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Abstract

The q-color Ramsey number of a k-uniform hypergraph G, denoted r(G; q), is the
minimum integer N such that any coloring of the edges of the complete k-uniform
hypergraph on N vertices contains a monochromatic copy of G. The study of these
numbers is one of the most central topics in combinatorics. One natural question,
which for triangles goes back to the work of Schur in 1916, is to determine the behavior
of r(G; q) for fixed G and q tending to infinity. In this paper, we study this problem for
3-uniform hypergraphs and determine the tower height of r(G; q) as a function of q.
More precisely, given a hypergraph G, we determine when r(G; q) behaves
polynomially, exponentially or double exponentially in q. This answers a question of
Axenovich, Gyárfás, Liu and Mubayi.

1 Introduction
Given k-uniform hypergraphs, or k-graphs, G1, . . . , Gq, let r(G1, . . . , Gq) denote their
Ramsey number, which is the minimum positive integer N such that in every coloring of
the edges of the complete k-graph K (k)

N on N vertices with color set [q] = {1, . . . , q} there
is a color i for which there is a monochromatic copy of Gi in color i. When G1 = · · · =
Gq = G,we write r(G; q), and whenG = K (k)

n ,we sometimes write rk (n; q). The existence
of these numbers was famously proved by Ramsey [19] in 1930. Since then, obtaining good
bounds on rk (G; q) for various (hyper)graphsG has been among themost significant areas
of study in discretemathematics. One of the central problems in this area is to obtain good
bounds on the so-called diagonal graph Ramsey number, r2(n; 2), for which the current
best bounds are

√
2n < r(n; 2) ≤ (4 − ε)n, where the lower bound is due to Erdős [9] and

the upper bound is a recent breakthrough of Campos, Griffiths, Morris and Sahasrabudhe
[5]. For a survey on graph Ramsey numbers, we refer the reader to [7].
Another classical direction in Ramsey theory is given a fixed graph G, to determine the

behavior of r(G; q) as the number of colors, q, tends to infinity. In the case when G is a
triangle, the study of this problem goes back to the work of Schur in 1916, who proved a
Ramsey-type result for sum-free sets (see [18]). For general G, this problem exhibits the
following dichotomy. IfG is bipartite, then r(G; q) = O(qC ) for some constant C = C(G).
Indeed, this follows from the famous theorem of Kövári, Sós and Turán [15] stating that
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for bipartite G, there is a constant ε = ε(G) > 0 such that for large enough n, any graph
on n vertices with at least n2−ε edges contains a copy of G. On the other hand, if G is
not bipartite, then we have r(G; q) > 2q. This follows by considering the q-edge-coloring
of the complete graph on the vertex set {0, 1}q where a pair of vertices is colored by the
index of the first coordinate in which their binary representations differ. In this coloring,
every color class is a bipartite graph, so there is no monochromatic copy of G. Day and
Johnson [8] have improved this lower bound by showing that for any non-bipartite graph
G, there is a positive ε > 0 such that r(G; q) > (2 + ε)q. Regarding upper bounds, a
simple extension of the neighbor chasing argument of Erdős and Szekeres [12] yields
r(Kn; q) < qnq. Hence, for fixed non-bipartite G, we have (2 + ε)q ≤ r(G; q) ≤ 2O(q log q).
Determining whether these numbers should be exponential or not is a very old and major
open problem even for the simplest case when G = K3 for which Erdős offered a prize of
$250 [6]. This problem has an interesting connection to the celebrated Shannon capacity
in information theory. Namely, the maximum possible Shannon capacity of a graph with
independence number t is equal to limq→∞ r(Kt+1; q)1/q (see, e.g., [2]).
Although already for graph Ramsey numbers there are significant gaps between the

lower and upper bounds, our knowledge of hypergraph Ramsey numbers is even weaker.
In the clique case, Erdős and Rado [11] showed that for some constant c = c(q, k), the
Ramsey numbers satisfy rk (n; q) ≤ twk (cn), where twk (x) denotes the tower function
defined as tw1(x) = x and twk (x) = 2twk−1(x) for k ≥ 2. On the other hand, an ingenious
construction of Erdős and Hajnal (see, e.g., [14]), known as the stepping-up lemma, allows
one to obtain a lower bound for hypergraphs of uniformity k + 1 from lower bounds
for uniformity k, essentially gaining an extra exponential at every step. However, this
construction only works if the number of colors, q, is at least 4 or the uniformity, k , is at
least 3. Therefore, we have rk (n; 4) = twk (�(n)) and the order of magnitude of rk (n; 2)
depends on the behavior of 3-uniform case. The question whether r3(n; 2) grows doubly
exponentially remains one of the most intriguing open problems. We refer the reader to
the surveys [7,17] for more details about hypergraph Ramsey problems.
The focus of thiswork is to determine the growth rate of r(G; q) for fixedG and q tending

to infinity. This is a natural variant of Erdős’ question (mentioned above) for hypergraphs.
We say that a function f (q) grows as a tower of height h if twh(�(qc)) ≤ f (q) ≤ twh(O(qC ))
for some constants c, C > 0.We study the following problem.

Problem 1.1 Given a fixed k-uniform hypergraphG, determine the integer h (if it exists)
such that r(G; q) grows as a tower of height h as q tends to infinity.

Clearly, not every function grows as a tower of some height, but it might be natural to
guess that this is the case for r(G; q) for any fixed k-uniform hypergraph G. As discussed
above, in the graph case we have that r(G; q) grows as a tower of height 1 if G is bipartite
(and has at least two edges), whereas otherwise it grows as a tower of height 2. The 3-
uniform case was first studied almost 50 years ago by Abbott andWilliams [1] who, using
a modification of the stepping-up construction, showed that r(K (3)

4 ; q) grows as a tower
of height 3. The 3-uniform case has been revisited in more depth recently by Axenovich,
Gyárfás, Liu and Mubayi [4]. They observed that r(G; q) is at most polynomial, i.e., grows
as a tower of height 1 in q if and only ifG is tripartite, and they determined several classes
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of 3-graphs for which r(G; q) grows as a tower of height 2. Furthermore, they ask the
following question.

Problem 1.2 ([4]) For which 3-uniform hypergraphs G, is r(G; q) double exponential?
Are there other jumps that the Ramsey function exhibits?

We resolveProblem1.1 in the case k = 3 and answer thequestionofAxenovich,Gyárfás,
Liu andMubayi in following strong sense.We show that for every non-tripartite 3-uniform
hypergraph G, either 2�(q) < r(G; q) < 2qC for some C = C(G) or 22q/2

< R(G; q) and
characterize which 3-graphs have which behavior.
To state our main result formally, we first require a definition.

