
S. Osher et al. Res Math Sci (2022) 9:55
https://doi.org/10.1007/s40687-022-00351-1

RESEARCH

Laplacian smoothing gradient descent
Stanley Osher1, Bao Wang2*, Penghang Yin3, Xiyang Luo1, Farzin Barekat1, Minh Pham1 and
Alex Lin1

*Correspondence:
wangbaonj@gmail.com
2Department of Mathematics,
Scientific Computing and
Imaging Institute, University of
Utah, Salt Lake City, UT, USA
Full list of author information is
available at the end of the article

Abstract

We propose a class of very simple modifications of gradient descent and stochastic
gradient descent leveraging Laplacian smoothing. We show that when applied to a
large variety of machine learning problems, ranging from logistic regression to deep
neural nets, the proposed surrogates can dramatically reduce the variance, allow to
take a larger step size, and improve the generalization accuracy. The methods only
involve multiplying the usual (stochastic) gradient by the inverse of a positive definitive
matrix (which can be computed efficiently by FFT) with a low condition number
coming from a one-dimensional discrete Laplacian or its high-order generalizations.
Given any vector, e.g., gradient vector, Laplacian smoothing preserves the mean and
increases the smallest component and decreases the largest component. Moreover, we
show that optimization algorithms with these surrogates converge uniformly in the
discrete Sobolev Hp

σ sense and reduce the optimality gap for convex optimization
problems. The code is available at: https://github.com/BaoWangMath/
LaplacianSmoothing-GradientDescent.

Keywords: Laplacian smoothing, Machine learning, Optimization

1 Introduction
Stochastic gradient descent (SGD) [37] has been the workhorse for solving large-scale
machine learning (ML) problems. It gives rise to a family of algorithms that enables
efficient training of many ML models including deep neural nets (DNNs). SGD utilizes
training data very efficiently at the beginning of the training phase, as it converges much
faster than GD and L-BFGS during this period [8,16]. Moreover, the variance of SGD can
help gradient-based optimization algorithms circumvent local minima and saddle points
and reach those that generalize well [18,38]. However, the variance of SGD also slows
down the convergence after the first few training epochs. To account for the effect of
SGD’s variance and to ensure the convergence of SGD, a decaying step size has to be
applied which is one of the major bottlenecks for the fast convergence of SGD [7,40,41].
Moreover, in training many MLmodels, typically the stage-wise schedule of learning rate
is used in practice [38,39]. In this scenario, the variance of SGD usually leads to a large
optimality gap.
Through numerical evidence of the bottlenecks of SGD in deep learning, we answer

the following question in this work: Can we improve SGD such that the variance of the

123 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-022-00351-1&domain=pdf
https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent
https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent

55 Page 2 of 26 S. Osher et al. ResMath Sci (2022) 9:55

stochastic gradient is reduced on-the-fly with negligible extra computational and memory
overhead and a larger step size is allowed to train ML models?
We answer the above question affirmatively by applying the discrete one-dimensional

Laplacian smoothing (LS) operator to smooth the stochastic gradient vector on-the-fly.
The LS operation can be performed efficiently by using the fast Fourier transform (FFT).

1.1 Our contribution

In this paper, we propose a newmodification to the stochastic gradient-based algorithms,
which at its core uses the LS operator to reduce the variance of stochastic gradient vector
on-the-fly. The (stochastic) gradient smoothing can be done by multiplying the gradient
by the inverse of the following circulant convolution matrix

Aσ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + 2σ −σ 0 . . . 0 −σ

−σ 1 + 2σ −σ . . . 0 0
0 −σ 1 + 2σ . . . 0 0
.

−σ 0 0 . . . −σ 1 + 2σ

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

for some positive constant σ ≥ 0. In fact, we can write Aσ = I − σL, where I is the
identity matrix, and L is the discrete one-dimensional Laplacian which acts on indices. If
we define the (periodic) forward finite difference matrix as

D+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
.

1 0 0 . . . 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

then, we have Aσ = I − σD−D+, where D− = −D�+ is the backward finite difference.
We summarize the benefits of this simple LS operation below:

– It reduces the variance of stochastic gradient on-the-fly and reduces the optimality
gap when constant step size is used.

– It allows us to take a larger step size than the standard (S)GD.
– It is applicable to train many ML models including DNNs with better generalization.
– It converges faster for the strongly convex quadratic objective functions that have a

large condition number1 numerically.
– It is more robust to the noisy gradient.

Moreover, as a straightforward extension, we generalize the LS to high-order smoothing
operators, e.g., biharmonic smoothing.

1.2 Related work

There is an extensive volume of research over the past decades for designing algorithms to
speed up the convergence. These include usingmomentumand other heavy-ballmethods,
reduce the variance of the stochastic gradient, and adapt the learning rate.

1Here, the condition number is the ratio of the largest and smallest eigenvalues of the Jacobian of the strongly convex
objective functions.

S. Osher et al. Res Math Sci (2022) 9:55 Page 3 of 26 55

The first type of idea to accelerate the convergence of GD and SGD is to apply
the momentum. Around local optima, the surface curves can be much more steep in
one dimension than in another [43], whence (S)GD oscillates across the slopes of the
ravine while only making hesitant progress along the bottom towards the local optimum.
Momentum is proposed to accelerate (S)GD in the relevant direction and dampens oscil-
lations [34]. Nesterov accelerated gradient (NAG) is also introduced to slow down the
progress before the surface curve slopes up, and it provably converges faster in specific
scenarios [31].
Due to the bottleneck of the variance of the stochastic gradient, a natural idea is to reduce

the variance of the stochastic gradient. There are several principles in developing variance
reduction algorithms [8], including dynamic sample size methods; gradient aggregation,
control variate type of technique, is widely used along this direction; some representative
works are SAGA [11], SCSG [24], and SVRG [19]; and iterative averaging methods.
Another category of work tries to speed up the convergence of GD and SGD by using

an adaptive step size, which makes use of the historical gradient to adapt the step size.
RMSProp [44] and Adagrad [13] adapt the learning rate to the parameters, perform-
ing smaller updates (i.e., low learning rates) for parameters associated with frequently
occurring features, and more substantial updates (i.e., high learning rates) for parame-
ters associated with infrequent features. Both RMSProp and Adagrad make the learning
rate to be historical gradient dependent. Adadelta [48] extends the idea of RMSProp and
Adagrad; instead of accumulating all past squared gradients, it restricts the window of
accumulated past gradients to some fixed size w. Adam [21] and AdaMax [21] behave
like a heavy ball with friction, and they compute the decaying averages of past and past
squared gradients to adaptive the learning rate. AMSGrad [36] fixes the issue of Adam
that may fail to converge to an optimal solution. Adam can be viewed as a combination of
RMSprop and momentum: RMSprop contributes the exponentially decaying average of
past squared gradients, while momentum accounts for the exponentially decaying aver-
age of past gradients. Since NAG is superior to vanilla momentum, Dozat [12] proposed
NAdam which combines the idea Adam and NAG.

1.3 Notations

Throughout this paper, we use boldface upper-case letters A, B to denote matrices and
boldface lower-case letters w, u to denote vectors. For vectors, we use ‖ · ‖ to denote the
�2-norm for vectors and spectral norm for matrices, respectively. And we use λmax(A),
λmin(A), and λi(A) to denote the largest, smallest, and the i-th largest eigenvalues, respec-
tively, of a given Hermitian matrix A. For a function f : Rn → R, we use ∇f and ∇2f
to denote its gradient and Hessian, and f ∗ to denote a local minimum value of f . For a
positive definite matrix A, we define the vector induced norm by as ‖w‖A := √〈w,Aw〉.
List {1, 2, · · · , n} is denoted by [n].

1.4 Organization

We organize this paper as follows: In Sect. 2, we introduce the LS-(S)GD algorithm and
the FFT-based fast solver. In Sect. 3, we show that LS-(S)GD allows us to take a larger
step size than (S)GD. In Sect. 4, we show that LS reduces the variance of SGD both
empirically and theoretically. We show that LS-GD can avoid some local minima and

55 Page 4 of 26 S. Osher et al. ResMath Sci (2022) 9:55

speed up convergence numerically in Sect. 5. In Sect. 6, we show the benefit of LS in deep
learning, including training LeNet [23], ResNet [17], Wasserstein generative adversarial
nets (WGAN) [27], and deep reinforcement learning (DRL) model. The convergence
analysis for LS-(S)GD is provided in Sect. 7. Most of the technical proofs are provided in
Sect. 8.2.

