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Abstract

An exact transformation, which we call themaster identity, is obtained for the first time
for the series

∑∞
n=1 σa(n)e−ny for a ∈ C and Re(y) > 0. New modular-type

transformations when a is a nonzero even integer are obtained as its special cases. The
precise obstruction to modularity is explicitly seen in these transformations. These
include a novel companion to Ramanujan’s famous formula for ζ (2m + 1). The
Wigert–Bellman identity arising from the a = 0 case of the master identity is derived
too. When a is an odd integer, the well-known modular transformations of the
Eisenstein series on SL2 (Z), that of the Dedekind eta function as well as Ramanujan’s
formula for ζ (2m + 1) are derived from the master identity. The latter identity itself is
derived using Guinand’s version of the Voronoï summation formula and an integral
evaluation of N. S. Koshliakov involving a generalization of the modified Bessel function
Kν (z). Koshliakov’s integral evaluation is proved for the first time. It is then generalized
using a well-known kernel of Watson to obtain an interesting two-variable
generalization of the modified Bessel function. This generalization allows us to obtain a
new modular-type transformation involving the sums-of-squares function rk (n). Some
results on functions self-reciprocal in the Watson kernel are also obtained.
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1 Introduction
The Bessel functions of the first and second kinds of order ν are defined by [90, p. 40, 64]

Jν(z) :=
∞∑

m=0

(−1)m(z/2)2m+ν

m!�(m + 1 + ν)
(z, ν ∈ C), (1.1)

Yν(z) := Jν(z) cos(πν) − J−ν(z)
sin πν

(z ∈ C, ν /∈ Z), (1.2)

along with Yn(z) = limν→n Yν(z) for n ∈ Z. Here, �(s) denotes Euler’s gamma function.
The modified Bessel functions of the first and second kinds are defined by [90, p. 77, 78]

Iν(z) :=
⎧
⎨

⎩

e− 1
2πνiJν(e

1
2π iz), if − π < arg(z) ≤ π

2 ,

e
3
2πνiJν(e−

3
2π iz), if π

2 < arg(z) ≤ π ,
(1.3)

Kν(z) := π

2
I−ν(z) − Iν(z)

sin νπ
, (1.4)

respectively. When ν = n ∈ Z, Kn(z) is interpreted as the limit ν → n of the right-hand
side of (1.4).
Several generalizations of the Bessel functions exist in the literature, for example, see

[33,34,53,54,66], to list a few. A new generalization of the modified Bessel function of
the second kind Kν(z) was obtained by Koshliakov [60] through an interesting integral
evaluation, and it seems to have gone unnoticed. One of the goals of this paper is to bring
it to light. It has an application in obtaining an explicitmodular-type transformation for an
infinite series involving the generalized divisor function σa(n) := ∑

d|n da, where a ∈ C.
See Theorems 2.4 and 2.5. This is the main focus of this paper, for, this transformation
gives, as corollaries, not only important results in the theory of modular forms but also
surprising identities that were hitherto unknown.
In [60], Koshliakov studied integrals involving the kernels

cos(πν)M2ν(2
√
xt) − sin(πν)J2ν(2

√
xt), (1.5)

sin(πν)J2ν(2
√
xt) − cos(πν)L2ν(2

√
xt), (1.6)

where

Mν(x) := 2
π
Kν(x) − Yν(x), Lν(x) := − 2

π
Kν(x) − Yν(x). (1.7)

The special case ν = 0 of some of his integrals involving the kernel in (1.5) was previously
obtained by Dixon and Ferrar [39].
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In the same paper [60, Equation (8)], Koshliakov proved a remarkable result that Kν(t)
is self-reciprocal in the kernel (1.5), that is, for − 1

2 < ν < 1
2 ,

∫ ∞

0
Kν(t)

(
cos(πν)M2ν(2

√
xt) − sin(πν)J2ν(2

√
xt)

)
dt = Kν(x). (1.8)

It is easy to see though that this identity is valid for complex ν such that − 1
2 < Re(ν) < 1

2 .
Prior to this, the special case ν = 0 of (1.8) was stated and proved by Dixon and Ferrar
[39, p. 164, Equation (4.1)] though they surmise in their paper that although Koshliakov
does not give a reference to the formula itself, it is clear that he is familiar with the result.
In [12, p. 897], the kernel in (1.5) is called the first Koshliakov kernel, and the integral

∫ ∞

0
f (t, ν)

(
cos(πν)M2ν(2

√
xt) − sin(πν)J2ν(2

√
xt)

)
dt,

the first Koshliakov transform of f (t, ν). It is important in the context of the Voronoï
summation formula for σa(n), see for example [12]. It must be mentioned here that there
are few functions in the literature whose Koshliakov transforms have closed-form eval-
uations. However, it is always desirable to have such closed form evaluations, whenever
possible, in view of their applications in number theory. Dixon and Ferrar [39, p. 161]
evaluated such integrals for the special case ν = 0 of the Koshliakov kernel, and recently
further such evaluations were obtained in [33,34,37] along with their applications given.
In the same paper [60, Equation (15)], Koshliakov gives a more general result1 of which

(1.8) is a special case, that is, for2 μ > −1/2 and ν > − 1
2 + |μ|,

∫ ∞

0
Kμ(t)tμ+ν

(
cos(πν)M2ν(2

√
xt) − sin(πν)J2ν(2

√
xt)

)
dt

= π2μ+ν−1

sin(νπ )

{(x
2

)−ν �(μ + 1
2 )

�(1 − ν)�( 12 − ν) 1
F2

(
μ + 1

2
1
2 − ν, 1 − ν

∣
∣
∣
∣
x2

4

)

−
(x
2

)ν �(μ + ν + 1
2 )

�(1 + ν)�( 12 )
1F2

(
μ + ν + 1

2
1
2 , 1 + ν

∣
∣
∣
∣
x2

4

)}

, (1.9)

where, for bj /∈ Z
− ∪ {0}, 1 ≤ j ≤ q, and (a)n := a(a+ 1) · · · (a+ n− 1) = �(a+ n)/�(a),

pFq
(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣
∣
∣
∣z
)

:=
∞∑

n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
(1.10)

is the generalized hypergeometric series. It is well known [3, p. 62, Theorem 2.1.1] that
the above series converges absolutely for all z if p ≤ q and for |z| < 1 if p = q + 1, and it
diverges for all z �= 0 if p > q + 1 and the series does not terminate.
Indeed, letting μ = −ν in (1.9) gives (1.8) as the right-hand side reduces to

π

2 sin(νπ )

{
(x/2)−ν

�(1 − ν) 0
F1

( −
1 − ν

∣
∣
∣
∣
x2

4

)

− (x/2)ν

�(1 + ν) 0
F1

( −
1 + ν

∣
∣
∣
∣
x2

4

)}

= Kν(x) (using (1.1), (1.3) and (1.4)). (1.11)

Thus, either side of (1.9) can be conceived to be a one-variable generalization of Kν(x).