Definition 1.3 Let G be a 3-graph. A set U ⊆ V (G) with 2 ≤ |U | < |V (G)| is called
collapsible if no edge ofG intersectsU in exactly two vertices. Let v∗ denote a new vertex
and let H be the 3-graph with vertex set (V (G) \ U ) ∪ {v∗} and edge set E(H ) = {e ∈
E(G) | e ∩ U = ∅} ∪ {xyv∗ | ∃u ∈ U, xyu ∈ E(G)}. We say that H is obtained from G by
collapsing U and that G is reducible to the pair (H,G[U ]) by collapsing U .

We define a nested sequence of sets of 3-graphs U0 ⊆ U1 ⊆ . . . as follows. First, U0
consists of all tripartite 3-graphs. The set U1 contains the 3-graphs for which there is a
subset of vertices intersecting every edge in exactly one vertex (note that U1 ⊇ U0). For
i > 1, Ui is the maximal set containing Ui−1 and any hypergraph which is reducible to
some (H, F ) withH ∈ Ui−1, F ∈ Ui.Note that ifG is reducible to (H, F ), then by definition,
v(H ), v(F ) < v(G), implying that the sets Ui are indeed well defined. Let U := ⋃

i≥0 Ui.
We are ready to state our main result determining the behavior of r(G; q) for any fixed

3-graph G.

Theorem 1.4 Let G be a fixed 3-uniform hypergraph with at least two edges.

a) If G ∈ U0 (i.e., G is tripartite), then r(G; q) = q�(1).
b) If G ∈ U \ U0, then 2�(q) ≤ r(G; q) ≤ 2qO(1) . More precisely, if G ∈ U�, then r(G; q) ≤

2O(q� log q).
c) If G /∈ U , then 22q/2 ≤ r(G; q) ≤ 22O(q log q) .

Our characterizationmight seem a bit unwieldy at first, but it turns out to be convenient
to work with. For example, using it we can show that most Steiner triple systems have
double-exponential multicolor Ramsey numbers, but there are Steiner triple systems for
which it is exponential.
The rest of the paper is structured as follows. In the remainder of the introduction, we

give some examples which might help understand the definition of the sets Ui.We prove
Theorem 1.4 in Sect. 2 which is split into three subsections. In the first subsection, we
prove the upper bounds, starting with a sketch of the main ideas, in the second we prove
the lower bounds, and in the third we tie all the bounds together. In Sect. 3, we provide
examples of 3-graphs exhibiting different behaviors of the multicolor Ramsey number.
We finish with some concluding remarks in Sect. 4.
We use standard notation throughout the paper. As it appears frequently in our proofs,

we denote by Star(3)(h) the 3-graph on h vertices with the edges being all triples containing
a fixed vertex.
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Fig. 1 Construction of Gi+1

1.1 About the setsUi

In this subsection, we briefly discuss the setsUi just defined. Observe first that for all i ≥ 0,
the set Ui is closed under taking subgraphs. The rest of the content of this subsection is
not needed for any of our proofs, but it should help clarify the definitions and facilitate
understanding the rest of the paper.
First let us show that Ui \Ui−1 �= ∅ for all i ≥ 1. It is easy to see that Star(3)(4) ∈ U1 \U0.

Now, let i ≥ 1 and suppose there is some Gi ∈ Ui \ Ui−1. We define Gi+1 as follows. The
vertex set ofGi+1 is {x} ·∪A ·∪B where |A| = |B| = |V (Gi)|. Inside each of A and B place a
copy of Gi and additionally let Gi+1 contain all 3-edges of the form {x, a, b}, a ∈ A, b ∈ B.
See Figure 1 for an illustration. First, let us show that Gi+1 ∈ Ui+1. Indeed, by collapsing
A, Gi+1 is reducible to (H,Gi), where we shall describe H shortly. Since Gi ∈ Ui, to show
that Gi+1 ∈ Ui+1, it suffices to show that H ∈ Ui as well. Indeed, V (H ) = {x, a} ∪ B
where a represents the collapsed set A. Note that H [B] ∼= Gi and the remaining edges of
H are of the form {x, a, b} with b ∈ B. Hence, the set B is collapsible in H , and thus, H is
reducible to (e, Gi), where e denotes the 3-graph consisting of a single edge. Since e ∈ U0
and Gi ∈ Ui, it follows that H ∈ Ui, as claimed.
Now, we show that Gi+1 /∈ Ui. We claim that any collapsible set in Gi+1 intersects

at most one of A, B. Indeed, suppose that U is collapsible in Gi+1 and contains a vertex
a ∈ A and a vertex b ∈ B. Since {x, a, b} ∈ E(Gi+1), we must have x ∈ U. However,
since {x, a, b′} ∈ E(Gi+1) for any b′ ∈ B, it follows that B ⊆ U and analogously A ⊆ U,
so U = V (Gi+1), a contradiction. Now, suppose that Gi+1 is reducible to (H,G[U ]) by
collapsing some set U. Without loss of generality, U ∩ B = ∅, so Gi ∼= Gi+1[B] ⊆ H,
implying that H ∈ Ui. As U was arbitrary, we have that Gi+1 /∈ Ui.
On the other hand, for example, the clique K (3)

4 is not in U . Indeed, it has no collapsible
set and no set of vertices such that each edge contains precisely one vertex from this set.
A slightly more complicated example is the 3-graph G depicted in Figure 2. Formally,
we have V (G) = {a, b, c, d, e} and E(G) = {acd, bcd, ace, bde, cde}. It can be checked that
G /∈ U1 and that {a, b} is the only collapsible set in G. However, the 3-graph obtained by
collapsing {a, b} is isomorphic to K (3)

4 , so G /∈ U .
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Fig. 2 A 3-graph not in U

2 Proof of Theorem 1.4
2.1 Upper bounds

Proof sketch
This aim of this subsection is to prove the single-exponential upper bound in The-

orem 1.4 b). Before presenting the proof formally, we illustrate our ideas on a simple
example where G is the Fano plane, that is, the unique 3-graph on 7 vertices with 7 edges
which all pairwise intersect in exactly one vertex.
Let U ⊆ V (G) denote the vertex set of an arbitrary edge in G. Note that by the above-

mentioned properties of the Fano plane, every edge intersects U in either one or three
vertices. Therefore, U is collapsible and G is reducible to the pair (H, F ) where H =
Star(3)(5), i.e., a 4-clique in the link of a vertex, and F is a single edge. Trivially, F,H ∈ U1
which shows that G ∈ U2. Though not required for the upper bound, it is easy to see that
G /∈ U1.
Suppose we are given a q-colored complete 3-graph � on N vertices, where N is of the

form 2O(q2 log q), and we wish to show that there exists a monochromatic copy of G. By
considering all triples through a fixed vertex, it is easy to see that r(H ; q) ≤ 1+r(K (2)

