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Abstract

In our earlier paper, there are special cases in which the main theorem could not hold
for reasons related to the Grunwald–Wang theorem. We correct the statement and its
proof, and we include a short discussion of the added hypothesis of “viability” needed
to make our theorem true.

The authors regret to report that our paper [2] has an error in themain result, [2, Theorem
1.1]. The corollary [2, Corollary 1.2] is correct as stated, but the proof requires some
revisiting to justify that fact. The error is in converting from the Dirichlet series to an
asymptotic: we originally claimed that the main term is never canceled out in the finite
sum of Euler products that arise from a periodic w function. However, this is not always
true. The Poisson summation technique in [2, Theorem 2.3] and the other results on w
functions not involving asymptotics are not affected.
This theorem states a nonzero asymptotic for any family of local conditionsLwhich are

Frobenian and for which Lp is closed under translation by H1
ur(Kp, T ) for all but finitely

many places of K , with no restrictions on the remaining finitely many places. However, it
is known that not every local condition can occur at all by the Grunwald–Wang theorem,
contradicting the statement of [2, Theorem 1.1].
In fact, Grunwaldmade the same error in the original statement of theGrunwald–Wang

theorem, which stood until Wang produced a counterexample. Wang’s counterexample
translates to our setting to give the following counterexample to Theorem 1.1 as originally
stated:

Example 0.1 It is known by the Grunwald–Wang theorem that there exist no C8-
extensions of Q in which 2 is totally inert.
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Thus, if C8 carries the trivial Galois action and L is defined by

Lp =
⎧
⎨

⎩

{totally inert coclasses} p = 2

H1(Qp, C8) else,

Then H1
L(Q, C8) = ∅.

Wood deals with a similar issue in [10], which corresponds to the case that T carries the
trivial Galois action and the invariant “inv” is the conductor (or some other fair invariant).
Wood proves that, as long as at least one extension with the prescribed local conditions
exists, then the asymptotic growth rate is as expected.
We make similar definitions to Wood to distinguish these cases:

Definition 0.2 Let L = (Lp) be a family of subsets Lp ⊆ H1(Kp, T ) and S a finite set of
places such that for all p /∈ S, H1

ur(Kp, T ) ⊆ Lp.
We say φ = (φp) ∈ ∏

p∈S Lp is viable if there exists some f ∈ H1
L(K, T ) for which

f |GKp = φp for each p ∈ S. Otherwise we say φ is inviable.
Likewise, we sayL is viable if

∏
p∈S Lp contains at least one viable coclass; otherwise we

say L is inviable.

From this definition, it is clear that L is viable if and only if H1
L(K, T ) �= ∅. Example 0.1

is then an example of an inviable family of local conditions.
When Lp is the whole H1(Kp, T ) at almost all places, the search for a global coclass f

satisfying the finitely many given local conditions is called weak approximation or the
Grunwald problem in the literature [3–6,9]. In particular, it is known that there is a finite
set S0 of places, depending only on T , such that if local conditions are imposed only at a
finite set of places disjoint from S0, the Grunwald problem is solvable.
Just as in [10], when L is viable we get the full asymptotic growth rate. Below is the

corrected version of our main theorem:

Theorem 0.3 (Corrected version of [2, Theorem 1.1]) Let T be a finite Galois K-module,
and L = (Lp)p and inv a family of local conditions and admissible ordering respectively.
Suppose

(a) L and inv are Frobenian.
(b) For all but finitely many places p, Lp is a union of cosets of H1

ur(Kp, T ) containing the
identity coset.

(c) L is viable.

Then

|H1
L(K, T ;X)| ∼ cinv(K,L)X1/ainv(L)(logX)binv(L)−1

for explicit positive integers ainv(L) and binv(L), and an explicit positive real number
cinv(K,L).

The original [2, Theorem 1.1] will remain true as long as L contains at least one viable
coclass (i.e., L gives a nonempty Selmer set). The viable coclasses form a subgroup of
H1(AK , T ), explaining why this issue does not occur in the original version of the asymp-
totic Wiles theorem in [1].
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To summarize, the corrected theorem decomposes the counting result into two cases:

1. L is viable, that is H1
L(K, T ) �= ∅. In this case, the original asymptotic

|H1
L(K, T ;X)| ∼ cinv(K,L)X1/ainv(L)(logX)binv(L)−1

still holds, with the a- and b-invariants unchanged from the original statement.
2. L is inviable, that is H1

L(K, T ) = ∅. In this case, one trivially has

|H1
L(K, T ;X)| = 0.