2 Laplacian smoothing (stochastic) gradient descent
We present our algorithm for SGD in the finite-sum setting. The GD and other settings
follow straightforwardly. Consider the following finite-sum optimization

min
w

F (w) := 1
n

n∑
i=1

fi(w), (2)

where fi(w)
.= f (w, xi, yi) is the loss of a given MLmodel on the training data {xi, yi}. This

finite-sum formalism is an abstract of training many ML models mentioned above. To
resolve the optimization problem (2), starting from some initial guess w0, the (k + 1)-th
iteration of SGD reads

wk+1 = wk − ηk∇fik (w
k), (3)

where ηk is the step size, ik is a random sample with replacement from [n].
We propose to replace the stochastic gradient ∇fik (wk) by the Laplacian smoothed

surrogate, and we call the resulting algorithm LS-SGD, which is written as

wk+1 = wk − ηkA−1
σ ∇fik (w

k). (4)

Intuitively, compared to the standard GD, this scheme smooths the gradient on-the-fly by
an elliptic smoothing operator while preserving the mean of the entries of the gradient.
We adopt fast Fourier transform (FFT) to computeA−1

σ ∇f (wk), which is available in both
PyTorch [33] andTensorFlow [2].Givenavector g , a smoothedvectord canbeobtainedby
computing d = A−1

σ g . This is equivalent to g = d−σv∗d, where v = [−2, 1, 0, · · · , 0, 1]�
and ∗ is the convolution operator. Therefore,

d = ifft
(

fft(g)
1 − σ · fft(v)

)
,

where we use component-wise division (here, fft and ifft are the FFT and inverse FFT,
respectively). Hence, the gradient smoothing can be done in quasilinear time. This addi-
tional time complexity is almost the same as performing a one-step update on the weights
vectorw. Formanymachine learningmodels, wemay need to concatenate the parameters
into a vector. This reshaping might lead to some ambiguity, nevertheless, based on our
tests, both row and columnmajored reshaping work for the LS-GD algorithm. Moreover,
in deep learning cases, the weights in different layers might have different physical mean-
ings. For these cases, we perform layer-wise gradient smoothing, instead. We summarize
the LS-SGD for solving the finite-sum optimization (2) in Algorithm 1.

Remark 1 In image processing and elsewhere, the Sobolev gradient [20] uses a multi-
dimensional Laplacian operator that operates on w and is different from the one-
dimensional discrete Laplacian operator employed in our LS-GD scheme that operates
on indices.

S. Osher et al. Res Math Sci (2022) 9:55 Page 5 of 26 55

Algorithm 1 LS-SGD
Input: fi(w) for i = 1, 2, · · · , n.
w0: initial guess ofw, T : the total number of iterations, and ηk , k = 0, 1, · · · , T : the scheduled
step size.
Output: The optimized weights wopt.
for k = 0, 1, · · · , T do

wk+1 = wk − ηkA−1
σ

(∇fik (wk)
)
.

return wT

It is worth noting that LS is a complement to themomentum and adaptive learning rate,
e.g., Adagrad algorithms. It can be combined with these acceleration techniques to speed
up the convergence. We will show the performance of these algorithms in Sect. 6.

2.1 Generalized smoothing gradient descent

We can generalize Aσ to the n-th-order discrete hyper-diffusion operator as follows

I + (−1)nσLn .= An
σ .

Each row of the discrete Laplacian operator L consists of an appropriate arrangement of
weights in central finite difference approximation to the second-order derivative. Sim-
ilarly, each row of Ln is an arrangement of the weights in the central finite difference
approximation to the 2n-th-order derivative.

Remark 2 The n-th-order smoothing operator I + (−1)nσLn can only be applied to the
problem with dimension at least 2n + 1. Otherwise, we need to add dummy variables.

Again, we apply FFT to compute the smoothed gradient vector. For a given gradient
vector g , the smoothed surrogate, (An

σ)−1g .= d, can be obtained by solving g = d +
(−1)nσvn ∗ d, where vn = (cnn+1, c

n
n+2, · · · , cn2n+1, 0, · · · , 0, cn1 , cn2 , · · · , cnn−1, cnn) is a vector

of the same dimension as the gradient to be smoothed. And the coefficient vector cn =
(cn1 , c

n
2 , · · · , cn2n+1) can be obtained recursively by the following formula:

c1 = (1,−2, 1), cni =

⎧⎪⎪⎨
⎪⎪⎩

1 i = 1, 2n + 1,

−2cn−1
1 + cn−1

2 i = 2, 2n,

cn−1
i−1 − 2cn−1

i + cn−1
i+1 otherwise.

Remark 3 The computational complexities for different order smoothing schemes are
the same when the FFT is utilized for computing the surrogate gradient.

3 The choice of step size
In this section, we will discuss the step size issue of LS-(S)GD with a theoretical focus on
LS-GD on the function with L-Lipschitz gradient.

Definition 1 We say the function F has L-Lipschitz gradient, if for any w,u ∈ R
m, we

have ‖∇F (w) − ∇F (u)‖ ≤ L‖w − u‖.
For the function with L-Lipschitz gradient, it is known that the largest suitable step size

for GD is ηGDmax = 1/L [32]. In the following, we will establish a �2 estimate of the square
root of the LS operator when it is applied to an arbitrary vector. Based on these estimates,
we will show that LS-GD can take a larger step size than GD.

55 Page 6 of 26 S. Osher et al. ResMath Sci (2022) 9:55

To determine the largest suitable step size for LS-GD, we first do a change of variable
in the LS-GD (2) by letting yk = H−1

σ wk where Hσ = A−1/2
σ , and then LS-GD can be

written as

yk+1 = yk − ηkHσ ∇F (Hσ yk), (5)

which is actually the GD for solving the following minimization problem

min
y

F (Hσ y) := min
y

G(y). (6)

Therefore, to determine the largest suitable step size for LS-GD, it is equivalent to find
the largest appropriate step size for GD for minw G(w) (here we use w instead of y for the
ease of notation).

3.1 �2 estimates

First, for any w,u ∈ R
m, suppose the function F has L-Lipschitz gradient, i.e.,

‖∇F (w) − ∇F (u)‖ ≤ L‖w − u‖.
Then

‖∇G(w) − ∇G(u)‖ = ‖Hσ (∇F (w) − ∇F (u))‖
≤ ‖Hσ ‖‖∇F (w) − ∇F (u)‖
≤ ‖∇F (w) − ∇F (u)‖,

where the last inequality is because ‖Hσ ‖’s eigenvalues are all not greater than one.
This estimate indicates that we can use a step size at least 1/L in GD for searching the
optimum of the functionG, i.e., we can use a step size at least 1/L in LS-GD for searching
the optimum of the function F .
Next, we establish a high probability estimation for taking a larger step size when using

LS-GD. Without any prior knowledge about v := ∇F (w) − ∇F (u), let us assume it is
sampled uniformly from a ball inR

m centered at the origin.Without loss of generality, we
assume the radius of this ball is one. Under the above ansatz, we have the following result

Theorem 1 (�2-estimate) Let σ > 0, and

β = 1
m

m∑
i=1

1
|1 + 2σ − σ zi − σ zi| ,

where z1, · · ·, zm are the m roots of unity. Let v be uniformly distributed in the unit ball of
the m-dimensional �2 space. Then for any α >

√
β

1− π√
m
, we have

P (‖Hσ v‖ ≥ α‖v‖) ≤ 2 exp

⎛
⎝− 2

π2m
(

α − α π√
m − √

β

α + 1

)2⎞
⎠. (7)

The proof of this theorem is provided in the appendix. For high-dimensional ML prob-
lems, e.g., training DNNs,m can be as large as tens of millions so that the probability will
be almost one. The closed form of β is given in Lemma 1.

Lemma 1 If z1, . . . , zm denote the m roots of unity, then

β = 1
m

m∑
j=1

1
|1 + 2σ − σ zj − σ z̄j| = 1 + ωm

(1 − ωm)
√
1 + 4σ

→m→∞
1√

1 + 4σ
, (8)

S. Osher et al. Res Math Sci (2022) 9:55 Page 7 of 26 55

Table 1 The values of β corresponding to some σ andm

σ 1 2 3 4 5

m = 1000 0.447 0.333 0.277 0.243 0.218

m = 10000 0.447 0.333 0.277 0.243 0.218

m = 100000 0.447 0.333 0.277 0.243 0.218

β converges quickly to its limiting value asm increases

where ω = 2σ+1−√
1+4σ

2σ < 1.