4 ; q) ≤
q4q using the classical bound of Erdős and Szekeres. Let R = r(H ; q). By definition, every
set of R vertices contains a monochromatic copy of H ; hence, in � there are at least
(N
R
)
/
(N−5
R−5

) ≥ N 5

R5 monochromatic copies of H . By the pigeonhole principle, there is a set
S ⊆ V (�), |S| = 4, and a color, say red, such that there are at least N/(qR5) red copies
of H = Star(3)(5) with the set S playing the role of the 4-clique. Let V ′ denote the set of
vertices playing the role of the center of the star in these copies, so |V ′| ≥ N/(qR5).
Crucially, observe that if there is a red edge inside the set V ′, then these three vertices

along with the set S contain a monochromatic copy of G that we aim to find. Therefore,
V ′ is colored by q − 1 colors. Iterating this argument inside V ′, we see that it suffices to
take N ≥ 3(qR5)q = 2O(q2 log q), as claimed.
For general G, the argument is a little more complicated. Suppose that G ∈ U� and it

is reducible to (H, F ) for some H ∈ U�−1, F ∈ U� and let U ⊆ V (G) be the collapsible
set witnessing this. By a supersaturation argument analogous to the one above, we find
a large set V ′ ⊆ V (�) of vertices that can play the role of v∗ ∈ V (H ) with the same set
S in the same color, say red. Then, however, inside the set V ′, we obtain that there is no
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red copy of F. In the case where G is the Fano plane, F is a single edge, which makes the
argument simpler since we only need to ensure that |V ′| ≥ r(G; q − 1). In general, we
shall require that |V ′| is at least the off-diagonal Ramsey number r(F, G,G, . . . , G), where
G appears q − 1 times.
We proceedwith the formal proof.We start with the supersaturation argument outlined

above, which allows us to reduce the target hypergraph in one of the colors.

Lemma 2.1 Let G1, . . . , Gq be given 3-graphs. For i ∈ [q], let (Hi, Fi) be an arbitrary pair
to whichGi is reducible and if no such pair exists, let Hi = Gi. Denoting h = maxi∈[q] v(Hi),
we have

r(G1, . . . , Gq) ≤ r(H1, . . . , Hq)h · q ·
max

{{1} ∪ {r(G1, . . . , Gi−1, Fi, Gi+1, . . . , Gq) |Gi is reducible}
}
.

Proof For convenience, to each graphHi we add isolated vertices so that it has h vertices
which clearly does not change the value of r(H1, . . . , Hq). Denote R:=r(H1, . . . , Hq) and
N = r(H1, . . . , Hq)h · q · max

{{1} ∪ {r(G1, . . . , Gi−1, Fi, Gi+1, . . . , Gq) |Gi is reducible}
}

and consider an arbitrary q-coloring of K (3)
N . Let � denote this q-colored 3-graph.

By definition, any set of R vertices of � contains a copy of Hi in color i for some i ∈ [q].
Any such copy is contained in

(N−h
R−h

)
sets of R vertices, so in total there are at least

(
N
R

)
/
(
N − h
R − h

)

≥ Nh

Rh

distinct h-sets of V (�) each of which is a monochromatic copy of Hi in color i for some
i ∈ [q]. For such a copy, let v∗, v1, . . . , vh−1 denote its verticeswith v∗ playing the role of the
special vertex as in Definition 1.3 or an arbitrary vertex ofHi ifHi = Gi. By the pigeonhole
principle, there is a color c ∈ [q] and an (h − 1)-tuple of vertices S = (w1, . . . , wh−1) for
which there are at least

Nh

Rh /(qNh−1) = N
qRh

copies ofHc in color c with w1, . . . , wh−1, in this order, playing the role of all vertices in of
Hi except v∗. IfHc = Gc,we are done. Otherwise, let V ′ ⊆ V (�) denote the set of vertices
playing the role of v∗ in these copies, so |V ′| ≥ N

qRh .
Crucially, we claim that if there is a copy of Fc in color c inside �[V ′], this yields the

desired copy of Gc in color c in �. Indeed, suppose there is such a copy in V ′ and let
T ⊆ V ′ denote its vertex set. Let Uc ⊆ V (Gc) be the collapsible set such that Gc is
reducible to (Hc, Fc) by collapsing Uc and let V (Gc) \ Uc = {x1, . . . , xm}. So by definition,
V (Hc) = {v∗, x1, . . . , xm}.Without loss of generality, we have for any v ∈ V ′, the vertices
{v, w1, . . . , wm} form a copy ofHc where v is mapped to v∗ andwi is mapped to xi for every
i ∈ [m].
Then, T ∪ {w1, . . . , wm} forms a red copy ofGc with T being mapped toU and wi being

mapped to xi for i ∈ [m]. To see this, note first that by assumption, T contains a red copy
of Fc = Gc[U ]. Furthermore, any edge e = xixjxk ∈ E(Gc) disjoint from Uc is contained
in Hc, and since the vertices v, w1, . . . , wm, for an arbitrary v ∈ V ′, form a red copy of Hc,
it follows that the edge wiwjwk is red in � as needed. Finally, by definition of a collapsible
set, any other edge e ∈ E(Gc) intersects Uc in exactly one vertex. Consider such an edge
e = uxixj with u ∈ Uc. Then, we have v∗xixj ∈ E(Hc). Recall that u ∈ V (Fc) so in the
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assumed red copy of Fc, it is mapped to some vertex v ∈ T ⊆ V ′. Since v ∈ V ′, the vertices
v, w1, . . . , wm form a red copy of Hc with v mapped to v∗ and wi mapped to xi for i ∈ [m].
In particular, this implies that the edge vwiwj is red in �, as required.
By our choice of N, we have |V ′| ≥ r(G1, . . . , Gc−1, Fc, Gc+1, . . .Gq) so on V ′ we either

find a copy of Gi in color i for i ∈ [q] \ {c} or a copy of Fc in color c, thus finishing the
proof. ��
To prove the upper bound in Part b) of Theorem 1.4, we use the preceding lemma and

apply induction.

Lemma 2.2 Let � ≥ 1 and let G1, . . . , Gq ∈ U� be 3-graphs each on at most h vertices and
denote t = ∑q

i=1 v(Gi). Then,

r(G1, . . . , Gq) ≤ (qh)q
�−1·h2�t .