We divide this corrigendum into three sections. In the first section, we discuss viability
and explain how we will test for it in the proof of Theorem 0.3. In the case considered
in [10], only certain local behaviors above 2 or ∞ could result in inviable families of
local conditions. However, in our general setting, inviability is a (slightly) more common
phenomenon. We give an introductory discussion of this phenomenon, and provide an
example demonstrating how inviability can occur.
We prove Theorem 0.3 in the second section and simultaneously prove an equivalent

description of viability. We will refer to the original proof for many of the unchanged
details, but we take care to highlight and expand on the error in the original proof. We
originally made the following implicit assumption:

If g ∈ H1(K, T ∗) is nonzero, then g(Frp) �= 0 for infinitely many places p.

This, however, is not true. Counterexamples to this statement are the source of inviability.
In the third and final section, we justify that the proof of [2, Corollary 1.2] still works

when viability is taken into consideration.

1 Viability
As stated in the introduction, viability is equivalent to H1

L(K, T ) �= ∅. With essentially no
work, we can prove that a wide class of families are viable:

Lemma 1.1 If L = (Lp) is a family of local conditions such that 0 ∈ Lp for every place p,
then L is viable.

The proof is immediate, as these conditions imply 0 ∈ H1
L(K, T ).

In general, determiningwhich conditions are viable is tantamount to studying the image
of the map

H1(K, T ) →
∏′

p∈S
H1(Kp, T ).

By Poitou-Tate duality, this is closely related to the kernel of the map

H1(K, T ∗) →
∏′

p/∈S
H1(Kp, T ∗). (1)

These maps are studied extensively, in various cases, in Neukirch–Schmidt–Wingberg
[7]. In the course of proving Theorem 0.3, we will also prove the following classification
of viability:

Theorem 1.2 Let L = (Lp) be a Frobenian family of local conditions such that for all but
finitely many places, H1

ur(Kp, T ) ⊆ Lp and Lp is a union of cosets of H1
ur(K, T ).
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Define the viability testing subgroup

VL = {f ∈ H1(K, T ∗) : fp ∈ L⊥
p for all but finitely many p}.

Its orthogonal complement V⊥
L ⊆ H1(AK , T ) has the property that the system L = (Lp) of

local conditions is viable if and only if

V⊥
L ∩

∏′

p
Lp �= ∅,

where the product is the restricted product with respect to H1
ur(Kp, T ).

The viability testing subgroup can alternatively be written as a union of dual Selmer sets

VL =
⋃

S
H1
SL⊥ (K, T ∗),

where the union is over all finite sets of places S, and SL⊥ is the family of local conditions
⎧
⎨

⎩

H1(Kp, T ∗) p ∈ S

L⊥
p p /∈ S.

If Lp is larger, then we generally expect VL to be smaller. The proof of Theorem 1.2
separates naturally into two cases depending on the value of ainv(L):
1. Suppose ainv(L) = ∞, which by [1, Definition 4.6] is equivalent to Lp = H1

ur(K, T )
for all but finitely many places p. This corresponds to the case thatH1

L(K, T ) is finite,
which follows from the Greenberg-Wiles identity. Then

VL = {f ∈ H1(K, T ∗) : fp ∈ H1
ur(Kp, T ∗) for all but finitely many p}

= H1(K, T ∗).

Poitou–Tate duality states that H1(K, T ∗) exactly annihilates iT (H1(K, T )) ⊂
H1(Ak , T ), so it immediately follows that

iT (H1(K, T )) = H1(K, T ∗)⊥ ∩
∏′

p
Lp.

One side is nonempty if and only if the other is, concluding the proof in this case.
2. Suppose ainv(L) < ∞. Equivalently, H1

ur(K, T ) � Lp for a positive proportion of
places. This corresponds the the case that H1

L(K, T ) is infinite, and will be proven in
the course of proving Theorem 0.3.

We discuss a few features of viability, but we do not give a full treatment of the structure
of VL. Such work would certainly be interesting, but would go well beyond the bounds of
a corrigendum.

1.1 Places that witness inviability

Viability of local conditions is well studied in the case that T has the trivial action. In fact,
a complete classification of viable local restrictions when T has the trivial action is given
in [7,10].
One of the more useful features of the trivial action case is that inviability is only

witnessed by places above 2 and ∞. This helps make viability statements more digestible,
and generally speaking number theorists are happy to accept that 2 and ∞ have unique
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problems not seen by odd primes. However, it turns out that for general Galois modules
odd primes can be the source of inviable local conditions. See [3–6,9] for some examples
when Lp = H1(Kp, T ) is as large as possible for all but finitely many places.
In the greatest generality, inviability can get particularly bad. There is no guarantee that

only finitelymany places witness inviability and it is possible forVL to be an infinite group.
For example, in the case that Lp = H1

ur(Kp, T ) for all but finitely many p one finds that

VL = {f ∈ H1(K, T ∗) : f unramified at all but finitely many places}
= H1(K, T ∗).

