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Abstract

A well-known question by Gromov asks whether the vanishing of the simplicial volume
of oriented closed aspherical manifolds implies the vanishing of the Euler characteristic.
We study various versions of Gromov’s question and collect strategies towards
affirmative answers and strategies towards negative answers to this problem.
Moreover, we put Gromov’s question into context with other open problems in low-
and high-dimensional topology. A special emphasis is put on a comparative analysis of
the additivity properties of the simplicial volume and the Euler characteristic for
manifolds with boundary. We explain that the simplicial volume defines a symmetric
monoidal functor (TQFT) on the amenable cobordism category, but not on the whole
cobordism category. In addition, using known computations of simplicial volumes, we
conclude that the fundamental group of the four-dimensional amenable cobordism
category is not finitely generated. We also consider new variations of Gromov’s
question. Specifically, we show that counterexamples exist among aspherical spaces
that are only homology equivalent to oriented closed connected manifolds.

1 Introduction
The simplicial volume ‖M‖ is a homotopy invariant of oriented compact manifolds M,
defined as the �1-semi-norm of the singular R-fundamental class. The simplicial volume
is proportional to the Riemannian volume for hyperbolic manifolds and zero in the pres-
ence of amenability. By the Gauß–Bonnet theorem and Følner covering towers, a similar
behaviour is also exhibited by the Euler characteristic of aspherical manifolds. But under-
standing the connection between the vanishing behaviour of the simplicial volume and
the Euler characteristic of closed aspherical manifolds remains a mystery.
In particular, the following problem by Gromov is wide open:

Question 1.1 [53, p. 232] Let M be an oriented closed aspherical manifold. Does the
following implication hold?

‖M‖ = 0 =⇒ χ (M) = 0. (SVχ )
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The main challenge in answering Question 1.1 is to find a common ground for the vari-
ous conditions and invariants involved: asphericity, being a closedmanifold, the vanishing
of the simplicial volume, and the vanishing of the Euler characteristic.
In this article, we explore different approaches toQuestion 1.1, in search of both positive

and negative examples, as well as study its connections with other open problems in low-
and high-dimensional topology.
On the one hand, a key direction pursued in this paper is the comparative study of

the additivity properties of the simplicial volume and of the Euler characteristic, which
naturally leads us to look at the simplicial volume (and stable integral simplicial volume)
of compact manifolds with boundary (see also Sect. 1.1 below).
On the other hand, a different direction considered in this paper is based on the obser-

vation that if the answer to Question 1.1 is affirmative, then Property (SVχ ) will hold
for a general class of oriented closed manifolds which are only homology equivalent to
an aspherical one (see Remark 5.1). Based on this, we consider generalized versions of
Question 1.1 for aspherical spaces which are only homology equivalent to an oriented
closed manifold and for oriented closed manifolds which are only homology equivalent
to an aspherical space (see also Sect. 1.2 below).
A quick summary of various other strategies and examples is provided in Sect. 1.3.

1.1 Additivity

As the category of closed aspherical manifolds is difficult to handle structurally, we extend
the setup to compact aspherical manifolds with π1-injective boundary (Sect. 2.3) and
consider an (equivalent) version of Gromov’s question in this context.

Question (see Question 2.13) Let (M, ∂M) be an oriented compact aspherical manifold
with non-empty π1-injective aspherical boundary. Does the following implication hold?

‖M, ∂M‖ = 0 =⇒ χ (M, ∂M) = 0. (SVχ , ∂)

We recall some examples and sufficient conditions for the vanishing of the simplicial
volume in Sect. 3. Moreover, we show an extension of Gromov’s vanishing theorem (The-
orem 3.5) to the vanishing of the relative simplicial volume ‖M, ∂M‖ for oriented compact
connected manifolds (M, ∂M) which admit open covers with certain amenability proper-
ties (Theorem 3.13). Also, in Sect. 6, we discuss the properties of the relative stable integral
simplicial volume and the analogues of the above questions for this invariant.
The extension to manifolds with boundary generally allows us to compare additivity

and filling properties of the simplicial volume and of the Euler characteristic more sys-
tematically. For example, we show that Question 1.1 is related to Edmonds’ problem
(Conjecture 3.30) as follows:

Proposition 1 (see Proposition 3.31) Suppose that the following hold:

(a) Every oriented closed aspherical 3-manifold with amenable fundamental group
is the π1-injective boundary of an oriented compact aspherical 4-manifold W
with ‖W, ∂W‖ = 0.

(b) All oriented closed aspherical 4-manifolds satisfy Property (SVχ ).

Then, there exists an oriented closed aspherical 4-manifold M with χ (M) = 1.
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Thenotionof a topological quantumfield theory (TQFT), as a symmetricmonoidal func-
tor on the cobordism category, provides an efficient way of encoding additivity properties.
The connections between the simplicial volume and (invertible) TQFTs are discussed in
Sect. 4. Specifically, based on known additivity properties, we explain in Sect. 4.2 that the
simplicial volume defines an invertible TQFT on a suitable amenable cobordism category
with values inR. In addition, we show that this functor cannot be extended to a functor on
the whole cobordism category (Proposition 4.7). This contrasts the additivity behaviour
of the relative Euler characteristic, which is unconditional and thus defines a TQFT on
the whole cobordism category (Remark 4.9). We also obtain the following result about
the fundamental group of the amenable cobordism category of 4-manifolds and related
cobordism categories (see Sect. 4.2 for the precise definition of CobGd ):

Theorem 1 (see Theorem 4.5) Let G be a class of amenable groups that is closed under
isomorphisms and let M be an object of CobG4 . Then the group π1(BCobG4 , [M]) is not
finitely generated.

1.2 Aspherical spaces homology equivalent to closedmanifolds

Using the Kan–Thurston theorem, we show in Sect. 5 that Property (SVχ ) fails in general
if closed aspherical manifolds are replaced by aspherical spaces homology equivalent to
closed manifolds or closed manifolds homology equivalent to an aspherical space (see
Sect. 5.2 for the definition of an acyclic map):

Theorem 2 (see Theorem 5.7) Let n ∈ N≥2 be even.

(1) There exist aspherical spaces X that admit an acyclic map X → M to an oriented
closed connected n-manifold M and satisfy ‖X‖ = 0 and χ (X) �= 0. In particular,
these aspherical spaces do not satisfy Property (SVχ ).

(2) There exist oriented closed connected n-manifolds M that admit an acyclic map
X → M from an aspherical space X and satisfy ‖M‖ = 0 and χ (M) �= 0. In
particular, these manifolds do not satisfy Property (SVχ ).

1.3 Strategies and known examples

As the following examples show, the hypotheses in Question 1.1 cannot be reasonably
weakened or modified in any straightforward way:

• In general, non-aspherical oriented closed connected manifolds do not satisfy Prop-
erty (SVχ ): For example, ‖S2‖ = 0, but χ (S2) = 2.

• The converse implication of Property (SVχ ) does not hold in general for aspheri-
cal manifolds: For example, oriented closed connected hyperbolic 3-manifolds have
vanishing Euler’s characteristic, but their simplicial volume is nonzero.

• In general, Property (SVχ ) does not hold for oriented compact connected manifolds
with non-empty boundary without imposing additional conditions on the inclusion
of the boundary (Remark 2.16).

• In general, Property (SVχ ) does not hold for aspherical spaces that are only homology
equivalent to oriented closed connected manifolds (Theorem 5.7).

Wealso refer to Sect. 3 for a surveyof examples of oriented closedmanifoldswith vanishing
or non-vanishing simplicial volume.
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Various strategies have been developed to handle Question 1.1. In particular, this also
led to a wide range of positive examples:

Direct computations of both sides

One of Gromov’s original motivations to formulate Question 1.1 was the observation
that the simplicial volume and the Euler characteristic share some common vanishing
properties. Examples of this phenomenon include manifolds that admit non-trivial self-
coverings, closed aspherical manifolds with amenable fundamental group, and closed
aspherical manifolds that admit small amenable open covers (Sect. 3).

Boundedness properties of the Euler class

The simplicial volume of an oriented closed connected n-manifoldM is closely related to
the comparison map from bounded cohomology to singular cohomology in degree n (see
Sect. 2.4 and Proposition 2.18). On the other hand, the Euler characteristic is related to
the Euler class by duality. As we explain in Proposition 2.22, an immediate consequence is
that Property (SVχ ) can be reformulated in terms of the boundedness of the Euler class.
The problem of the boundedness of the Euler class is well studied and understood in
several cases [17,63,84,103].

L2-Betti numbers

Gromov suggested to use the fact that the Euler characteristic can be computed as the
alternating sum of the L2-Betti numbers and asked the following version of Question 1.1:

Question 1.2 [53, p. 232] Let M be an oriented closed aspherical manifold. Does the
following implication hold?

‖M‖ = 0 =⇒ (∀k∈N b(2)k (M) = 0
)
. (SVL2)

Assuming the Singer conjecture on the vanishing of the L2-Betti numbers of closed
aspherical manifolds outside the middle dimension [35], Question 1.1 and Question 1.2
are equivalent. More concretely, Gromov [54, p. 306] proposed a definition of integral
foliated simplicial volume, involving dynamical systems, and then

• to establish an upper bound of the L2-Betti numbers in terms of integral foliated
simplicial volume (via Poincaré duality), and

• to investigate whether the vanishing of the simplicial volume of closed aspherical
manifolds implies the vanishing of integral foliated simplicial volume.

The first step has been carried out by Schmidt [98]. The second step is an open problem,
which is known to have a positive answer inmany cases, e.g. for oriented closed aspherical
manifolds

• that have amenable fundamental group [46],
• that carry a non-trivial smooth S1-action [39],
• that are generalized graph manifolds [40],
• that are smooth and have trivial minimal volume [11, (proof of) Corollary 5.4]. In

particular, Question 1.1 with the simplicial volume replaced by the minimal volume
has a positive answer [97].
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Moreover, the integral foliated simplicial volume is related to the cost of the fundamental
group [73] and to the stable integral simplicial volume [46,78] (Sect. 6). In turn, the stable
integral simplicial volume gives upper bounds for homology growth, torsion homology
growth [46], and the rank gradient [72].

Functorial semi-norms

If the integral foliated simplicial volume is a functorial semi-norm on aspherical closed
manifolds, then Question 1.1 has an affirmative answer [38, Theorem 2.2.2].

Geometric positivity results

Conversely, it is known thatmany examples of closed asphericalmanifoldswith potentially
nonzero Euler characteristic have positive simplicial volume. Examples include oriented
closed connected hyperbolic manifolds [51,101], closedmanifolds with negative sectional
curvature [59], closed irreducible locally symmetric spaces of higher rank [69], closedman-
ifolds with non-positive sectional curvature and sufficiently negative intermediate Ricci
curvature [25], and closed manifolds with non-positive sectional curvature and strong
enough conditions at a single point [26]. We refer to Sect. 3.1 for further examples of
manifolds with (non-)vanishing simplicial volume.

Outlook

Supported by the wealth of positive examples, and in view of the existence of “exotic”
aspherical manifolds, it seems plausible that Question 1.1 has a positive answer in the
following special case:

Question 1.3 LetM be an oriented closed aspherical n-manifold whose universal cover-
ing is homeomorphic to R

n. DoesM satisfy Property (SVχ )?