1Koshliakov inadvertently missed the factor π in front on the right-hand side.
2It will be shown later that when μ �= −ν, this result actually holds for ν ∈ C\ (Z\{0}), Re(μ) > −1/2, Re(ν) > −1/2
and Re(μ + ν) > −1/2; otherwise, it holds for −1/2 < Re(ν) < 1/2.
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Equation (1.9) is the identity of Koshliakov [60] whose importance seems to have gone
unnoticed.Koshliakov does not prove the identity but only indicates that it can be obtained
by considering

∫ ∞
0 (sin(νπ )Jν(xu) + cos(νπ )Yν(xu)) u2μ+ν du

(u2+1)μ+ν+1 .Hedoesnot evenevaluate
the above integral, unlike its special case μ = −ν, for which he [60, Equation (7)] gives
the evaluation as −Kν(x), again without proof. Since (1.9) has never been proved in the
literature, we do so by deriving it as a special case of amore general result. SeeCorollary 5.1
of Sect. 5. Its number-theoretic application is given in Sect. 2.
Our generalization of Koshliakov’s result (1.9) naturally leads us to a new two-variable

generalization of the modified Bessel function. The latter allows us to derive a novel
modular-type transformation involving rk (n), the number of representations of n as a sum
of k squares, where representations with different orders or signs of the summands are
regarded as distinct, i.e.

rk (n) := #{(a1, a2, . . . , ak ) ∈ Z
k : n = a21 + a22 + · · · + a2k}. (1.12)

See Theorem 2.2.
The two-variable generalization ofKν(x) is achieved by first obtaining a common exten-

sion of the first and the second Koshliakov kernels in (1.5) and (1.6), respectively. This
common extension is in terms of the hyper-Bessel functions 0F3 whose theory, in the
general case, that is for 0Fn, was initiated by Delerue in a series of five papers [27–31]. The
hyper-Bessel functions have been found useful in many applications, for example, they
are used to understand the wavefields and the elements of the non-adiabatic transition
matrix and the tunnelling loss matrix [92].
Let x > 0, ν ∈ C\ (Z\{0}) andw ∈ C.Wedefine the generalization of the twoKoshliakov

kernels in (1.5) and (1.6) by

Gν(x, w) := π

sin(νπ )

(x
4

)w

×
[
(x
4

)−ν 1
�(1 − ν)�

(
w + 1

2
)
�
(
w + 1

2 − ν
)

× 0F3
( −
1 − ν, w + 1

2 , w + 1
2 − ν

∣
∣
∣
∣
x2

16

)

−
(x
4

)ν 1
�(1 + ν)�

(
w + 1

2
)
�
(
w + 1

2 + ν
)

× 0F3
( −
1 + ν, w + 1

2 , w + 1
2 + ν

∣
∣
∣
∣
x2

16

)]

.

(1.13)

The two expressions inside the square brackets in (1.13) are entire functions of3 ν and w.
As a function of ν, Gν(x, w) has a simple pole at every nonzero integer and a removable
singularity at 0.
The kernel Gν(x, w) is not new. In fact, it is a special case of the well-known kernel

introduced by Watson in [89], namely,

�μ,ν(xy) = A(xy)1/2
∫ ∞

0
Jν(xt)Jμ

(
Ay
t

)
dt
t
.

3One might as well take x in the definition of Gν (x, w) to be such that −π < arg(x) < π , thereby having analyticity in
x as well. However, in this paper, we will be working with x > 0 only.
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Watson formally studied how this kernel gives rise to a transform. Letting A = y = 1 in
the above kernel, using Hanumanta Rao’s formula [89] with ρ = 0, a = x, and b = 1 to
express�μ,ν(x) in the form of two 0F3s, replacing ν by w+ ν − 1

2 and then μ by w− ν − 1
2

in the resulting identity, we see that for |Re(ν)| < Re(w) + 1,

Gν(x, w) = �w−ν− 1
2 ,w+ν− 1

2
(x). (1.14)

However, note that the definition of the function Gν(x, w) in (1.13) itself makes sense for
any ν ∈ C\ (Z\{0}) and w ∈ C. Henceforth, we call Gν(x, w) as the Watson kernel only.
Observe that �μ,ν(xy) is the resultant4 of the kernels

√
tJν(t) and t−3/2Jμ(1/t), and that

a simple change of variable shows that

�μ,ν(xy) = �ν,μ(xy). (1.15)

The literature on Watson’s kernel is vast. Bhatnagar [17,19] obtained a necessary and
sufficient condition for a function in a certain class A(ω, a) considered by Hardy and
Titchmarsh [51] to be self-reciprocal in �μ,ν(xy). Among other things, he [17, Theorem
8] also obtained a theoremwhere functions reciprocal in the Hankel transform give rise to
other functions reciprocal in theWatsonkernel andvice-versa. See also [19,Theorem7]. In
the same paper [19], Bhatnagar also obtained the inverseMellin transform representation
of�μ,ν(x) although inTheorem4.3, we re-derive it withmaximumpossible domainwhere
it is valid. Watson’s kernel was further generalized by him in [17,20], and in a different
direction by Olkha and Rathie in [71]. An expansion of the generalized Watson kernel
�μ1 ,...,μn (x) in terms of Jacobi polynomials was obtained by Dahiya [26]. A representation
of �μ,ν(x) (more generally for �μ1 ,...,μn (x)) in terms of the Meijer-G function was given
by Narain [68, Section 4(b)].
That �μ,ν(x) = O(x−1/4) as x → ∞ was established by Watson [89, p. 308]. Mainra

and Singh [64] derived the differential equation satisfied by �μ,ν(x) and then used it to
obtain its asymptotic expansion as x → ∞. Numerous integrals containing �μ,ν(x) in its
integrand have been evaluated by Singh in [82,83].
In spite of so much work done on Watson’s kernel, its importance from the point of

view of number theory has not been recognized before. For example, while it is known
[50, p. 5, Example 3] that for x > 0,

G 1
2
(x, w) = J2w−1(2

√
x), (1.16)

it has not been noticed before that when w = 0 and 1, the kernel �w−ν− 1
2 ,w+ν− 1

2
(x),

or equivalently Gν(x, w), reduces, respectively, to the first and second Koshliakov kernels
defined in (1.5) and (1.6). See Theorem 4.1 of Sect. 4. Earlier, this was known [64, Section
4] only when we additionally consider ν = 0. These kernels are useful in number theory.
Our generalization of Koshliakov’s modified Bessel function is defined for ν ∈

C\ (Z\{0}), and z,μ, w ∈ C such that μ + w �= − 1
2 ,− 3

2 ,− 5
2 , . . ., by

μKν (z, w) := πzw2μ+ν−1

sin(νπ )

{
( z
2

)−ν �(μ + w + 1
2 )

�(1 − ν)�(w + 1
2 − ν) 1

F2

(
μ + w + 1

2
w + 1

2 − ν, 1 − ν

∣
∣
∣
∣
∣

z2

4

)

−
( z
2

)ν �(μ + ν + w + 1
2 )

�(1 + ν)�(w + 1
2 )

1F2

(
μ + ν + w + 1

2
w + 1

2 , 1 + ν

∣
∣
∣
∣
∣

z2

4

)}

, (1.17)

4For the definition of a resultant of two kernels, see [50].
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with μK0(z, w) = limν→0 μKν(z, w). When w = 0, μKν(z, w) reduces to Koshliakov’s gen-
eralized modified Bessel function of the second kind whose special case when z is a positive
real number x occurs on the right-hand side of (1.9). Clearly, from (1.11) and (1.17),

−νKν(z, w) = zwKν(z). (1.18)

2 Main results
Our first result is a generalization of Koshliakov’s identity (1.9). It gives an integral repre-
sentation for μKν(z, w).