When VL is too large, V⊥
L becomes very small and makes the intersection in Theorem 1.2

more likely to be empty.
While we do not propose to give a full treatment of viability in this corrigendum, we do

consider a case of interest where VL is necessarily small.

Lemma 1.3 Let T ∗ be a Galois module over K and L be a family of local conditions
such that Lp generates H1(Kp, T ) for all but finitely many places. Then the viability testing
subgroup is given by

VL = {f ∈ H1(K, T ∗) : fp = 0 for all but finitely many p}.
Moreover, VL satisfies the following properties:

(a) VL is a finite group,
(b) resFK (VL) = {0} ⊆ H1(F, T ∗), where F is the field of definition of T ∗ (that is, the

smallest field for which GF acts trivially on T ∗);
(c) For each f ∈ VL and p /∈ S0, fp = 0, where S0 is the finite set of places at which T ∗ is

ramified.

Lemma 1.3 generalizes the work in [3] by allowing infinitely many local restrictions.
When T has the trivial action, it is known that S0 can be shrunk further to the set of places
above 2 and ∞ only. In fact, a complete classification of viable local restrictions when T
has the trivial action is given in [7,10]. Unfortunately, this feature is specific to the trivial
action case. The S0 given in Lemma 1.3(c) cannot be shrunk in general as discussed in [3].
In Example 1.4 we give examples where inviability is witnessed by any odd prime (i.e.,

cases for which S0 necessarily contains an odd prime).

Proof of Lemma 1.3 Part (a) follows from part (b). Because VL ⊆ ker(resFK ), we have
embedded VL as a subgroup of H1(Gal(F/K ), T ∗) by the inflation-restriction sequence.
Thus, VL is finite.
We now prove (b). Let f ∈ VL. By a convenient viewpoint on Galois cohomology (see

[8], Proposition 4.21), we can view f as a homomorphism

σf : GK → T ∗ � Aut(T ∗)

whose projection on the second factor agrees with the GK -action on T ∗. That is, σf (g) =
(f (g),φT∗ (g)) ∈ T ∗ �Aut(T ∗). Let E ⊃ F be the fixed field of the kernel of σf . Note that E
is a Galois extension of K containing F , which is also Galois, and we have a commutative
diagram
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Gal(E/K ) T ∗ � Aut(T ∗)

Gal(F/K ) Aut(T ∗).

σf

φT∗

We claim that E = F . If not, let g ∈ Gal(E/F ) ⊆ Gal(E/K ) be a nonidentity element. By
the Chebotarev density theorem, there exist infinitely many p such that Frp(E/K ) = g .
But for such p, fp(Frp) = σf (Frp) = Frp(E/K ) �= 0 ∈ T ∗. This means fp is a nonzero
cocycle. Additionally, Frp(E/K ) ∈ Gal(E/F ) implies Frp(F/K ) = 1. Thus, for an infinite
set of these places unramified in F , the action of GKp on T ∗ is trivial. This implies the set
of coboundaries is trivial, so fp �= 0 as a coclass in H1(Kp, T ∗) for infinitely many places.
This contradicts f ∈ VL, and so proves (b).
Lastly we prove (c). Let p be a place unramified in F/K with g = Frp(E/K ). For unram-

ified infinite places, we trivially have H1(Gal(F∞/K∞), T ∗) = 0, so it suffices to consider
finite places. For any other place � with Fr�(E/K ) = Frp(E/K ) = g , the local action of
T ∗is the same at p and � so thatH1(Kp, T ∗) ∼= H1(K�, T ∗). Moreover, σf (Frp) and σf (Fr�)
are equal up to conjugation. Thus,

fp(Frp) = σf (Frp)φT∗ (g)−1

= hσf (Fr�)h−1φT∗ (g)−1

= hσf (Fr�)h−1σf (Fr�)f�(Fr�).

This implies fp and f� are equivalent (up to coboundaries) under the isomorphism of local
cohomology groups. By the Chebotarev density theorem, there are infinitelymany choices
for � with Fr�(E/K ) = g . Thus, if fp is not a coboundary, the f� is not a coboundary for
infinitely many � and it follows that f /∈ VL. Then (c) follows from the contrapositive. ��

1.2 Example of inviability at odd places

A complete classification of viability for generalT andL is outside the scope of this paper.
Instead, we provide the following example to demonstrate that inviability can bewitnessed
by any place when we allow nontrivial actions, which generalizes Example 0.1.

