to compare his/her

code-writing speed against the average speed. Such analytics are derived from the

analysis of the StateChange data type.

All measures can be shown in terms of characters, statements, and methods. For

example, Fig. 3 indicates that the student has written 460 characters out of the

expected 4,066 characters in the model solution. At the far left side, the red line

indicating the student’s progress should theoretically start at zero and end at the far

right somewhere near the green line.

Fig. 1 MI-LATTE tutor: number of errors per build
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The reader should note that there could be several model solutions to a problem.

Thus, the end of the red line should only be in the vicinity of the green line when the

problem is almost done.

The blue line indicates the average progress of all students. Moreover, if a group

of students starts working simultaneously on a course assignment, then the current

student could compare his/her progress in terms of the aforesaid programming

metrics against the average of the group. Hence, the student might find that he/she is

getting behind or ahead of the group.

Smart Competence Analytics in LEarning also enables students to compare their

performance in specific rubrics, such as code quality, writing speed, code

functionality, quality of test case performances, extent of documentation, and

capacity to regulate, against the average and/or top performers of the class.

Smart Competence Analytics in LEarning also unfolds the AST of the latest

version of student’s source code for every assignment problem. Students can visualize

the AST tree in MI-DASH and view his/her code associated with each node in the tree.

Fig. 2 MI-LATTE tutor: number of lines of code at each build

Fig. 3 Eclipse: character progression (candidate.java)
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Note that each node corresponds to one of the 84 Java concepts as specified by the

Eclipse JDT. Allowing students to view the AST of their code (see Fig. 4) is very

instructive in that it helps them to associate their code with concepts taught.

Smart Competence Analytics in LEarning also allows identified concepts to be

mapped on to cognitive development metrics such as the Bloom’s taxonomy.

Another fundamental metrics SCALE offers students are the identification of

potentially problematic areas in their understanding. MI-DASH guides students to

identify errors or concepts that should be corrected or reviewed. These errors or

concepts are assigned a priority in order to convey their importance in relation to

other errors. These errors are laid out in a quadtree7 with each level in the tree

showing a different degree of criticality. The weight of each error type takes into

account the frequency of the errors made across all assignment problems as well as

the time the errors remained uncorrected in every specific programming problem.

The student should be aware that the error priorities have been computed from the

full list of errors captured from a suite of programming tools from among a set of

programming exercises.

Finally, the student can view the 84 programming concepts specified by the

Eclipse JDT compiler and their frequency of use. This will provide some evidence

to instructors that the student has been exposed to or practiced or encountered errors

with certain concepts introduced in the course. This data may pinpoint some

weaknesses and/or strengths. For instance, a programming construct which has

never been used during the entire course may suggest a deficiency in student’s

learning (see Fig. 5).

Competence layer

Data stored in the Hackystat sensorbase along with SCALE analysis results are

converted into RDF/OWL ontologies. By building a huge web of ontologies and

Fig. 4 AST (Abstract Syntax Tree) viewer

7 Wikipedia, the Free Encyclopedia. ‘‘Quadtree.’’ (http://en.wikipedia.org/wiki/Quadtree).
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importing them into an ontological and rule-based reasoning engine (e.g.,

BaseVISor),8 the system may discover new patterns and trends in study habits yet

unknown to instructors. For instance, at the successful completion of a Java course,

the student’s proficiency in Java will be stored in a Java competence ontology. In

turn, the Java competence ontology could be mapped to an object-oriented ontology

which at the end could also be mapped to a C?? ontology. Therefore, we could

evaluate the readiness of a student having completed a Java course to take another

course requiring C?? background. Such metrics offer a measure of confidence to

instructors and students about the student’s probability of success.

Smart Competence Analytics in LEarning ontologizes the entire learning space

and all learning episodes of students so that instructors and students can query the

distributed ontology to infer information about learning.

A study with SCALE

A study was conducted at the Madras Institute of Technology (MIT), Anna

University, India, to analyze the introduction of trace-oriented learning technologies

among first-year university courses. The traces target the evolution of the student’s

learning experience in terms of well-defined skills and associated competencies.