Theorem 2.1 Let x > 0, Re(w) > −1/2 and ν ∈ C\ (Z\{0}). Let Gν(x, w) be defined in
(1.13). If μ �= −ν, then for Re(μ),Re(ν),Re(μ + ν) > −Re(w) − 1

2 , we have

∫ ∞

0
Kμ(t)tμ+ν+wGν(xt, w) dt = μKν(x, w), (2.1)

otherwise, for −Re(w) − 1
2 < Re(ν) < Re(w) + 1

2 , we have

∫ ∞

0
twKν(t)Gν(xt, w) dt = xwKν(x). (2.2)

The above integral evaluations are proved using the theory of Mellin transforms, in par-
ticular, Parseval’s formula (3.3). Equations (2.1) and (2.2), and the special case (1.9) due to
Koshliakov, are crucial in obtaining the main theorems of this section.
It must be noted that the second part of Theorem 2.1, that is (2.2), is not new. In fact,

Bhatnagar [20, Section 3, (1) (i)] obtained it as a special case of a more general identity
proved by him in [19], but only for real values of w and ν. Varma [87, p. 103, Example 2]
considered the special case w = ν of (2.2) whereas Mitra [67, Example 2] did the same for
w = 1/2. However, to the best of our knowledge, (2.1) has not appeared in the literature
before.
We now give a new modular-type transformation between two infinite series involving

rk (n) as an application of Theorem 2.1.

Theorem 2.2 Let k ∈ N, k ≥ 2 and Re(z) > 0. Let rk (n) be defined in (1.12). Define
R(μ, k, z) by

R(μ, k, z) :=
⎧
⎨

⎩

0, if Re(μ) > − 1
2 ,

1√
2zπ

1−k
2 �

(
k
2

)
, if μ = − 1

2 .
(2.3)

Then for Re(μ) > − 1
2 or μ = −1/2, the following transformation holds:

∞∑

n=1
rk (n)nμ+1Kμ(nz) −

π
k+1
2 2μ�

(
μ + k

4 + 1
2

)

zμ+ k
2+1�

(
k
4

)

= π

zμ+ k
4 + 3

2

∞∑

n=1
rk (n)n

1
2− k

4 μK 1
2

(
π2n
z

,
k
4

)

− π
k
2

�
(
k
2

)R(μ, k, z). (2.4)

There are a number of transformations involving infinite series of rk (n) and modified
Bessel functions in the literature. See, for example, [89, Equation (4)], [38, Equation
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(3.12)] or its generalization [11, Corollary 4.6]. However, a transformation for the series
∑∞

n=1 rk (n)nμ+1Kμ(nz), given in Theorem 2.2, is obtained for the first time.
Theorem 2.2 gives, as a special case, the well-knownmodular transformation [24, Equa-

tion (64)] recorded below.

Corollary 2.3 Let k be an integer such that k ≥ 2 and let Re(z) > 0. Then,
∞∑

n=0
rk (n)e−nz =

(π

z

)k/2 ∞∑

n=0
rk (n)e−π2n/z.

Let a ∈ C. Consider the series
∞∑

n=1
σa(n)e−ny =

∞∑

n=1

na

eny − 1
. (2.5)

When a = 2m + 1, m ∈ N and y = −2π iz (so that z ∈ H, the upper half-plane), either
of the above series essentially represents the Eisenstein series of weight 2m + 2 on the
full modular group SL2 (Z). When a = −2m − 1, m ∈ N, the series

∑∞
n=1 σa(n)e2π inz

represents the Eichler integral corresponding to the weight 2m + 2 Eisenstein series [14,
Section 5]. Moreover, while

∑∞
n=1 σ1(n)e2π inz is essentially the quasi-modular form E2(z),

that is, the Eisenstein series of weight 2, the series
∑∞

n=1 σ−1(n)e2π inz is what appears in
the modular transformation of logarithm of the Dedekind eta function η(z) [13, Equation
(3.10)].
In all of the above cases, that is, when a is an odd integer, the series

∑∞
n=1 σa(n)e−ny

satisfies a modular transformation, and hence plays a fundamental role in the theory of
modular forms. However, an explicit transformation for the series

∑∞
n=1 σa(n)e−ny when

a is an even integer is conspicuously absent from the literature except in the special case
a = 0; see, for example, the paper by Kanemitsu, Tanigawa and Tsukada [56, Theorem
2] or [70, p. 33], [93, Equation. 3.7]. Using the concept of transseries [42], Dorigoni and
Kleinschmidt [40] have considered the case when a is negative even integer (see [40,
Equation (2.43)]). However, as special cases of our master identity (see Theorem 2.5 ), we
not only obtain the identity for negative even integer a (see Theorem 2.12) but also when
a is a non-negative even integer.
For Re(a) > 2, Ramanujan [10, p. 416] obtained a transformation for the series in

(2.5) which shows how the modularity is obstructed by means of the appearance of an
extra integral. Later, Guinand [45, Section 7] also studied the series

∑∞
n=1 σ2k (n)e−ny for

k ∈ R, such that k + 1
2 /∈ Z and obtained [45, Theorem 8] similar results for Re(y) > 0.

However, these transformations are not explicit in the sense that apart from the series
getting transformed and the residual terms, certain extra objects appear, for example,
contour integrals or principal value integrals etc.
Berndt [7, Theorem 2.2] derived an important modular-type transformation for a vast

generalization of Eisenstein series. We rewrite one case of this transformation in the
version given by O’Sullivan [73, Equation (1.23)], namely, for z ∈ H and k ∈ Z,

zk (1 + (−1)k )
∞∑

n=1
σk−1(n)e2π inz − (1 + (−1)k )

∞∑

n=1
σk−1(n)e2π in(−1/z)

= (2π i)1−k
∑

u,v∈Z≥0
u+v=2−k

Bu
u!