Organization of the article

In Sect. 2, we collect the definitions of simplicial volume (Sect. 2.1) and bounded cohomol-
ogy (Sect. 2.4) as well as the duality principle which connects these (Sect. 2.4). Moreover,
we discuss the behaviour of the simplicial volume with respect to glueings (Sect. 2.2) and
introduce a relative version of Question 1.1 (Sect. 2.3). Finally, in Sect. 2.5, we discuss the
boundedness properties of the Euler class in connection with Question 1.1.
Section 3 is mainly devoted to the vanishing of the simplicial volume. Some known

examples are collected in Sect. 3.1. Vanishing results for the simplicial volume assuming
the existence of amenable open covers are recalled in Sect. 3.2 and extended to manifolds
with boundary in Sect. 3.3. Known results and open problems about the behaviour of the
simplicial volume with respect to products are recalled in Sect. 3.4 and these are then
discussed in connection with Question 1.1 (Proposition 3.24). Finally, Sect. 3.5 explains
a connection between Question 1.1 and a conjecture of Edmonds in four-dimensional
topology (Conjecture 3.30) via “fillings” of closed manifolds.
In Sect. 4, we define the amenable cobordism category and explain how to interpret the

simplicial volume as an invertible TQFT on this cobordism category. Using the simplicial
volume, we prove that the fundamental group of the four-dimensional amenable cobor-
dism category is not finitely generated (Theorem 4.5). Also, using known results about
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cobordism categories, we show that the simplicial volume does not extend to the whole
cobordism category (Proposition 4.7).
Section 5 is concerned with the study of Question 1.1 using known constructions that

produce aspherical spaces. More precisely, in Sects. 5.1–5.3, we recall the Kan–Thurston
theorem and explain how to use this to prove the result stated in Sect. 1.2 (see Theo-
rem 5.7). Then, in Sect. 5.4, we briefly review known constructions of closed aspherical
manifolds, Davis’ reflection group trick and Gromov’s hyperbolization, in the context of
Question 1.1.
Finally, Sect. 6 surveys the approach to Question 1.1 via the stable integral simplicial

volume.

Notation

We use N = {0, 1, 2, . . .}. We recall that aspherical spaces are assumed to be path-
connected.

2 Simplicial volume
We recall the definition of the simplicial volume, basic glueing properties, and the role
of the comparison map for bounded cohomology. Moreover, we consider and study a
relative version of Question 1.1, and discuss the connection of Question 1.1 with (the
boundedness of) the Euler class.

2.1 Simplicial volume

The simplicial volume originally appeared in Gromov’s proof of Mostow rigidity as a
homotopy invariant replacement of the hyperbolic volume [51,90].

Definition 2.1 (Simplicial volume) Let M be an oriented closed connected n-manifold.
The simplicial volume ofM is defined as

‖M‖ := ‖[M]‖1 ∈ R≥0,

where [M] ∈ Hn(M;R) is theR-fundamental class ofM and ‖ · ‖1 denotes the semi-norm
onH∗( · ;R), induced by the �1-normon the singular chain complexC∗( · ;R) with respect
to the basis given by the singular simplices.

Definition 2.2 (Relative simplicial volume) Let (M, ∂M) be an oriented compact con-
nected n-manifold M with boundary ∂M. The relative simplicial volume of (M, ∂M) is
defined as

‖M, ∂M‖ := ‖[M, ∂M]‖1 ∈ R≥0,

where [M, ∂M] ∈ Hn(M, ∂M;R) is the R-fundamental class of (M, ∂M) and ‖ · ‖1 denotes
the �1-semi-norm on relative singular homology.

In the oriented, compact, non-connected case, we define the (relative) simplicial volume
as the sum of the (relative) simplicial volumes of the components. In particular, ‖∅‖ = 0.

Remark 2.3 The boundary of a relative fundamental cycle of (M, ∂M) is a fundamental
cycle of ∂M. This shows that for every oriented compact connected n-manifold M with
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non-empty boundary ∂M, we have

‖M, ∂M‖ ≥ ‖∂M‖
n + 1

.

In particular, ‖M, ∂M‖ = 0 implies ‖∂M‖ = 0.
Note that in the case of compact 3-manifolds better estimates are available [15].

Remark 2.4 One can also define the (relative) simplicial volume with integral coefficients
just by working with integral singular homology. More precisely, the integral (relative)
simplicial volume of an oriented compact connected n-manifoldM with (possibly empty)
boundary ∂M is defined by

‖M, ∂M‖Z := ‖[M, ∂M]Z‖1 ∈ N,

where [M, ∂M]Z ∈ Hn(M, ∂M;Z) is the Z-fundamental class of (M, ∂M). Notice that we
still have ‖M, ∂M‖Z ≥ ‖∂M‖Z/(n + 1).

2.2 Simplicial volume and glueings of manifolds

In general, the simplicial volume is not additive with respect to the glueing of manifolds
along submanifolds. However, (sub)additivity does hold in the case of amenable glueings:

Theorem 2.5 (Simplicial volume and glueings [13,51], [45, Theorem 7.6]) Let I be a
finite set and let (Mi, ∂Mi)i∈I be a family of oriented compact connected manifolds of the
same dimension. Assume that all the boundary components have amenable fundamental
group. Moreover, let (M, ∂M) be obtained from (Mi, ∂Mi)i∈I by a pairwise glueing (along
orientation reversing homeomorphisms) of a set of boundary components. Then, we have

‖M, ∂M‖ ≤
∑

i∈I
‖Mi, ∂Mi‖.

If all glued boundary components are π1-injective in their original manifold, then

‖M, ∂M‖ =
∑

i∈I
‖Mi, ∂Mi‖.

Remark 2.6 Theorem 2.5 allows that boundary components of the manifolds (Mi, ∂Mi)
are glued to boundary components of the same manifold (Mi, ∂Mi); i.e. self-glueings are
included. Furthermore, not all boundary components need to be glued (so that some of
the components remain boundary components ofM).

Remark 2.7 It is well-known that the Euler characteristic is always additive with respect
to glueings: given oriented compact connected n-manifolds (M, ∂M) and (N, ∂N ) with
homeomorphic (or just homotopy equivalent) boundary componentsM1 ⊆ ∂M andN1 ⊆
∂N , we set Z = M ∪M1∼=N1 N . Then we have:

χ (Z) = χ (M) + χ (N ) − χ (M1 ∼= N1)

and similarly:

χ (Z, ∂Z) = χ (M, ∂M) + χ (N, ∂N ) + χ (M1 ∼= N1).

Hereχ (W, ∂W ) := χ (W )−χ (∂W ) denotes the relativeEuler characteristic of the compact
manifold (W, ∂W ).
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Assuming that M1 is aspherical and has amenable fundamental group, then both the
simplicial volume and the Euler characteristic of M1 vanish (Example 3.2(1) and Theo-
rem 3.6). In particular, the last formula simplifies in this case to a formula analogous to
the one in Theorem 2.5:

χ (Z, ∂Z) = χ (M, ∂M) + χ (N, ∂N ).

Example 2.8 (Doubles) Given an oriented compact connected manifold M with non-
empty boundary ∂M, we define the double ofM to be

D(M) := M ∪∂M∼=∂(−M) −M,

where −M denotes a copy of M with the opposite orientation. It is easily seen that we
always have subadditivity of the simplicial volume in this case:

‖D(M)‖ ≤ 2 · ‖M, ∂M‖.
Indeed, given a relative fundamental cycle c of M, we can set c to be the relative funda-
mental cycle of −M corresponding to −c. Then, c′ = c + c is in fact a fundamental cycle
of D(M) with norm

|c′|1 ≤ |c|1 + |c|1 = 2 · |c|1.
Then the subadditivity of the simplicial volume follows from taking the infimum over all
such c. The same computation also works for integral coefficients.

Remark 2.9 (Doubles and asphericity) In general, the double of an oriented compact
aspherical manifold with boundary is not necessarily aspherical; prototypical examples of
this kind are the 3-ball or S1 × D2.
Let (M, ∂M) be a compact n-manifold, where M is aspherical and ∂M is connected,

and let F denote the homotopy fibre of the inclusion ∂M ⊂ M. For simplicity, we write
H := π1(∂M, x) andG := π1(M, x) and denote by ι : H → G the induced homomorphism.
Moreover, let G′ := im(ι) be the image of ι, and consider the corresponding diagram

K (G, 1) ∂M

q

K (G, 1)

K (G, 1) K (G′, 1) K (G, 1)

induced by ι and the inclusion maps. Suppose that the (homotopy) pushout

D(M) = M ∪∂M M � K (G, 1)
h∪∂M K (G, 1)

is aspherical. Then the induced map between the homotopy pushouts

g : K (G, 1)
h∪∂M K (G, 1) → K (G, 1)

h∪K (G′ ,1) K (G, 1)

is a homotopy equivalence by the Seifert–van Kampen theorem. Passing to the homotopy
fibres of the diagram above, regarded as a diagram over K (G, 1), we obtain the following
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diagram (up to canonical homotopy equivalence)

∗ F

q′

∗

∗ D ∗
where D is discrete with cardinality equal to the index [G : G′]. We recall that the homo-
topy fibre of a map from a homotopy pushout is canonically identified up to homotopy
equivalence with the homotopy pushout of the respective homotopy fibres. Thus, since g
is a homotopy equivalence, the induced map

g ′ : �F → �D,

between the homotopy fibres of the source and target of g as spaces over K (G, 1), where
� denotes here the (unreduced) suspension, is again a homotopy equivalence. Therefore,
π0(F ) ∼= [G : G′] and each path-component of F must have trivial integral homology. In
addition, the homotopy fibre of

q : ∂M → K (G′, 1)

is identifiedwith apath-component ofF , so themapq is acyclic (see Sect. 5.2). Inparticular,
q is an integral homology equivalence and arises as the plus construction associated to
the kernel of ι. As a consequence, if ι is injective, then q : ∂M → K (G′, 1) is a homotopy
equivalence, so ∂M is again aspherical. Conversely, it is well known that the double is
aspherical ifM and ∂M are aspherical and ι is injective.
On the other hand, we do not know if the injectivity of ι is necessary for the asphericity

of the double.

An interesting example of amenable glueings is given by connected sums:

Proposition 2.10 [51], [45, Corollary 7.7] Let n ≥ 1 and let M and N be oriented closed
connected n-manifolds. The following hold:

(1) χ (M#N ) = χ (M) + χ (N ) − χ (Sn);
(2) If n ≥ 3, then ‖M#N‖ = ‖M‖ + ‖N‖.

In particular, if n ≥ 3, we have:

(3) If n is even and χ (M) = 0 = χ (N ), then χ (M#N ) �= 0;
(4) If ‖M‖ = 0 = ‖N‖, then ‖M#N‖ = 0.

Remark 2.11 Note that the connected sum of aspherical manifolds in dimension ≥ 3
is never aspherical [81, Lemma 3.2]. Thus, Proposition 2.10 cannot be used to produce
counterexamples to Question 1.1.

Example 2.12 The formula in Proposition 2.10(2) fails in dimension 2. For example,
hyperbolic surfaces have nonzero simplicial volume (Example 3.1(1)) but the two-
dimensional torus has zero simplicial volume (Example 3.2.(1)).
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2.3 A relative version of Gromov’s question

We consider the following version of Question 1.1 for manifolds with boundary and show
that it is a consequence of Property (SVχ ) (Proposition 2.15).