Proof We prove the lemma by induction on �, h, t.We assume h ≥ 3; otherwise, there is
nothing to prove. Consider first � = 1 and recall that by definition, each of the graphs Gi
has a subset of vertices Ui intersecting every edge in precisely one vertex. For every i for
which |Ui| > 1, let (Hi, Fi) denote the resulting pair of graphs obtained by collapsing Ui.
Note thatFi is the empty graph on |Ui| vertices andHi is a subgraph of Star(3)(v(Gi)−|Ui|+
1). If |Ui| = 1, then let Hi = Gi which is again a subset of a star Star(3)(v(Gi) − |Ui| + 1).
Consider a q-colored 3-uniform clique. In order to find a copy of Star(3)(si) in color i for
some i, we can fix an arbitrary vertex v and then in its link find a graph clique of size si
in color i. Thus, we can use a classical result in graph Ramsey theory, r2(n1, . . . , nq) <

q
∑q

i=1 ni , to obtain that r(H1, . . . , Hq) ≤ q
∑q

i=1 v(Gi)−|Ui|+1. Note that if |Ui| > 1, then
r(G1, . . . , Gi−1, Fi, Gi+1, Gr) ≤ v(Fi) ≤ h since Fi has no edges. Applying Lemma 2.1, we
obtain

r(G1, . . . , Gq) ≤ (q
∑q

i=1 v(Gi)−|Ui|+1)h · q · h ≤ qht+1h ≤ (qh)h
2t ,

where in the last inequality we used h ≥ 3.
Now, let � > 1 and assume we have proved the statement for all sequences of graphs

in U�−1 as well as all sequences of graphs in U� each on at most h vertices with in total at
most t − 1 vertices. Clearly, we may assume that G1 ∈ U� \ U�−1. For each i ∈ [q] such
that Gi is reducible, let (Hi, Fi) be a pair with Hi ∈ U�−1, Fi ∈ U� to which Gi is reducible
and recall that v(Hi), v(Fi) < v(Gi). For each i such that Gi is not reducible, let Hi = Gi.
Applying Lemma 2.1 and the induction hypothesis, we have

r(G1, . . . , Gq) ≤ r(H1, . . . , Hq)h · q·
max

{{1} ∪ {r(G1, . . . , Gi−1, Fi, Gi+1, . . . , Gq) |Gi is reducible}
}

≤
(
(qh)q

�−2h2�−2(t−1)
)h · q · (qh)q�−1h2�(t−1)

≤ (qh)q
�−1h2�·( t−1

qh + 1
qh+t−1) ≤ (qh)q

�−1h2�·t ,

where in the last inequality we used that t ≤ qh. ��
Applying Lemma 2.2 with G1 = · · · = Gq = G, we obtain the upper bound claimed in

Theorem 1.4, Part b).

Corollary 2.3 If G ∈ U�, then r(G; q) ≤ 2O(q� log q).
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Fig. 3 It is convenient to think about the function δ in the following way. The value of δ(x, y) is given by the
highest line between x and y on the picture. So, for example, δ(0, 1) = δ(6, 7) = 0,
δ(0, 3) = δ(5, 6) = 1, δ(3, 4) = δ(2, 7) = 2.

2.2 Lower bounds

Definition 2.4 LetG be a 3-uniform hypergraph. Suppose there is a partition of its vertex
setV (G) = V1 ·∪V2 . . . ·∪Vt with |V1|, t ≥ 2 such that for any edge e ∈ E(G), and any i ∈ [t],
we have |e ∩ Vi| �= 2. For i ∈ [t], let Fi:=G[Vi] and let H be the 3-uniform hypergraph
obtained by collapsing each of the sets Vi into a single vertex. Formally, V (H ) = [t] and
E(H ) = {xyz | ∃e ∈ E(G), |e ∩ Vx| = |e ∩ Vy| = |e ∩ Vz| = 1}. We say that G can be
decomposed into (H ; F1, . . . , Ft ).

In ourproofs of the lowerbounds,Definition2.4will play a similar role thatDefinition1.3
played in the proofs of the upper bounds. By taking V1 = U and |V2| = · · · = |Vt | =
1, informally speaking, we recover the definition of reducibility. On the other hand, a
reduction with t parts can, in some sense, be viewed as a sequence of at most t simple
reductions. Formally, we have the following lemma.

Lemma 2.5 If G can be decomposed into (H ; F1, . . . , Ft ), where H, F1, . . . , Ft ∈ U , then
G ∈ U .

Proof LetV (G) = V1 ·∪ . . . ·∪Vt be the partition exhibiting thatG can be decomposed into
(H ; F1, . . . , Ft ). Without loss of generality, assume that |Vi| ≥ 2 for i ∈ [s] and |Vi| = 1
for s + 1 ≤ i ≤ t. Denote G0 = G and for i = 1, . . . , s, let Gi be obtained from Gi−1
by collapsing Vi. Note that these collapses are valid since a set Vi remains collapsible
after collapsing a disjoint set Vj, j < i. The final graph Gs is isomorphic to H , hence
Gs ∈ U . By definition, for each 0 ≤ i ≤ s − 1, Gi is reducible to (Gi+1, G[Vi+1]), where
G[Vi+1] = Fi+1 ∈ U . Hence, by reverse induction, it follows that Gs−1, . . . , G0 = G are
also in U , as claimed. ��
Our lower bound constructions are based on the stepping-up approach of Erdős and

Hajnal. First, we recall an important function used in this construction. For a nonnegative
integer x, let x = ∑∞

i=0 ai2i be its unique binary representation (where ai = 0 for all
but finitely many i). We denote bit(x, i):=ai. Then, for distinct x, y ∈ Z≥0, we define
δ(x, y):=max{i ∈ Z≥0 | bit(x, i) �= bit(y, i)}. See Figure 3 for an illustration.
The following properties of this function are well known and easy to verify.

P1) x < y ⇐⇒ bit(x, δ(x, y)) < bit(y, δ(x, y)).
P2) For any x < y < z, δ(x, y) �= δ(y, z).
P3) For any x1 < x2 < · · · < xk , δ(x1, xk ) = max1≤i≤k−1 δ(xi, xi+1).
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For every even q, we define a q-coloring φq of a complete 3-uniform hypergraph on the
vertex set {0, . . . , Nq − 1}, where Nq :=22q/2 . For 0 ≤ x < y < z < Nq, let

φq(x, y, z):= (δ(δ(x, y), δ(y, z)),1{δ(x, y) > δ(y, z)}) .
For example, δ(1, 4) = 2, δ(4, 6) = 1 and δ(2, 1) = 1, so φq(1, 4, 6) = (1, 1).
By P2), we have δ(x, y) �= δ(y, z) so φq is well defined. Additionally, note that

δ(x, y), δ(y, z) < 2q/2, implying 0 ≤ δ(δ(x, y), δ(y, z)) ≤ q/2 − 1, so φq indeed uses at
most q colors.
We are ready to prove our double-exponential lower bound.