Bv
v!
z1−v −

⎧
⎨

⎩

π i − log z if k = 0;

(zk − (−1)k )ζ (1 − k) if k �= 0,
(2.6)
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where ζ (s) is the Riemann zeta function. When k = 1 − 2m,m ∈ Z, it results in

ζ (2m) =

⎧
⎪⎨

⎪⎩

(−1)m+1 (2π )
2mB2m

2(2m)!
, if m ≥ 0,

0, if m < 0,
(2.7)

thus incorporating Euler’s formula [85, p. 5, Equation (1.14)] whereas on letting k =
−2m,m ∈ Z\{0}, it gives Ramanujan’s formula for ζ (2m + 1) [79, p. 173, Ch. 14, Entry
21(i)], [80, pp. 319–320, formula (28)], [8, pp. 275–276], namely, for5 α, β > 0 with
αβ = π2,

α−m
{
1
2
ζ (2m + 1) +

∞∑

n=1

n−2m−1

e2nα − 1

}

= (−β)−m
{
1
2
ζ (2m + 1) +

∞∑

n=1

n−2m−1

e2nβ − 1

}

− 22m
m+1∑

k=0

(−1)kB2kB2m+2−2k
(2k)!(2m + 2 − 2k)!

αm+1−kβk .

(2.8)

Note, however, that (2.6) does not give any transformation for
∑∞

n=1 σ−2m(n)e−ny,m ∈ Z.
Ramanujan’s formula encodes the transformation properties of Eisenstein series on

SL2 (Z) as well as their Eichler integrals [14]. Guinand [45, Theorem 9 (iv)] rediscovered
the above formula.
Let y = log(1/q) and let P denote the set of integer partitions. Then for functions

f : P → C, the q-brackets are the power series

〈f 〉q :=
∑

λ∈P f (λ)q|λ|
∑

λ∈P q|λ| ∈ C[[q]],

which represent ‘weighted average’ of f . Also let Ht (λ) be the multiset of partition hook
numberswhich aremultiples of t, where the hook number of a hook in the Ferrers diagram
of a partition is the number of dots in its arm and leg together. Recently, Han [48], Han
and Ji [49] showed that the series

∑∞
n=1 σ1−a(n)e−ny are the q-brackets of fa,t (λ), where

fa,t (λ) := ta−1
∑

h∈Ht (λ)

1
ha

.

Bringmann,OnoandWagner [22] showed that for evena ≥ 2, the series
∑∞

n=1 σ1−a(n)e−ny

are pieces of weight 2 − a sesquiharmonic and harmonic Maass forms, whereas for odd
a ≤ −1, they are holomorphic quantum modular forms. For more details, see [22, Theo-
rems 1.2, 1.6].
The series

∑∞
n=1 d(n)e−ny, or, in general,

∑∞
n=1 σa(n)e−ny, where a ∈ C, is also instru-

mental in the studyofmoments of theRiemannzeta function andhave longbeenemployed
for this purpose. See, for example, [86, p. 163, Theorem 7.15] or [61]. Lukkarinen [63]
obtained meromorphic continuation of the modified Mellin transform of

∣
∣ζ (1/2 + ix)

∣
∣2,

defined for Re(s) > 1, by
∫ ∞

1

∣
∣
∣
∣ζ

(
1
2

+ ix
)∣
∣
∣
∣

2
x−s dx,

5Ramanujan’s formula is actually valid for any complex α,β such that Re(α) > 0,Re(β) > 0 and αβ = π2 .
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by using a transformation for
∑∞

n=1 d(n)e−ny. Period functions, in general, are real analytic
functions �(x) satisfying the three-term recurrence relations �(x) = �(x + 1) + (x +
1)−2s�

(
x

x+1

)
, where s = 1/2+ it. In an interesting paper, Bettin and Conrey [15] studied

the period function of the series
∑∞

n=1 σa(n)e2π inz , where a ∈ C and z ∈ H, showing that
it can be analytically continued to | arg(z)| < π , and as an application of their result they
gave a simple proof of the Voronoï summation formula as well as an exact asymptotic
expansion for the smoothly weighted second moment of the Riemann zeta function on
the critical line, namely,

∫ ∞

0

∣
∣
∣
∣ζ

(
1
2

+ it
)∣
∣
∣
∣

2
e−δt dt,

as δ → 0, in the form of a convergent asymptotic series.
However, in the above results, either an asymptotic estimate for the series

∑∞
n=1 σa(n)

e2π inz is given or a transformation involving a line integral, and hence an explicit trans-
formation is missing. We fill this gap and obtain an explicit transformation for the series
∑∞

n=1 σa(n)e−ny first, for any a ∈ C such that Re(a) > −1, and then for Re(a) > −2m−3,
where m ∈ N ∪ {0}, by analytic continuation. We then obtain, as corollaries, not only
the well-known results in the theory of modular forms but also a transformation between
∑∞

n=1 σ2m(n)e−ny and the series
∞∑

n=1
σ2m(n)

{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)

+
m∑

j=1
(2j − 1)!

(
4π2n
y

)−2j }

, (2.9)

where m is any integer and Re(y) > 0. Note, of course, that when m is a non-positive
integer, the finite sum over j in the summand of (2.9) is empty. Here, the functions Shi(z)
and Chi(z) are the hyperbolic sine and cosine integrals defined by [72, p. 150, Equation
(6.2.15), (6.2.16)]

Shi(z) :=
∫ z

0

sinh(t)
t

dt, Chi(z) := γ + log(z) +
∫ z

0

cosh(t) − 1
t

dt, (2.10)

where γ is Euler’s constant. (Observe that Shi′(z) = sinh(z)/z and Chi′(z) = cosh(z)/z.)
We note that Shi(z) is an entire function of z whereas Chi(z) is analytic inC\(−∞, 0]. The
series in (2.9) is a natural analogue of the series

∞∑

n=1
σ2m+1(n)

{

sinh
(
4π2n
y

)

− cosh
(
4π2n
y

)}

= −
∞∑

n=1
σ2m+1(n)e−4π2n/y,

which appears in the corresponding modular transformation satisfied by
∑∞

n=1 σ2m+1(n)
e−ny.
Let �k,�(z) :=

∑∞
n=1 nkσ�−k (n)qn be a function considered by Ramanujan [78]. In [16,

Corollary 1], Bhand and Shankhadhar recently showed that for k + � even and any c ∈ C,
the function c + �k,�(z) is not a quasimodular form of any weight and depth (and hence,
obviously, not a modular form). Note that when k = 0, this gives

∑∞
n=1 σ�(n)qn for � even.

However, as expressed in the concluding remarks of [16], no transformation property for
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the latter series is known. In Theorem 2.11, we obtain the precise transformation that this
series satisfies. It shows explicitly the obstruction to modularity.
When a = 2m,m ∈ Z

−, or a = 0, we also obtain simplified versions of the transforma-
tions for the series in (2.9). This is achieved using a recent result [32, Theorem 2.2], valid
for Re(u) > 0:

∞∑

n=1

∫ ∞

0

t cos(t)
t2 + n2u2

dt = 1
2

{

log
( u
2π

)
− 1

2

(

ψ

(
iu
2π

)

+ ψ

(

− iu
2π

))}

, (2.11)

where ψ(z) := �′(z)/�(z) is the logarithmic derivative of �(z). See (2.19) and (2.22) for
the same.
Our transformation for the series

∑∞
n=1 σa(n)e−ny is now given. It is proved using

Guinand’s version of the Voronoï summation formula (see Theorem 8.3).

