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Abstract

Let (R,m) be a Noetherian local ring of prime characteristic p and Q be anm-primary
parameter ideal. We give criteria for F-rationality of R using the tight Hilbert function
H∗
Q(n) = �(R/(Qn)∗) and the coefficient e∗

1(Q) of the tight Hilbert polynomial

P∗
Q(n) = ∑d

i=0(−1)ie∗
i (Q)

(n+d−1−i
d−i

)
.We obtain a lower bound for the tight Hilbert

function of Q for equidimensional excellent local rings that generalizes a result of Goto
and Nakamura. We show that if dim R = 2, the Hochster–Huneke graph of R is
connected and this lower bound is achieved, then R is F-rational. Craig Huneke asked if
the F-rationality of unmixed local rings may be characterized by the vanishing of e∗

1(Q).
We construct examples to show that without additional conditions, this is not possible.
Let R be an excellent, reduced, equidimensional Noetherian local ring and Q be
generated by parameter test elements. We find formulas for e∗

1(Q), e
∗
2(Q), . . . , e

∗
d (Q) in

terms of Hilbert coefficients of Q, lengths of local cohomology modules of R, and the
length of the tight closure of the zero submodule of Hd

m(R). Using these, we prove: R is
F-rational ⇐⇒ e∗

1(Q) = e1(Q) ⇐⇒ depth R ≥ 2 and e∗
1(Q) = 0.

Keywords: Tight Hilbert polynomial, F-rational rings, Parameter test elements,
d-Sequences, Local cohomology

1 Introduction
The theory of tight closure created by Hochster and Huneke in the 1980’s introduced
several types of local rings such as F-regular, weakly F-regular, F-rational and F-injective
local rings, see for example [7,8,24]. It is well known that the Hilbert coefficients can be
used to characterize regular, Cohen–Macaulay and Buchsbaum local rings. It is natural to
expect that F-singularities could be characterized using a certain kind of Hilbert polyno-
mial that involves the tight closure of ideals. The first step in this direction was taken by
Shiro Goto and Y. Nakamura. In response to a conjecture of Watanabe and Yoshida [26],
Goto and Nakamura [6] proved the following interesting characterization of F-rational
local rings. The length of an R-module M is denoted by �R(M). The tight closure of an
ideal I is denoted by I∗, see Sect. 2 for definitions.
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Theorem 1.1 Goto–Nakamura, 2001 Suppose R has prime characteristic and it is an
equidimensional local ring of dimension d. Suppose that R is a homomorphic image of a
Cohen–Macaulay local ring. Then,

(1) e0(Q) ≥ �R(R/Q∗) for every m-primary parameter ideal Q in R.
(2) If dimR/p = d for all p ∈ Ass(R), and e0(Q) = �R(R/Q∗) for some parameter ideal

Q in R, then R is a Cohen–Macaulay F-rational local ring.

For a recent treatment of Goto–Nakamura theorem, see [14]. SinceQ∗ is contained in the
integral closure Q of Q, e0(Q) = e∗0(Q). Therefore, the F-rationality of R is a consequence
of the equality e∗0(Q) = �(R/Q∗) for rings mentioned in (2) above. This was an indication
that F-singularities could be characterized in terms of the tight Hilbert function H∗

Q(n) =
�(R/(Qn)∗). Let I be an m-primary ideal of R and R be analytically unramified, i.e., the
m-adic completion R̂ is reduced. By a theorem of Rees [19],H∗

I (n) is given by a polynomial
P∗
I (n) for large n.We call it the tight Hilbert polynomial of I and write it as

P∗
I (n) =

d∑

i=0
(−1)ie∗i (I)

(
n + d − 1 − i

d − i

)

.

The coefficient e∗0(I) is themultiplicity e0(I) of I.The other coefficients e∗i (I) ∈ Z are called
the tight Hilbert coefficients of I.The tight Hilbert polynomial was introduced in [4] where
it was proved that an analytically unramified Cohen–Macaulay local ring R having prime
characteristic is F-rational if and only if e∗1(Q) = 0 for some idealQ generated by a system
of parameters of R. This paper is motivated by the following question of Craig Huneke

Question 1.2 Is it true that an unmixed Noetherian local ring R is F-rational if and only
if for some ideal Q of R generated by a system of parameters, e∗1(Q) = 0?

We provide a negative answer to Question 1.2, see Proposition 5.3. We show that F-
rationality can be characterized by the vanishing of e∗1(Q) where Q is an ideal generated
by parameter test elements which form a system of parameters of R where R is reduced,
excellent and equidimensional local Noetherian ring, see Corollary 4.6.
This paper is organized as follows. In Sect. 2, we review the necessary background

material related to tight closure of ideals, test ideals, F-rational local rings, excellent rings
and the tight closure of the zero submodule ofHd

m(R). In Sect. 3, we generalize the result of
Goto–Nakamura [Theorem 1.1 (1)] for equidimensional excellent local rings by proving
a lower bound for the tight Hilbert function.

Theorem 1.3 Let (R,m) be an equidimensional excellent local ring of prime characteristic
p and Q be an ideal generated by a system of parameters for R. Then, for all n ≥ 0,

�(R/(Qn+1)∗) ≥ �(R/Q∗)
(
n + d
d

)

.