Lemma 2.6 For any even q, if φq contains a monochromatic copy of a 3-graph G, then
G ∈ U .

Proof We prove the lemma using induction on |V (G)|. For |V (G)| < 3, there is nothing
to prove.
Now, consider a 3-uniform hypergraphG such that there is a monochromatic copy ofG

in φ = φq. Suppose the statement holds for all 3-uniform hypergraphs with fewer vertices.
Denote N = Nq = 22q/2 . Suppose the color of this monochromatic copy is (t, s), where
t ∈ {0, . . . , q/2 − 1} and s ∈ {0, 1}. Let the vertices of G be {1, . . . , h} and without loss of
generality, suppose that in the monochromatic copy vertex i is embedded into xi where
0 ≤ x1 < x2 < · · · < xh < N.
If s = 1, for i ∈ [h], define x′

i = N − 1 − xi, i.e., x′
i is obtained by complementing

the binary representation of xi. Then, we have 0 ≤ x′
h < x′

h−1 < · · · < x1 < N and
δ(x′

i, x
′
j) = δ(xi, xj) for any 1 ≤ i < j ≤ h. It follows that the set {x′

h, . . . , x
′
1} forms a

monochromatic copy of G in color (t, 0). Therefore, we may assume that s = 0.
For 1 ≤ i < h, let δi:=δ(xi, xi+1). Observe that by Property P3), we have

∀u, v, 1 ≤ u < v ≤ h, δ(xu, xv) = max
u≤i<v

δi. (1)

Let m be the largest nonnegative integer such that bit(δi, m) for i ∈ [h − 1] are not all
equal. Since δ1 �= δ2, m is well defined. By Property P3), this choice ofm implies

∀1 ≤ u < v ≤ h, bit(δ(xu, xv), m) = 1 ⇐⇒ ∃i, u ≤ i < v, bit(δi, m) = 1. (2)

Suppose first thatm = t. Then,

∀u, v, w, u < v < w, uvw ∈ E(G) =⇒ bit(δ(xu, xv), m) = 0 and bit(δ(xv, xw), m) = 1.

(3)

Indeed, this is true because for an edge uvw, we have φ(xuxvxw) = (m, 0).
Now, let i be the minimal index such that bit(δi, m) = 1. Suppose that i = h − 1. Then,

by (1), for any 1 ≤ u < v ≤ h − 1, we have bit(δ(xu, xv), m) = bit(maxu≤i<v δi, m) = 0.
By (3), it follows that every edge ofG contains the last vertex h, implying thatG ∈ U1 ⊆ U .
Hence, we may assume that i < h − 1. Then, in G there can be no edge uvw with u ≤ i

and v, w ≥ i + 1, as then bit(δ(xu, xv), m) = 1 by (2), contradicting (3). Therefore, we can
collapse the set {i+1, . . . , h},which has at least two vertices by our assumption, to obtain a
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new 3-uniform hypergraphH on the vertex set {1, 2, . . . , i, v∗}. Let us show that the vertex
set {x1, . . . , xi+1} forms a monochromatic copy of H in color (t, 0) with j being embedded
into xj for j ∈ [i] and v∗ embedded into xi+1. Indeed, {x1, . . . , xi} is a copy of H [{1, . . . , i}]
in color (t, 0) because {x1, . . . , xh} is a copy ofG in color (t, 0). Furthermore, for every edge
{j, k, v∗} ∈ E(H ), we have bit(δ(xj, xk ), t) = 0 and bit(δ(xk , xi+1), t) = 1 by our choice of i
and using Property P3) so φ(xjxkxi+1) = (t, 0). In φ, there clearly exists a monochromatic
copy of the induced subgraph G[{vi+1, . . . , vh}] so both H and G[{vi+1, . . . , vh}] are in U
by the induction hypothesis. It follows that G ∈ U , as needed.
Finally, suppose thatm �= t. Ifm < t, then by (1), no edge is colored (t, 0), so we assume

m > t. Let 1 ≤ i1 < · · · < ip < h denote all indices i for which bit(δi, m) = 1 and note
that 2 ≤ p+1 ≤ h. Let I1, . . . , Ip+1 denote the intervals between consecutive i′js. Formally,
let I1 = {1, . . . , i1}, for 2 ≤ j ≤ p, let Ij = {ij−1 + 1, . . . , ij} and let Ip+1 = {ip + 1, . . . , h}.
Suppose that there is an edge e = uvw ∈ E(G) with 1 ≤ u < v < w ≤ h and j ∈ [p + 1]

such that |e∩ Ij| = 2. Since Ij is an interval, we have either e∩ Ij = {u, v} or e∩ Ij = {v, w}.
In the former case, by the definition of Ij , using (2), we have bit(δ(xu, xv), m) = 0 and
bit(δ(xv, xw), m) = 1, which implies φ(e) = (m, 0). Completely analogously, in the latter
case we obtain φ(e) = (m, 1). Both cases contradict our assumptions, so we conclude that
for any e ∈ E(G) and j ∈ [p + 1], it holds that |e ∩ Ij| �= 2.
For j ∈ [p + 1], denote Fj = G[Ij]. Furthermore, let H be the hypergraph on the vertex

set {1, . . . , p+1}with edges {uvw | ∃e ∈ G, |e∩ Iu| = |e∩ Iv| = |e∩ Iw| = 1}. By definition,
the hypergraphs H, F1, . . . , Fp+1 have fewer vertices than H. Hence, G is decomposable
into (H ; F1, . . . , Fp+1). By the induction hypothesis, F1, . . . , Fp+1 ∈ U since the vertices
{xu |u ∈ Ij} form a copy of Fj in color (t, 0) by assumption. For j ∈ [p + 1], let yj = xmin Ij .
Next we show that {y1, . . . , yp+1} contains a monochromatic copy of H in color (t, 0).
Indeed, consider the embedding which maps i ∈ V (H ) = [p + 1] into yi. Consider an
arbitrary edge uvw ∈ E(H ) with 1 ≤ u < v < w ≤ p + 1. Recall that by definition there is
a corresponding edge abc ∈ E(G) with a ∈ Iu, b ∈ Iv, c ∈ Iw. By (1) and the definition of
i1, . . . , ip, we have

δ(yu, yv) = δ(xmin Iu , xmin Iv ) = max
min Iu≤j<min Iv

δj = max
u≤�<v

δi� = δ(xa, xb),

and analogously δ(yvyw) = δ(xb, xc). Hence, φ(yuyvyw) = φ(xaxbxc) = (t, 0). Thus, the
claimed embedding is indeed monochromatic so, by the induction hypothesis, we have
H ∈ U , which, using Lemma 2.5 implies that G ∈ U as well. ��
Anexponential lower bound for non-tripartite 3-uniformhypergraphswas proved in [4],

but we include a proof for the sake of completeness.