Theorem 2.4 Let Re(y) > 0. For Re(a) > −1, the following transformation holds:

∞∑

n=1
σa(n)e−ny + 1

2

((
2π
y

)1+a
cosec

(πa
2

)
+ 1

)

ζ (−a) − 1
y
ζ (1 − a)

= 2π
y sin

(
πa
2
)

∞∑

n=1
σa(n)

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

))

. (2.12)

Remark 1 With μKν(z, w) defined in (1.17), the right-hand side of the above transforma-
tion is nothing but 2

√
2πy−1− a

2
∑∞

n=1 σa(n)n− a
2 1

2
Ka

2

(
4π2n
y , 0

)
.

Through analytic continuation, the identity in Theorem 2.4 can be extended to the
half-plane Re(a) > −2m − 3, wherem is any non-negative integer.

Theorem 2.5 Let m ∈ N ∪ {0} and Re(y) > 0. Then for Re(a) > −2m − 3, we have

∞∑

n=1
σa(n)e−ny + 1

2

((
2π
y

)1+a
cosec

(πa
2

)
+ 1

)

ζ (−a) − ζ (1 − a)
y

= 2
√
2π

y1+ a
2

∞∑

n=1
σa(n)n− a

2

{

1
2
Ka

2

(
4π2n
y

, 0
)

− π2
3
2+a

sin
(

πa
2
)

(
4π2n
y

)− a
2−2

Am

(
1
2
,
a
2
, 0;

4π2n
y

)}

− y(2π )−a−3

sin
(

πa
2
)

m∑

k=0

ζ (a + 2k + 2)ζ (2k + 2)
�(−a − 1 − 2k)

(
4π2

y

)−2k
, (2.13)

where

Am(μ, ν, w; z) :=
m∑

k=0

(−1)−μ−w− 1
2 �

(
μ + w + 1

2 + k
)

k !� (−ν − μ − k)�
( 1
2 − ν − μ − w − k

)
( z
2

)−2k
. (2.14)
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It is the above transformation that we call the master identity, for, it gives numerous
well-known as well as new results as corollaries. Note, of course, that if we let m = 0 in
Theorem 2.5, we get Theorem 2.4.
We now give a special case of the above theorem.

Corollary 2.6 Ramanujan’s formula (2.8) holds for m > 0.

Theorem 2.4 gives below the modular transformation satisfied by the Eisenstein series on
SL2 (Z) as a special case.

Corollary 2.7 Let m > 1 be a natural number. If Re(α),Re(β) > 0 and αβ = π2,

αm
∞∑

n=1
σ2m−1(n)e−2nα − (−β)m

∞∑

n=1
σ2m−1(n)e−2nβ = (αm − (−β)m)

B2m
4m

. (2.15)

Next, we give a corollary of Theorem2.5which is equivalent to the transformation formula
satisfied by the logarithm of the Dedekind eta function [13, Equation (3.10)].

Corollary 2.8 If α,β are such that Re(α) > 0,Re(β) > 0 and αβ = π2, then
∞∑

n=1
σ−1(n)e−2nα −

∞∑

n=1
σ−1(n)e−2nβ = β − α

12
+ 1

4
log

(
α

β

)

, (2.16)

The limiting case a → 1 of Theorem 2.4 gives an equivalent form of the transformation
satisfiedby theweight-2 Eisenstein seriesE2(z) on SL2 (Z), namely,E2

(−1
z
) = z2E2(z)+ 6z

π i .

Corollary 2.9 Let α,β be such that Re(α) > 0,Re(β) > 0 and αβ = π2. Then,

α

∞∑

n=1

n
e2nα − 1

+ β

∞∑

n=1

n
e2nβ − 1

= α + β

24
− 1

4
. (2.17)

Note that Corollary 2.9 is also deducible from Ramanujan’s formula (2.8). The transfor-
mation for

∑∞
n=1 d(n)e−ny, where d(n) is the number of positive divisors of n, also results

as a special case of the master identity.

Corollary 2.10 For Re(y) > 0, we have

∞∑

n=1
d(n)e−ny − 1

4
− (γ − log(y))

y

= 4
y

∞∑

n=1
d(n)

{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)}

.

(2.18)

Equivalently,

∞∑

n=1

1
eny − 1

− 1
4

− (γ − log(y))
y

= 2
y

∞∑

n=1

{

log
(
2πn
y

)

− 1
2

(

ψ

(
2π in
y

)

+ ψ

(

−2π in
y

))}

, (2.19)
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The equivalent version of (2.18) given above was first discovered by Wigert [91, p. 203,
Equation (A)], who considered it as ‘la formule importante’ (an important formula).
The modular-type transformation for

∑∞
n=1 σ2m(n)e−ny,m > 0, is now given.

Theorem 2.11 Let m ∈ N. Then for Re(y) > 0, we have

∞∑

n=1
σ2m(n)e−ny − (2m)!

y2m+1 ζ (2m + 1) + B2m
2my

= (−1)m
2
π

(
2π
y

)2m+1 ∞∑

n=1
σ2m(n)

{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)

+
m∑

j=1
(2j − 1)!

(
4π2n
y

)−2j }

. (2.20)

Note that the m = 1 case of the series on the left-hand side above is connected with the
generating function for plane partitions considered byMacMahon [2, p. 184] in that, with

y = log(1/q) and F (q) :=
∞∏

n=1

1
(1 − qn)n

, we have
∞∑

n=1
σ2(n)e−ny = q

d
dq

log F (q).

We now state a transformation for
∑∞

n=1 σ2m(n)e−ny whenm < 0.

Theorem 2.12 Let m ∈ N. Then for Re(y) > 0, the following transformation holds:

∞∑

n=1
σ−2m(n)e−ny +

{
1
2

+ (−1)m
γ

π

( y
2π

)2m−1

+ (−1)m

π

( y
2π

)2m−1
log

(
2π
y

)}

ζ (2m) + 2(−1)m

π

( y
2π

)2m−1

×
(

−1
2
ζ ′(2m) + 2π2

y2
m−1∑

k=0
(−1)k+1ζ (2k + 3)ζ (2m − 2k − 2)

(
2π
y

)2k
)

= 2(−1)m

π

( y
2π

)2m−1 ∞∑

n=1
σ−2m(n)

{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)}

. (2.21)

Equivalently,

1
2
ζ (2m) +

∞∑

n=1

n−2m

eny − 1
− 1

y

m−1∑

k=0

B2k
(2k)!

ζ (2m − 2k + 1)y2k

= (−1)m+1

y

( y
2π

)2m
{

2γ ζ (2m) +
∞∑

n=1
n−2m

(

ψ

(
2π in
y

)

+ ψ

(

−2π in
y

))}

.