Corollary 1.4 Let (R,m) be a reduced equidimensional excellent local ring of prime char-
acteristic p and Q be an ideal generated by a system of parameters for R. Then,

e0(Q) ≥ �(R/Q∗).

In the next result, we show that if equality holds for some n in Theorem 1.3, then R is F-
rational which can be considered as a generalization of Goto–Nakamura result [Theorem
1.1 (2)] under additional hypothesis.
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Theorem 1.5 Let (R,m)beaNoetherian local ring of dimensiond andprime characteristic
p. Let (S, n) be a Cohen–Macaulay local ring of dimension d and Q(R) be the total quotient
ring of R such that R ⊆ S ⊆ Q(R) and S is a finite R-module. Let Q be an ideal of R
generated by a system of parameters. Suppose that for some fixed n ≥ 0,

�(R/(Qn+1)∗) = e0(Q)
(
n + d
d

)

.

Then, R = S. In particular, R is F-rational.

If d = 2 and the Hochster–Huneke graph of R, denoted by G(R), is connected, then we
can take S in the above theorem to be the S2-ification of R and obtain the following

Corollary 1.6 Let (R,m) be a Noetherian local ring with dim(R/p) = 2 for all p ∈ AssR of
prime characteristic p such that G(R) is connected. If for an ideal Q generated by a system
of parameters for R and for some n ≥ 0,

�(R/(Qn+1)∗) = e0(Q)
(
n + 2
2

)

,

then R is F-rational.

Let (R,m) be a d-dimensional local Noetherian ring and I be anm-primary ideal. Then,
the Hilbert function of I is defined as HI (n) = �(R/In). For large n, it coincides with a
polynomial of degree d called the Hilbert polynomial of I and it is written as

PI (n) = e0(I)
(
n + d − 1

d

)

− e1(I)
(
n + d − 2
d − 1

)

+ · · · + (−1)ded(I).

If R is analytically unramified then by a Theorem of Rees [19], the normal Hilbert function
of an m-primary ideal I, namely HI (n) = �(R/In) coincides with a polynomial of degree d
for large n. This polynomial is called the normal Hilbert polynomial of I and is given by

PI (n) = e0(I)
(
n + d − 1

d

)

− e1(I)
(
n + d − 2
d − 1

)

+ · · · + (−1)ded(I).

In [17], M. Moralés, N. V. Trung and O. Villamayor characterized regular local rings in
terms of the equality e1(Q) = e1(Q) for a parameter ideal Q of an excellent analytically
unramified local ring. It is worth noting that this result was proved in [15] by replacing
the excellence hypothesis of R with its unmixedness. In Sect. 4, we find an analogous
characterization for F-rational local rings as a consequence of explicit formulas for the
tight Hilbert coefficients in terms of the lengths of local cohomology modules Hj

m(R) for
0 ≤ j ≤ d − 1, ei(Q) for 0 ≤ i ≤ d and �(0∗

Hd
m(R)

).

Theorem 1.7 Let (R,m) be an excellent reduced equidimensional local ring of prime
characteristic p and dimension d ≥ 2. Let x1, x2, . . . , xd be parameter test elements and
Q = (x1, x2, . . . , xd) be m-primary. Then,

(1) e∗1(Q) = e0(Q) − �(R/Q∗) + e1(Q) and e∗j (Q) = ej(Q) + ej−1(Q) for all 2 ≤ j ≤ d,

(2) e∗1(Q) =
d−1∑

i=2

(
d − 2
i − 2

)

�(Hi
m(R)) + �(0∗

Hd
m(R)),

(3) e∗i (Q) = (−1)i−1

⎡

⎣
d−i∑

j=0

(
d − i − 1
j − 2

)

�(Hj
m(R)) + �(Hd−i+1

m (R))

⎤

⎦ for i = 2, . . . , d − 1

and
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(4) e∗d(Q) = (−1)d−1�(H1
m(R)).

Corollary 1.8 Let (R,m) be an excellent reduced equidimensional local ring of prime
characteristic p and dimension d ≥ 2. Let x1, x2, . . . , xd be parameter test elements and
Q = (x1, x2, . . . , xd) be m-primary. Then, the following are equivalent.

(i) R is F-rational
(ii) e∗1(Q) = e1(Q)
(iii) e∗1(Q) = 0 and depth R ≥ 2.

In Sect. 5, we construct examples to illustrate some of the above results.

1.1 Notation and conventions

All the rings in this paper are commutative Noetherian rings with multiplicative identity
1. We use (R,m, k) to denote local ring R with unique maximal ideal m and the residue
field k := R/m. For basic results on Cohen–Macaulay rings, excellent rings, tight closure,
Hilbert functions and multiplicity, we refer the reader to [3,16].

2 Preliminaries
In this section, we set up some notation and recall results needed in later sections.

2.1 Background on tight closure

Let R be a commutative ring and I be an ideal of R. An element x ∈ R is said to be integral
over I if

xn + a1xn−1 + a2xn−2 + · · · + an = 0

for some ai ∈ I i for 1 ≤ i ≤ n. The integral closure of I, denoted by I , is the collection of
all elements that are integral over I.
Let R be a Noetherian ring of prime characteristic p and R◦ denote the subset of R con-

sisting of all elements which are not in any minimal prime ideal of R. For I = (x1, . . . , xn),
let I [pe] = (xp

e

1 , . . . , xp
e

n ). The tight closure of I, denoted by I∗, is the set of all elements x
for which there exists some c ∈ R◦ such that cxpe ∈ I [pe] for all pe >> 0. An ideal I is said
to be tightly closed if I = I∗. For any ideal I, we have I ⊆ I∗ ⊆ I .