The proof of the above lemma needs some tools from complex and harmonic analysis,
which is provided in the appendix. Table 1 lists some typical values for different σ andm.
Based on Theorem 1, LS-GD can take the largest step size 1√

βL for high-dimensional
function with L-Lipschitz gradient with high probability. We will numerically verify this
later.

4 Variance reduction
The variance of SGD is one of themajor bottlenecks that slows down the theoretical guar-
anteed convergence rate in training ML models. Most of the existing variance reduction
algorithms require either the full batch gradient or the storage of stochastic gradient for
each data point which makes it difficult to be used to train the high-capacity DNNs. LS is
an alternative approach to reduce the variance of the stochastic gradient with negligible
extra computational time and memory cost. In this section, we rigorously show that LS
reduces the variance of the stochastic gradient and reduce the optimality gap under the
Gaussian noise assumption. Moreover, we numerically verify our theoretical results on
both a quadratic function and a simple finite-sum optimization problem.

4.1 Gaussian noise scenario

Stochastic gradient ∇fik , for any ik ∈ [n], is an unbiased estimate of ∇F ; many existing
works model the variance between the stochastic gradient and full batch gradient ∇F as
Gaussian noise N (0,
), where
 is the covariance matrix [28]. Therefore, ignoring the
variable w for simplicity of notation, we can write the equation involving gradient and
stochastic gradient vectors as

∇fik = ∇F + n, (9)

where n ∼ N (0,
). Thus, for LS stochastic gradient, we have

A−1
σ ∇fik = A−1

σ (∇F + n) . (10)

The variances of stochastic gradient and LS stochastic gradient are basically the variance
of n andA−1

σ n, respectively. The following theorem quantifies the variance between n and
A−1

σ n.

Theorem 2 Let κ denote the condition number of
. Then, for m-dimensional Gaussian
random vector n ∼ N (0,
), we have

∑m
i=1 Var[

(
(An

σ)−1n
)
i]∑m

i=1 Var[(n)i]
≤ 1 − 1

κ
+ 1

κm

m∑
j=0

1
[1 + 4nσ sin2n(π j/m)]2

. (11)

The proof of Theorem 2 will be provided in the appendix.

55 Page 8 of 26 S. Osher et al. ResMath Sci (2022) 9:55

Table 2 Theoretical upper bound of
∑m

i=1 Var[
(
(An

σ)
−1n

)
i]/

∑m
i=1 Var[(n)i] when n is an

m-dimensional standard normal vector withm ≥ 10000

σ 1 2 3 4 5

n = 1 0.268 0.185 0.149 0.129 0.114

n = 2 0.279 0.231 0.207 0.192 0.181

n = 3 0.290 0.256 0.238 0.226 0.218

Table 2 lists the ratio of variance after and before LS for anm-D standard normal vector
n ∼ N (0, I). In practice, high-order smoothing reduces variance more significantly.
Moreover, LS preserves the mean (Proposition 1), decreases the largest component and

increases the smallest component (Proposition 2) for any vector.

Proposition 1 For any vector g ∈ R
m, d = A−1

σ g , let jmax = arg maxi di and jmin =
arg mini di. We have maxi di = djmax ≤ gjmax ≤ maxi gi and mini di = djmin ≥ gjmin ≥
mini gi.

Proof Since g = Aσd, it holds that

gjmax = djmax + σ (2djmax − djmax−1 − djmax+1),

where periodicity of index is used if necessary. Since 2djmax − djmax−1 − djmax+1 ≥ 0, We
have maxi di = djmax ≤ gjmax ≤ maxi gi. Similarly, we can show mini di = djmin ≥ gjmin ≥
mini gi. ��

Proposition 2 The operator A−1
σ preserves the sum of components. For any g ∈ R

m and
d = A−1

σ g , we have
∑

j dj = ∑
j gj , or equivalently, 1�d = 1�g .

Proof Since g = Aσd,
∑
i
gi = 1�g = 1�(I + σD�+D+)d = 1�d =

∑
i
di,

where we used D+1 = 0. ��

4.2 Reduce the optimality gap

A direct benefit of variance reduction is that it reduces the optimality gap in SGD when
constant step size is applied.

Proposition 3 Suppose f is convex with a global minimizerw∗, and f ∗ = f (w∗). Consider
the following iteration with constant learning rate η > 0

wk+1 = wk − η(An
σ)−1gk

where gk is the sampled gradient in the k-th iteration at wk satisfying E[gk] = ∇f (wk).
Denote GAn

σ
:= 1

K
∑K−1

k=0 E‖gk‖2(An
σ)−1 and wK := ∑K−1

k=0 wk/K the ergodic average of
iterates. Then the optimality gap after K-th iteration is

E[f (wK)] − f ∗ ≤ 1
2ηK

E[‖w0 − w∗‖2An
σ
] + ηGAn

σ

2
.

Proof Since f is convex, we have

〈∇f (wk),wk − w∗〉 ≥ f (wk) − f ∗. (12)

S. Osher et al. Res Math Sci (2022) 9:55 Page 9 of 26 55

Furthermore,

E[‖wk+1 − w∗‖2An
σ
] = E[‖wk − η(An

σ)−1gk − w∗‖2An
σ
]

= E[‖wk − w∗‖2An
σ
] − 2ηE[〈gk ,wk − w∗〉] + η2E[‖(An

σ)−1gk‖2An
σ
]

≤ E[‖wk − w∗‖2An
σ
] − 2ηE[〈∇f (wk),wk − w∗〉] + η2E‖gk‖2(An

σ)−1

≤ E[‖wk − w∗‖2An
σ
] − 2η(E[f (wk)] − f ∗) + η2E‖gk‖2(An

σ)−1 ,

where the last inequality is due to (12). We rearrange the terms and arrive at

E[f (wk)] − f ∗ ≤ 1
2η

(E[‖wk − w∗‖2An
σ
] − E[‖wk+1 − w∗‖2An

σ
]) +

ηE‖gk‖2(An
σ)−1

2
.

Summing over k from 0 to K − 1 and averaging and using the convexity of f , we have

E[f (wK)] − f ∗ ≤
∑K−1

k=0 E[f (wk)]
K

− f ∗

≤ 1
2ηK

E[‖w0 − w∗‖2An
σ
] +

∑K−1
k=0 E‖gk‖2(An

σ)−1

2K
η.

��

Remark 4 Since GAn
σ
is smaller than the corresponding value without LS, it shows that

the optimality gap is reduced when LS is used with a constant step size. In practice, this
is also true for the stage-wise step size since it is a constant in each stage of the training
phase.

4.2.1 Optimization for quadratic function with noise corrupted gradient

In this part, we empirically show the advantages of the LS-(S)GD and its generalized
schemes for the convex optimization problems with noisy gradient. Consider searching
the minima x∗ of the quadratic function f (x) defined in (13).

f (x1, x2, · · · , x100) =
50∑
i=1

x22i−1 +
50∑
i=1

x22i
102

. (13)

Here, we consider the gradient with Gaussian noise injection, i.e., at any given point x,
we have

∇̃ε f (x) := ∇f (x) + εN (0, I),

where the scalar ε controls the noise level,N (0, I) is the Gaussian noise vector with zero
mean and unit variance in each coordinate. The corresponding numerical schemes can
be formulated as

xk+1 = xk − ηk (An
σ)−1∇̃ε f (xk), (14)

where σ is the smoothing parameter selected to be 10.0 to remove the intense noise.
We take diminishing step sizes with initial values 0.1 for SGD/smoothed SGD; 0.9 and
1.8 for GD/smoothed GD, respectively. Without noise, the smoothing allows us to take
larger step sizes; rounding to the first digit, 0.9 and 1.8 are the largest suitable step size for
GD and smoothed version here. We study both constant learning rate and exponentially

55 Page 10 of 26 S. Osher et al. ResMath Sci (2022) 9:55

Fig. 1 Iterations versus optimality gap for GD and smoothed GD with order 1 and order 2 smoothing for the
problem in (13). Constant step size is used

decaying learning rate, i.e., after every 1000 iteration the learning rate is divided by 10.We
apply different schemes that corresponding to n = 0, 1, 2 in (14) to the problem ((13)),
with the initial point x0 = (1, 1, · · · , 1).
Figure 1 shows the iteration versus optimality gap when the constant learning rate is

used. In the noise free case, all three schemes converge linearly. When there is noise, our
smoothed gradient helps to reduce the optimality gap and converges faster after a few
iterations.
The exponentially decaying learning rate helps our smoothed SGD to reach a point with

a smaller optimality gap, and the higher-order smoothing further reduces the optimality
gap, as shown in Fig. 2. This is due to the noise removal properties of the smoothing
operators.