Example 1.4 We will construct an inviable local restriction at an odd prime over Q. The
precise exampleweprove is givenbelow, althoughwith a littlemorework this construction
can be expanded to create a number of other examples.
Let us use the following notation. If a, b ∈ Q×, denote by T (a, b) the Galois module

whose underlying group is Z/8Z and such that Gal(Q̄/Q) permutes the four generators
1, 3, 5, 7 ∈ Z/8Z in the same manner as the ordered pairs

(
√
a,

√
b), (−√

a,−√
b), (

√
a,−√

b), (−√
a,

√
b).

Observe that T (a, b) has field of definition Q(
√
a,

√
b). For example, μ8 = T (−1, 2), from

which we find that the Tate dual of T (a, b) is

Hom(T (a, b),μ8) ∼= T (−a, 2b).

Proposition 1.5 Let � be an odd prime and consider the Galois module T = T (−�, 2b)
where b is a quadratic non-residue modulo �. Let S0 be a finite set of places including 2, �,
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and all places dividing b. Then there exists a φ ∈ ∏
p∈S0 H

1(Qp, T ) for which the family of
local conditions L on H1(Q, T ) given by

Lp =
⎧
⎨

⎩

H1(Kp, T ) p /∈ S0
{φp} p ∈ S0

is inviable.

Proof These examples are constructed by finding an element in VL which is nontrivial
at the place �, which forces V⊥

L ∩ H1(Q�, T ) �= H1(Q�, T ). It then suffices to take any
φ ∈ H1(Q�, T ) outside of V⊥

L .
Take f ∈ H1((Z/8Z)×,Z/8Z) given by the equivalence class of the crossed homomor-

phism

f (n) =
⎧
⎨

⎩

0 n = 1, 7

4 n = 3, 5.

We check this is a crossed homomorphism. Notice that since im(f ) = 4Z/8Z, we have

(n − 1)f (m) = 0

for all n,m ∈ (Z/8Z)×, which rearranging implies that

nf (m) = f (m).

Thus it suffices to prove that f : (Z/8Z)× → 4Z/8Z is a homomorphism, which is evident
since {1, 7} ⊂ (Z/8Z)× is a subgroup of index 2.
The cocycle f has the following nice properties:

(i) f is not a coboundary. This is because all coboundaries are of the form n �→ na−a =
(n−1)a. However, the equations (7−1)a = 0 and (3−1)a = 4 are not simultaneously
solvable modulo 8.

(ii) The image of f under restriction to any cyclic subgroup is a coboundary. This is
trivial for f |〈1〉 = 0 and f |〈7〉 = 0. Meanwhile,

f |〈3〉(m) =
⎧
⎨

⎩

0 m = 1

4 m = 3

= 2m − 2

and

f |〈5〉(m) =
⎧
⎨

⎩

0 m = 1

4 m = 5

= 1m − 1.

We now inflate f along the Galois action on T ∗ = T (�, b) to an element inf(f ) ∈
H1(Q, T ∗), which we claim is a nontrivial element of the viability testing subgroup
VL ≤ H1(Q, T ∗). Consider that any place p unramified in the field F = Q(

√
�,

√
b) of

definition of T ∗, as well as any infinite place p, has cyclic decomposition group in F . Let
C < (Z/8Z)× be the cyclic image of Dp under the isomorphism with Gal(F/Q). We have
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|C| = 1 or 2. Highlighting the fact that the action ofDp onT ∗ factors through the quotient
GQ � (Z/8Z)× as the quotient Dp � C , we produce a commutative diagram

H1((Z/8Z)×, T ∗) H1(Q, T ∗)

H1(C, T ∗) H1(Dp, T ∗).

res

inf

resDp

inf

By a diagram chase, we find that res(f ) = 0 implies that resDp inf(f ) = 0 at all places
unramified in F/Q. This proves that inf(f ) ∈ VL.
Meanwhile, by construction, � is ramified in F/Q with D� = Gal(F/Q) ∼= (Z/8Z)×, so

resD�
inf(f ) �= 0 because f is not a coboundary. Thus inf(f ) is nonzero at at least one place,

namely �; in particular, f ∈ VL \ {0}. Let S0 be the finite set of places at which inf(f ) �= 0
(taking 2, �, and all primes dividing b is sufficient). Take