(2.22)

The above theorem gives a companion to Ramanujan’s formula (2.8) which is new. The
reason we call this as a companion to (2.8) is because its left-hand side involves even zeta
values ζ (2m) and the series

∑∞
n=1

n−2m

e2nα−1 , whereas that in (2.8) involves the odd zeta values
ζ (2m + 1) and

∑∞
n=1

n−2m−1

e2nα−1 . However, we note that while the latter series transforms to
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itself (with α replaced by β), the former transforms into a combination of the higher
Herglotz functions of Vlasenko and Zagier [88] (see also Radchenko and Zagier [77]).

Corollary 2.13 Let m ∈ N. If α and β are complex numbers such that Re(α) > 0, Re(β) >

0, and αβ = π2, then

α
−
(
m− 1

2

) {
1
2
ζ (2m) +

∞∑

n=1

n−2m

e2nα − 1

}

−
m−1∑

k=0

22k−1B2k
(2k)!

ζ (2m − 2k + 1)α2k−m− 1
2

= (−1)m+1β
−
(
m− 1

2

) {
γ

π
ζ (2m) + 1

2π

∞∑

n=1
n−2m

(

ψ

(
inβ

π

)

+ ψ

(

− inβ

π

))}

.

(2.23)

Character analogues of Ramanujan’s formula for ζ (2m + 1) have been obtained by
Katayama [57] and Berndt [6, Section 5]. Berndt [5, Section 11] and Bradley [21, Theorem
1] gave generalizations and/or analogues ofRamanujan’s formula for ζ (2m+1) for periodic
sequences. See also Equation (3.12) of Berndt [7]. In all these results, series similar to the
one on the left-hand side of (2.23) appear. Yet, (2.23) is quite different in nature from
each of these results. This is because, in the series similar to that on the left-hand side of
(2.23) in the aforementioned results of Katayama, Berndt and Bradley, one cannot put the
periodic function (or, the Dirichlet character, in the case of Dirichlet L-functions) to be
identically equal to 1 as their results in this setting hold when the periodic function or the
Dirichlet character is odd.
New results concerning functions self-reciprocal inWatson’s kernel are given in Sect. 6.

3 Nuts and bolts
We will be frequently using the duplication and reflection formulas for �(s) [85, p. 46]:

�(s)�
(

s + 1
2

)

=
√

π

22s−1�(2s), (3.1)

�(s)�(1 − s) = π

sin(πs)
(s /∈ Z). (3.2)

Let F(s) = M[f ; s] andG(s) = M[g ; s] denote the Mellin transforms of functions f (x) and
g(x), respectively. Let c = Re(s). IfM[f ; 1 − c − it] ∈ L(−∞,∞) and xc−1g(x) ∈ L[0,∞),
then Parseval’s formula [74, p. 83] is given by

∫ ∞

0
f (x)g(x)dx = 1

2π i

∫

(c)
F(1 − s)G(s) ds, (3.3)

Here, the vertical line Re(s) = c lies in the common strip of analyticity of the Mellin
transforms F(1 − s) andG(s).
We need Slater’s theorem [65, p. 56-59] to evaluate inverseMellin transforms of certain

functions. We give its statement below to make the paper self-contained. We need some

notations to begin with. Let | arg(z)| < π . Let pFq
(

a1 ,a2 ,...,ap
b1 ,b2 ,...,bq

∣
∣
∣
∣z
)

be defined in (1.10). Let

�

[
a1, a2, . . . , aA
b1, b2, . . . , bB

]

≡ �[(a); (b)] = � (a1)� (a2) . . . � (aA)
� (b1)� (b2) . . . � (bB)

,

(a) + s := a1 + s, a2 + s, . . . , aA + s,

(b)′ − bk := b1 − bk , . . . , bk−1 − bk , bk+1 − bk , . . . , bB − bk ,
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�A(z) :=
A∑

j=1
zaj�

[
(a)′ − aj, (b) + aj
(c) − aj, (d) + aj

]

×B+CFA+D−1

(
(b) + aj, 1 + aj − (c)
1 + aj − (a)′, (d) + aj

∣
∣
∣
∣(−1)C−Az

)

,

�B(1/z) :=
B∑

k=1
z−bk�

[
(b)′ − bk , (a) + bk
(d) − bk , (c) + bk

]

×A+DFB+C−1

(
(a) + bk , 1 + bk − (d)
1 + bk − (b)′, (c) + bk

∣
∣
∣
∣
(−1)D−B

z

)

,

Theorem 3.1 (Slater’s Theorem) Let

H (s) = �

[
(a) + s, (b) − s
(c) + s, (d) − s

]

, (3.4)

where the vectors (a), (b), (c) and (d) have, respectively, A, B, C and D components aj, bk ,
cl and dm. Then, if the following two groups of conditions hold:

−Re(aj) < Re(s) < Re(bk ) (j = 1, 2, . . . , A, k = 1, 2, . . . , B), (3.5)
⎧
⎪⎪⎨

⎪⎪⎩

A + B > C + D,

A + B = C + D, Re(s(A + D − B − C)) < −Re(η)

A = C, B = D, Re(η) < 0,

(3.6)

where

η :=
A∑

j=1
aj +

B∑

k=1
bk −

C∑

l=1
cl −

D∑

m=1
dm,

then for these s we have

H (s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0
xs−1�A(x) dx, if A + D > B + C,

∫ 1

0
xs−1�A(x) dx +

∫ ∞

1
xs−1�B(1/x) dx, if A + D = B + C,

∫ ∞

0
xs−1�B(1/x) dx, if A + D < B + C,

�A(1) = �B(1) if A + D = B + C, Re(η) + C − A + 1 < 0, A ≥ C.

Corollary 3.2 [65, p. 58]Under the conditions (3.5) and (3.6), the inverseMellin transform
of the function in (3.4) is a function H (x) of hypergeometric type given by

H (x) =

⎧
⎪⎪⎨

⎪⎪⎩

�A(x) for x > 0, if A + D > B + C,

�A(x) for 0 < x < 1, or �B(1/x) for x > 1, if A + D = B + C,

�B(1/x) for x > 0, if A + D < B + C,

H (1) = �A(1) = �B(1) if A + D = B + C, Re(η) + C − A + 1 < 0, A ≥ C.

Remark 2 As given in [65, Remark 2], whenever we have |A + D − B − C| > 1, A + B =
C + D, the condition Re(s(A + D − B − C)) < −Re(η) can be weakened to Re(s(A + D −
B − C)) < 1/2 − Re(η).
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We will also be making use of the following asymptotic formula for it as z → ∞ [92,
Equation (28)], namely,

1
�(a)�(b)�(c) 0

F3
( −
a, b, c

∣
∣
∣
∣z
)

∼ zθ/4

2(2π )3/2
{
exp

(
4z1/4

) + 2 cos
(
4z1/4 + π

2
θ
)}

,

(3.7)

where θ = 3/2 − a − b − c.
The asymptotic formulas for the modified Bessel function Kμ(z) are required as well

and hence are noted below. As |z| → ∞, | arg(z)| < π , we have [90, p. 202]

Kμ(z) ∼
√

π

2z
e−z, (3.8)

whereas as for z → 0, we have [1, p. 375, Equations (9.6.8), (9.6.9)], [41, Equation (2.14)]

Kμ(z) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2�(μ)

( z
2
)−μ , if Re(μ) > 0,

− log z, if μ = 0,

−
√

π
y sinh(πy) sin

(
y log

( z
2
) − arg(�(1 + iy))

)
, if μ = iy, y > 0.