Definition 2.1 The test ideal of R, denoted by τ (R), is the ideal generated by elements
c ∈ R which satisfies any of the following equivalent conditions.

(i) cxq ∈ I [q] for all q = p0, p1, p2, . . . , whenever x ∈ I∗ for any ideal I of R.
(ii) cx ∈ I whenever x ∈ I∗ for any ideal I of R.

An element of τ (R) ∩ R◦ is called a test element.

A Noetherian ring R is said to beweakly F-regular if every ideal of R is tightly closed. Note
that the test ideal of R is the unit ideal if and only if R is weakly F-regular. Recall that a
parameter ideal of height n is an ideal of height n generated by n elements. For excellent
local equidimensional rings, parameter ideals are those generated by a part of a system of
parameters for R [23].
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Definition 2.2 The parameter test ideal of R, denoted by τpar(R), is the ideal generated
by c ∈ R such that cI∗ ⊂ I for all parameter ideals I of R (equivalently, cxq ∈ I [q] for all
q = pe, e = 0, 1, 2, . . .). An element of τpar(R) ∩ R◦ is called a parameter test element.

Definition 2.3 A Noetherian ring R is called F-rational if all parameter ideals are tightly
closed.

Let (R,m) be a d-dimensional local Noetherian ring and x1, . . . , xd be a system of param-
eters. Then, the local cohomology module Hd

m(R) can be expressed as the dth cohomol-
ogy of the Čech complex with respect to x := x1, . . . , xd since Hd

m(R) ∼= Hd
I (R), where

I = (x1, . . . , xd). Any element of Hd
m(R) can be represented as η :=

[
r

xi1x
i
2...x

i
d

]

. Let R

be a ring of characteristic p > 0. The Frobenius map F : R → R defined by F (r) = rp

naturally induces an action called the Frobenius action onHd
m(R) which takes an element

η =
[

r
(x1x2...xd )i

]
to F (η) =

[
rp

(x1x2...xd )ip

]
. Similarly, the eth iteration of the Frobenius map

Fe : R → R defined as Fe(r) = rpe induces a similar action on Hd
m(R).

Definition 2.4 Let (R,m) be a Noetherian local ring of characteristic p. Then,

0∗
Hd
m(R) = {η ∈ Hd

m(R) : ∃ c ∈ R◦ such that cFe(η) = 0 for all e >> 0}.

We record a result from [22] which reveals the interplay of tight closure of the zero
submodule of Hd

m(R) with tight closure of ideal generated by a system of parameters of R.

Theorem 2.5 [22, Proposition 3.3(i)] Let (R,m) be an excellent equidimensional local ring
of dimension d, and let x1, . . . , xd be a system of parameters. Then, any z ∈ (x1, . . . , xd)∗

uniquely determines an element η =
[

z
x1x2...xd

]
∈ 0∗

Hd
m(R)

. Conversely, if η =
[

z
x1x2...xd

]
∈

0∗
Hd
m(R)

, then z ∈ (x1, . . . , xd)∗.

Remark 2.6 Note that if R is Cohen–Macaulay, η =
[

z
x1x2...xd

]
∈ 0∗

Hd
m(R)

and η = 0 if and
only if z ∈ (x1, . . . , xd). Therefore Theorem 2.5 implies that an excellent Cohen–Macaulay
local ring (R,m) of dimension d is F-rational if and only if 0∗

Hd
m(R)

= 0.

2.2 Excellent rings

Very often, results in this paper and many results for tight closure assume that the given
local ring is excellent. We shall use the following properties of excellent rings frequently.

(1) Let (R,m) be an excellent local ring withm-adic completion R̂ and I be anm-primary
ideal. Then, I∗R̂ = (IR̂)∗ [3, Proposition 10.3.18].

(2) Any excellent reduced local ring is analytically unramified [16, Theorem 70].
(3) Test elements exist in reduced excellent local rings [8, Theorem 6.1 (a)].
(4) If R is excellent, then it is a homomorphic image of Cohen–Macaulay ring [12,

Corollary 1.2].

3 The tight Hilbert function and F-rationality of R
In this section, we give a generalization of Goto–Nakamura results [Theorem 1.1] for
equidimensional excellent local rings.We provide a lower bound for tightHilbert function
and show that when the lower bound is achieved, then the ring is F-rational under some
additional conditions on R. Let us first prove a crucial lemma required for this purpose.
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Lemma 3.1 follows from [9, Theorem 8.20]. However, we are giving a simpler proof of
Lemma 3.1(b). We thank the referee for giving us a clear proof of the next lemma.

Lemma 3.1 Let (R,m) be an equidimensional excellent local ring of prime characteristic
p and Q be an m-primary parameter ideal.

(a) Then, for all n ≥ 0 we have Qn ∩ (Qn+1)∗ = QnQ∗.
(b) Qn/QnQ∗ is a free R/Q∗-module of rank

(n+d−1
d−1

)
, where d = dimR.