Question 2.13 Let (M, ∂M) be an oriented compact aspherical manifold with non-empty
π1-injective aspherical boundary. Does the following implication hold?

‖M, ∂M‖ = 0 =⇒ χ (M, ∂M) = 0. (SVχ , ∂)

Remark 2.14 For every oriented compact connected n-manifold M with boundary ∂M,
we have |χ (M)| = |χ (M, ∂M)|. Indeed, when n is even, we know that χ (∂M) = 0, so
χ (M, ∂M) = χ (M) − χ (∂M) = χ (M). On the other hand, when n is odd, we have
χ (∂M) = 2 · χ (M), so χ (M, ∂M) = χ (M) − χ (∂M) = −χ (M).

In order to disprove Property (SVχ ), it suffices to find an example that does not satisfy
Property (SVχ , ∂):

Proposition 2.15 Let n ≥ 1. If all oriented closed aspherical manifolds of dimension n
or n − 1 satisfy Property (SVχ ), then all oriented compact aspherical n-manifolds with
non-empty π1-injective aspherical boundary satisfy Property (SVχ , ∂).

Proof Let (M, ∂M) be an oriented compact aspherical n-manifold with non-empty π1-
injective aspherical boundary. Then the double D(M) := M ∪∂M M is an oriented closed
aspherical n-manifold (Remark 2.9) and ‖D(M)‖ ≤ 2 · ‖M, ∂M‖ (Example 2.8).
Suppose ‖M, ∂M‖ = 0. Then ‖D(M)‖ = 0 and ‖∂M‖ = 0 (Remark 2.3). From Prop-

erty (SVχ ) in dimension n and n − 1, respectively, we conclude

χ
(
D(M)

) = 0 and χ (∂M) = 0.

Therefore, we compute

χ (M, ∂M) = χ (M) − χ (∂M) = 1
2

· (
χ (D(M)) + χ (∂M)

) − χ (∂M) = 0.

Hence, (M, ∂M) satisfies Property (SVχ , ∂). ��

Example 2.16 Note that Property (SVχ , ∂) does not hold for all oriented compact aspher-
ical manifolds without the π1-injectivity condition on the boundary. For example, if
we take an oriented closed connected hyperbolic even-dimensional manifold N and let
M := N×D2, thenM and ∂M = N×S1 are aspherical and ‖M, ∂M‖ = 0 (Proposition 3.19
or Example 3.2(4)).On the other hand,wehaveχ (M, ∂M) = χ (N )·χ (D2, S1) = χ (N ) �= 0.

Remark 2.17 Note that by allowing the case of empty boundary, Proposition 2.15 can
be formulated as an equivalence between Question 2.13 and Question 1.1. The exten-
sion of Gromov’s question to manifolds with boundary allows us in particular to explore
Question 1.1 by studying the properties of (vanishing of) the simplicial volume and the
Euler characteristic along glueings of manifolds and compare their respective additivity
properties. This viewpoint will also be explored in Sect. 4.
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2.4 The comparisonmap

Dually, simplicial volume can be expressed in terms of bounded cohomology. Bounded
cohomology

H∗
b ( · ;R) := H∗(C∗

b ( · ;R))

is the cohomology of the topological dual C∗
b ( · ;R) of the singular chain complex, where

the dual is taken with respect to the �1-norm. Bounded cohomology is then endowed with
the �∞-seminorm, denoted by ‖ · ‖∞.
The inclusion C∗

b ( · ;R) ↪→ C∗( · ;R) induces a natural transformation

comp∗ : H∗
b ( · ;R) =⇒ H∗( · ;R),

which is called the comparison map. A straightforward application of the Hahn–Banach
Theorem shows:

Proposition 2.18 (Duality principle [51]) Let (X,A) be a pair of spaces, let k ∈ N, and let
α ∈ Hk (X,A;R). Then

‖α‖1 = sup
{∣∣〈compkX,A(ϕ),α〉∣∣ ∣∣ ϕ ∈ Hk

b (X,A;R), ‖ϕ‖∞ ≤ 1
}
.

In particular: If (M, ∂M) is anoriented compact connectedn-manifoldwith (possibly empty)
boundary, then ‖M, ∂M‖ is the operator norm of the composition

Hn
b (M, ∂M;R)

compnM,∂M−−−−−−→ Hn(M, ∂M;R)
∩[M,∂M]∼= R

and

compn(M,∂M) is surjective ⇐⇒ ‖M, ∂M‖ > 0.

Proposition 2.19 Let M be an oriented closed connected n-manifold such that ‖M‖ = 0.
Suppose that x ∈ Hk (M;R) is bounded (i.e. x lies in the image of the comparison map
compkM) and let x∗ ∈ Hn−k (M;R) be such that x ∪ x∗ �= 0. Then x∗ is not bounded.

Proof Let y ∈ Hk
b (M;R) be a class with compkM(y) = x. Assume for a contradiction

that x∗ ∈ Hn−k (M;R) lies in the image of compn−k
M , that is, there is z ∈ Hn−k

b (M;R)
with compn−k

M (z) = x∗. The usual explicit formula for the cup-product on singular coho-
mology shows that the cup-product lifts to a cup-product on bounded cohomology. Then

compnM(y ∪ z) = compkM(y) ∪ compn−k
M (z) = x ∪ x∗ �= 0,

so compnM maps surjectively onto Hn(M;R) ∼= R. But this contradicts the assump-
tion ‖M‖ = 0 according to Proposition 2.18. ��

The vanishing of the simplicial volume thus implies that not too many classes can be
bounded; dually, the vanishing of the simplicial volume causes that there are many other
classes with vanishing �1-semi-norm.

Corollary 2.20 Let M be an oriented closed connected n-manifold satisfying ‖M‖ = 0
and let N∗(M;R) := {α ∈ H∗(M;R) | ‖α‖1 = 0}. Then

∑

k∈N

dimR Nk (M;R) ≥ 1
2

·
∑

k∈N

dimR Hk (M;R).
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Proof On the one hand, by the duality principle (Proposition 2.18), we have

dimR Hk (M;R) − dimR Nk (M;R) = dimR(im compkM)

for all k ∈ N. On the other hand, Poincaré duality and Proposition 2.19 imply that
∑

k∈N

dimR(im compkM) ≤ 1
2

·
∑

k∈N

dimR Hk (M;R) = 1
2

·
∑

k∈N

dimR Hk (M;R).

Combining both estimates gives the claim. ��

2.5 Boundedness of the Euler class

The Euler characteristic of an oriented closed connected smooth n-manifold M can be
expressed in terms of the Euler class e(M) ∈ Hn(M;R) [85] via

χ (M) = 〈
e(M), [M]

〉
.

The norm of the Euler class has been studied extensively in the literature, especially,
in connection with the existence of flat structures (a detailed account of results in this
direction is given in Frigerio’s book [45]). The boundedness of the Euler class is also closely
related to Question 1.1.

Question 2.21 Let M be an oriented closed aspherical smooth n-manifold. Does the
following property hold?

The Euler class e(M) ∈ Hn(M;R) is bounded. (Eub)

Proposition 2.22 Letn ∈ Nand letM beanoriented closed connected smoothn-manifold.
Then the following are equivalent:

(1) The manifold M satisfies Property (SVχ ).
(2) The manifold M satisfies Property (Eub).

Proof Let M satisfy Property (SVχ ). If ‖M‖ = 0, then 〈e(M), [M]〉 = χ (M) = 0. By
duality, this implies that e(M) = 0; in particular, e(M) is bounded. On the other hand, if
‖M‖ > 0, then the comparison map is surjective (Proposition 2.18); hence, e(M) is also
bounded. This shows thatM satisfies Property (Eub).
Conversely, suppose that e(M) is bounded. Then

∣∣χ (M)
∣∣ = ∣∣〈e(M), [M]

〉∣∣ ≤ ∥∥e(M)
∥∥∞ · ‖M‖.

As a consequence, if ‖M‖ = 0, then χ (M) = 0; i.e.M satisfies Property (SVχ ). ��

Remark 2.23 Let (M, ∂M) be an oriented compact connected manifold with boundary.
We may define

e(M, ∂M) ∈ Hn(M, ∂M;R)

to be the Poincaré dual class to χ (M) ∈ Z ∼= H0(M;Z). We recall that |χ (M)| =
|χ (M, ∂M)| (Remark 2.14). Then Property (SVχ , ∂) is equivalent to

e(M, ∂M) ∈ Hn(M, ∂M;R) is bounded. (Eub, ∂)

The proof is the same as for Proposition 2.22.
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Remark 2.24 It is well known that the Euler class of flat vector bundles is bounded [45,
Section 13]. This shows that if ‖M‖ = 0 and the tangent bundle of M admits a flat
connection, then χ (M) = 0 [17,63], [45, Theorem 13.11].
Moreover, it was conjectured [45, Conjecture 13.13] that the Euler class of topologically

flat sphere bundles admits a bounded representative. Monod and Nariman [88, Theo-
rem 1.8] have recently proved that the Euler class of the (discrete) group of orientation-
preserving homeomorphisms of S3 is unbounded.

Example 2.25 Assuming that Question 1.1 has an affirmative answer, then Proposi-
tion 2.22 has interesting implications for the existence of tangentialmaps between smooth
manifolds. We recall that a map f : M → N between closed smooth manifolds is called
tangential if the vector bundles TM and f ∗TN are isomorphic. As a consequence, a tan-
gential map f : M → N between oriented closed connected smooth manifolds preserves
the Euler class up to sign. AssumingQuestion 1.1, it follows that there cannot exist tangen-
tial maps f : M → N if χ (M) �= 0 andN is aspherical with zero simplicial volume. Indeed,
assuming that N satisfies Property (SVχ ), it follows that e(N ) = 0 (since χ (N ) = 0).
Then, given a tangential map f : M → N , the classes f ∗(e(N )) and e(M) agree up to sign,
so e(M) = 0 (and therefore also χ (M) = 0).

3 Vanishing of the simplicial volume
In this section, we collect some known results on the simplicial volume.Wewill be mainly
interested in describing sufficient conditions for the vanishing of the simplicial volume.
We also compare those situationswith the respective behaviour of the Euler characteristic.

3.1 Computations of the simplicial volume

In general, computing exact values of the simplicial volume is difficult. For example,
the problem of determining whether a given (triangulated) manifold has vanishing sim-
plicial volume or not is undecidable [102, Chapter 2.6]. The two major sources for
(non-)vanishing results are amenability (which leads to vanishing) and negative curva-
ture (which leads to non-vanishing).

Example 3.1 (Non-vanishing) The following manifolds have positive simplicial volume:

(1) Oriented closed connected hyperbolic manifolds [51,101];
(2) The compactification of oriented connected complete finite-volume hyperbolic

manifolds [49,51];
(3) Oriented closed connected manifolds with negative sectional curvature [59];
(4) Oriented closed connected locally symmetric spaces of non-compact type [18,69];
(5) Oriented closed connected manifolds with non-positive sectional curvature and

sufficiently negative intermediate Ricci curvature [25];
(6) Oriented closed connected manifolds with non-positive sectional curvature and

strong enough conditions at a single point [26];
(7) Oriented closed connected rationally essential (e.g. aspherical) manifolds of dimen-

sion ≥ 2 with non-elementary hyperbolic fundamental group (this follows via the
duality principle fromwork ofMineyev on surjectivity of the comparisonmap [86]);

(8) Oriented closed connected rationally essential manifolds of dimension ≥ 2 with
non-elementary relatively hyperbolic fundamental group [7];
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(9) Non-vanishing of simplicial volume is inherited through a proportionality principle
[51,70,101]: IfM and N are oriented closed connected Riemannian manifolds with
isometric universal coverings, then ‖M‖ > 0 if and only if ‖N‖ > 0.