φ ∈
∏

p∈S0
H1(Qp, T )

that is not orthogonal to resS0 (inf f ). Then no global coclass g ∈ H1(Q, T ) can reduce to
φ at every place in S0, or it would have a globally nontrivial pairing with inf f . ��

2 The corrected proof
The framework of the proof of Theorem 0.3 is by and large the same. We still utilize the
periodic function w as in [2, Proposition 4.1]. The decomposition of the Dirichlet series

∑

f ∈H1(K,T )

w(f ) = |H0(K, T )|
|H0(K, T ∗)|

∑

g∈H1(K,T∗)
ŵ(g)

proceedswithout change. Each of the following facts is unchanged from the original proof:

• The Fourier transform ŵ has finite support contained in the compact Y⊥
S , because w

is periodic. Recall that

YS =
∏

p/∈S
H1
ur(Kp, T )

so that

Y⊥
S =

∏

p∈S
H1(Kp, T ∗) ×

∏

p/∈S
H1
ur(Kp, T ∗).

• The summand ŵ(0) is given by a Frobenian Euler product

ŵ(0) =
∏

p

⎛

⎝
1

|H0(Kp, T )|
∑

f ∈Lp
NK/Q(inv(f ))−s

⎞

⎠

with meromorphic continuation and an explicit pole at 1/ainv(L) following the work
in [1].

• Each ŵ(g) is also a Frobenian Euler product bounded above by ŵ(0) in absolute
value. Thus, the work in [1] gives a meromorphic continuation to the left of the line
Re(s) = 1/ainv(L) and for which the order of the pole at 1/ainv(L) is less than or equal
to the order of the pole of ŵ(0).
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• Applying a Tauberian theorem to each summand ŵ(g) individually produces an
asymptotic main term for each summand. The asymptotic corresponding to ŵ(0)
is given by

c(0)X1/ainv(L)(logX)binv(K,L)−1,

while the asymptotic for the finitely many other ŵ(g) is of the same or smaller order
of magnitude.

It suffices to prove that the asymptotic main terms do not cancel, or equivalently that the
poles of ŵ(g) at s = 1/ainv(L) do not cancel. This is the place where we made an error in
the original proof. We do this in three steps:

1. Partitioning the sum of ŵ(g) by cosets of the viability testing subgroup. This step is
new, and will prove the “only if” direction of Theorem 1.2.

2. Proving Theorem 0.3 in the case that inv is given by the product of ramified primes
outside S and theminimal index classes generate T . This section applies our original
argument for bounding the order of the pole of ŵ(g) in the case that g /∈ VL (i.e.,
where the argument actually works). The “if” direction of Theorem 1.2 follows from
these cases.

3. Proving the remaining cases of Theorem 0.3. The primary ideas are the same as in
our original proof; however, we take greater care to ensure that the induced family
of local conditions on T ′ can also be chosen to be viable.

Remark It is likely that step 2 can be done for any “fair” counting function, with an
appropriate analog of the notion of a fair counting function defined in [10]. This step
produces a leading term given by a single Euler product, and some notion of fairness will
likely preserve this property. Meanwhile, as demonstrated for the discriminant ordering
in [10], some orderings do not produce a single Euler product for the leading constant
and necessarily require the work in step 3.

2.1 Partitioning by cosets of the viability testing subgroup

We know thatw is periodic with respect to YS in the setting of Theorem 0.3, whichmeans
ŵ is supported on the compact subgroup Y⊥

S . We concluded the sum of ŵ(g) is finite
because Y⊥

S ∩ H1(K, T ∗) is finite. We partition the sum

∑

g∈H1(K,T∗)
ŵ(g) =

∑

g∈R

⎛

⎜
⎝

∑

v∈Y⊥
S ∩VL

ŵ(g + v)

⎞

⎟
⎠ ,

where R is a set of representatives for the cosets (Y⊥
S ∩ H1(K, T ∗))/(Y⊥

S ∩ VL).
For each g ∈ R, we evaluate the sum of Fourier transforms

∑

v∈Y⊥
S ∩VL

ŵ(g + v)

=
∑

v∈Y⊥
S ∩VL

∏

p

⎛

⎝
1

|H0(Kp, T )|
∑

f ∈Lp
〈f, (g + v)|GKp 〉NK/Q(inv(f ))−s

⎞

⎠ .
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Each element v ∈ VL has v|GKp ∈ L⊥
p for all but finitely many places, so for each of those

places 〈f, (g+v)|GKp 〉 = 〈f, g |GKp 〉 is independent of v. Take S̃ to be the set of places defined
by