Proof (b) We note that Qn is a R-module generated by monomials of degree n in
x1, . . . , xd which formminimal generators ofQn since x1, . . . , xd are analytically indepen-
dent [18, Theorem 5]. Let A = Fp[x1, . . . , xd] be the polynomial subring of R generated
by x1, . . . , xd . Set q = (x1, . . . , xd)A. Let m1, . . . , mt be monomials in the xi of degree
n that form a minimal generating set of the finite R/Q∗-module Qn/QnQ∗ (since any
monomial of greater degree will sit in Qn+1 ⊆ QnQ∗). Suppose we have ui ∈ R such
that z = ∑t

i=1 uimi ∈ QnQ∗. To show that the R/Q∗-module Qn/QnQ∗ is free, we must
show that each ui ∈ Q∗. For each 1 ≤ i ≤ t, set Ji := (m1, . . . , m̂i, . . . , mt )A. Then, since
QnQ∗ ⊆ (Qn+1)∗, we have uimi ∈ (Qn+1)∗ + JiR = (qn+1R)∗ + JiR ⊆ ((qn+1 + Ji)R)∗.
Thus, ui ∈ ((qn+1 + Ji)R)∗ :R mi ⊆ (((qn+1 + Ji) :A mi)R)∗ by [2, Theorem 2.3]. But it is
easy to see in the polynomial ring A that (qn+1 + Ji) :A mi ⊆ q. Thus, ui ∈ (qR)∗ = Q∗. ��

Theorem 3.2 Let (R,m) be an equidimensional excellent local ring of prime characteristic
p and Q be an ideal generated by a system of parameters for R. Then, for all n ≥ 0,

�(R/(Qn+1)∗) ≥ �(R/Q∗)
(
n + d
d

)

.

Proof We have

�(R/(Qn+1)∗) =
n∑

k=0
�((Qk )∗/(Qk+1)∗).

For each k , we have

�

(
(Qk )∗

(Qk+1)∗

)

≥ �

(
Qk + (Qk+1)∗

(Qk+1)∗

)

= �

(
Qk

Qk ∩ (Qk+1)∗

)

= �

(
Qk

QkQ∗

)

.

Since Qk is minimally generated over R by
(k+d−1

d−1
)
generators, the base-changed module

Qk/(QkQ∗) is also generated over R/Q∗ by
(k+d−1

d−1
)
generators. As it must be free on these

generators by Lemma 3.1,

�((Qk )∗/(Qk+1)∗) ≥ �(Qk/QkQ∗) = �(R/Q∗)
(
k + d − 1
d − 1

)

.

Therefore,

�(R/(Qn+1)∗) ≥ �(R/Q∗)
n∑

k=0

(
k + d − 1
d − 1

)

= �(R/Q∗)
(
n + d
d

)

.

The proof is complete. ��

Corollary 3.3 Let (R,m) be a reduced equidimensional excellent local ring of prime char-
acteristic p and Q be an ideal generated by a system of parameters for R. Then,

e0(Q) ≥ �(R/Q∗).
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Proof Since R is analytically unramified, by using Theorem 3.2 for n >> 0 we have,
[
e0(Q) − �(R/Q∗)

]
(
n + d
d

)

− e∗1(Q)
(
n + d − 1
d − 1

)

+ · · · + (−1)de∗d(Q) ≥ 0.

Therefore, e0(Q) ≥ �(R/Q∗). ��

The following lemmaprovides equivalent conditions for F-rationality ofCohen–Macaulay
rings.

Lemma 3.4 Let (R,m) be a Cohen–Macaulay local ring of prime characteristic p. Let Q
be an ideal of R generated by a system of parameters. Then, the following are equivalent.

(a) Q∗ = Q,
(b) (Qn)∗ = Qn for all n ≥ 1,
(c) (Qn)∗ = Qn for some n ≥ 1.

Proof (a) =⇒ (b). Observe that, using [4, Proposition 4.2],Qn ∩ (Qn+1)∗ = Q∗Qn for all
n ≥ 1. Let Q∗ = Q. Apply induction on n. The n = 1 case is an assumption. Suppose that
(Qn)∗ = Qn for n = 1, 2, . . . , r. As (Qr+1)∗ ⊂ (Qr)∗ = Qr, we have

(Qr+1)∗ = (Qr+1)∗ ∩ Qr = Q∗Qr = Qr+1.

By induction (Qn)∗ = Qn for all n ≥ 1.
(b) =⇒ (c). This is clear.
(c) =⇒ (a). Let (Qn)∗ = Qn for some n ≥ 1.Therefore,Qn = Qn−1∩ (Qn)∗ = Q∗Qn−1.

Hence, Q∗ ⊆ Qn : Qn−1 = Q. Therefore, Q∗ = Q. ��

Theorem 3.5 Let (R,m)beaNoetherian local ring of dimensiond andprime characteristic
p. Let (S, n) be a Cohen–Macaulay local ring of dimension d and Q(R) be the total quotient
ring of R such that R ⊆ S ⊆ Q(R) and S is a finite R-module. Let Q be an ideal of R
generated by a system of parameters. Suppose that for some fixed n ≥ 0,

�(R/(Qn+1)∗) = e0(Q)
(
n + d
d

)

.

Then, R = S. In particular R is F-rational.