4.2.2 Find the center of multiple points

Consider finding the center of a given set of 5K points {xi ∈ R
50}5000i=1 . It can be formulated

as the following finite-sum optimization

min
x

F (x) := 1
N

N∑
i=1

fi(x) = 1
N

N∑
i=1

‖xi − x‖2. (15)

We solve this optimization problem by running either SGD or LS-SGD for 20K iterations
starting from the same random initial point with batch size 20. The initial step size is set
to be 1.0 and 1.2, respectively, for SGD and LS-SGD, and decays 1.1 times after every 10
iterations. As the learning rate decays, the variance of the stochastic gradient decays [46];
thus, we decay σ 10 times after every 1K iterations. Figure 3a plots a 2D cross section of
the trajectories of SGD and LS-SGD, and it shows that the trajectory of SGD is more noisy
than that of LS-SGD. Figure 3b plots the iteration versus loss for both SGD and LS-SGD

S. Osher et al. Res Math Sci (2022) 9:55 Page 11 of 26 55

Fig. 2 Iterations versus optimality gap for GD and smoothed GD with order 1 and 2 smoothing for the
problem in (13). Exponentially decaying step size is utilized here

Fig. 3 Left: 2D trajectories of SGD and LS-SGD. Right: Iteration versus Loss for SGD and LS-SGD

averaged over 3 independent runs. LS-SGD converges faster than SGD and has a smaller
optimality gap than LS-SGD. This numerical result verifies our theoretical results on the
optimality gap (Proposition 3).

4.2.3 Multi-class logistic regression

Consider applying the proposed optimization schemes to train the multi-class logistic
regressionmodel.We run 200 epochs of SGD and different order smoothing algorithms to
maximize the likelihoodofmulti-class logistic regressionwithbatch size 100.Andweapply
the exponentially decaying learning ratewith initial value 0.5 anddecay 10 times after every
50 epochs.We train themodel with only 10% randomly selectedMNIST training data and
test the trainedmodel on the entire testing images.We further compare with SVRGunder
the same setting. Figure 4 shows the histograms of generalization accuracy of the model

55 Page 12 of 26 S. Osher et al. ResMath Sci (2022) 9:55

Fig. 4 Histogram of testing accuracy over 100 independent experiments of the multi-class logistic
regression model trained on randomly selected 10% MNIST data by different algorithms

trained by SGD (a); SVRG (b); LS-SGD (order 1) (c); LS-SGD (order 2) (d). It is seen that
SVRG somewhat improves the generalization with higher averaged accuracy. However,
the first- and the second-order LS-SGD type algorithms lift the averaged generalization
accuracy by more than 1% and reduce the variance of the generalization accuracy over
100 independent trials remarkably.

4.3 Iteration versus loss

In this part, we show the evolution of the loss in training themulti-class logistic regression
model by SGD, SVRG, LS-GD with first- and second-order smoothing, respectively. As
illustrated in Fig. 5. At each iteration, among 100 independent experiments, SGD has the
largest variance, and SGD with first-order smoothed gradient significantly reduces the
variance of loss among different experiments. The second-order smoothing can further
reduce the variance. The variance of loss in each iteration among 100 experiments is
minimized when SVRG is used to train the multi-class logistic model. However, the gen-
eralization performance of the model trained by SVRG is not as good as the ones trained
by LS-SGD, or higher-order smoothed gradient descent (Fig. 4b).

4.4 Variance reduction in stochastic gradient

We verify the efficiency of variance reduction numerically in this part. We simplify the
problem by applying the multi-class logistic regression only to the digits 1 and 2 of the
MNIST training data. In order to compute the variance of the (LS)-stochastic gradi-

S. Osher et al. Res Math Sci (2022) 9:55 Page 13 of 26 55

Fig. 5 Iterations versus loss for SGD, SVRG, and LS-SGD with order 1 and order 2 gradient smoothing for
training the multi-class logistic regression model

Table 3 The maximum variance of the stochastic gradient generated by LS-SGD with different σ
and batch size. σ = 0 recovers the SGD

Batch size 2 5 10 20 50

σ = 0 1.50E–1 5.49E–2 2.37E–2 1.01E–2 4.40E–3

σ = 1 3.40E–3 1.30E–3 5.45E–4 2.32E–4 9.02E–5

σ = 2 2.00E–3 7.17E–4 3.46E–4 1.57E–4 5.46E–5

σ = 3 1.40E–3 4.98E–4 2.56E–4 1.17E–4 3.97E–5

ents, we first compute descent path of (LS)-GD by applying the full batch (LS)-GD with
learning rate 0.5 starting from the same random initialization. We record the full batch
(LS)-gradient on each point along the descent path. Then we compute the (LS)-stochastic
gradients on each points along the path by using different batch sizes and smoothing
parameters σ . In computing (LS)-stochastic gradients we run 100 independent experi-
ments. Then we compute the variance of the (LS)-stochastic gradient among these 100
experiments and regarding the full batch (LS)-gradient as the mean on each point along
the full batch (LS)-GD descent path. For each pair of batch size and σ , we report the
maximum variance over all the coordinates of the gradient and all the points along the
descent path. We list the variance results in Table 3 (note the case σ = 0 corresponds to
the SGD). These results show that compared to the SGD, LS-GD with σ = 3 can reduce
the maximum variance ∼ 100 times for different batch sizes. It is worth noting that the
high-order smoothing reduces more variance than the lower-order smoothing; this might
be due to the fact that the noise of SGD is not Gaussian.

55 Page 14 of 26 S. Osher et al. ResMath Sci (2022) 9:55

Fig. 6 Demo of GD and LS-GD. a Depicts the slice of the function ((16)) with z = 2.34; b shows the paths of
GD (red) and LS-GD (black). We take the step size to be 0.02 for both GD and LS-GD. σ = 1.0 is utilized for
LS-GD

5 Numerical results on avoiding local minima and speeding up convergence
We first show that LS-GD can bypass sharp minima and reach the global minima. We
consider the following function, in which we ‘drill’ narrow holes on a smooth convex
function,

f (x, y, z) = −4e−((x−π)2+(y−π)2+(z−π)2)−

× 4
∑
i
cos(x) cos(y)e−β

(
(x−r sin(i2)−π)2+(y−r cos(i2)−π)2

)
,

(16)

where the summation is taken over the index set {i ∈ N| 0 ≤ i < 4π}, r and β are the
parameters that determine the location and narrowness of the local minima and are set
to 1 and 1√

500
, respectively. We do GD and LS-GD starting from a random point in the

neighborhoods of the narrow minima, i.e., (x0, y0, z0) ∈ {⋃i Uδ(r sin(i2) + π , r cos(i2) +
π ,π)| 0 ≤ i < 4π , i ∈ N}, where Uδ(P) is a neighborhood of the point P with radius δ.
Our experiments (Fig. 6) show that, if δ ≤ 0.2 GDwill converge to a narrow local minima,
while LS-GD convergences to the wider global minima.
Next, let us compare LS-GD with some popular optimization methods on the bench-

mark 2D-Rosenbrock function which is a non-convex function. The global minimum is
inside a long, narrow, parabolic shaped flag valley. To find the valley is trivial. To converge
to the global minimum, however, is difficult. The function is defined by

f (x, y) = (a − x)2 + b(y − x2)2, (17)

it has a global minimum at (x, y) = (a, a2), and we set a = 1 and b = 100 in experiments.
Starting from the initial point with coordinate (−3,−4), we run 2K iterations of the

following optimizers including GD, GD with Nesterov momentum [31], Adam [21],
RMSProp [44], and LS-GD (σ = 0.5). The step size used for all these methods is 3e − 3.
Figure 7 plots the iteration versus objective value, and it shows that GD together with
Nesterov momentum converges faster than all the other algorithms. The second best
algorithm is LS-GD. Meanwhile, Nesterov momentum can be used to speed up LS-GD,
and we will show this numerically in training DNNs in Sect. 6.
Furthermore, we will show that LS-GD can be further accelerated by using Nesterov

momentum. As shown in Fig. 8, the LS-GD together withNesterovmomentum converges

S. Osher et al. Res Math Sci (2022) 9:55 Page 15 of 26 55

Fig. 7 Iteration versus loss of different optimization algorithms in optimize the Rosenbrock function

Fig. 8 Iteration versus objective value for GD with Nesterov momentum and LS-GD with Nesterov
momentum

much faster than GDwithmomentum, especially for high-dimensional Rosenbrock func-
tion.