Lemma 2.7 If G is a non-tripartite 3-uniform hypergraph, then r(G; q) = 2�(q).

Proof Let N = 22q/27 and consider q random copies of the complete balanced tripartite
3-uniform hypergraph, which has at least 2

9
(N
3
)
edges, and define φ to be the coloring

where each triple of K (3)
N is colored by the index of the first copy in which it appears. Since

each color induces a tripartite graph, there is no copy of G. It remains to show that with
positive probability all edges are colored. Indeed, by a union bound, the probability that
not all edges are colored is at most

(
N
3

)

(1 − 2/9)q < N 3e−2q/9 < 1,

as needed. ��
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2.3 Putting it together

Proof of Theorem 1.4 The lower bound in Part a) is obtained by coloring edges of a com-
plete 3-uniform hypergraph on�(q1/3) vertices into distinct colors. For the upper bound,
if G is tripartite, by a well-known result of Erdős [10], there is an ε > 0 such that for large
enough N , any 3-uniform hypergraph on N vertices with at least N 3−ε edges contains a
copy of G. Hence, if we are given a q-colored complete graph on N = (10q)1/ε vertices,
one of the colors will have at least

(N
3
)
/q > N 3−ε edges and thus contains a copy of G.

The lower bound in Part b) is given by Lemma 2.7 and the upper bound in Corollary 2.3.
Finally, the lower bound in Part c) is given by Lemma 2.6, while the upper bound follows

from the upper bound for cliques proved by Erdős and Rado [11]. ��
Remark IfG is tripartite and has at least two edges, its multicolor Ramsey number r(G; q)
is given by its extremal (or Turán) number ex(N,G) up to a logarithmic factor in the
number of colors. Indeed, every color class in the Ramsey coloring has at most ex(N,G)
edges, which implies that q ≥ �(N 3/ex(N,G)). On the other hand, by taking q = O(logN ·
N 3/ex(N,G)) randomcopies of an extremal 3-uniformhypergraphonN vertices andusing
similar computations as in Lemma 2.7, one can obtain a coloring with nomonochromatic
copy of G.

3 Examples
Recall that for non-tripartite G ∈ U , we have the lower bound r(G; q) ≥ 2�(q) given by
Lemma 2.7 while the upper bound is of the form 2O(q� log q) for some � ≥ 1.UnlessG ∈ U1,
these bounds are far apart. However, in certain cases we can refine the lower bound. We
start with a definition.

Definition 3.1 We say that a 3-uniform hypergraph G is forward colorable if there is a
vertex partition V1 ·∪ . . . ·∪ Vt = V (G) such that for any edge e ∈ E(G), there are i < j for
which |e ∩ Vi| = 1 and |e ∩ Vj| = 2.

Observe thatU2 contains all forward colorable 3-uniform hypergraphs. Indeed, suppose
G is forward colorable with a vertex partitionV1 ·∪ . . . ·∪Vt as defined above. If t = 2, every
edge of G touches V1 in exactly one vertex, so G ∈ U1. Else, U = V1 ∪ V2 is a collapsible
set and G is reducible to the pair (H,G[U ]) where H is forward colorable with t − 1 parts
and G[U ] ∈ U1. The claim follows by induction on t.
Let L1 be the maximal family containing all forward-colorable 3-uniform hypergraphs

as well as any 3-uniform hypergraph which is reducible to some (H ; F1, . . . , Ft ) such that
H is tripartite and F1, . . . , Ft ∈ L1.

Lemma 3.2 For any 3-uniform hypergraph G not in L1, it holds that r(G; q) ≥ 2�(q2).

Proof Let q be a large integer and let φ be a coloring of K (3)
N with colors {1, . . . , q} con-

taining no monochromatic non-tripartite graph given by Lemma 2.7, where N = 2�(q).
We define a coloring φ′ onNq vertices using 3q colors and containing nomonochromatic
copy of any 3-uniform hypergraph in L1, the existence of which implies the statement.
To describe φ′, we identify the vertex set [Nq] with [N ]q. For a vector a ∈ [N ]q we write
a = (a1, . . . , aq). Consider three vectors x, y, z ∈ [N ]q where x < y < z according to the
lexicographic orderingwhich is defined as a < b if for some i ∈ [q], ai < bi and aj = bj for
all 1 ≤ j < i. Let j be the first coordinate for which xj , yj , zj are not all equal. If xj , yj , zj are
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all distinct, then set φ′(x, y, z) = φ(xj , yj , zj). Else if xj < yj = zj , set φ′(x, y, z) = (j, 0) and
if xj = yj < zj , then set φ′(x, y, z) = (j, 1). Note that this covers all cases by the assumed
ordering.
Now, we prove, by induction on |V (G)|, that φ′ is a Ramsey coloring for any 3-uniform

hypergraph G /∈ L1. Let G be a 3-graph, denote V (G) = {1, . . . , h} and suppose in φ′

there exists a monochromatic copy of a G with vertex v ∈ [h] embedded into xv ∈ [N ]q.
Assume the color of this copy is (j, 0) or (j, 1), for some j ∈ [r]. For s ∈ [N ], set Vs =
{v ∈ V (G) | xjv = s}. Then if the color of the copy is (j, 0), it is easy to see that G is
forward colorable with vertex partition V1 ·∪ . . . ·∪ VN while if the color is (j, 1), then G
is forward colorable with vertex partition VN ·∪ . . . ·∪ V1. Thus, in either case, we have
G ∈ L1. Now suppose the color of this monochromatic copy is c ∈ [q]. Let j be the first
coordinate in which x1, . . . , xh are not all equal. Then, there is a partition of the vertex set
V (G) = V1 ·∪ . . . ·∪ Vm, into m ≥ 2 non-empty sets such that the vertices Vi correspond
to vectors with the same j-th coordinate. Let H be the hypergraph with vertex set [m]
and edge set E(H ) = {abc |E(G) ∩ (Va × Vb × Vc) �= ∅}. It is easy to see that there is a
monochromatic copy of H in φ, and hence, H is tripartite. Additionally, for all j ∈ [m],
there trivially exists a monochromatic copy of G[Vj] in φ′ and hence G[Vj] ∈ L1 by the
induction hypothesis. It follows that G ∈ L1, as required. ��

Proposition 3.3 There is a 3-uniform hypergraph G for which r(G; q) = 2q2+o(1) .