Proof Using [3, Proposition 10.1.5], we get (QnS)∗ ∩ R ⊆ (Qn)∗. Let f = [S/n : R/m].
Then, we obtain the following

�R(R/(Qn+1)∗) ≤ �R(R/(Qn+1S)∗ ∩ R) ≤ �R(S/(Qn+1S)∗) ≤ �R(S/Qn+1S), (1)

�R(S/Qn+1S) = f �S(S/(Qn+1S)) = fe0(QS)
(
n + d
d

)

= e0(Q)
(
n + d
d

)

. (2)

Therefore, if �(R/(Qn+1)∗) = e0(Q)
(n+d

d
)
, then (Qn+1S)∗ = (Qn+1S). As S is Cohen–

Macaulay, using Lemma 3.4 it follows that (QS)∗ = QS and therefore, S is F-rational.
Now, consider the exact sequence of finite R-modules

0 → R → S → C → 0,

where C = S/R. From (1) and (2), it follows that (Qn+1)∗ = (Qn+1S)∗ ∩ R = Qn+1S ∩ R.
Tensor this sequence with R/Qn+1 to get the exact sequence of R-modules

0 → R/(Qn+1)∗ → S/Qn+1S → C/Qn+1C → 0.
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As �(R/(Qn+1)∗) = e0(Q)
(n+d

d
)
, using (1) and (2), we get �R(R/(Qn+1)∗) = �R(S/Qn+1S)

which yields C = Qn+1C. By Nakayama’s lemma, C = 0. This means R = S. In particular,
R is F-rational. ��

We discuss a relationship of e∗1(Q) with S2-ification. Let (R,m, k) be a Noetherian local
ring of dimension d.We recall a few facts about S2-ification of R from [10].

Definition 3.6 (1) We say that R is equidimensional if dimR/p = d for all minimal
primes p of R. If R is equidimensional and it has no embedded associated primes, then R
is called unmixed.
(2) Let (R,m) be an equidimensional local ring of dimension d. The Hochster–Huneke

graph G(R) is a graph where the vertices are the minimal prime ideals of R and the edges
are the pairs of prime ideals (P1, P2) with ht(P1 + P2) = 1.
(3) Let (R,m, k) be an equidimensional and unmixed local ring. We say that a ring S is

an S2-ification of R if
(i) S lies between R and its total quotient ring,
(ii) S is module-finite over R and is S2 as an R-module, and
(iii) for every element s ∈ S \R, the idealD(s) := {r ∈ R : rs ∈ R} has height at least two.

IfR is S2, thenG(R) is connected.Moreover,G(R) is connected if and only if the S2-ification
of R is local [10, Theorem 3.6].

Corollary 3.7 Let (R,m) be a Noetherian local ring with dim(R/p) = 2 for all p ∈ AssR of
prime characteristic p such that G(R) is connected. If for an ideal Q generated by a system
of parameters for R and for some n ≥ 0,

�(R/(Qn+1)∗) = e0(Q)
(
n + 2
2

)

,

then R is F-rational.

Proof By the result above, the S2-ification S of R is a Cohen–Macaulay local ring that is
a finite R-module. ��

4 On the equality e∗
1(Q) = e1(Q) and F-rational local rings

In [17], M.Moralés, N. V. Trung and O. Villamayor proved the following characterization
of regular local rings.

Theorem 4.1 [17, Theorem 1,2] Let (R,m) be an analytically unramified excellent local
domain and I be an m-primary parameter ideal. If e1(I) = e1(I), then R is a regular and
In = In for all n.

In this section, we find explicit formulas for the tight Hilbert coefficients of an ideal
Q generated by system of parameters that are parameter test elements, in terms of the
lengths of local cohomology modules Hj

m(R) for 0 ≤ j ≤ d − 1, ei(Q) for 0 ≤ i ≤ d and
�(0∗

Hd
m(R)

).We use these formulas to characterize F-rationality of the ring in terms of the
equality e∗1(Q) = e1(Q) and also in terms of vanishing of e∗1(Q) under the condition that
depth R ≥ 2.
Let (R,m) be a local ring of dimension d and I be any m-primary parameter ideal of

R. It is well known that �(R/I) ≥ e0(I). Moreover, R is Cohen–Macaulay if and only
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if �(R/I) = e0(I) for some (and hence for all) I. Recall that R is called Buchsbaum if
�(R/I) − e0(I) is independent of the choice of I.

Definition 4.2 Let (R,m) be a d-dimensional Noetherian local ring. An m-primary
parameter ideal I is said to be standard if

�(R/I) − e0(I) =
d−1∑

i=0

(
d − 1

i

)

�(Hi
m(R)).

The following result due to Linquan Ma and Pham Hung Quy plays a crucial role for
proving a characterization of F-rationality in terms of vanishing of e∗1(Q) for m-primary
parameter ideals generated by parameter test elements.

Theorem 4.3 [13, Theorem 4.3] Let (R,m) be an excellent equidimensional local ring
such that τpar(R) is m-primary. Let Q be an ideal generated by a system of parameters
contained in τpar(R). Then we have

�(Q∗/Q) =
d−1∑

i=0

(
d
i

)

�(Hi
m(R)) + �

(
0∗
Hd
m(R)

)
.