In this paper, we focus our attention on vanishing results for the simplicial volume. The
following example contains some known vanishing results:

Example 3.2 (Vanishing) The following manifolds have zero simplicial volume:

(1) Oriented closed connected n-manifolds with amenable fundamental group and
n > 0 [51] or, more generally, with n-boundedly acyclic fundamental group [51,89];
finitely presented non-amenable boundedly acyclic groups have been recently con-
structed [42,87];

(2) Oriented compact connected n-manifolds M with non-empty boundary such that
both the fundamental groups ofM and of ∂M are amenable [51];

(3) More generally, oriented compact connected n-manifolds M with non-empty
boundary such that ‖∂M‖ = 0 and the connecting homomorphism Hn−1

b (∂M) →
Hn
b (M, ∂M) is surjective.Manifolds satisfying the latter condition can be constructed

by taking manifolds whose boundary inclusion is π1-surjective and such that their
fundamental group lies in Lex [10]. Recall that Lex groups are those groups � such
that every epimorphism � � � induces an injective map in bounded cohomology
in every degree. Examples of Lex groups contain free groups, amenable groups [10],
boundedly acyclic groups and certain extensions of these [42, Remark 3.8].

(4) Oriented compact connected manifolds with (possibly empty) boundary that admit
a self-map f of degree deg(f ) /∈ {0, 1,−1} [51];

(5) Oriented closed connected manifolds that are the boundary of an oriented compact
connected manifolds with zero simplicial volume (Remark 2.3);

(6) Oriented closed connected n-manifolds that admit a smooth non-trivial S1-action
[104]. More generally, manifolds admitting an F-structure also have zero simplicial
volume [24,91];

(7) Oriented closed aspherical manifolds supporting an affine structure whose holon-
omy map is injective and contains a pure translation [14];

(8) Oriented closed connected smooth manifolds with zero minimal volume [8,51] or
zero minimal volume entropy [51, p. 37] [4];

(9) Oriented closed connected graph 3-manifolds [51,99];
(10) Allmapping tori of oriented closed connected3-manifolds [16]; however, the general

behaviour of simplicial volume of general mapping tori is very diverse [65].

Remark 3.3 In view of Question 1.1, it would be interesting to understand whether all
oriented closed aspherical manifolds that admit a self-map f of degree deg(f ) /∈ {0, 1,−1}
must have zero Euler characteristic. For surfaces this is clearly the case (the only candidate
being the torus).More generally, this is known to be truewhenever the fundamental group
of the aspherical manifold is Hopfian [2]. The statement was claimed in full generality by
Sullivan [100, Footnote 23, p. 318] without a proof.

3.2 Amenable covers: the closed case

Auseful approach to investigate the vanishingof simplicial volume is to consider amenable
covers. This idea dates back to Gromov [51] and it was then developed further by many
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authors [3,21,44,47,50,60,62,76,79,93]. We use the terminology of amenable category
[21,50,76]:

Definition 3.4 (Amenable covers and category)

(1) Let X be a topological space and let U be a subset of X . We say that U is amenable
in X if for every x ∈ U the image

im
(
π1(U ↪→ X, x)

) ≤ π1(X, x)

is amenable. We say that an open cover of X is amenable, if it consists of amenable
sets.

(2) The amenable category of X , denoted by catAm(X), is the minimal integer n such
that X admits an open amenable cover with cardinality n. If no such integer exists,
we simply set catAm(X) = +∞.

The vanishing results for open amenable covers are usually stated in terms of assump-
tions on the multiplicity of the cover instead of the cardinality. These assumptions essen-
tially are the same when working with paracompact Hausdorff spaces [21, Remark 3.13].
The importance of amenable covers in our setting is demonstrated by the following two

results:

Theorem 3.5 (Gromov’s vanishing theorem [51, p. 40]) Let M be an oriented closed
connected n-manifold. Then,

catAm(M) ≤ n =⇒ ‖M‖ = 0.

A similar result for the Euler characteristic has been proved by Sauer [97]:

Theorem 3.6 (Euler characteristic and amenable covers) Let M be an oriented closed
aspherical n-manifold. Then,

catAm(M) ≤ n =⇒ χ (M) = 0.

Remark 3.7 InTheorem3.6, the asphericity assumption is crucial: every even-dimensional
sphere provides a counterexample in the non-aspherical setting.

In particular, Theorems 3.5 and 3.6 show that all oriented closed asphericalmanifoldsM
with catAm(M) ≤ dim(M) satisfy Property (SVχ ).

Example 3.8 Certain fibre bundles yield examples of the situation arising in Theorems 3.5
and 3.6. Let N ↪→ M → B be a fibre bundle of oriented closed connected manifolds and
suppose that

catAm(N ) ≤ dim(M)
dim(B) + 1

.

Then, we have catAm(M) ≤ dim(M) [76, Corollary 1.2] (and dim(M) ≥ dim(B) + 1 ≥ 1).
Using Theorems 3.5 and 3.6, we conclude:

(a) ‖M‖ = 0 (Theorem 3.5).
(b) IfM is aspherical, then also χ (M) = 0 (Theorem 3.6).
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Concerning (b), it should be noted that in this case the asphericity of N is also sufficient
in order to conclude that χ (M) = 0. Indeed the hypothesis on catAm(N ) shows that

catAm(N ) ≤ dim(M)
dim(B) + 1

= dim(B) + dim(N )
dim(B) + 1

= dim(B)
dim(B) + 1

+ dim(N )
dim(B) + 1

.

Since catAm(N ) is an integer, it follows that catAm(N ) ≤ dim(N ). Thus, χ (N ) = 0 (Theo-
rem 3.6) and so χ (M) = χ (N ) · χ (B) = 0.

Recently, Gromov’s vanishing theorem was extended to weaker situations, such as
weakly boundedly acyclic open covers and other more general homotopy colimit decom-
positions [62,93]. This new context suggests in particular the following question:

Question 3.9 LetM be an oriented closed aspherical n-manifold. Assuming there exists
a weakly boundedly acyclic open cover of M in the sense of Ivanov [62] with cardinality
at most n, does it follow that χ (M) = 0 ?

A negative answer to Question 3.9 would also produce closed aspherical examples
that do not satisfy Property (SVχ ). In fact, no example of an oriented closed aspherical
manifold M with vanishing simplicial volume and catAm(M) = dim(M) + 1 seems to be
known.

3.3 Amenable covers: the case with boundary

Thevanishing theoremcan also be extended to the relative setting viaGromov’s vanishing-
finiteness theorem [47,51,61]. We quickly recall the formulation of the vanishing-
finiteness theorem andmention two convenient special cases for compact manifolds with
boundary: the relative vanishing theorem and the case of locally co-amenable subcom-
plexes.
For an oriented connected (possibly non-compact) manifoldM without boundary, the

locally finite simplicial volume is defined by

‖M‖lf := inf
{|c|1

∣
∣ c ∈ C lf

n (M;R) is a fundamental cycle ofM
}
,

where C lf∗ ( · ;R) denotes the (singular) locally finite chain complex ofM. Because locally
finite chains are not necessarily �1, the locally finite simplicial volume is not always finite.

Theorem 3.10 (Vanishing-finiteness theorem [51, p. 58], [47, Section 7.2], [61, Theo-
rem 4.6]) Let M be an oriented connected n-manifold without boundary and let (Ui)i∈N be
an open cover of M with the following properties:

(i) For each i ∈ N, the subset Ui ⊂ M is amenable and relatively compact.
(ii) The sequence (Ui)i∈N is amenable at infinity, i.e. there exists an increasing

sequence (Ki)i∈N of compact subsets of M such that:

(a) The family (M \ Ki)i∈N is locally finite;
(b) For all i ∈ N, we have Ui ⊂ M \ Ki;
(c) For all sufficiently large i ∈ N, the set Ui is amenable in M \ Ki.

(iii) The multiplicity of (Ui)i∈N is at most n.

Then ‖M‖lf = 0.
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Remark 3.11 Properties (a) and (b) in (ii) show that every sequence (Ui)i∈N which is
amenable at infinity is necessarily locally finite.

Vanishing of the locally finite simplicial volume leads to vanishing results for the relative
simplicial volume:

Remark 3.12 If (M, ∂M) is an oriented compact connected manifold, then ‖M, ∂M‖ ≤
‖ int(M)‖lf [51], [71, Proposition 5.12]. In general, this inequality is strict [51, p. 10], [71,
Example 6.17]: For example, ‖[0, 1], {0, 1}‖ < ∞ = ‖(0, 1)‖lf .
On the other hand, there is no known example for which ‖ int(M)‖lf is finite and distinct

from ‖M, ∂M‖.

Theorem 3.13 (Relative vanishing theorem) Let (M, ∂M) be an oriented compact con-
nected n-manifold that admits an amenable open cover (Ui)i∈I with the following proper-
ties:

(i) The multiplicity of (Ui)i∈I is at most n.
(ii) The multiplicity of (Ui ∩ ∂M)i∈I is at most n − 1.
(iii) For each i ∈ I , the set Ui ∩ ∂M is amenable in ∂M.

Then ‖M, ∂M‖ = 0.

Proof In view of Remark 3.12, it suffices to show that the vanishing-finiteness theo-
rem (Theorem 3.10) can be applied to int(M). To this end, we modify the given open
cover (Ui)i∈I as follows. Up to homeomorphism, we can write

int(M) ∼= M ∪∂M
(
∂M × [0,+∞)

)
.

We extend (Ui)i∈I to the right-hand side by replacing the sets V of (Ui)i∈I intersect-
ing ∂M with V ∪ ((V ∩ ∂M) × [0,∞)). Let (Vi)i∈I be the resulting open cover of int(M).
We now upgrade this cover (Vi)i∈I to a locally finite cover made of relatively compact
sets without increasing the multiplicity; because the intersection of (Ui)i∈I with ∂M has
multiplicity at most n − 1, this is indeed possible by a standard procedure [47, Proof of
Theorem 11.2.3, p. 144]. The resulting open cover satisfies all the conditions required by
the vanishing-finiteness theorem (Theorem 3.10). ��

Based on Theorem 3.13, the following question is a special case of Question 2.13:

Question 3.14 Let (M, ∂M) be an oriented compact aspherical n-manifold with non-
empty π1-injective aspherical boundary that admits an open cover as in Theorem 3.13.
Then, do we have χ (M, ∂M) = 0 ?

Amenable covers as in the vanishing-finiteness theorem (Theorem 3.10) appear natu-
rally in the presence of locally co-amenable subcomplexes [47,51]:

Definition 3.15 (Locally co-amenable subcomplex [51, p. 59], [47, Definition 11.2.1]) Let
M be an oriented compact connected PL-manifold with non-empty boundary and let P
be a simplicial complex such thatM ∼= |P|. Assume that there exists a simplicial complex
K ⊂ P such that |K | ⊂ int(M) andM is homeomorphic to a closed regular neighbourhood
of K inside P [47, Definition 11.1.4]. Suppose also that K has codimension at least 2 inM.
Then, K is called locally co-amenable in P (or in M) if for each vertex v ∈ (K ′′)0 of the
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second barycentric subdivision K ′′ of K we have that

π1(|Sv \ (Sv ∩ K )|)
is amenable. Here, Sv denotes the simplicial sphere in P′′ centred at v.