The study was designed in the context of a C programming course with 767

participating students and 10 professors (one professor per classroom). Students

belonging to nine different classrooms received traditional lectures while a

randomly chosen 10th classroom received a traceable online learning environment

in Moodle in addition to classroom lectures. The e-learning technologies introduced

in the course include the Moodle learning management system, the VPL, the Eclipse

IDE sensor, and CTAT9 tutors. The CTAT tutors guide students to solve

programming exercises at a finer level of one line of code at a time.

The study content was presented to students using a quadrant-based framework

(Kumar et al. 2009; Lee et al. 2011a, b, 2010). The new design offers four tightly

related learning experiences based on the theory of experiential learning. The four

modes of learning are watching, discussing, conceptualizing, and trying out. It also

provided guidelines to the student as to how to study in addition to what to study.

The collected data were integrated in a singular framework to associate individual

datasets originating from different sensors.

Fig. 5 Concept graph
(Frequency of Use)

8 BaseVISor (www.vistology.com/basevisor/basevisor.html).
9 Cognitive Tutor Authoring Tools (http://ctat.pact.cs.cmu.edu).
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The objectives of the study include the discovery of new trends in learning

experiences and examination of the influences of these trends on students’

performance. The reader should note that the study was not a controlled experiment.

Participants of the experiment originated from 10 different classrooms.

Approximately 75 students attended each classroom, and each classroom had a

distinct professor. Classrooms were numbered from classroom0 to classroom9.

Classroom3 is the classroom of interest in this experiment. The performance of

classroom3 is compared with the average performance of all the other classrooms.

All classrooms teach the same course using the same structure. The course

consists of three assessments/assignments, one theory exam, and one practical

exam. Assessment1 consisted of theoretical questions while Assessment2 and

Assessment3 consisted of programming exercises. Hence, classroom3’s students

were not yet exposed to the VPL tool in Assessment1.

Figure 6 displays the average marks for each assessment for both classroom3 and

the rest of the classrooms. Figure 7 shows the percentages of students who passed

the assessments. Both figures show that classroom3 performed below average in the

first assessment likely because (1) classroom3 students took additional time to adapt

to the new instructional design, (2) the new instructional design is not optimal for

Fig. 6 Assessment average grade marks

Fig. 7 Assessment % pass
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theoretical aspects of the programming domain, and (3) the new instructional design

did not offer adequate support to students.

The graphs, however, show that average marks and pass percentages of

classroom3 are significantly higher than those of the other classrooms in

Assessments 2 and 3. We speculate that classroom30s students started benefitting

from the new instructional design and new e-learning technologies after

Assessment1.

As for the theory and practical exams, Fig. 8 denotes that the percentage of

students in classroom3 who have passed the theory exam is greater than the

percentage of students in other classrooms. This observation may support the

speculation that students took more time to adapt to the new instructional design but

that this design optimized the students’ learning experience at a later time.

As for the practical exam, the percentage of students in other classrooms who

passed the practical exam is marginally greater than classroom30s students pass

percentage. However, both classroom3 and the other classrooms students performed

well in the practical exam. We may, nevertheless, observe that the pass percentage

gap between the theory and practical exams is greater in the other classrooms.

Finally, in Figs. 9 and 10, we observe that fewer students in classroom3 have

grades C, D, or E, and more students in classroom3 receive grades S, A, and B. Note

that the order of GPAs from best to worst is S, A, B, C, D, and E.

All these are mere observations and suggest some trends. More experiments will

be conducted in the near future in several universities across the world to understand

the impact of SLEs on student performance.

Future work

Our vision for SCALE transcends geographical boundaries and allows students from

across the planet to be able to connect, share, and learn as a collective.

One of the key challenges in competence analytics is data integrity that ensures

the authenticity of the arriving data and the mapping of the data onto competencies.

Such mapping requires external as well as internal authentication.