Remark 4.4 (i) If Q is an ideal generated by a system of parameters of R consisting of
parameter test elements, then it is a standard system of parameters of R [11, Remark 5.11]
and [21, Proposition 3.8].
(ii) If Q is generated by a standard system of parameters, then the Hilbert polynomial,

in fact Hilbert function of Q can be found in [20, Corollary 3.2], [25, Corollary 4.2], [5,
Theorem 7], etc. For n ≥ 0,

�(R/Qn) =
d∑

i=0
(−1)iei(Q)

(
n + d − 1 − i

d − i

)

, where

ei(Q) = (−1)i
d−i∑

j=0

(
d − i − 1
j − 1

)

�(Hj
m(R)) for all i = 1, 2, . . . , d.

(iii) If x1, . . . , xd ∈ τpar(R) and Q = (x1, . . . , xd) is m-primary in (R,m), then Q ⊆ τpar(R)
and taking radicals on both sides, we obtain m ⊆ rad(τpar(R)) which implies that τpar(R)
is either m-primary or R.

Theorem 4.5 Let (R,m) be an excellent reduced equidimensional local ring of prime
characteristic p and dimension d ≥ 2. Let x1, x2, . . . , xd be parameter test elements and
Q = (x1, x2, . . . , xd) be m-primary. Then,

(1) e∗1(Q) = e0(Q) − �(R/Q∗) + e1(Q) and e∗j (Q) = ej(Q) + ej−1(Q) for all 2 ≤ j ≤ d,

(2) e∗1(Q) = ∑d−1
i=2

(d−2
i−2

)
�
(
Hi
m(R)

) + �
(
0∗
Hd
m(R)

)
,

(3) e∗i (Q) = (−1)i−1
[∑d−i

j=0
(d−i−1

j−2
)
�
(
Hj
m(R)

) + �(Hd−i+1
m (R))

]
for i = 2, . . . , d.

Proof (1) By Lemma 3.1, Qn/QnQ∗ is a free R/Q∗-module of rank
(n+d−1

d−1
)
for all n ≥ 1

and by [1, Lemma 3.1], (Qn+1)∗ = QnQ∗ for all n ≥ 1. Hence,

�(Qn/QnQ∗) = �(Qn/(Qn+1)∗) = �(R/Q∗)
(
n + d − 1
d − 1

)

.
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Thus �(R/(Qn+1)∗) = �(R/Qn)+�(R/Q∗)
(n+d−1

d−1
)
for all n ≥ 1. By Remark 4.4(ii), the tight

Hilbert function of Q is given by

H∗
Q(n) = e0(Q)

(
n + d − 2

d

)

− e1(Q)
(
n + d − 3
d − 1

)

+ · · · + (−1)ded(Q)

+ �(R/Q∗)
(
n + d − 2
d − 1

)

=
d∑

i=0
ei(Q)(−1)i

(
n + d − 2 − i

d − i

)

+ �(R/Q∗)
(
n + d − 2
d − 1

)

=
d∑

i=0
ei(Q)(−1)i

[(
n + d − 1 − i

d − i

)

−
(
n + d − 2 − i
d − 1 − i

)]

+ �(R/Q∗)
(
n + d − 2
d − 1

)

= e0(Q)
(
n + d − 1

d

)

− [e0(Q) − �(R/Q∗) + e1(Q)]
(
n + d − 2
d − 1

)

+
d∑

i=2
(−1)i[ei(Q) + ei−1(Q)]

(
n + d − i − 1

d − i

)

.

Equating like terms on both sides, we obtain the desired formulas.
(2) From (1), we have e∗1(Q) = e0(Q) − �(R/Q∗) + e1(Q). On the other hand, since Q is

standard, using Remark 4.4(iii) and Theorem 4.3 we have

�(R/Q∗) = �(R/Q) −
d−1∑

i=0

(
d
i

)

�
(
Hi
m(R)

) − �
(
0∗
Hd
m(R)

)

= e0(Q) +
d−1∑

i=0

(
d − 1

i

)

�
(
Hi
m(R)

) −
d−1∑

i=0

(
d
i

)

�
(
Hi
m(R)

) − �
(
0∗
Hd
m(R)

)

= e0(Q) −
d−1∑

i=1

(
d − 1
i − 1

)

�
(
Hi
m(R)

) − �
(
0∗
Hd
m(R)

)
,

where the second equality above follows from Remark 4.4(i). Hence,

e∗1(Q) =
d−1∑

i=1

(
d − 1
i − 1

)

�
(
Hi
m(R)

) + �
(
0∗
Hd
m(R)

)
+ e1(Q). (3)

Furthermore by Remark 4.4(ii), it follows that

e∗1(Q) =
d−1∑

i=1

(
d − 1
i − 1

)

�
(
Hi
m(R)

) + �
(
0∗
Hd
m(R)

)
−

d−1∑

j=0

(
d − 2
j − 1

)

�
(
Hj
m(R)

)

=
d−1∑

i=1

[(
d − 1
i − 1

)

−
(
d − 2
i − 1

)]

�
(
Hi
m(R)

) + �
(
0∗
Hd
m(R)

)

=
d−1∑

i=1

(
d − 2
i − 2

)

�
(
Hi
m(R)

) + �
(
0∗
Hd
m(R)

)

=
d−1∑

i=2

(
d − 2
i − 2

)

�
(
Hi
m(R)

) + �
(
0∗
Hd
m(R)

)
.
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(3) Using Remark 4.4(i)–(ii), we obtain

�(R/Qn) =
d∑

i=0

(
n + d − 1 − i

d − i

)

(−1)iei(Q) for all n ≥ 1,

(−1)iei(Q) =
d−i∑

j=0

(
d − i − 1
j − 1

)

�
(
Hj
m(R)

)
for all i = 1, 2, . . . , d,

�(R/Q) − e0(Q) =
d−1∑

j=0

(
d − 1

j

)

�
(
Hj
m(R)

)

ed(Q) = (−1)d�
(
H0
m(R)

)
.