6 Application to deep learning
6.1 Train neural nets with small batch size

Many advanced artificial intelligence tasks make high demands on training neural nets
with extremely small batch sizes. The milestone technique for this is group normalization
[47]. In this section, we show that LS-SGD successfully trains DNN with extremely small
batch size. We consider LeNet-5 [23] for MNIST classification. Our network architecture
is as follows

LeNet-5: input28×28 → conv20,5,2 → conv50,5,2 → fc512 → softmax.

The notation convc,k,m denotes a 2D convolutional layer with c output channels, each of
which is the sum of a channel-wise convolution operation on the input using a learnable
kernel of size k × k , it further adds ReLU nonlinearity and max pooling with stride sizem.
fc512 is an affine transformation that transforms the input to a vector of dimension 512.
Finally, the tensors are activated by a multi-class logistic function. The MNIST data are
first passed to the layer input28×28 and further processed by this hierarchical structure.
We run 100 epochs of both SGD and LS-SGD with initial learning rate 0.01 and divide
by 5 after 50 epochs and use a weight decay of 0.0001 and momentum of 0.9. Figure 9a

55 Page 16 of 26 S. Osher et al. ResMath Sci (2022) 9:55

Fig. 9 a Testing accuracy of LeNet5 trained by SGD/LS-SGD on MNIST with various batch sizes. b The
evolution of the pre-activated ResNet56’s training and generalization accuracy by SGD and LS-SGD (start from
the 20-th epoch)

plots the generalization accuracy on the test set with the LeNet5 trained with different
batch sizes. For each batch size, LS-SGD with σ = 1.0 keeps the testing accuracy more
than 99.4%, SGD reduce the accuracy to 97% when batch size 4 is used. The classification
becomes just a random guess, when the model is trained by SGD with batch size 2. Small
batch size leads to large noise in the gradient, which may make the noisy gradient not
along the descent direction; however, Laplacian smoothing rescues this by decreasing the
noise.

6.2 Improve generalization accuracy

On Cifar10 [22], we compare the performance of LS-SGD and SGD on ResNet with the
pre-activated ResNet56 as an illustration. We take the same training strategy as that used
in [17], except that we run 200 epochs with the learning rate decaying by a factor of 5
after every 40 epochs. For ResNet, instead of applying LS-SGD for all epochs, we only use
LS-SGD in the first 40 epochs, and the remaining training is carried out by SGD. (This
will save the extra computational cost due to LS, and we noticed that the performance is
similar to the case when LS is used for the whole training process.) The parameter σ is set
to 1.0. Figure 9b depicts one path of the training and generalization accuracy of the neural
nets trained by SGD and LS-SGD, respectively. It is seen that, even though the training
accuracy obtained by SGD is higher than that by LS-SGD, the generalization is, however,
inferior to that of LS-SGD.We carry out 25 replicas of this experiment; the histograms of
the corresponding accuracy are shown in Fig. 10.

6.3 TrainingWassersterin GAN

Generative adversarial networks (GANs) [15] are notoriously delicate andunstable to train
[4]. In [27], Wasserstein-GANs (WGANs) are introduced to combat the instability in the
training GANs. In addition to being more robust in training parameters and network
architecture, WGANs provide a reliable estimate of the Earth Mover (EM) metric which
correlates well with the quality of the generated samples. Nonetheless, WGANs train-
ing becomes unstable with a large learning rate or when used with a momentum based

S. Osher et al. Res Math Sci (2022) 9:55 Page 17 of 26 55

Fig. 10 The histogram of the generalization accuracy of the pre-activated ResNet56 on Cifar10 trained by
SGD and LS-SGD over 25 independent experiments

Fig. 11 Critic loss with learning rate lrD = 0.0001, lrG = 0.005 for RMSProp (left) and LS-RMSProp (right),
trained for 20K iterations. We apply a mean filter of window size 13 for better visualization. The loss from
LS-RMSProp is visibly less noisy

optimizer [27]. In this section, we demonstrate that the gradient smoothing technique in
this paper alleviates the instability in the training and improves the quality of generated
samples. SinceWGANs with weight clipping are typically trained with RMSProp [44], we
propose replacing the gradient g by a smoothed version gσ = A−1

σ g and also update the
running averages using gσ instead of g . We name this algorithm LS-RMSProp.
To accentuate the instability in training and demonstrate the effects of gradient smooth-

ing, we deliberately use a large learning rate for training the generator. We compare the
regular RMSProp with the LS-RMSProp. The learning rate for the critic is kept small and
trained approximately to convergence so that the critic loss is still an effective approxima-
tion to the Wasserstein distance. To control the number of unknowns in the experiment
andmake ameaningful comparison using the critic loss, we use the classical RMSProp for
the critic and only apply LS-RMSProp to the generator.
We train the WGANs on the MNIST dataset using the DCGAN [35] for both the critic

and generator. In Fig. 11 (left), we observe the loss for RMSProp trained with a large
learning rate has multiple sharp spikes, indicating instability in the training process. The
samples generated are also lower in quality, containing noisy spots as shown in Fig. 12a.
In contrast, the curve of training loss for LS-RMSProp is smoother and exhibits fewer
spikes. The generated samples as shown in Fig. 12b are also of better quality and visibly
less noisy. The generated characters shown in Fig. 12b are more realistic compared to the
ones shown in Fig. 12a. The effects are less pronounced with a small learning rate, but still
result in a modest improvement in sample quality as shown in Fig. 12c, d. We also apply

55 Page 18 of 26 S. Osher et al. ResMath Sci (2022) 9:55

Fig. 12 Samples from WGANs trained with RMSProp (a, c) and LS-RMSProp (b, d). The learning rate is set to
lrD = 0.0001, lrG = 0.005 for both RMSProp and LS-RMSProp in a and b. And lrD = 0.0001, lrG = 0.0001 are
used for both RMSProp and LS-RMSProp in c and d. The critic is trained for 5 iterations per step of the
generator and 200 iterations per every 500 steps of the generator

LS-RMSProp for training the critic, but do not see a clear improvement in the quality.
This may be because the critic is already trained near optimality during each iteration and
does not benefit much from gradient smoothing.

6.4 Deep reinforcement learning

Deep reinforcement learning (DRL) has been applied to playing games including Cartpole
[9], Atari [30], Go [29,42]. DNN plays a vital role in approximating the Q-function or
policy function.We apply the Laplacian smoothed gradient to train the policy function to
play the Cartpole game. We apply the standard procedure to train the policy function by
using the policy gradient [9]. And we use the following network to approximate the policy
function:

input4 → fc20 → relu → fc2 → softmax.

The network is trained by RMSProp and LS-RMSProp with σ = 1.0, respectively. The
learning rate and other related parameters are set to be the default ones in PyTorch. The
training is stopped once the average duration of 5 consecutive episodes is more than 490.
In each training episode, we set the maximal steps to be 500. Left and right panels of
Fig. 13 depict a training procedure by using RMSProp and LS-RMSProp, respectively.
We see that Laplacian smoothed gradient takes fewer episodes to reach the stopping
criterion. Moreover, we run the above experiments 5 times independently and apply the
trained model to play Cartpole. The game lasts more than 1000 steps for all the 5 models
trained by LS-RMSProp, while only 3 of them lasts more than 1000 steps when the model
is trained by vanilla RMSProp.

7 Convergence analysis
Note that the LSmatrixA−1

σ is positive definite and its largest and smallest eigenvalues are
1 and 1

1+4σ , respectively. It is straightforward to show that all the convergence results for
(S)GD still hold for LS-(S)GD. In this section, we will show some additional convergence
for LS-(S)GD with a focus on LS-GD, the corresponding results for LS-SGD follow in a
similar way.