Proof LetG be the 3-uniform hypergraph obtained by blowing up a non-central vertex of
Star(3)(4) by a set A of 4 vertices and placing a copy of Star(3)(4) inside A. Let v, a1, a2, a3
denote the vertices of A with v being the center, and let u, b1, b2 denote the remaining
vertices with u being the center.
By collapsing the set A, we see thatG is reducible to (Star(3)(4), Star(3)(4)) implying that

G ∈ U2, and thus, the upper bound follows by Corollary 2.3.
Next we show that G /∈ L1, and then, the lower bound follows from Lemma 3.2.
First, suppose that G is forward colorable and let V (G) = V1 ·∪ . . . ·∪ Vt be a partition

which certifies it. Then, there are indices i < j such that v ∈ Vi and {a1, a2, a3} ⊆ Vj.
By the same argument, since {u, v, b1, b2} form a Star(3)(4) with center u, we have that
b1, b2 ∈ Vi and u ∈ V� for some � < i. But, then the edge ub1a1 has its vertices in three
distinct sets, a contradiction.
Now, suppose that G is decomposable into (H ; F1, . . . , Ft ) with a partition V (G) =

V1 ·∪ . . . ·∪ Vt. Note that if S is a non-empty subset of V (Star(3)(4)) such that any edge
of Star(3)(4) contains either 1 or 3 vertices of S, then either |S| = 1 or |S| = 4. Suppose
that some Vi contains at least two vertices from v, u, b1, b2. Since these vertices form a
star, by the previous observation, it follows that Vi contains all of them. Furthermore,
since any w ∈ A forms a copy of Star(3)(4) with {u, b1, b2}, by the same observation, we
get Vi = V (G), a contradiction. Therefore, the vertices u, v, b1, b2 are in different sets,
implying that Star(3)(4) ⊆ H. Since Star(3)(4) is not tripartite, it follows that G /∈ L1, as
claimed. ��

LetG(3)(n, p) denote the random 3-uniform hypergraph on n vertices where each hyper-
edge is included independently with probability p.
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Proposition 3.4 There is a positive constant C such that if p ≥ C
n2 , then for G ∼ G(3)(n, p),

with high probability, we have r(G; q) ≥ 22q/2 .

Proof Using a standard Chernoff bound (see e.g. [3]), it is easy to show that with high
probability,

|E(G) ∩ (A1 × A2 × A3)| ≥ Cn/109,∀A1, A2, A3 ⊆ V (G), |Ai| ≥ n/100,∀i ∈ [3]. (4)

Conditioning on (4), we show thatG /∈ U ,which would complete the proof by Lemma 2.6.
Let us first informally explain the ideas of the proof. If G ∈ U , then G ∈ U1 or there is

a collapsible set U ⊆ V (G) such that G is reducible to (H,G[U ]) by collapsing U , where
H,G[U ] ∈ U . If |U | < n/2, next consider the hypergraph G2 = H and otherwise we “put
aside” the vertices V (G) \U and consider the hypergraphG2 = G[U ].Note that this way,
|V (G2)| ≥ |V (G)|/2. By assumption, we haveG2 ∈ U so we can apply the same reasoning
as above. In general, at each step we have a hypergraphGi whose each vertex corresponds
to a collapsed set or a single vertex inG.Now, suppose that at some point we have in total
put aside a set T of at least n/100 vertices. Since we never put aside more than half of the
current number of vertices, we have |T | < 0.99n so by (4), in G there is an edge with two
vertices in V (G) \ T and one vertex in T. However, this contradicts the fact that we only
put aside vertices outside some collapsible set.
Similarly, we can show that no vertex in V (Gi) represents a set of more than n/100

vertices of G. Indeed, if in some step we collapse a set U ⊆ V (Gi) representing in total at
least n/100 vertices of G but no more than 0.99n, by (4), in G there is an edge with two
vertices represented by U and one vertex not represented by U, a contradiction.
On the other hand, if no vertex ofGi represents more than n/100 vertices, we can group

the vertices of Gi into four sets, where each set represents a set of at least n/100 vertices
of G, which, by (4), implies that Gi /∈ U1. Therefore, for any i, Gi we can define a new
hypergraph Gi+1 as above. However, clearly this process cannot go on indefinitely, which
will yield a contradiction.
We proceed to the formal proof. For the sake of contradiction, suppose G ∈ U . Now,

we run the following algorithm in steps i = 1, . . . At each step, we have a set Ti ⊆ V (G),
and a hypergraphGi, where each vertex v ∈ V (Gi) is labeled with a set Si(v) ⊆ V (G) such
that the sets (Si(v))v∈V (Gi) partition V (G) \ Ti. The hypergraph Gi will correspond to a
hypergraph obtained from G after several reductions and a set Si(v) indicates that v is a
vertex representing the collapsed set (possibly in more than one step) Si(v). Formally, we
always have

E(Gi) = {v1v2v3 | ∃e ∈ E(G), |e ∩ Si(vj)| = 1,∀j ∈ [3]}. (5)

For U ⊆ V (Gi), we denote Si(U ) = ⋃
v∈U Si(v) and we denote its weight by wi(U ) =

|Si(U )|.We shall maintain the following:

(i) Gi ∈ U .
(ii) For any v ∈ V (Gi), wi({v}) < n/100.
(iii) |Ti| < n/100 and for any e ∈ E(G), |e ∩ Ti| �= 1.
(iv) For any e ∈ E(G) and any v ∈ V (Gi), it holds that |e ∩ Si(v)| �= 2.
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Initially, we set G1 = G, S1(v) = {v},∀v ∈ V (G) and T1 = ∅. Then, we proceed in steps
i = 1, . . . as follows.
By assumption, Gi ∈ U . Suppose first that Gi ∈ U1, that is, there is a subset W ⊆