In the formulas above, we follow the convention
( n
−1

) = 1 if n = −1 and
( n
−1

) = 0 if
n �= −1. By the above formulas and the fact that R is reduced and equidimensional,

e∗d(Q) = ed(Q) + ed−1(Q) = (−1)d−1�
(
H1
m(R)

)
.

Next, we find the formulas for e∗i (Q) where i = 2, 3, . . . , d in terms of the lengths of the
local cohomology modules. Put hj = �(Hj

m(R)).

e∗i (Q) = ei(Q) + ei−1(Q)

= (−1)i
d−i∑

j=0

(
d − i − 1
j − 1

)

hj + (−1)i−1

⎡

⎣
d−i∑

j=0

(
d − i
j − 1

)

hj + hd−i+1

⎤

⎦

= (−1)i−1

⎡

⎣
d−i∑

j=0

(
d − i − 1
j − 2

)

hj + hd−i+1

⎤

⎦ .

��

In the dim 1 case, Question 1.2 has an affirmative answer. Let (R,m) be a one-dimensional
analytically unramified local ring and I = (a) be m-primary. Since R is reduced and
dimR = 1, R is Cohen–Macaulay. Let

P∗
I (n) = e(I)n − e∗1(I).

If e∗1(I) = 0, then R is F-rational. Let (b) ⊆ m be a minimal reduction of m. By Briançon-
Skoda Theorem, (b) = (b)∗. As R is F-rational, (b)∗ = (b). Thus, (b) = (b) = m. Hence, R
is a regular local ring. In the case, dimR ≥ 2, we have answered Huneke’s question with
some additional hypothesis which can be derived as a consequence of Theorem 4.5.

Corollary 4.6 Let (R,m) be an excellent reduced equidimensional local ring of prime
characteristic p and dimension d ≥ 2. Let x1, x2, . . . , xd be parameter test elements and
Q = (x1, x2, . . . , xd) be m-primary. Then, the following are equivalent.

(i) R is F-rational,
(ii) e∗1(Q) = e1(Q),
(iii) e∗1(Q) = 0 and depth R ≥ 2.

Proof (i) ⇐⇒ (ii): If R is F-rational, then R is Cohen–Macaulay. Therefore, Qn = (Qn)∗

for all n ≥ 1 [4, Corollary 4.3]. Hence, �(R/(Qn+1)∗) = e0(Q)
(n+d

d
)
for all n ≥ 0 which

implies that e∗1(Q) = e1(Q) = 0.
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Conversely, let e∗1(Q) = e1(Q).UsingTheorem4.5(1), e0(Q) = �(R/Q∗).AsR is unmixed,
by [6], R is F-rational.
(i) ⇐⇒ (iii): IfR is F-rational, then it is Cohen–Macaulay so that (iii) holds. Conversely,

let e∗1(Q) = 0 and depth R ≥ 2. By Theorem 4.5(2), it follows that 0∗
Hd
m(R)

= 0 and
Hi
m(R) = 0 for 2 ≤ i ≤ d − 1. As depth R ≥ 2, H0

m(R) = H1
m(R) = 0. Hence, R is

Cohen–Macaulay ring with 0∗
Hd
m(R)

= 0. By Remark 2.6, it follows that R is F-rational. ��

5 A counterexample to Huneke’s question
Weprovide a negative answer to Huneke’s question by constructing examples of unmixed
local rings in which e∗1(Q) = 0 for an ideal Q generated by a system of parameters, but R
is not F-rational. The next proposition gives a class of examples where 0∗

Hd
m(R)

vanishes.

Proposition 5.1 Let (R,m) be an equidimensional reduced local ring of dimension d, and
AssR = {P1, P2}. Suppose R/P1 and R/P2 are both F-rational and dim R/(P1+P2) ≤ d−2.
Then, 0∗

Hd
m(R)

= 0.

Proof Consider the long exact sequence of local cohomology arising from the following
short exact sequence.

0 → R → R/P1 ⊕ R/P2 → R/(P1 + P2) → 0.

Since dimR/(P1 + P2) ≤ d − 2, it follows thatHi
m(R/(P1 + P2)) = 0 for i = d − 1, d. This

implies that Hd
m(R) ∼= Hd

m(R/P1) ⊕ Hd
m(R/P2). Clearly, 0∗

Hd
m(R)

∼= 0∗
Hd
m(R/P1)

⊕ 0∗
Hd
m(R/P2)

.
Since R/Pi is F-rational for i = 1, 2, we have 0∗

Hd
m(R/Pi)

= 0 which implies that 0∗
Hd
m(R)

= 0.
��

Lemma 5.2 Let (R,m) be an equidimensional reduced local ring of dimension d, and
Ass R = {P1, P2}. Then, for any m-primary parameter ideal Q in R,

e0(Q) = e0
(
(Q + P1)/P1

) + e0
(
(Q + P2)/P2

)
.