Remark 3.16 If K is locally co-amenable inM, thenM is homotopy equivalent to K .

Remark 3.17 If bothM and ∂M are aspherical andM admits a locally co-amenable sub-
complex K , then the boundary inclusion is not π1-injective: Indeed, if ∂M ↪→ M were
π1-injective, then π1(∂M) would be isomorphic to a subgroup of π1(M). So, asphericity
and the Shapiro lemma show that

cd π1(M) ≥ cd π1(∂M) = dim(M) − 1.

However, asM is homotopy equivalent to K (Remark 3.16), also K is aspherical and thus

cd π1(M) ≤ dim(K ) ≤ dim(M) − 2,

which is a contradiction.

Proposition 3.18 If M is an oriented compact connected PL-manifold with non-empty
boundary that admits a locally co-amenable subcomplex, then ‖M, ∂M‖ = 0.

Proof Under the given assumptions, the vanishing-finiteness theorem (Theorem 3.10)
applies to int(M) [47, Theorem 11.2.3]. Therefore, ‖M, ∂M‖ = 0 (Remark 3.12). ��

3.4 Products of manifolds

While the Euler characteristic is multiplicative with respect to products, the product
behaviour for the simplicial volume is more delicate. If one of the factors is closed, the
vanishing behaviour of simplicial volume is controlled by the factors:

Proposition 3.19 (Simplicial volume and products [12,51], [71, Proposition C.7]) Let M
be an oriented closed connected m-manifold and let N be an oriented compact connected
n-manifold with (possibly empty) boundary. Then, we have

‖M‖ · ‖N, ∂N‖ ≤ ‖M × N, ∂(M × N )‖ ≤
(
n + m
m

)
· ‖M‖ · ‖N, ∂N‖.

The exact values in general are unknown; the only known nonzero computation is the
product of two closed surfaces [19].
On the other hand, the product of at least three compact manifolds with non-empty

boundary always has vanishing simplicial volume:

Proposition 3.20 LetM1,M2,M3 be oriented compact connected PL-manifolds with non-
empty boundary. Then, we have

‖M1 × M2 × M3, ∂(M1 × M2 × M3)‖ = 0.

Proof In this situation, M1 × M2 × M3 admits a locally co-amenable subcomplex [51,
Example (a), p. 59], [47, Theorem 14]. Therefore, we can apply Proposition 3.18.
An alternative proof is as follows: Let n = dim(M1 × M2 × M3). The homotopy

fibre of the boundary inclusion in this case has trivial fundamental group and thus
has trivial bounded cohomology. Hence, the induced map in bounded cohomology
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Hk
b (M1 ×M2 ×M3) → Hk

b (∂(M1 ×M2 ×M3)) is an isomorphism in every degree [51,89].
The long exact sequence of the pair then implies thatHn

b (M1×M2×M3, ∂(M1×M2×M3))
is trivial, whence ‖M1 × M2 × M3, ∂(M1 × M2 × M3)‖ = 0 (Proposition 2.18). ��

A nice application of the previous result is the following:

Example 3.21 Let (T 2)× denote a two-dimensional torus with an open disk removed.
Then the simplicial volume of the product of (at least) three copies of (T 2)× vanishes. On
the other hand, χ ((T 2)× × (T 2)× × (T 2)×) = −1.

While triple products have zero relative simplicial volume, the situation remains unde-
cided in the following case of products of two compact manifolds [47, Question 8]:

Question 3.22 LetM andN be oriented compact connected manifolds with non-empty
connected boundaries. Does it follow that

‖M × N, ∂(M × N )‖ = 0 ? (SV×)

Remark 3.23 Without the connectedness assumptionon theboundary, there areproducts
that do not satisfy Property (SV×). For example, it is known that the product of a compact
hyperbolic surface with boundary and a closed interval has nonzero relative simplicial
volume [51, p. 17], [71, Corollary 6.2].

The following proposition shows an interesting connection between Property (SV×)
and Question 1.1.

Proposition 3.24 LetM andN be oriented compact asphericalmanifoldswith non-empty
π1-injective aspherical boundary that satisfy χ (M) · χ (N ) �= 0. Furthermore, suppose that
M and N have dimensions of different parity and satisfy Property (SV×). Then ∂(M × N )
does not satisfy Property (SVχ ).

Proof AsM andN satisfy Property (SV×), we have ‖M×N, ∂(M×N )‖ = 0. In particular,
‖∂(M ×N )‖ = 0 (Remark 2.3). Moreover, the boundary ∂(M ×N ) = (∂M ×N )∪∂M×∂N
(M × ∂N ) is aspherical and has even dimension. So it suffices to show that ∂(M × N )
has nonzero Euler characteristic. Since χ (M × N ) = χ (M) · χ (N ) �= 0 and M × N is
odd-dimensional, we have χ (∂(M × N )) = 2 · χ (M × N ) �= 0. ��

3.5 Small aspherical fillings

We now come to a higher-order version of vanishing, which asks for “small” aspherical
fillings of the given manifold with vanishing Euler characteristic/simplicial volume. We
will be mainly interested in filling aspherical 3-manifolds with amenable fundamental
group.

Definition 3.25 [37, p. 3] LetM be an oriented closed aspherical 3-manifold. We define

Fillχ (M) := min
W∈F (M)

|χ (W )|,

where F (M) denotes the class of all oriented compact aspherical 4-manifolds W with
π1-injective boundaryM.
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Question 3.26 (Edmonds [37, p. 3]) Does there exist an oriented closed connected 3-
manifoldM with Fillχ (M) �= 0?

In the same spirit, we could ask the corresponding question for the simplicial volume:

Definition 3.27 Let M be an oriented closed connected 3-manifold. We say that M
admits a small aspherical filling if there existsW ∈ F (M) such that ‖W,M‖ = 0.

The previous definition suggests the following question:

Question 3.28 Does every oriented closed aspherical 3-manifold satisfy the following
implication?

π1(M) is amenable =⇒ M admits a small aspherical filling. (Fill)

Question 3.28 can be interpreted as a manifold variant of the uniform boundary condi-
tion (UBC) [82]. Recall that a space X satisfies UBC in dimension n if there exists a con-
stant K > 0 such that every boundary c ∈ im ∂n+1 ⊂ Cn(X ;R) can be filled K -efficiently,
i.e. there exists a chain b ∈ Cn+1(X ;R) such that ∂n+1b = c and |b|1 ≤ K · |c|1. Spaces
with amenable fundamental groups satisfy UBC in all dimensions [82]. Therefore, in a
similar way, Question 3.28 asks whether the small fundamental cycles of oriented closed
connected 3-manifoldsM with amenable fundamental group can be filled efficiently using
relative fundamental cycles of 4-manifolds withM as π1-injective boundary.
Similar quantified bordism problems have been successfully studied in more geometric

contexts [22].

Remark 3.29 Property (Fill) does not hold in dimension 1. Indeed, the only surfaces that
have the circle as π1-injective boundary are hyperbolic surfaces with totally geodesic
boundary. All these have uniformly positive simplicial volume (Example 3.1(2)).
Property (Fill) holds in dimension 2. The only candidate to check is the 2-torus, which

is the π1-injective boundary of S1 × (T 2)×.

Our interest in Question 3.28 is motivated by the following open problem in four-
dimensional topology:

Conjecture 3.30 [37, Conjecture 1] There exists an oriented closed aspherical 4-
manifold M with χ (M) = 1.

The last conjecture and Question 1.1 are connected as follows:

Proposition 3.31 Suppose that the following hold:

(a) Every oriented closed aspherical 3-manifold satisfies Property (Fill);
(b) All oriented closed aspherical 4-manifolds satisfy Property (SVχ ).

Then Conjecture 3.30 holds.

Proof Edmonds [37] constructed an oriented compact aspherical 4-manifold W with
non-empty π1-injective aspherical boundary and χ (W ) = 1 [37, Proposition 4.1]. More-
over, ∂W is a torus bundle over the circle [37, Proposition 4.1]. This shows that ∂W has
amenable fundamental group.
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Using Property (Fill), there exists an oriented compact aspherical 4-manifold W ′ with
π1-injective boundary ∂W ′ ∼= ∂W (orientation-reversing) and ‖W ′, ∂W ′‖ = 0. More-
over, by hypothesis, Property (SVχ ) is satisfied both for all three- and four-dimensional
oriented closed aspherical manifolds (Property (SVχ ) is automatically satisfied in odd
dimensions). Hence, Proposition 2.15 shows that (W ′, ∂W ′) satisfies Property (SVχ , ∂),
and so χ (W ′, ∂W ′) = 0. Therefore,

M := W ∪∂W∼=∂W ′ W ′

is an oriented closed aspherical 4-manifold with

χ (M) = χ (W ) + χ (W ′, ∂W ′) = 1 + 0 = 1.

ThereforeM provides the required example for Conjecture 3.30. ��

4 Simplicial volume and cobordism categories
In this section, we will introduce the amenable cobordism category and explain how the
simplicial volume extends to a symmetric monoidal functor on this cobordism category.
In other words, the simplicial volume defines an invertible TQFT in this restricted sense.
Interestingly, it will be shown that the simplicial volume does not extend to a functor
on the whole cobordism category of smooth oriented manifolds. This fact reflects the
(non-)additivity properties of the simplicial volume.
Viewing the simplicial volume as an invertible TQFT will allow us to obtain some

interesting information about the fundamental group of the amenable cobordism category
and its variations. Specifically, we will show that this fundamental group is not finitely
generated (Theorem 4.5). This result is based on the following computations of simplicial
volume in dimension 4:

Remark 4.1 For n ∈ N, let SV(n) ⊂ R≥0 denote the set of simplicial volumes of all
oriented closed connected n-manifolds. Then SV(n) is a countable submonoid of (R≥0,+)
[58, Remark 2.3].
If n ≥ 4, then SV(n) has no gap at zero [58] and thus is non-discrete. Moreover, SV(3)

contains the set of all volumes of oriented closed connectedhyperbolic 3-manifolds (scaled
by 1/v3) and thus is non-discrete [101]. Therefore, ifn ≥ 3, then the additivemonoid SV(n)
is not finitely generated.
Moreover, SV(4) contains an infinite family of values that are linearly independent

over Q [57].

We first consider the simpler case of the connected sum monoid and prove that it
is not finitely generated (Sect. 4.1). In Sect. 4.2, we explain how to view the simplicial
volume as a symmetric monoidal functor on the amenable cobordism category and use
this description to deduce the non-finite generation of the fundamental group of the
four-dimensional amenable cobordism category (Theorem 4.5). Finally, we prove that the
functor of simplicial volume cannot be extended to an invertible TQFT on the whole
cobordism category (Proposition 4.7).

4.1 The connected summonoid

For n ∈ N, let Mfd#n denote the monoid, whose elements are diffeomorphism classes of
oriented closed connected smoothn-manifolds andwhose operation is givenby connected
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sum. By the classification of surfaces, the monoid Mfd#2 is generated by the 2-torus. This
finite generation fails in higher dimensions:

Proposition 4.2 Let n ∈ N≥3. Then the monoidMfd#n is not finitely generated.