V (Gi) such that any edge in Gi intersects W in exactly one vertex. Hence, either W
or V (Gi) \ W is an independent set in Gi with weight at least n/4. Let I denote this
independent set. Since w({v}) < n/100 for any v ∈ V (Gi), I can be partitioned into three
sets A1, A2, A3, with w(Ai) ≥ n/100, for all i ∈ [3]. However, by definition of Gi, this
implies E(G) ∩ (A1 × A2 × A3) = ∅, contradicting (4).
Hence,Gi /∈ U1, implying that there is a collapsible subsetUi ⊆ Gi such thatGi[Ui] ∈ U

and the hypergraph H obtained by collapsing Ui is also in U .We consider two cases.
First, suppose that wi(Ui) ≤ n/2. Let us show that then |wi(Ui)| < n/100.Otherwise by

(4),G has an edge in Si(Ui)× Si(Ui)× Si(V (G) \ (Ti ∪Ui)). Such an edge cannot have two
vertices in the same set Si(v) by Property (iv). On the other hand, if all three of its vertices
lie in different sets Si(v), this contradicts that Ui is collapsible in Gi, so indeed we have
|wi(Ui)| < n/100.Now, we let Gi+1 be the hypergraph obtained from Gi by collapsing Ui
and let Ti+1 = Ti. For any v ∈ V (Gi) \ Ui, we let Si+1(v) = Si(v) and for the new vertex
v∗ ∈ V (Gi+1) representing the collapsed setUi,we let Si+1(v∗) = ∪v∈UiSi(v). Let us verify
that Properties (i)–(iv) for i + 1. Property (i) holds by assumption, (ii) still holds because
wi(Ui) < n/100, (iii) is immediate since Ti+1 = Ti, and finally, Property (iv) holds since
Ui is a collapsible set in Gi.
Secondly, suppose that wi(Ui) > n/2. Denote Ti+1 = Ti ∪ Si(V (Gi) \ Ui), let Gi+1 =

Gi[Ui] and Si+1(v) = Si(v) for all v ∈ Ui. Let us verify the invariants. Property (i) is given
by the assumption, while properties (ii) and (iv) are immediate since Si+1(v) = Si(v) for
all v ∈ Ui = V (Gi+1). Let us check Property (iii). Suppose first there is an edge e ∈ E(G)
such that |e ∩ Ti| = 1. Then, it has two vertices inside Si(Ui) and by Property (iv), these
two vertices are in distinct sets Si(v), Si(v′). However, this contradicts the fact that Ui is
collapsible in Gi, proving the second part of (iii). Finally, we show that |Ti+1| < n/100.
Suppose otherwise. Recall that G has no edges touching Ti in exactly one vertex. Since
Ui is collapsible in Gi, it follows that G has no edges touching Ti+1 in exactly one vertex
either. However, we have that n/100 ≤ |Ti+1| ≤ n/2, which yields a contradiction to (4)
by taking the sets V (G) \ Ti, V (G) \ Ti, Ti.
To conclude, in each step i = 1, . . . we obtain a new hypergraph Gi+1 still satisfying all

the invariants. However, we always have |V (Gi+1)| < |V (Gi)| so the process cannot run
indefinitely, a contradiction. ��

We remark that considering the process of collapsing sets is in some sense necessary
in the proof above. Indeed, one might hope to prove Proposition 3.4 by finding a fixed
hypergraph H /∈ U such that H appears in G ∼ G(3)(n, C/n2) with high probability. This
is however not possible. Indeed, for any fixed k, the expected number of sets of 2k vertices
spanning at least k edges is O(n2kpk ) = O(Ck ). By the Poisson paradigm, it follows that
with probability �(1), G does not have 2k vertices spanning at least k edges for any fixed
k . Thus, every subgraph H of G on at most 2k vertices has an edge whose all but at most
one vertex has degree one in H . Collapsing this edge we get a new hypergraph, again
having ratio less than 1/2 between number of edges and vertices and therefore we can
continue collapsing. This implies that with positive probabilityG does not contain a fixed
hypergraph not in U .
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Note that the only property of the random 3-uniform hypergraph we used in the proof
of Proposition 3.4 is (4), i.e., that for any three sets of size at least n/100, there is an edge
with a vertex in each of the sets. The same property holds for most Steiner triple systems.
This was proved in a stronger form implicitly by Kwan [16] and later stated by Ferber and
Kwan [13, Theorem 8.1]. Therefore, we obtain the following corollary.

Corollary 3.5 A random Steiner triple systems with high probability has double-
exponential multicolor Ramsey numbers.

However, this is not the case for all Steiner triple systems. Indeed, let m ≥ 2, and
consider the Steiner triple system G on the vertex set V (G) = F

m
2 \ {0} where a triple xyz

forms an edge if and only if x + y + z = 0. For i ∈ [m], let Vi be the set of vectors in V (G)
whose last 1-coordinate is in the i-th place. The partition V (G) = V1 ·∪ V2 ·∪ . . . ·∪ Vm
shows that G is forward colorable, and hence, r(G; q) ≤ 2O(q2 log q) by the upper bound in
Theorem 1.4 part b).

4 Concluding remarks
In this paper, we determined, for any fixed 3-uniform hypergraph G, the tower height of
its multicolor Ramsey number r(G; q) as the number of colors tends to infinity. Several
natural questions remain. The most obvious one is to resolve Problem 1.1 for higher
uniformities. We tentatively conjecture that the multicolor Ramsey number of any fixed
uniform hypergraph grows as a tower of some height. A counterexample would be very
interesting.
Our methods do not seem to provide tight bounds for larger uniformities. For example,

we do not know the correct answer even for the following 4-uniform hypergraph: let G
be the 4-uniform hypergraph with vertex set A ∪ B where A, B are disjoint sets of some
fixed size t ≥ 3 and where a 4-tuple forms an edge if and only if it intersects A and B in
two vertices each. Since G is not 4-partite, r(G; q) is at least exponential in q as shown in
[4] and we can show that r(G; q) is at most double-exponential.
For 3-uniform hypergraphs G ∈ U , our upper and lower bounds usually have different

powers of q in the exponent. It would be interesting to refine these bounds further.
A natural simple example is the Fano plane for which we have 2�(q) ≤ r(Fano; q) ≤
2O(q2 log q).
It is easy to see that r(Star(3)(4); q) = 2q1+o(1) and Proposition 3.3 provides a 3-uniform

hypergraph G with r(G; q) = 2q2+o(1) . However, for each � ≥ 3, there are 3-uniform
hypergraphsG� for which our best upper bound is of the form r(G�; q) ≤ 2q�+o(1) . It would
be interesting to determine whether this can be tight.

Problem 4.1 Does there exist, for every � ≥ 1, a 3-uniformhypergraphG� with r(G�; q) =
2q�+o(1) ?
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