S. Osher et al. Res Math Sci (2022) 9:55 Page 19 of 26 55

Fig. 13 Durations of the cartpole game in the training procedure. Left and right are training procedure by
RMSProp and LS-RMSProp with σ = 1.0, respectively

Proposition 4 Consider the algorithm wk+1 = wk − ηk (An
σ)−1∇f (wk). Suppose f is L-

Lipschitz smooth and 0 < η̃ ≤ η ≤ η̄ < 2
L . Then limt→∞ ‖∇f (wk)‖ → 0. Moreover, if the

Hessian ∇2f of f is continuous and positive definite with w∗ being the minimizer of f , and
η̄‖∇2f ‖ < 1, then ‖wk − w∗‖An

σ
→ 0 as k → ∞, and the convergence is linear.

Proof By the Lipschitz continuity of ∇f and the descent lemma [5], we have

f (wk+1) = f (wk − ηk (An
σ)−1∇f (wk))

≤ f (wk) − ηk〈∇f (wk), (An
σ)−1∇f (wk))〉 + η2kL

2
‖(An

σ)−1∇f (wk)‖2

≤ f (wk) − ηk‖∇f (wk)‖2(An
σ)−1 + η2kL

2
‖∇f (wk)‖2(An

σ)−1

≤ f (wk) − η̃

(
1 − η̄L

2

)
‖∇f (wk)‖2(An

σ)−1 .

Summing the above inequality over k , we have

η̃

(
1 − η̄L

2

) ∞∑
k=0

‖∇f (wk)‖2(An
σ)−1 ≤ f (w0) − lim

k→∞
f (wk) < ∞.

Therefore, ‖∇f (wk)‖2(An
σ)−1 → 0, and thus, ‖∇f (wk)‖ → 0.

For the second claim, we have

wk+1 − w∗

= wk − w∗ − ηk (An
σ)−1(∇f (wk) − ∇f (w∗))

= wk − w∗ − ηk (An
σ)−1

(∫ 1

0
∇2f (w∗ + τ (wk+1 − w∗)) · (wk − w∗)dτ

)

= wk − w∗ − ηk (An
σ)−1

(∫ 1

0
∇2f (w∗ + τ (wk+1 − w∗))dτ · (wk − w∗)

)

= (An
σ)−

1
2

(
I − ηk (An

σ)−
1
2

∫ 1

0
∇2f (w∗ + τ (wk+1 − w∗))dτ (An

σ)−
1
2)
)

× (An
σ)

1
2 (wk − w∗)

55 Page 20 of 26 S. Osher et al. ResMath Sci (2022) 9:55

Therefore,

‖wk+1 − w∗‖An
σ

≤
∥∥∥∥I − ηt (An

σ)−
1
2

∫ 1

0
∇2f (w∗ + τ (wk+1 − w∗))dτ (An

σ)−
1
2

∥∥∥∥ ‖wk − w∗‖An
σ
.

So if ηk‖∇2f ‖ ≤ 1
‖(An

σ)−1‖ = 1, the result follows. ��

Remark 5 The convergence result in Proposition 4 is also calledHn
σ -convergence. This is

because 〈u,An
σu〉 = ‖u‖2 + σ‖Dn+u‖2 = ‖u‖2Hn

σ
.

8 Discussion and conclusion
8.1 Somemore properties of Laplacian smoothing

InTheorem1,we established a high probability estimate of the LS operator in reducing the
�2 normof anygivenvector.The �1 typeof highprobability estimation canbe established in
the same way. These estimates will be helpful to develop privacy-preserving optimization
algorithms to train ML models that improve the utility of the trained models without
sacrificing the privacy guarantee [45].
Regarding the �1/�2 estimates of the LS operator, we further have the following results.

Proposition 8 Given vectors g and d = A−1
σ g , for any p ∈ N, it holds that ‖Dp

+d‖1 ≤
‖Dp

+g‖1. The inequality is strict unless Dp
+g is a constant vector.

Proof Observe that Aσ and D+ commute; therefore, for any p ∈ N, Aσ (D
p
+d) = Dp

+g .
Thus, we have

(1 + 2σ)(Dp
+d)i = (Dp

+g)i + σ (Dp
+d)i+1 + σ (Dp

+d)i−1.

So

(1 + 2σ)|(Dp
+d)i| ≤ |(Dp

+g)i| + σ |(Dp
+d)i+1| + σ |(Dp

+d)i−1|.
The inequality is strict if there are sign changes among the (Dp

+d)i−1, (D
p
+d)i, (D

p
+d)i+1.

Summing over i and using periodicity, we have

(1 + 2σ)
m∑
i=1

|(Dp
+d)i| ≤

m∑
i=1

|(Dp
+g)i| + 2σ

m∑
i=1

|(Dp
+d)i|,

and the result follows. The inequality is strict unless Dp
+g is a constant vector. ��

Proposition 5 Given any vector g ∈ R
m and d = (An

σ)−1g , then

‖g‖2 = ‖d‖2 + 2σ‖Dn+d‖2 + σ 2‖Lnd‖2, (18)

the variance of d is much less than that of g .

Proof Observe that g = An
σd = d + (−1)nσLnd. Therefore,

‖g‖2 = 〈
d + (−1)nσLnd,d + (−1)nσLnd

〉

= ‖d‖2 + 2(−1)nσ 〈d,Lnd〉 + σ 2‖Lnd‖2. (19)

S. Osher et al. Res Math Sci (2022) 9:55 Page 21 of 26 55

Next, note D− and D+ are commute; thus,

Ln = (D−D+) · · · (D−D+)︸ ︷︷ ︸
n

= D− · · ·D−︸ ︷︷ ︸
n

D+ · · ·D+︸ ︷︷ ︸
n

= Dn−Dn+. (20)

Now, we have

〈d,Lnd〉 = 〈d,Dn−Dn+d〉 = 〈(Dn−)Td,Dn+d〉 = 〈(−1)nDn+d,Dn+d〉 = (−1)n‖Dn+d‖2,
(21)

where we used (20) in the first equality and D− = −DT+ in the second to last equality.
Substituting (21) into (19) yields (18). ��

8.2 Conclusion

In this paper, we proposed Laplacian smoothing gradient descent and its high-order gen-
eralizations. This simple modification dramatically reduces the variance and optimality
gap in stochastic gradient descent, allows us to take a larger step size, and helps to find
better minima. Extensive numerical examples ranging from toy cases and shallow and
deep neural nets to generative adversarial networks and deep reinforcement learning all
demonstrate the advantage of the proposed smoothed gradient.

Funding
This material is based on research sponsored by NSF grants DMS-1924935, DMS-1952339, DMS-2110145, DMS-2152762,
DMS-2208361, DOE grant DE-SC0021142, and ONR grant N00014-18-1-2527 and the ONR MURI grant N00014-20-1-2787.

Author details
1Department of Mathematics, UCLA, Los Angeles, CA, USA, 2Department of Mathematics, Scientific Computing and
Imaging Institute, University of Utah, Salt Lake City, UT, USA, 3Department of Mathematics, SUNY Albany, Albany, NY, USA.

Appendix
Proof of Theorem 1

In this part, we will give a proof for Theorem 1.

Lemma 2 [1] Let t, u > 0, v be an m-dimensional standard normal random vector, and
let F : Rm → R be a function such that ‖F (x) − F (y)‖ ≤ ‖x − y‖ for all x, y ∈ R

m. Then

P (F (v) ≥ EF (v) + u) ≤ exp
(

−tu + 1
2

(
π t
2

)2
)
. (22)

Taking t = 4
π2 in Lemma 2, we obtain

Lemma 3 Let u > 0, v be an m-dimensional standard normal random vector, and let
F : Rm → R be a function such that ‖F (x) − F (y)‖ ≤ ‖x − y‖ for all x, y ∈ R

m. Then

P (F (v) ≥ EF (v) + u) ≤ exp
(

− 2
π2 u

2
)
. (23)

Lemma 4 Let v be an m-dimensional standard normal random vector. Let 1 ≤ p ≤ ∞.
Let 0 < u < E‖v‖�p . Let T ∈ R

m×m be such that ‖Tx‖�p ≤ ‖x‖�p for all x ∈ R
m. Then

P

(
‖Tv‖�p ≥ E‖Tv‖�p + u

E‖v‖�p − u
‖v‖�p

)
≤ 2 exp

(
− 2

π2 u
2
)
.