Proof As simplicial volume is additive in dimension ≥ 3 with respect to connected sums
(Proposition 2.10), we can view the simplicial volume as a monoid homomorphism

S : Mfd#n → R≥0

from Mfd#n to the additive monoid (R≥0,+). The submonoid S(Mfd#n) is not finitely gen-
erated (Remark 4.1). Because finite generation is preserved by monoid homomorphisms,
we conclude that Mfd#n is not finitely generated. ��

Remark 4.3 As suggested by the referee, the previous result also admits a more geometric
proof: In every dimension n ≥ 3 there exist infinitely many hyperbolic n-manifolds (and
none of them is a non-trivial connected sum).

4.2 Simplicial volume as a TQFT

The simplicial volume can be viewed as an (invertible) TQFT defined on an appropriate
cobordism category of oriented smoothmanifolds. This is essentially a basic consequence
of known additivity properties of the simplicial volume. For background material about
cobordism categories andTQFTs, we refer the interested reader to thework of Abrams [1]
and the book by Kock [68], both of which focus especially on the two-dimensional case,
and to the lecture notes of Debray et al. [34], which contain an excellent exposition of the
classification of invertible TQFTs following major recent developments in the field.

4.2.1 Cobordism categories

For d ∈ N, let Cobd denote the d-dimensional (discrete) cobordism category of ori-
ented manifolds [34,68]. The objects of Cobd are oriented closed smooth (d − 1)-
manifolds M, one from each diffeomorphism class. A morphism from M to N in Cobd
is an equivalence class of d-dimensional oriented smooth cobordisms (W ; ∂inW, ∂outW )
equipped with orientation-preserving diffeomorphisms −M

∼=→ ∂inW (incoming bound-
ary) and N

∼=→ ∂outW (outgoing boundary). The equivalence relation is given by
orientation-preserving diffeomorphisms that preserve the boundary pointwise. Compo-
sition of morphisms in Cobd is given by glueing of cobordisms, using the given identifica-
tions of the boundary components. The category Cobd is a symmetric monoidal category
under the operation of disjoint union.

4.2.2 Amenability conditions

Let G be a class of groups that is closed under isomorphisms. We consider the subcate-
gory CobGd ⊂ Cobd defined as follows: The objects are those manifolds with fundamental
group in G (for each component). The morphisms are the cobordisms (W ;M,N ) such
that M ↪→ W and N ↪→ W are π1-injective (for all components). It should be noted
that CobGd is indeed a subcategory of Cobd , i.e. that CobGd is closed under composition.
To see this, we only need to check that the π1-injectivity of the boundary components is
preserved under composition of cobordisms. This can be shown inductively by glueing
one pair of components at a time and applying the Seifert–van Kampen theorem as well
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as the normal form theorems for amalgamated free products and HNN extensions [96,
Chapter 11]. These guarantee at each stage that the remaining boundary components are
π1-injective in the resulting manifold.
The symmetric monoidal pairing of Cobd clearly restricts to a symmetric monoidal

pairing onCobGd .WhenG = Am is the class of all amenable groups, wewill refer toCobAmd
as the amenable cobordism category.

4.2.3 Simplicial volume as a TQFT on the amenable cobordism category

Let R = (R,+) denote the additive (abelian) group of real numbers, regarded as a sym-
metric monoidal groupoid with one object. Moreover, letG be a class of amenable groups
that is closed under isomorphisms. The additivity of the simplicial volume with respect to
amenable glueings (Theorem 2.5) and disjoint union shows that we obtain a symmetric
monoidal functor with values in the abelian group R (regarded as a symmetric monoidal
category):

‖ − ‖ : CobGd → R, (W ;M,N ) �→ ‖W, ∂W‖.

In other words, the simplicial volume defines a TQFT on CobGd . Because this TQFT takes
values in an abelian group (hence Picard groupoid), it is invertible.

4.2.4 The fundamental group of B CobGd
Let BCobGd denote the classifying space of the cobordism category CobGd . An object M
of CobGd determines a point (0-simplex) [M] ∈ BCobGd and we denote by MBCobGd the
loop space of the classifying space BCobGd based at [M]. Note that the monoid of path-
components of BCobGd is a group (similarly to BCobd). Thus, BCobGd is an infinite loop
space, therefore, all of its path components have the same homotopy type. After passing
to the classifying spaces, the functor ‖ − ‖ induces a group homomorphism:

φM : π1(BCobGd , [M]) ∼= π0(MBCobGd ) → π0(BR) ∼= R.

Here, we have used the homotopy equivalence B� � � for groups �. The group homo-
morphisms φM (for all basepointsM) uniquely determine the functor ‖ − ‖; similar facts
hold more generally for functors whose target is a groupoid (see, for example, [34]).

Remark 4.4 Every endomorphism (W ;M,M) in CobGd defines an element
[W ] ∈ π0(MBCobGd ) whose image under the group homomorphism φM is the relative
simplicial volume ‖W, ∂W‖. In particular, if [W ] = [W ′], then ‖W, ∂W‖ = ‖W ′, ∂W ′‖.

Theorem 4.5 Let G ⊂ Am be a class of groups that is closed under isomorphisms and let
M be an object of CobG4 . Then the group π1(BCobG4 , [M]) is not finitely generated.

Proof The relative simplicial volume of 4-manifolds induces a group homomorphism

φ∅ : π1(BCobG4 , [∅]) → R.

The image of this group homomorphism contains the subset SV(4) (Remark 4.4), which
contains an infinite family of elements that are linearly independent over Q (Remark 4.1).
Therefore, the abelian group im φ∅ is not finitely generated and so π1(BCobG4 , [∅]) is not
finitely generated.
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As explained above, π1(BCobG4 , [M]) is independent of the choice of basepoint [M], so
the result follows. ��

Remark 4.6 We also expect corresponding results in higher dimensions. However, cur-
rently, not enough is known about the structure of SV(d) for d ≥ 5.

4.2.5 Non-extendability to Cobd
Since the simplicial volume does not satisfy additivity in general [45, Remark 7.9], it does
not define a functor on Cobd . However, it is still interesting to ask whether there might
be a different extension of the simplicial volume to general oriented compact manifolds
with boundary which is always additive. This question is closely related to the problem of
extending the functor ‖ − ‖ : CobGd → R to the whole cobordism category Cobd . Based
on the classification of functors with values in a groupoid (see, for example, [34]), this
problem is essentially equivalent to the question of extending the homomorphism φ∅ to
π1(BCobd,∅).
In contrast to π1(BCobG4 , [M]) (Theorem 4.5), the fundamental group of the d-

dimensional cobordism category π1(BCobd,∅) is well known and simpler to describe.
We first note that it agrees with the fundamental group of the standard topologized cobor-
dism category Cd [34, Section 2.4]. This is again independent of the choice of basepoint
and can be identified with the Reinhart bordism group Rd [95], [36, Appendix A]. We
recall that Rd can be described as the group of equivalence classes of oriented closed d-
manifolds where the equivalence relation is defined by cobordisms whose tangent bundle
is equipped with a nowhere-vanishing vector field that extends the normal fields on the
boundary components. This refined bordism group is known to be a split extension of the
usual oriented bordism group SO

d by a cyclic group whose generator is represented by
the d-sphere. More precisely, there is a split exact sequence:

0 → Z/Euld+1
[1] �→[Sd ]−−−−−→ Rd → SO

d → 0 (∗)

where Euln = {0} if n is odd, Euln = 2Z if n ≡ 2 (mod 4), and Euln = Z if n is a multiple
of 4.We refer to the literature [95], [36, Appendix A], [9] for the properties of the bordism
groupRd and the description of the homotopy groups of BCd in terms of bordism classes.
Using this description of Rd ∼= π1(BCobd, [∅]), we conclude below that the simplicial

volume of oriented closed d-manifolds cannot be extended to a functor on the cobordism
category Cobd , i.e. there is no additive extension of the simplicial volume ‖−‖ (analogous
to Theorem 2.5) to all oriented compact d-manifolds.
Let Md denote the monoid of endomorphisms of ∅ in Cobd , that is, the monoid of

diffeomorphism classes of oriented closed d-manifolds under the operation of disjoint
union.

Proposition 4.7 Let d ≥ 2.

(1) There is no functor Cobd → R that extends the restriction of the simplicial volume
‖ − ‖|Md : Md → R to oriented closed d-manifolds.

(2) Let G ⊂ Am be a class of groups that is closed under isomorphisms. The functor
‖ − ‖ : CobGd → R does not admit an extension to a functor on Cobd.
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Proof For (1), note that such an extension of Cobd → R would imply a factorization
of ‖ − ‖|Md : Md → R through Rd ∼= π1(BCobd, [∅]) (see Remark 4.4). In particular,
this would imply that ‖ − ‖ is invariant under the Reinhart bordism relation. Moreover,
since ‖Sd‖ = 0, it would further follow from the exact sequence (∗) that ‖ − ‖ is invariant
under oriented bordism. This is obviously false in general, e.g. note thatM� (−M) is null-
bordant as oriented closed d-manifold, but its simplicial volume is non-trivial in general.
Claim (2) follows directly from (1). ��

Remark 4.8 The fact that ‖−‖ is not invariant under oriented bordism can also be shown
as follows. Note that for d ∈ {2, 3}, this fails because ‖−‖ is non-trivial butSO

d
∼= 0. Then

the result follows in all dimensions by taking suitable products.Wenote also that ford = 4,
this property can be shown to fail also because the oriented bordism group SO

4
∼= Z is

finitely generated, whereas SV(4) is not finitely generated by Remark 4.1.

Remark 4.9 In contrast to simplicial volume, the (relative) Euler characteristic defines a
(symmetric monoidal) functor χ : Cobd → Z (invertible TQFT), which sends (W ;M,N )
to χ (W,M). Indeed, the Euler characteristic is invariant under the Reinhart bordism
relation [95].

5 Asphericalizations
The construction of aspherical closed manifolds with vanishing simplicial volume is
a key problem for Question 1.1. There are several known constructions of aspherical
closed manifolds from non-aspherical or non-closed manifolds. Important examples of
such constructions are Davis’ reflection group trick [27,28,30] and Gromov’s hyper-
bolization [32,33,52]. The general difficulty with using these constructions to obtain
(counter)examples to Question 1.1 has to do with the difficulty of computing the sim-
plicial volume of the resulting aspherical closed manifolds.
In this section, we consider extensions of the class of aspherical closed manifolds and

look for interesting (counter)examples in these contexts. In particular, we will prove that
the class of aspherical spaces that are homology equivalent to closed manifolds, as well
as the class of closed manifolds that are homology equivalent to an aspherical space, do
not satisfy Property (SVχ ) in general (Theorem 5.7). We introduce the simplicial volume
of such spaces in Sect. 5.1. The proof of Theorem 5.7 will be given in Sect. 5.3; the proof
is based on the Kan–Thurston theorem [64], which we recall in Sect. 5.2. Finally, we end
with some brief comments on known constructions of aspherical closed manifolds and
their possible connections with Question 1.1 (Sect. 5.4). Besides their independent inter-
est, we hope that the results of this section, especially, combined with the aforementioned
constructions of aspherical closed manifolds, might provide useful tools for promoting
non-aspherical or non-closed examples to closed aspherical (counter)examples to Ques-
tion 1.1.