Proof Since R is reduced, �RPi (RPi ) = 1 for i = 1, 2. By the associativity formula for
multiplicity, we get

e0(Q) = e0
(
(Q + P1)/P1

)
�(RP1 ) + e0(Q + P2/P2)�(RP2 )

= e0
(
(Q + P1)/P1

) + e0
(
(Q + P2)/P2

)
.

��
Proposition 5.3 Let (R,m) be an equidimensional reduced local ring of dimension d and
prime characteristic p with Ass R = {P1, P2}. Suppose R/P1 and R/P2 are both F-rational
and dimR/(P1+P2) ≤ d−2. Then, R is not Cohen–Macaulay and for any ideal generated
by a system of parameters Q, we have e∗1(Q) = 0.

Proof Since R/Pi is F-rational, we have (Qn+1R/Pi)∗ = (Qn+1 + Pi)/Pi for i = 1, 2.
Using [7, Proposition 6.25(a)], we have (Qn+1)∗ + Pi = Qn+1 + Pi for all i = 1, 2. Thus,
(Qn+1)∗ ⊆ (Qn+1 + P1) ∩ (Qn+1 + P2). Moreover, x ∈ (Qn+1)∗ if and only if the image of
x in R/Pi is contained in (Qn+1R/Pi)∗ = (Qn+1 + Pi)/Pi for i = 1, 2. Hence, (Qn+1)∗ =
(Qn+1 + P1) ∩ (Qn+1 + P2). Therefore, we have the short exact sequence

0 → R/(Qn+1)∗ → R/(Qn+1 + P1) ⊕ R/(Qn+1 + P2) → R/(Qn+1 + P1 + P2) → 0
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for all n ≥ 0. Thus, we have

�(R/(Qn+1)∗) = �
(
R/(Qn+1 + P1)

) + �
(
R/(Qn+1 + P2)

) − �
(
R/(Qn+1 + P1 + P2)

)

= [
e0

(
(Q + P1)/P1

) + e0
(
(Q + P2)/P2

)]
(
n + d
d

)

− �
(
R/(Qn+1 + P1 + P2)

)

= e0(Q)
(
n + d
d

)

− �(R/(Qn+1 + P1 + P2)),

where the last equality follows from Lemma 5.2.
Since �(R/(Qn+1 + P1 + P2)) is a polynomial of degree atmost d − 2, e∗1(Q) = 0 for all

Q. Consider the short exact sequence of R-modules

0 → R → R/P1 ⊕ R/P2 → R/(P1 + P2) → 0.

Since depth(R/P1⊕R/P2) = d > dim(R/(P1+P2)), by the depth Lemma depth R ≤ d−1.
Hence, R is not Cohen–Macaulay. ��

We construct an example to show that the condition depth R ≥ 2 in Corollary 4.6 is not
superfluous for characterization of F-rationality in terms of vanishing of e∗1(Q).

Example 5.4 Let S = Fp[|X, Y, Z,W |] and R = S
I∩J , where I = (X, Y ) and J = (Z,W ).

Let the lower case letters denote images of the upper case letters. Put m = (x, y, z, w). Let
a = x + z, b = y + w. Then, a, b is a system of parameters. Set Q = (a, b). Since R is
Buchsbaum

�

(
R
Q

)

− e0(Q) =
d−1∑

i=0

(
d − 1

i

)

�(Hi
m(R)) = �(H1

m(R)) = 1,

Note thatH1
m(R) ∼= H0

m(R/m) ∼= R/m.Using ei(Q) = (−1)i
∑d−i

j=0
(d−i−1

j−1
)
�(Hj

m(R)),we get
e1(Q) = −�(H1

m(R)) = −1, e2(Q) = 0. Since R is Buchsbaum and 0∗
Hd
m
(R) = 0, it follows

that τpar(R) = m. Thus, by Theorem 4.5(1), e∗2(Q) = e2(Q) + e1(Q) = −1 and e∗1(Q) = 0
by Proposition 5.3. Therefore,

P∗
Q(n) = 2

(
n + 1
2

)

− 1.

Example 5.5 We construct a complete local domain of dimension 2 that is not F-rational,
but there exists an ideal Q generated by a system of parameters Q for which e∗1(Q) = 0.
Let k be a field of prime characteristic p ≥ 3 and R = k[[x4, x3y, xy3, y4]]. We have the
S2-ification of R is the local ring S = k[[x4 , x3y, x2y2, xy3, y4]]. We have C := S/R ∼= k , so
that �(C/JC) = 1 for anym-primary ideal J of R. Let Q be anym-primary ideal parameter
ideal of R. Consider the short exact sequence,

0 → R/(Qn+1)∗ → S/(Qn+1S)∗ → C → 0.

We have

�(R/(Qn+1)∗) = �(S/(Qn+1)∗S) − 1.

Since S is F-regular,
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�(R/(Qn+1)∗) = e0(Q)
(
n + 2
2

)

− 1

for all n ≥ 1. Since S/n ∼= R/m, e0(Q) = e0(QS). Hence, e∗1(Q) = 0.
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