(3.9)

We will also frequently make use of the well-known fact that

K 1
2
(z) =

√
π

2z
e−z . (3.10)

4 TheWatson kernel Gν(x, w)
As discussed in the introduction, the kernel Gν(x, w) defined in (1.13) is a simultaneous
generalization of the Koshliakov kernels and (essentially) the Hankel kernel, all of which
are quite important from the point of view of their applications in number theory. This
section is devoted to obtaining some properties of this kernel.

Theorem 4.1 Let x > 0. Let Gν(x, w) be defined in (1.13), and Mν(x) and Lν(x) in (1.7).
Then

Gν(x, 0) = cos(πν)M2ν(2
√
x) − sin(πν)J2ν(2

√
x), (4.1)

Gν(x, 1) = sin(πν)J2ν(2
√
x) − cos(πν)L2ν(2

√
x). (4.2)

Proof We only prove (4.1). Then, (4.2) can be proved similarly. In the second step, use
(3.1) twice and the fact 22kk !(1/2)k = (2k)! to see that

0F3
( −
1 ± ν, 12 ,

1
2 ± ν

∣
∣
∣
∣
x2

16

)

=
∞∑

k=0

�(1 ± ν)�
( 1
2 ± ν

)

k !
( 1
2
)
k �(1 ± ν + k)�

( 1
2 ± ν + k

)
(x
4

)2k

=
∞∑

k=0

x2k

(2k)!(1 ± 2ν)2k

= 1
2

(

0F1
( −
1 ± 2ν

∣
∣
∣
∣x
)

+ 0F1
( −
1 ± 2ν

∣
∣
∣
∣−x

))

. (4.3)

However, from the definitions (1.1) and (1.3),

J±2ν(2
√
x) = x±ν

�(1 ± 2ν) 0
F1

( −
1 ± 2ν

∣
∣
∣
∣−x

)

,

I±2ν(2
√
x) = x±ν

�(1 ± 2ν) 0
F1

( −
1 ± 2ν

∣
∣
∣
∣x
)

(4.4)
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so that from (1.13), (4.3) and (4.4),

Gν(x, 0) = 1
2 sin(νπ )

{(
I−2ν(2

√
x) − I2ν(2

√
x)
) + (

J−2ν(2
√
x) − J2ν(2

√
x)
)}

= 2
π
cos(νπ )K2ν(2

√
x) + 1

2 sin(νπ )
{
J−2ν(2

√
x) − J2ν(2

√
x)
}
, (4.5)

where in the last step we used (1.4). Now the fact that

1
2 sin(νπ )

{
J−2ν(2

√
x) − J2ν(2

√
x)
} = − cos(νπ )Y2ν(2

√
x) − sin(νπ )J2ν(2

√
x) (4.6)

can be proved using the definition of Yν(z) in (1.2). Finally, (4.5) and (4.6) together imply
(4.1). ��

In [12, p. 842], it was remarked that cos(πν)M2ν(2
√
x)− sin(πν)J2ν(2

√
x), that is, the first

Koshliakov kernel, is an even function of ν. While it is not trivial to prove this directly
using properties of Bessel functions, it is so when viewed through the Watson kernel in
(1.13) since, by definition,

G−ν(x, w) = Gν(x, w) (w ∈ C),

and hence, in particular, this is true for w = 0.
The following big-O result for small positive values of x is used in the sequel. The bound

for the case ν = 0 has not appeared in the literature although the bound for the case
ν ∈ C\Z has been considered by Dahiya, see [25, Section 1 (iii)] in conjunction with (1.14)
and (1.15). However, we prove both the cases to make the paper self-contained.

Theorem 4.2 Let x > 0 and w ∈ C. As x → 0+,

Gν(x, w) =
⎧
⎨

⎩

Oν,w
(
xRe(w)(1 + | log x|)

)
, if ν = 0,

Oν,w
(
xRe(w)−|Re(ν)|

)
, if ν ∈ C\Z.

Proof By the definition of a 0F3, as x → 0,

1
�(1 ± ν)�

(
w + 1

2
)
�
(
w + 1

2 ± ν
) 0F3

( −
1 ± ν, w + 1

2 , w + 1
2 ± ν

∣
∣
∣
∣
x2

16

)

= Oν,w(1),

we see that Gν(x, w) = Oν,w
(
xRe(w)−|Re(ν)|

)
when ν ∈ C\Z.

However, for ν = 0, observe that Gν(x, w) admits 0
0 form. So we, of course, mean

G0(x, w) = lim
ν→0

Gν(x, w).

For brevity, let f (ν) be defined by

f (ν) := π
(x
4

)w−ν 1
�(1 − ν)�

(
w + 1

2
)
�
(
w + 1

2 − ν
)

×0F3
( −
1 − ν, w + 1

2 , w + 1
2 − ν

∣
∣
∣
∣
x2

16

)

.

Then,

G0(x, w) = lim
ν→0

f (ν) − f (−ν)
sin(νπ )

= 2f ′(0)
π

.
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Clearly, the 0F3 converges uniformly in a neighbourhood of ν = 0. Hence by [81, p. 152,
7.17],

f ′(ν) = π
(x
4

)w
{

− (x/4)−ν log
( x
4
)

�(1 − ν)�
(
w + 1

2
)
�
(
w + 1

2 − ν
)

× 0F3
( −
1 − ν, w + 1

2 , w + 1
2 − ν

∣
∣
∣
∣
x2

16

)

+
(x
4

)−ν
∞∑

k=0

d
dν

(
(x2/16)k

k !�(1 − ν + k)�
(
w + 1

2 + k
)
�
(
w + 1

2 − ν + k
)

)}

= π
(x
4

)w
{

− (x/4)−ν log
( x
4
)

�(1 − ν)�
(
w + 1

2
)
�
(
w + 1

2 − ν
)

× 0F3
( −
1 − ν, w + 1

2 , w + 1
2 − ν

∣
∣
∣
∣
x2

16

)

+
(x
4

)−ν
∞∑

k=0

(x2/16)k
(
ψ(w + 1

2 − ν + k) + ψ(1 − ν + k)
)

k !�
(
w + 1

2 + k
)
�(1 − ν + k)�(w + 1

2 − ν + k)

}

, (4.7)

where ψ(x) = �′(x)/�(x). Now let ν → 0 on both sides and use [81, p. 149, 7.11] so that

f ′(0) = π
(x
4

)w
{

− log
( x
4
)

�2 (w + 1
2
) 0F3

( −
1, w + 1

2 , w + 1
2

∣
∣
∣
∣
x2

16

)

+
∞∑

k=0

(x2/16)k
(
ψ(w + 1

2 + k) + ψ(1 + k)
)

k !�2 (w + 1
2 + k

)
�(1 + k)

}

. (4.8)

From (4.7) and (4.8), we conclude that as x → 0,

G0(x, w) = O
(
xRe(w)(1 + | log x|)

)
. ��

Remark 3 Theorem 4.2 with w = 0 gives a well-known result [36, Equation (2.11)] for
ν ∈ C\ (Z\{0}).