S̃ = S ∪
⋃

v∈Y⊥
S ∩VL

{p : v|GKp /∈ L⊥
p },

so that S̃ is precisely the set of places for which the Euler factor depends on v. We factor
these places out so that

∑

v∈Y⊥
S ∩VL

ŵ(g + v) =
∑

v∈Y⊥
S ∩VL

∏

p∈̃S

⎛

⎝
1

|H0(Kp, T )|
∑

f ∈Lp
〈f, (g + v)|GKp 〉NK/Q(inv(f ))−s

⎞

⎠

×
∏

p/∈̃S

⎛

⎝
1

|H0(Kp, T )|
∑

f ∈Lp
〈f, g |GKp 〉NK/Q(inv(f ))−s

⎞

⎠ .

For simplicity, we write the second Euler product as
1

∏
p∈̃S ŵp(g)

ŵ(g).

Next, we simplify the first Euler product. The number of places contributed to S̃ by each
individual v is finite since v ∈ VL. Meanwhile, the set of exceptional places S is finite by
definition, and

Y⊥
S ∩ VL ⊂ Y⊥

S ∩ H1(K, T ∗)

is finite by Y⊥
S compact and H1(K, T ∗) discrete. Thus S̃ is a finite set.

Let res̃S : H1(K, T ∗) → ∏
p∈̃S H1(Kp, T ∗) be the product of restriction maps to places

p ∈ S̃. We multiply the Euler factors over S̃ together to get
⎛

⎝
∏

p∈̃S

1
|H0(Kp, T )|

⎞

⎠
∑

f ∈∏
p∈̃S Lp

〈f, res̃S(g + v)〉NK/Q(inv(f ))−s,

Moving the summation over v all the way to the inside gives an inner sum
∑

v∈Y⊥
S ∩VL

〈f, res̃S(g) + res̃S(v)〉 = 〈f, res̃S(g)〉
∑

v∈Y⊥
S ∩VL

〈f, res̃S(v)〉

=
⎧
⎨

⎩

〈f, res̃S(g)〉|Y⊥
S ∩ VL| f ∈ res̃S(YS + V⊥

L )

0 else.

Remark Here we see that the sum over v of the Euler factors at S̃ plays the same role as
the sum over E(C) in [10]. Whether this sum is zero or not detects inviability.
Putting it all together, we conclude that

∑

v∈VL

ŵ(g + v) = |Y⊥
S ∩ VL|

⎛

⎜
⎝

∑

f ∈res̃S (YS+V⊥
L )∩∏

p∈̃S Lp

〈f, g〉NK/Q(inv(f ))−s

⎞

⎟
⎠

×
⎛

⎝
∏

p∈̃S

1
ŵp(g)|H0(Kp, T )|

⎞

⎠ ŵ(g).
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Consider that

res̃S(YS + V⊥
L ) ∩

∏

p∈̃S
Lp = ∅

if and only if

(YS + V⊥
L ) ∩

∏

p
Lp = ∅

by pulling back along res̃S . By assumption,
∏

p Lp is closed under translation by YS , so this
set is nonempty if and only if

V⊥
L ∩

∏

p
Lp = ∅.

As this fact is independent of the representative g , emptiness of this set implies L is
inviable and proves the “only if” direction of Theorem 1.2.

2.2 Ordering by the product of the ramified primes

We consider the specific ordering

ramS(f ) =
∏

p/∈S
f |Ip �=1

NK/Q(p).

This is an example of a “fair” counting function given in [10], and we can prove Theorem
0.3 for this orderingwith similar strength toWood’s results. IfaramS (L) = ∞, Theorem0.3
follows from bounding the counting function by a finite Selmer group in the Greenberg-
Wiles identity. Otherwise, by definition aramS (L) = 1 as primes can only occur in ramS
with exponent 1.
Suppose g ∈ Y⊥

S \VL, so that g |GKp /∈ L⊥
p for infinitely many places and g is unramified

at all places p /∈ S. The Chebotarev density theorem and L being Frobenian implies
that g |GKp /∈ L⊥

p for a positive proportion of places. This implies that, for a positive
proportion of places p, there exists an f ∈ Lp such that 〈f, resp(g)〉 �= 1. However, the
fact that g ∈ H1

ur(Kp, T ∗) for these places implies that f /∈ H1
ur(Kp, T ) as these subgroups

annihilate each other. Because all ramified coclasses have weight 1 = aramS (L) under the
ordering ramS , we have proven the following:
For a positive proportion of places, there exists an f ∈ L[1]p such that 〈f, resp(g)〉 �= 1

(where, as in [1], we set L[m]
p = {fp ∈ Lp : νp(inv(fp)) = m}). Using this fact, we will prove

that the order of the singularity of ŵ(g) is strictly less than for ŵ(0).
The order of the singularity is given by the b-invariant, which is the average value of

coefficients of |p|−aramS (L)s = |p|−s for |p| ≤ x as x → ∞ (see [1, Definition 4.6]). This
coefficient for ŵ(g) is given by

∑

f ∈L[1]p

〈f, resp(g)〉|p|−s ≤
∑

f ∈L[1]p

|p|−s.