5.1 Simplicial volume of spaces homology equivalent to manifolds

Our goal in this section is to extend the definition of simplicial volume to spaces that are
only homology equivalent to an oriented closed manifold and discuss the main properties
of this invariant. This is motivated by the following basic observation:
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Remark 5.1 Suppose thatM is an oriented closed connectedmanifold with ‖M‖ = 0. Let
f : M → N be a homology equivalence to an oriented closed connected manifold N ; in
particular, thismaphas degree±1 and so ‖N‖ = 0 (this conclusion holdsmore generally if
the degree of f is nonzero). Moreover, because f is a homology equivalence, it follows that
χ (M) = χ (N ). In this sense, Property (SVχ ) is inherited under homology equivalences
between oriented closed connected manifolds.
Thus, in connection with Question 1.1, it would be interesting to understand the class

of manifolds which are homology equivalent to an oriented closed aspherical manifold
with vanishing simplicial volume.

Definition 5.2 Let X be a topological space, let M be an oriented closed connected
n-manifold and let f : X → M be an integral homology equivalence. We define the
(R-)fundamental class of (X, f ) by

[X]f := Hn(f ;R)−1([M]) ∈ Hn(X ;R)

and the simplicial volume of X by

‖X‖ := ∥∥[X]f
∥∥
1 ∈ R≥0.

Remark 5.3 The simplicial volume of such spaces is well-defined in the following sense.
Let (X,Mn, f ) be as above. In particular, Hk (X ;Z) vanishes for k > n and Hn(X ;Z) ∼=
Hn(M;Z) ∼= Z. Therefore, Hn(f ;Z)−1([M]Z) is one of the two generators of Hn(X ;Z),
which only differ by a sign. In particular, the R-fundamental class of (X, f ) is independent
ofM and f up to sign. Therefore, the simplicial volume of X is independent of the choice
of M and f . Clearly the definition of ‖X‖ applies more generally whenever the map
f : X → M induces an isomorphism on Hn(−;Z).

Remark 5.4 (Degree estimate) Let (X,M, f ) and (Y,N, g) be as in Definition 5.2, whereM
andN are oriented closed connectedmanifolds of the same dimension n. If h : X → Y is a
continuous map, then the unsigned homological degree |deg h| is defined to be the unique
natural number d ∈ N with

Hn(h;R)[X]f = ±d · [Y ]g ∈ Hn(Y ;R).

As in the manifold case, we clearly have

|deg h| · ‖Y ‖ ≤ ‖X‖
and it follows that the simplicial volume ofX is homotopy invariant.Moreover, ifX admits
a self-map h : X → X with |deg h| ≥ 2, then ‖X‖ = 0. Furthermore, if h : X → Y is a
(finite) covering map, then |deg h| · ‖Y ‖ = ‖X‖, as can be seen from the same argument
as in the manifold case.

This extension of the simplicial volume to a homotopy invariant of spaces that are only
homology equivalent to an oriented closed manifold should not be confused with the fact
that the simplicial volume is not invariant under homology equivalences:

Example 5.5 There exist oriented closed connected non-positively curved (and hence
aspherical) homology 4-spheresM [94]; in particular,M is homology equivalent to S4 and
a result by Fujiwara and Manning [48, Corollary 2.5] shows that ‖M‖ > 0 = ‖S4‖.
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5.2 Acyclic maps and plus constructions

We review briefly the definition and basic properties of acyclic maps and refer to the liter-
ature [56,92] for more details. A map f : X → Y is acyclic if the induced homomorphism

H∗(f ;A) : H∗(X ; f ∗A) → H∗(Y ;A)

is an isomorphism for every local coefficient systemAof abelian groups onY ; in particular,
f induces isomorphisms on singular homology and cohomology with both integral and
real coefficients. Equivalently, a map f : X → Y is acyclic if its homotopy fibres have
trivial integral homology. Every acyclic map f : X → Y between path-connected-based
spaces arises up to weak homotopy equivalence as the plus construction ιP : X → X+

P
with respect to a normal perfect subgroup P � π1(X). In this case, we have

π1(X+
P ) ∼= π1(X)/P.

Theorem 5.6 (Kan–Thurston [5,64,83]) For every path-connected based topological
space X, there is a group GX together with an acyclic (based) map fX : K (GX, 1) → X.
Moreover, GX and fX can be chosen to be natural in X.

Proof The original functorial construction of (GX, fX : K (GX, 1) → X) is due to Kan
and Thurston [64]. Alternative constructions and refinements were obtained by Baum-
slag et al. [5] andMaunder [83]. (These constructions are also shown topreserve properties
of homotopy finiteness, but they satisfy weaker functoriality properties in general.) ��

5.3 Using the Kan–Thurston theorem

The Kan–Thurston theorem (Theorem 5.6) has the following consequence in connection
with Question 1.1.

Theorem 5.7 Let n ∈ N≥2 be even.

(1) There exist aspherical CW-complexes X that admit an acyclic map X → M to an
oriented closed connected n-manifold M, and satisfy both ‖X‖ = 0 and χ (X) �= 0.
In particular, these aspherical spaces do not satisfy Property (SVχ ).

(2) There exist oriented closed connected n-manifoldsM that admit an acyclicmapX →
M from an aspherical CW-complex X, and satisfy both ‖M‖ = 0 and χ (M) �= 0. In
particular, these manifolds do not satisfy Property (SVχ ).

Proof Let M be an oriented closed connected n-manifold that has a (based) self-
map h : M → M with |deg h| ≥ 2 and satisfies χ (M) �= 0. For example, as n is even,
we may chooseM = Sn.
Ad 1. By Theorem 5.6 (and the functoriality of the construction), there exists an aspher-

ical CW-complex X with an acyclic map f : X → M and a map H : X → X that makes
the following square commutative:

X

f

H X

f

M h M.
It follows that |degH | = |deg h| ≥ 2. Thus, ‖X‖ = 0 (Remark 5.4). Moreover, as f is a
homology equivalence, it follows that χ (X) = χ (M) �= 0.
Ad 2. It is sufficient to apply Theorem 5.6 toM. ��
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We give some further context on possible improvements of Theorem 5.7:

Remark 5.8 (Poincaré duality) Hausmann [55] proved that the group GX in the Kan–
Thurston theorem (Theorem5.6) can be chosen to be a duality groupwhenX is homotopy
finite. (A related interesting refinement of the Kan–Thurston theorem has also been
obtained more recently by Kim [66].) We do not know whether we can obtain homotopy
finite examples in Theorem 5.7 and whether Hausmann’s construction can also be made
sufficiently functorial for the purpose of the proof above. Thus, it remains open whether
Theorem 5.7 can be strengthened to produce examples where the fundamental group is a
duality group.
We note that it remains an open problem whether every finitely presented Poincaré

duality group is the fundamental group of a closed aspherical manifold [31]. In this con-
nection, we also recall the following question [64, Question (ii) p. 254]: Is every oriented
closed connectedn-manifold,n ≥ 4, homology equivalent to an oriented closed aspherical
manifold? If this question has an affirmative answer, then there exist aspherical homology
spheres in all high dimensions. This would contradict a version of the Hopf conjecture,
which claims that the Euler characteristic of every oriented closed aspherical 2k-manifold
is either zero or its sign is (−1)k [29].

5.4 Further comments

Davis’ reflection group trick [27,28,30] takes an oriented compact aspherical n-
manifold (W, ∂W ) and constructs an oriented closed aspherical n-manifoldM by reflect-
ingW along so-called pieces of the boundary ofW . The construction also yields a retrac-
tion

r : M → W

i.e. r ◦ i = idW , where i : W → M is the inclusion. In particular, π1(r) and H∗(r) are
epimorphisms; H∗

b (r) and H∗(r) are monomorphisms. Starting from “exotic” W , this
method can be used to construct “exotic” closed aspherical manifolds. Note that we may
choose W to be an oriented compact manifold that is homotopy equivalent to X as in
Theorem 5.7(1), assuming that the space X can also be chosen to be homotopy finite [5].
There exists an explicit formula for computing the Euler characteristic of the mani-

foldM in terms of the Euler characteristic of the inputmanifoldW and the combinatorics
of the pieces of ∂W [28, p. 218]. However, in the case of the simplicial volume, the situa-
tion is more delicate. The Davis reflection group trick can be viewed as a refined version
of doubling manifolds with boundary, where the refinement is given by the combina-
torics of the pieces of ∂W . In order to generalize Example 2.8 to this setting, it would be
desirable to find input manifolds W with ‖W, ∂W‖ = 0 and where additionally the sim-
plicial volume ofW can be realized by small relative fundamental cycles, whose behaviour
on ∂W is adapted to the combinatorics on the pieces of ∂W . Particularly interesting input
candidates would be the examples from Remark 2.16 or Proposition 3.20.
On the other hand, Gromov’s hyperbolization [32,33,52] is a construction that takes

an oriented closed connected triangulated manifold N and produces an oriented closed
aspherical manifold h(N ) together with a degree 1 map

c : h(N ) → N.
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In particular,

‖h(N )‖ ≥ ‖N‖.
In addition, h(N ) is a smooth manifold if N is smooth, and h preserves the stable

tangent bundle, i.e. the vector bundles T (h(N )) and c∗TN are stably isomorphic. This
implies that hyperbolization preserves the characteristic classes and numbers of closed
smooth manifolds. Also, h(N ) and N are (oriented) cobordant. Since the mod 2 Euler
characteristic of N is determined by the bordism class of N , it is natural to consider the
hyperbolization in connection with the following weak version of Question 1.1:

Question 5.9 LetM be an oriented closed aspherical manifold. Does the following impli-
cation hold?

‖M‖ = 0 =⇒ χ (M) is even? (SVχ (mod2))

Assuming thatM is smooth, the property “χ (M) is even” is equivalent to the vanishing
of the top Stiefel–Whitney class ofM.
It would be interesting to find N as above with the property ‖h(N )‖ = 0. We note here

that the simplicial volume is always positive in the case of strict hyperbolization (in the
sense of Charney and Davis [23]). A relative version of this construction, which might still
be relevant in connection with Question 2.13, has also been studied by Belegradek [6].

6 Stable integral simplicial volume
Stable integral simplicial volume and integral foliated simplicial volume are versions of
the simplicial volume that admit Poincaré duality estimates for Betti numbers and for the
Euler characteristic.
In this section, we recall definitions, basic properties, and known examples of stable

integral simplicial volume, with a focus on the relative case and the connection with
Property (SVχ , ∂). Moreover, we quickly outline the relation with the integral foliated
simplicial volume.

Definition 6.1 (Stable integral simplicial volume) Let (M, ∂M) be an oriented compact
connectedmanifoldM with (possibly empty) boundary ∂M. The stable integral simplicial
volume of (M, ∂M) is defined as

‖M, ∂M‖∞
Z

:= inf
{‖N, ∂N‖

Z

|deg f |
∣∣∣ (N, f ) ∈ C(M)

}
,

where C(M) denotes the class of all finite (connected) coverings ofM.