Proof By Lemma 3,

P(‖Tv‖�p ≥ E‖Tv‖�p + u) ≤ e−
2

π2
u2

55 Page 22 of 26 S. Osher et al. ResMath Sci (2022) 9:55

and

P(−‖v‖�p ≥ −E‖v‖�p + u) ≤ e−
2

π2
u2 .

The second inequality gives

P(‖v‖�p ≤ E‖v‖�p − u) ≤ e−
2

π2
u2 .

Therefore,

P

(
‖Tv‖�p ≥ E‖Tv‖�p + u

E‖v‖�p − u
‖v‖�p

)

≤ P(‖Tv‖�p ≥ E‖Tv‖�p + u) + P(‖v‖�p ≤ E‖v‖�p − u) ≤ 2e−
2

π2
u2 .

��

Lemma 5 Let 1 ≤ p ≤ 2. Let T ∈ R
m×m. Let v be an m-dimensional standard normal

random vector. Then

E‖Tv‖�p ≤ m
1
p− 1

2 (TraceT∗T)
1
2 (E|v1|p)

1
p ,

where v1 is the first coordinate of v.

Proof We write T = (T i,j)1≤i,j≤n. Then

E‖Tv‖�p = E

⎛
⎝

n∑
i=1

∣∣∣∣∣∣
n∑

j=1
T i,jvj

∣∣∣∣∣∣

p⎞
⎠

1
p

≤
⎛
⎝

n∑
i=1

E

∣∣∣∣∣∣
n∑

j=1
T i,jvj

∣∣∣∣∣∣

p⎞
⎠

1
p

=
⎛
⎜⎝

n∑
i=1

⎛
⎝

n∑
j=1

T 2
i,j

⎞
⎠

p
2

E|v1|p
⎞
⎟⎠

1
p

≤
⎛
⎜⎝n1−

p
2

⎛
⎝ ∑

1≤i,j≤n
T 2

i,j

⎞
⎠

p
2

E|v1|p
⎞
⎟⎠

1
p

= n
1
p− 1

2
(
Trace T∗T

) 1
2 (E|v1|p)

1
p ,

where the second equality follows from the assumption that v is anm-dimensional stan-
dard normal random vector. ��

Lemma 6 Let v be an m-dimensional standard normal random vector. Then

E‖v‖�2 ≥ √
m − π .

Proof By Lemma 3,

P(‖v‖�2 ≥ E‖v‖�2 + u) ≤ e−
2

π2
u2

and

P(−‖v‖�2 ≥ −E‖v‖�2 + u) ≤ e−
2

π2
u2 .

Thus,

P(|‖v‖�2 − E‖v‖�2 | ≥ u) ≤ 2e−
2

π2
u2 .

Consider the random variableW = ‖v‖�2 . We have

E|W − EW |2 =
∫ ∞

0
P(|W − EW | ≥ √

u) du ≤
∫ ∞

0
2e−

2
π2

u du = π2.

S. Osher et al. Res Math Sci (2022) 9:55 Page 23 of 26 55

Since E|W − EW |2 = EW 2 − (EW)2, we have

EW ≥ (EW 2)
1
2 − (E|W − EW |2) 12 ≥ √

m − π .

��
Lemma 7 Let 0 < ε < 1 − π√

m. Let σ > 0. Let

β = 1
m

m∑
i=1

1
|1 + 2σ − σ zi − σ zi| ,

where z1, . . . , zm are the m roots of unity. Let B be the circular shift operator on R
m. Let v

be an m-dimensional standard normal random vector. Then

P

(
‖((1 + 2σ)I − σB − σB∗)−1/2v‖�2 ≥

√
β + ε

1 − π√
m − ε

‖v‖�2

)
≤ 2e−

2
π2

mε2 .

Proof Let T = ((1 + 2σ)I − σB − σB∗)−1/2. Taking u = √
mε in Lemma 4, we have

P

(
‖Tv‖�2 ≥ E‖Tv‖�2 + √

mε

E‖v‖�2 − √
mε

‖v‖l2
)

≤ 2e−
2

π2
mε2 .

By Lemma 5,E‖Tv‖�2 ≤ (TraceT∗T)
1
2 , we have TraceT∗T = mβ . It is easy to show that

TraceT∗T = mβ So E‖Tv‖�2 ≤ √
mβ . Also by Lemma 6, E‖v‖�2 ≥ √

m−π . Therefore,

P

(
‖((1 + 2σ)I − σB − σB∗)−1/2v‖�2 ≥

√
β + ε

1 − π√
m − ε

‖v‖�2

)
≤ 2e−

2
π2

mε2 .

��
Proof of Theorem 1 Theorem 1 follows from Lemma 7 by substituting v

‖v‖�2
and using

homogeneity and direct calculations. ��

Proof of Theorem 2

In this part, we will give a proof for Theorem 2.

Lemma 8 [6] Let ≺w denote weak majorization. Denote eigenvalues of Hermitian matrix
X by λ1(X) ≥ . . . ≥ λm(X). For every two Hermitian positive definite matrices A and B,
we have

(λ1(AB), · · · , λm(AB)) ≺w (λ1(A)λ1(B), · · · , λm(A)λm(B)).
In particular,

m∑
j=1

λj(AB) ≤
m∑
j=1

λj(A)λj(B).

proof of Theorem 2 Let λ1 ≥ . . . ≥ λm denote the eigenvalues of
. The eigenvalues of
(An

σ)−2 are given by {[1+ 4nσ sin2n(π j/m)]−2}j=m−1
j=0 , which we denote by 1 = α1 ≥ . . . ≥

αm ≥ (1 + 4nσ)−2. We have
m∑
j=1

Var[nj] = trace(
) =
m∑
j=1

λj . (24)

On the other hand we also have
m∑
j=1

Var[(An
σ)−1nj] = trace((An

σ)−1
(An
σ)−1) = trace((An

σ)−2
) ≤
m∑
j=1

αjλj , (25)

55 Page 24 of 26 S. Osher et al. ResMath Sci (2022) 9:55

where the last inequality is by Lemma 8. Now,

m∑
j=1

λj −
m∑
j=1

αjλj =
m∑
j=1

(1 − αj)λj ≥ λm(m −
m∑
j=1

αj)

= λ1
κ
(m −

m∑
j=1

αj) ≥
∑m

j=1 λj

mκ
(m −

m∑
j=1

αj)

Rearranging and simplifying above implies that
m∑
j=1

αjλj ≤ (
m∑
j=1

λj)(1 − 1
κ

+
∑m

j=1 αj

mκ
).

Substituting (24) and (25) in the above inequality yields (11). ��

Proof of Lemma 1

To prove Lemma 1, we first introduce the following lemma.

Lemma 9 For 0 ≤ θ ≤ 2π , suppose

F (θ) = 1
1 + 2σ (1 − cos(θ))

has the discrete-time Fourier transform of series f [k]. Then, for integer k,

f [k] = α|k|
√
4σ + 1

where

α = 2σ + 1 − √
4σ + 1

2σ

Proof By definition,

f [k] = 1
2π

∫ 2π

0
F (θ)eikθ dθ = 1

2π

∫ 2π

0

eikθ

1 + 2σ (1 − cos(θ))
dθ . (26)

We compute (26) by using Residue theorem. First, note that because F (θ) is real valued,
f [k] = f [−k]; therefore, it suffices to compute (26)) for nonnegative k . Set z = eiθ .
Observe that cos(θ) = 0.5(z + 1/z) and dz = izdθ . Substituting in (26) and simplifying
yields that

f [k] = −1
2π iσ

∮ zk

(z − α−)(z − α+)
dz, (27)

where the integral is taken around the unit circle, and α± = 2σ+1±√
4σ+1

2σ are the roots of
quadratic −σ z2 + (2σ + 1)z − σ . Note that α− lies within the unit circle, whereas α+ lies
outside of the unit circle. Therefore, because k is nonnegative, α− is the only singularity of
the integrand in (27) within the unit circle. A straightforward application of the Residue
Theorem in complex analysis yields that

f [k] = −αk−
σ (α− − α+)

= αk
√
4σ + 1

.