By our choice of g , this inequality is necessarily strict for a positive proportion of places.
Taking the average of both sides over |p| ≤ x as x → ∞, this implies

order of singularity of
ŵ(g) at s = 1/aramS (L) < bramS (K, T ) = order of singularity of

ŵ(0) at s = 1/aramS (L).
In particular, this implies that for any g ∈ Y⊥

S \VL, the singularity of ŵ(g) does not cancel
with the singularity of ŵ(0). Since ŵ has finite support in Y⊥

S , the sum over all g /∈ VL
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cannot cancel with the singularity of ŵ(0) either. Thus, the order of the singularity at
s = 1/aramS (L) is determined by those g in the identity coset VL, which is given by

∑

v∈Y⊥
S ∩VL

ŵ(v) =|Y⊥
S ∩ VL|

⎛

⎜
⎝

∑

f ∈res̃S (YS+V⊥
L )∩∏

p∈̃S Lp

NK/Q(inv(f ))−s

⎞

⎟
⎠

×
⎛

⎝
∏

p∈̃S

1
ŵp(0)|H0(Kp, T )|

⎞

⎠ ŵ(0).

All factors are positive at s = 1/aramS (L) = 1, so the order of this singularity agrees with
that of ŵ(0).
Applying a Tauberian theorem, this proves the asymptotic in Theorem 0.3 as long as

(a) inv = ramS , and
(b) V⊥

L ∩ ∏
Lp �= ∅

The nonzero asymptotic in particular shows that (b) implies viability, proving the remain-
ing direction of Theorem 1.2.

2.3 Extending to the general case

The final step for proving Theorem 0.3 is the case that

• inv �= ramS , and
• L is viable (or equivalently V⊥

L ∩∏
p∈S Lp �= ∅, as we have now proven Theorem 1.2).

This step proceeds similarly to the original proof, where we produce a lower bound with
the desired order of magnitude in order to prove that the main term cannot be canceled
out.
We are assuming that L is viable, so we choose some f0 ∈ H1

L(K, T ). Define L(f0) =
(L(f0)p) to be the family of local conditions given by

L(f0)p =
⎧
⎨

⎩

{0} p ∈ S

Lp − f0|GKp p /∈ S.

For p /∈ S, Lp is a union of cosets of H1
ur(Kp, T ). This property is preserved in the con-

struction of L(f0)p, and f0 ∈ H1
L(Kp, T ) implies f0|GKp ∈ Lp so that 0 ∈ L(f0)p. Thus the

corresponding w function is still YS-periodic. L(f0) is certainly viable, as 0 ∈ L(f0)p for all
places p.
The map x �→ x + f0 gives an injection

H1
L(f0)(K, T ) ↪→ H1

L(K, T ).

This map preserves the p-part of the invariant, inv, at every place unramified in f0. As a
result, the invariant can change by at most a bounded amount. This implies that there
exists some constant C1 > 0 depending only on f0 such that

H1
L(K, T ;X) ≥ H1

L(f0)(K, T ;C1X).

Thus it suffices to prove H1
L(f0)(K, T ;X) has the expected order of magnitude.
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Define the subfamily L(f0)min = (L(f0)min
p ) of L(f0) to be the family of local conditions

L(f0)min
p =

⎧
⎨

⎩

L(f0)p p ∈ S

L(f0)[ainv(L)]p ∪ H1
ur(K, T ) p /∈ S

Once again, for all but finitely many places L(f0)[ainv(L)]p is a union of cosets of H1
ur(Kp, T ).

One still has 0 ∈ H1
L(f0)[ainv(L)] (K, T ), so this family is viable as well. Thus, we have a

containment of nonempty Selmer sets

H1
L(f0)[ainv(L)] (K, T ) ⊆ H1

L(f0)(K, T ).