6.1 Estimates for the Betti numbers and the Euler characteristic

The key observation is that Poincaré duality leads to Betti number estimates for simplicial
volumes with respect to sufficiently integral coefficient rings:

Proposition 6.2 [80, Example 14.28], [54, p. 307], [67, Proposition 3.2] Let R be a normed
principal ideal domain with |x| ≥ 1 for all x ∈ R\ {0}. Let (M, ∂M) be an oriented compact
connected n-manifold with (possibly empty) boundary ∂M. Then, for all k ∈ N,

bk (M;R) ≤ ‖M, ∂M‖R
In particular,

∣
∣χ (M, ∂M)

∣
∣ = ∣

∣χ (M)
∣
∣ ≤ (n + 1) · ‖M, ∂M‖R.
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Since the Euler characteristic is multiplicative with respect to finite coverings, this
estimate also implies corresponding estimates for the stable integral simplicial volume
[43, Proposition 6.1]:

Corollary 6.3 Let (M, ∂M) be an oriented compact connected n-manifold with (possibly
empty) boundary ∂M. Then

∣
∣χ (M, ∂M)

∣
∣ ≤ (n + 1) · ‖M, ∂M‖∞

Z
.

6.2 Integral approximation problems

This estimate for the Euler characteristic (Corollary 6.3) suggests the following question:

Question 6.4 Let M be an oriented closed aspherical manifold with residually finite
fundamental group. Does the following implication hold?

‖M‖ = 0 =⇒ ‖M‖∞
Z

= 0. (SV∞
Z
)

The corresponding approximation question for nonzero values in general has a negative
answer. For example, oriented closed connected hyperbolic manifolds M of dimension
at least 4 satisfy ‖M‖ < ‖M‖∞

Z
[43]. Moreover, Proposition 2.10 and Corollary 6.3 show

that Property (SV∞
Z
) does not hold for the connected sum of oriented closed aspherical

manifolds with zero simplicial volume and zero Euler characteristic (of even dimension
at least 4). However, these manifolds are never aspherical (Remark 2.11).
In Question 6.4, one usually adds the hypothesis of residual finiteness to ensure the

existence of “enough” finite coverings. However, there are also no known examples of
oriented closed aspherical manifolds with non-residually-finite fundamental group such
that the vanishing behaviour of the ordinary simplicial volume is different from that of the
stable integral simplicial volume. One possible strategy to produce such examples is to use
Davis’ reflection group trick (Sect. 5.4) to construct oriented closed aspherical manifolds
whose fundamental group is not residually finite. However, as explained in Sect. 5.4, it
seems to be difficult to gain enough control on the (stable integral) simplicial volume
when performing this construction.
What about Question 6.4 for manifolds with boundary? Similarly to Property (SVχ , ∂),

also in the case of the stable integral simplicial volume, we need to impose additional
boundary conditions:

Example 6.5 Let M be the product of three punctured tori as in Example 3.21. Then M
is aspherical and

‖M, ∂M‖ = 0 and χ (M, ∂M) = −1.

Hence, Corollary 6.3 implies that ‖M, ∂M‖∞
Z

�= 0, even though π1(M) is residually finite.

Question 6.6 Let M be an oriented compact aspherical manifold with residually finite
fundamental group and non-empty π1-injective aspherical boundary ∂M. Does the fol-
lowing implication hold?

‖M, ∂M‖ = 0 =⇒ ‖M, ∂M‖∞
Z

= 0. (SV∞
Z
, ∂)
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Weobserve the following diagram of implications as a consequence of Corollary 6.3 and
Proposition 2.15:

Property (SVχ ) Property (SVχ , ∂)

Property (SV∞
Z
) Property (SV∞

Z
, ∂)

We do not know whether the diagram can be completed with a lower horizontal implica-
tion. Themain issue is the lack of suitably general additivity results concerning the integral
simplicial volume. For example, given an oriented compact aspherical manifold M with
residually finite fundamental group and non-empty π1-injective aspherical boundary, it is
not clear what the vanishing of ‖D(M)‖∞

Z
has to say about the vanishing of ‖M, ∂M‖∞

Z
.

Conversely, however, the vanishing of ‖M, ∂M‖∞
Z

implies the vanishing of ‖D(M)‖∞
Z
:

Proposition 6.7 Let (M, ∂M) be an oriented compact connected n-manifold with non-
empty boundary ∂M. Then:

(1) ‖M, ∂M‖∞
Z

≥ ‖∂M‖∞
Z

/(n + 1);
(2) ‖D(M)‖∞

Z
≤ 2 · ‖M, ∂M‖∞

Z
.

Proof Ad 1. First recall that ‖N, ∂N‖Z ≥ ‖∂N‖Z/(n + 1) for every oriented compact
connectedn-manifoldN withboundary ∂N (Remark 2.4). Suppose that ‖M, ∂M‖∞

Z
= T ∈

R≥0, then for every ε > 0 there exists an oriented compact connected finite covering Nε

of degree dε such that

T ≤ ‖Nε , ∂Nε‖Z

dε

< T + ε.

Hence, we also have
1

n + 1
· ‖∂Nε‖Z

dε

< T + ε.

Notice that the boundary ∂Nε might consist of several different connected components
S1, . . . , Sk that cover ∂M with degrees d1, . . . , dk , respectively, such that dε = ∑k

i=1 di. By
the pigeonhole principle, there exists a j ∈ {1, . . . , k} with

1
n + 1

· ‖Sj‖Z

dj
< T + ε,

because
∑k

i=1 di/dε = 1 and

T + ε >
1

n + 1
· ‖∂Nε‖Z

dε

=
k∑

i=1

1
n + 1

· ‖Si‖Z

dε

=
k∑

i=1

di
dε

· 1
n + 1

· ‖Si‖Z

di
.

This shows that ‖∂M‖∞
Z

/(n + 1) ≤ T + ε. Letting ε → 0 proves the claim.
Ad 2. If (N, ∂N ) → (M, ∂M) is a finite covering of degree d, then the induced

map D(N ) → D(M) between the doubles is also a finite covering of degree d. More-
over, by reflecting fundamental cycles (Example 2.8), we have ‖D(N )‖

Z
≤ 2 · ‖N, ∂N‖

Z
.

��

Remark 6.8 Let (M, ∂M) be an oriented compact connected manifold with (possibly
empty) boundary. Then Proposition 6.7 gives an alternative way to derive an Euler char-
acteristic estimate for ‖M, ∂M‖∞

Z
from the closed case. First, suppose that n := dimM is
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even. In this case, χ (D(M)) = 2 · χ (M, ∂M). Hence, the closed case of Corollary 6.3 and
the second part of Proposition 6.7 show that

2 · |χ (M, ∂M)| = |χ (D(M)| ≤ (n + 1) · ‖D(M)‖∞
Z

≤ 2 · (n + 1) · ‖M, ∂M‖∞
Z
.

Suppose now thatM has odd dimension n. Then, we know that χ (∂M) = 2 ·χ (M). Hence,
by the closed case of Corollary 6.3 and the first part of Proposition 6.7, we have

2 · |χ (M, ∂M)| = 2 · |χ (M) − χ (∂M)| = |χ (∂M)|
≤ n · ‖∂M‖∞

Z
≤ n · (n + 1) · ‖M, ∂M‖∞

Z
.

Example 6.9 For the following manifolds, the stable integral simplicial volume equals
the classical simplicial volume; in particular, these examples satisfy Property (SV∞

Z
) or

Property (SV∞
Z
, ∂), respectively:

(1) All oriented compact aspherical surfaces [51,67];
(2) All oriented compact aspherical 3-manifolds with toroidal (or empty) boundary

[40,41];
(3) All oriented closed connectedgeneralized aspherical graphmanifoldswith residually

finite fundamental group [40];
(4) All oriented closed asphericalmanifoldswith residually finite amenable fundamental

group [46];
(5) All oriented compact aspherical smooth manifolds with residually finite fundamen-

tal group admitting a non-trivial smooth S1-action [39];
(6) All oriented compact aspherical smooth manifolds with residually finite fundamen-

tal group admitting an F-structure [77];
(7) All oriented closed aspherical smooth manifolds with residually finite fundamental

group admitting a regular circle foliation with finite holonomy groups [20];
(8) Every oriented closed aspherical manifold M with residually finite fundamental

group and catAm(M) ≤ dim(M) [77]. This applies, for example, to manifolds that
are the total space of a fibre bundle M → B with oriented closed connected fibre
N such that catAm(N ) ≤ dim(M)/(dim(B) + 1) and to manifolds of dimension
n ≥ 4 whose fundamental group� contains an amenable normal subgroupAwhose
quotient satisfies cdZ(�/A) < n.

Remark 6.10 The arguments discussed in this section can be extended to principal ideal
domains with norm bounded from below by 1. Interesting examples of such rings include,
for example, the finite fields with the trivial norm [75]. In this setting, the proof of Propo-
sition 6.7 also applies verbatim.

6.3 The dynamical version

The Poincaré duality arguments also apply to the dynamical version of the (integral)
simplicial volume, i.e. to the integral foliated simplicial volume:

Definition 6.11 (Integral foliated simplicial volume [40,54,98]) Let M be an oriented
compact connected n-manifold with (possibly empty) boundary ∂M.
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• If α = π1(M) � (X,μ) is a probabilitymeasure-preserving action on a standard Borel
probability space, then we set

⎪⎪⎪M, ∂M
⎪⎪⎪α := ∥∥[M, ∂M]α‖α

1 ,

where [M, ∂M]α ∈ Hn(M, ∂M; L∞(X ;Z)) denotes the image of the usual fundamental
class [M, ∂M]Z under the inclusion ofZ into the twisted coefficientmodule L∞(X ;Z).
The norm | · |α1 on the twisted chain complex is taken with respect to the L1-norm
on L∞(X ;Z).

• The (relative) integral foliated simplicial volume of (M, ∂M) is defined as
⎪⎪⎪M, ∂M

⎪⎪⎪ := inf
α∈A(π1(M))

⎪⎪⎪M, ∂M
⎪⎪⎪α ,

where A(π1(M)) denotes the class of all probability measure-preserving π1(M)-
actions on standard Borel probability spaces.

Remark 6.12 For technical reasons, in the setting of manifolds with boundary, it is rec-
ommended to work with actions of the fundamental groupoid instead of the fundamental
group [40,41].

Proposition 6.13 Let (M, ∂M) be an oriented compact connected n-manifold with (pos-
sibly empty) boundary ∂M. Then, for all k ∈ N,

b(2)k (M) ≤⎪⎪⎪M, ∂M
⎪⎪⎪.

In particular,
∣∣χ (M, ∂M)

∣∣ = ∣∣χ (M)
∣∣ ≤ (n + 1) ·⎪⎪⎪M, ∂M

⎪⎪⎪.

Proof This is a relative version of the L2-Betti number estimate which was shown in the
closed case by Schmidt [98] based on ideas of Gromov [54, p. 306]. When phrasing the
proof in terms of L2-Betti numbers of standard equivalence relations, literally the same
proof as in the closed case [74, Theorem 6.4.5] can be applied to the twisted Poincaré–
Lefschetz duality isomorphism. ��
Many positive examples for Question 1.1 have been established using the integral foli-

ated simplicial volume (Sect. 1.3) and most of the known computations of the stable
integral simplicial volume are based on ergodic theoretic methods and the fact that

‖M, ∂M‖∞
Z

=⎪⎪⎪M, ∂M
⎪⎪⎪ ̂π1(M)

holds [41, Proposition 2.12], [46,78], where ̂π1(M) denotes the dynamical system given by
the profinite completion of π1(M).
A summary of computations of integral foliated simplicial volume and of these ergodic

theoretic methods can be found in the literature [74, Chapter 6].
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