This completes the proof. ��

S. Osher et al. Res Math Sci (2022) 9:55 Page 25 of 26 55

Proof of Lemma 1 First observe that we can re-write β as

1
d

d−1∑
j=0

1
1 + 2σ (1 − cos(2π jd))

. (28)

It remains to show that the above summation is equal to 1+αd

(1−αd)
√
4σ+1 . This follows by

Lemmas 9 and standard sampling results in Fourier analysis (i.e., sampling θ at points
{2π j/d}d−1

j=0). Nevertheless, we provide the details here for completeness: Observe that
that the inverse discrete-time Fourier transform of

G(θ) =
d−1∑
j=0

δ

(
θ − 2π j

d

)
.

is given by

g[k] =
⎧⎨
⎩
d/2π if k divides d,

0 otherwise.

Furthermore, let

F (θ) = 1
1 + 2σ (1 − cos(θ))

,

and use f [k] to denote its inverse discrete-time Fourier transform. Now,

1
d

d−1∑
j=0

1
1 + 2σ (1 − cos(2π jd))

= 1
d

∫ 2π

0
F (θ)G(θ)

= 2π
d

DTFT−1[F · G][0] = 2π
d

(DTFT−1[F] ∗ DTFT−1[G])[0]

= 2π
d

∞∑
r=−∞

f [−r]g[r] = 2π
d

∞∑
�=−∞

f [−�d]
d
2π

=
∞∑

�=−∞
f [−�d].

The proof is completed by substituting the result of Lemma 9 in the above sum and
simplifying. ��
Received: 13 October 2021 Accepted: 19 July 2022 Published online: 12 August 2022

References
1. 254a, notes 1: Concentration of measure. https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-

of-measure/
2. Abadi, M., Agarwal, A., et al.: Tensorflow: Large-ScaleMachine Learning onHeterogeneous Distributed Systems (2016).

arXiv preprint arXiv:1603.04467
3. Allen-Zhu, Z.: Katyusha: The first direct acceleration of stochastic gradient methods. J. Mach. Learn. Res. 18, 1–51

(2018)
4. Arjovsky,M., Bottou, L.: Towards PrincipledMethods for TrainingGenerativeAdversarial Networks (2017). arXiv preprint

arXiv:1701.04862
5. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
6. Bhatia, R.: Matrix Analysis. Springer (1997)
7. Bottou, L.: Stochastic gradient descent tricks. In: Neural Networks, Tricks of the Trade, Reloaded, p. 7700 (2012)
8. Bottou, L., Curtis, E.F., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311

(2018)
9. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: Openai gym (2016). arXiv

preprint arXiv:1606.01540
10. Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Guillame, C.: Deep Relaxation: Partial Differential Equations for

Optimizing Deep Neural Networks (2017). arXiv preprint arXiv:1704.04932
11. Defazio, A., Bach, F.: Saga: a fast incremental gradient method with support for non-strongly convex composite

objectives. In: Advances in Neural Information Processing Systems (2014)

https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1704.04932

55 Page 26 of 26 S. Osher et al. ResMath Sci (2022) 9:55

12. Dozat, T.: Incorporating nesterovmomentum into Adam. In: 4th International Conference on Learning Representation
Workshop (ICLR 2016) (2016)

13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach.
Learn. Res. 12, 2121–2159 (2011)

14. Evans, L.C.: Partial Differential Equations (2010)
15. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.C., Bengio, Y.: Generative

adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
16. Hardt, M., Recht, B., Singer, Y.: Train faster, generalize better: stability of stochastic gradient descent. In: 33rd Interna-

tional COnference on Machine Learning (ICML 2016) (2016)
17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 770–778 (2016)
18. Jastrzebski, S., Kenton, Z., Ballas, N., Fischer, A., Bengio, Y., Storkey, A.: Dnn’s sharpest directions along the sgd trajectory

(2018). arXiv preprint arXiv:1807.05031
19. Johoson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in

Neural Information Processing Systems (2013)
20. Jung,M., Chung, G., Sundaramoorthi, G., Vese, L., Yuille, A.: Sobolev gradients and joint variational image segmentation,

denoising, and deblurring. In: Computational Imaging VII, volume 7246, pp. 72460I. International Society for Optics
and Photonics (2009)

21. Kingma, D., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980
22. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images (2009)
23. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 81,

2278–2324 (1998)
24. Lei, L., Ju, C., Chen, J., Jordan, M.: Nonconvex finite-sum optimization via scsg methods. In: Advances in Neural

Information Processing Systems (2017)
25. Li, F., et al.: Cs231n: Convolutional Neural Networks for Visual Recognition (2018)
26. Li, H., Xu, Z., Taylor, G., Goldstein, T.: Visualizing the Loss Landscape of Neural Nets (2017). arXiv preprint

arXiv:1712.09913
27. Chintala, S., Arjovsky, M., Bottou, L.: Wasserstein Gan. arXiv preprint arXiv:1701.07875 (2017)
28. Mandt, S., Hoffman, M., Blei, D.: Stochastic gradient descent as approximate bayesian inference. J. Mach. Learn. Res.

18, 1–35 (2017)
29. Mnih, et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)
30. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing Atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
31. Nesterov, Y.: A method for solving the convex programming problem with convergence rate o(1/k2). Dokl. Akad.

Nauk SSSR 269, 543–547 (1983)
32. Nesterov, Y.: Introductory lectures on convex programming volume i: Basic course. Lecture Notes (1998)
33. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic

differentiation in pytorch (2017)
34. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Networks 12(1), 145–151 (1999)
35. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learningwith deep convolutional generative adversarial

networks. arXiv preprint arXiv:1511.06434 (2015)
36. Reddi, S., Kale, S., Kumar, S.: On the convergence of adam and beyond. In: 6th International Conference on Learning

Representation (ICLR 2018) (2018)
37. Robinds, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)
38. Schmidhuber, J.: Deep learning in neural networks: an overview. arXiv preprint arXiv:1404.7828 (2014)
39. Senior, A., Heigold, G., Ranzato, M., Yang, K.: An empirical study of learning rates in deep neural networks for speech

recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (2013)
40. Shamir, O., Zhang, T.: Stochastic gradient descent for non-smooth optimization: convergence results and optimal

averaging schemes. In: 30th International Conference on Machine Learning (ICML 2013) (2013)
41. Shapiro, A., Wardi, Y.: Convergence analysis of gradient descent stochastic algorithms. J. Optim. Theory Appl. 91(2),

439–454 (1996)
42. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)
43. Sutton, R.: Two problems with backpropagation and other steepest-descent learning procedures for networks. In:

Proc. 8th Annual Conf. Cognitive Science Society (1986)
44. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude.

COURSERA: Neural Networks Mach. Learn 4(2), 26–31 (2012)
45. Wang, B., Gu, Q., Boedihardjo, M., Barekat, F., Osher, S.: Privacy-preserving erm by laplacian smoothing stochastic

gradient descent. UCLA Computational and Applied Mathematics Reports, pp. 19–24 (2019)
46. Welling, M., Teh, Y.: Bayesian learning via stochastic gradient langevin dynamics. In 28th International Conference on

Machine Learning (ICML 2011) (2011)
47. Wu, Y., He, K.: Group normalization. In: European Conference on Computer Vision (2018)
48. Zeiler, M.: Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving of the acceptedmanuscript version
of this article is solely governed by the terms of such publishing agreement and applicable law.

http://arxiv.org/abs/1807.05031
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1212.5701

	Laplacian smoothing gradient descent
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related work
	1.3 Notations
	1.4 Organization

	2 Laplacian smoothing (stochastic) gradient descent
	2.1 Generalized smoothing gradient descent

	3 The choice of step size
	3.1 ell2 estimates

	4 Variance reduction
	4.1 Gaussian noise scenario
	4.2 Reduce the optimality gap
	4.2.1 Optimization for quadratic function with noise corrupted gradient
	4.2.2 Find the center of multiple points
	4.2.3 Multi-class logistic regression

	4.3 Iteration versus loss
	4.4 Variance reduction in stochastic gradient

	5 Numerical results on avoiding local minima and speeding up convergence
	6 Application to deep learning
	6.1 Train neural nets with small batch size
	6.2 Improve generalization accuracy
	6.3 Training Wassersterin GAN
	6.4 Deep reinforcement learning

	7 Convergence analysis
	8 Discussion and conclusion
	8.1 Some more properties of Laplacian smoothing
	8.2 Conclusion

	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1

	References