By construction, it follows that for any f ∈ H1
L(f0)[ainv(L)] (K, T ) the invariant is given by

inv(f ) =
∏

p∈S
pνp(inv(f )) ·

∏

p/∈S
f |Ip �=1

painv(L)

≥ C2ramS(f )ainv(L).

for some positive constantC2 determined by the minimal values of νpinv on the finite sets
L(f0)[ainv(L)]p for the finitely many p ∈ S.
By combining the two embeddings, we produce a lower bound

|H1
inv,L(K, T ;X)| ≥

∣
∣
∣
∣H

1
ramS ,L(f0)[ainv(L)]

(

K, T ;
(
C1C−1

2 X
)1/ainv(L)

)∣
∣
∣
∣ .

Step 2 applies to the lower bound, so we can produce the order of magnitude. One sees
directly from the definitions that

aramS (L(f0)[ainv(L)]) = 1 and bramS (K,L(f0)[ainv(L)]) = binv(K,L),
as “inv” at all but finitely many places is preserved under both embeddings of Selmer
sets and L(f0)[ainv(L)]p only contains elements of index ainv(L) or unramified elements (i.e.,
index ∞). Much of this reasoning proceeds without change1 from the original proof, just
without restricting to a submodule T ′. Thus, we produce a lower bound of the desired
magnitude proving that the main terms do not cancel.

3 Notes on [2, Corollary 1.2]
The authors had the incidental foresight to state [2, Corollary 1.2](i) as applying to the
cases where “L and inv satisfy the hypotheses of [2, Theorem 1.1]”. As long as we amend
that statement to be “…satisfy thehypotheses ofTheorem0.3”, theCorollary is still correct.
The new statement, for reference, would read

Corollary 3.1 (Corollary 1.2 of [2]) Let T be an abelian normal subgroup of a finite group
G, and π : Gal(K/K ) → G a homomorphism with Tπ (Gal(K/K )) = G (or equivalently
π surjects onto G/T), defining a Galois action on T by x.t = π (x)tπ (x)−1.

(i) If L and inv satisfy the hypotheses of Theorem 0.3 and S is the set of irregular places,
then the limit

lim
X→∞

∣
∣{f ∈ H1

L(K, T ;X) : f ∗ π surjective}∣∣
|H1

L(K, T ;X)|

1There is also a typo in the inflation-restriction sequence: the H1(Ip, T ) should be H1(Ip, T )GKp . This does not affect
the actual proof.
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converges, where (f ∗ π )(x) = f (x)π (x) is understood to apply to a representative of f
in Z1(K, T ). Moreover, the limit is

(a) positive if π is surjective,
(b) positive if T = 〈fp(Ip) : fp ∈ Lp, p /∈ S〉, and
(c) equal to 1 if T = 〈fp(Ip) : fp ∈ L[ainv(L)]p , p /∈ S〉 where L[m]

p = {f ∈ Lp :
νp(inv(f )) = m}.

(ii) If G ⊂ Sn is a transitive representation of G, then the invariant

discπ (f ) = disc(f ∗ π )

satisfies the hypotheses of Theorem 0.3, where disc : Hom(Gal(K/K ), Sn) → IK is the
discriminant on the associated étale algebra of degree n.

Indeed, it is reasonable to only expect [2, Corollary 1.2](i) to be true when L is viable.
If L were inviable, the denominator in the limit would be identically zero and the entire
statement would be ill-founded. We address each part of the proof below:

(i) The proof of the existence of the limit remains unchanged. Indeed, the inclusion–
exclusion argument is not affected by viability. At worst, some more terms than
expected are zero.
The proofs of (a), (b), and (c) are referred to [1]. The extra reasoning we need to
provide here is that viability implies the existence of a surjective coclass, not just any
coclass.

(a) In this case, [1] bounds the numerator below by

|H1
Lπ

(K, T ;X)|,
where the family Lπ is given by

(Lπ )p =
⎧
⎨

⎩

{0} p ∈ U

Lp else

and U is chosen to be a set of places unramified in π such that {π (Frp) : p ∈
U} = G. Without loss of generality, U can be chosen disjoint from S̃, so that
Theorem 1.2 implies the viability of Lπ . Theorem 0.3 then gives an asymptotic
lower bound.

(b) Part (c) with the product of ramified primes invariant implies that there exists
some f for which f ∗π is surjective. Replacing π with f ∗π to define the action,
we then apply part (a). Any reference to viability need only be made in parts (a)
and (c).

(c) In this case, it is proven that all but the leading term of the inclusion–exclusion
tend to zero in the limit. Thus, the numerator and denominator are necessarily
asymptotic to each other. As it was not required to reference viability, this part
implies that viability implies the existence of a surjective coclass.

(ii) This part does not involve checking asymptotics, so the original proof stands without
error.
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