Fig. 8 Exam % pass
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Data can be processed by any technique, whether it is a data mining technique or

a machine learning technique, or a big data clustering technique, or a sentiment

analysis technique. We advocate that students and instructors should be equally in

control of the choice of analyses and the corresponding techniques.

In addition to the students initiating interactions with the analytics tools, the tools

themselves could also be initiating interactions with students.

Performance indicators, by themselves, offer reflection opportunities. Compe-

tence analytics enables students and instructors to proceed further, toward regulation

opportunities.

Analytics being offered through SCALE are available without ‘‘any’’ intrusion on

the student’s course interactions. There is no controlled experiment, as such.

Instead, data are being collected in the background, with students’ explicit

permission. We plan to conduct more controlled experiments in the near future.

Competency growth in programming can be observed within a specific language

(say, Java) across multiple courses. Equally, competency growth in programming

can be observed across multiple languages (say Java and C??). Competency

growth in programming can be observed at the individual student level, or the

course level, or the departmental level, or even at the institutional level.

Fig. 10 Practical exam % GPA

Fig. 9 Theory exam % GPA
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Key inferences about intervention opportunities could be made available to

instructors. These opportunities arise out of competence analytics with substanti-

ating evidence. Intervention opportunities could be tuned toward learning efficiency

of individual students and groups of students.

The development of a comprehensive coding traces platform, SCALE, reporting

on the efficiency of coding and effectiveness of coding instruction is a key

contribution of this research. It not only reports on learner habits but also relates

instructor habits. The traces platform is quite conducive to the development of

software agent-oriented guidance that can monitor the data sources on a student-by-

student basis, to identify successful patterns of learning, based on a student’s

interaction with the digital learning environment, and suggest corrective actions,

materials, and behaviors that might improve performance, based on the past results

of similar student behaviors.

The underlying datasets approach the quantities expected in the context of big

data analytics. The platform that we have developed supports the inclusion of

Hadoop10-based analytics that can handle large volumes of data.

Coding efficiency encompasses aspects of coding style, metacognitive scaffolds,

peer interactions, and interactions with instructors, among others. Instruction on

effective coding encompasses aspects of intervention, guidance, content material,

sensitivity to learner capacity, and timeliness of feedback, among others. Datasets

corresponding to each of these aspects can be observed, and relations among these

datasets can be established using the platform.

We envision creating a customized 3D environment displaying the scope of the

learning space of an individual, classroom, or the institution. Every learning space

could report learning metrics corresponding to that space.

Furthermore, we plan to build a distributed NoSQL sensorbase using Hadoop, an

object-oriented database such as HBase, and a document-oriented database such as

MongoDB. Hadoop will enable us to distribute data processing and data querying

across all datasets collected by the SCALE network and to discover new patterns by

creating a highly distributed dataset instead of analyzing each data subset individually.

Smart Competence Analytics in LEarning will also incorporate a causal learning

analytics (CLEAN) extension to determine the causes of various learning-related

occurrences.

Smart Competence Analytics in LEarning will track the type and sequence of

programming activities (debugging, building, testing, documenting, code writing,

etc.) typical for every student category (at risk, average, and top students).

Smart Competence Analytics in LEarning will also look for the learning

approaches and behaviors which are the most effective as well as the conceptual

causes of students’ errors.

The CLEAN extension will be implemented as a rule-based subsystem using

pattern-matching techniques (e.g., production rules). In summary, SCALE aims at

tracking a student’s competences in as many learning activities as possible and at

explaining the factors contributing to the strengthening of those competences.

10 Apache Hadoop (http://hadoop.apache.org).
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Conclusion

This article describes SCALE, a framework for competence-based learning

analytics. The framework can be embedded in a smart learning environment to

offer guidance, feedback, and regulation opportunities to students based on

observed study activities. The framework has been implemented in the domain of

Java programming, and a study was conducted at a partner university in India. The

results are quite encouraging, and student satisfaction with competence analytics is

found to be high. The potential of having a global implementation of the framework

that seamless connects students studying similar courses or concepts has been

highlighted.
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