The Mellin transform of Gν(x, w) was first given by Bhatnagar in [18, p. 23]6 However,
he did not give a proof of it. We prove it here using Theorem 3.1 of Slater. Here, and
throughout the sequel, we use

∫
(c) to denote the line integral

∫ c+i∞
c−i∞ .

Theorem 4.3 For −Re(w) ± Re(ν) < Re(s) < 3
4 ,

∫ ∞

0
ts−1Gν(xt, w) dt = 22s−1x−s �

( s−ν+w
2

)
�
( s+ν+w

2
)

�
( 1−s−ν+w

2
)
�
( 1−s+ν+w

2
) . (4.9)

Proof We prove the equivalent statement, namely, for −Re(w)±Re(ν) < c = Re(s) < 3
4 ,

1
2π i

∫

(c)

�
( s−ν+w

2
)
�
( s+ν+w

2
)

�
( 1−s−ν+w

2
)
�
( 1−s+ν+w

2
)22s−1(xt)−s ds = Gν(xt, w).

6The condition for the validity of the Mellin transform given in this paper, namely −Re(w)±Re(ν) < Re(s) < 1
4 , is too

restrictive. Here, we extend the region of validity.
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This is obtained by first employing the change of variable s = 2s1 in the integral on the
left-hand side of the above equation. Then, use Theorem 3.1 with A = 2, B = 0, C =
0, D = 2, a1 = 1

2 (w − ν), a2 = 1
2 (w + ν), d1 = 1

2 (1 − ν + w), d2 = 1
2 (1 + ν + w),

and z = (xt)2/16. This establishes (4.9) for −Re(w) ± Re(ν) < Re(s) < 1
2 . However,

observe that the Remark 2 applies here and thus we can extend the region of validity to
−Re(w) ± Re(ν) < Re(s) < 3

4 . ��

When w = 0 and 1, the above result, respectively, gives Lemmas 5.1 and 5.2 from [35] as
special cases as can be seen from Theorem 4.1 and the standard properties of �(s).

5 Proofs of Theorem 2.1 and its corollaries
In this section, we prove Theorem 2.1 and Corollaries 5.1, 5.2 and 5.3.

Proof of Theorem 2.1 First, let μ �= −ν. We prove (2.1). We begin by showing that the
integral on the left-hand side of (2.1) converges for the said values of the variables μ, ν
and w. That the convergence at the upper limit of integration is secured can be clearly
seen from (3.7) and (3.8). To show that it is also secured at 0, we consider two cases - first,
ν ∈ C\Z and the second, ν = 0.
Case 1: ν ∈ C\Z
(i) Let Re(μ) > 0 and Re(ν) > 0. From (3.9) and Theorem 4.2, we see that the integrand

Kμ(t)tμ+ν+wGν(xt, w) = Oμ,ν,w,x
(
t−Re(μ)+Re(μ+ν+w)+Re(w)−|Re(ν)|)

= Oμ,ν,w,x
(
t2Re(w)

)
,

as t → 0, so that Re(w) > − 1
2 is needed.

(ii) Let Re(μ) < 0 and Re(ν) > 0. Then we replace μ by −μ in (3.9) and then use the
fact K−μ(t) = Kμ(t) so that as t → 0,

Kμ(t)tμ+ν+wGν(xt, w) = Oμ,ν,w,x
(
tRe(μ)+Re(μ+ν+w)+Re(w)−|Re(ν)|)

= Oμ,ν,w,x
(
t2Re(μ+w)

)
,

so that we need Re(μ) > −Re(w) − 1
2 .

(iii) When Re(μ) > 0 and Re(ν) < 0, one can similarly see that we require Re(ν) >

−Re(w) − 1
2 .

(iv) Now let Re(μ) < 0 and Re(ν) < 0. As t → 0,

Kμ(t)tμ+ν+wGν(xt, w) = Oμ,ν,w,x
(
tRe(μ)+Re(μ+ν+w)+Re(w)+Re(ν)

)

= Oμ,ν,w,x
(
t2Re(μ+ν+w)

)
,

so that Re(μ + ν) > −Re(w) − 1
2 is required.

Similarly in the remainingfive casesRe(μ) = 0,Re(±ν) > 0orRe(±μ) > 0,Re(ν) = 0or
Re(μ) = Re(ν) = 0, we see that we require Re(w) > −1/2,Re(μ) > −Re(w) − 1

2 ,Re(ν) >

−Re(w) − 1
2 and Re(μ + ν) > −Re(w) − 1

2 .
Case 2: ν = 0
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(i) Let Re(μ) ≥ 0. Using Theorem 4.2 and (3.9), it is clear that as t → 0,

Kμ(t)tμ+ν+wGν(xt, w) = Oμ,w,x
(
t2Re(w)(1 + | log t|)

)
.

Hence as long as Re(w) > −1/2, the convergence is secured.
(ii) Similarly when Re(μ) < 0, it can be seen that we need Re(μ + w) > −1/2.

Thus, we conclude that the integral on the left-hand side of (2.1) converges when
Re(w) > −1/2 and Re(μ),Re(ν),Re(μ + ν) > −Re(w) − 1/2.
We now prove (2.1). Apart from the conditions

Re(w) > −1/2, and Re(μ),Re(ν),Re(μ + ν) > −Re(w) − 1/2, (5.1)

we initially require one more condition

Re(ν) < Re(w) + 1
2
. (5.2)

This additional restriction is removed later.
Let I = I(μ, ν, x, w) denote the integral on the left-hand side of (2.1). For Re(s) > ±Re(μ)

and a > 0, we have [69, p. 115, Equation (11.1)],
∫ ∞

0
ts−1Kμ(at) dt = 2s−2a−s�

(
s − μ

2

)

�

(
s + μ

2

)

. (5.3)

From Theorem 4.3, (5.3), and an application of Parseval’s formula (3.3), we see that for
c =Re(s) < min (Re(1 + ν + w),Re(1 + 2μ + ν + w)) andRe(−w±ν) < c = Re(s) < 3/4,

I = 1
2π i

∫

(c)

�
( s−ν+w

2
)
�
( s+ν+w

2
)
�
( 1−s+ν+w

2 + μ
)

�
( 1−s−ν+w

2
) 2μ+ν+w+s−2x−s ds

Now employ the change of variable s = 2ξ +ν so that formax
(−Re

(w
2
)
,−Re

(w
2 + ν

))
<

c1 = Re(ξ ) < min
(
Re

( 1+w
2

)
,Re

(
μ + w+1

2
)
, 38 − 1

2Re(ν)
)
, we have

I = 2μ+ν+w−1

2π i

(x
2

)−ν
∫

(c1)

(
x2

4

)−ξ
�
(w+1

2 + μ − ξ
)
�(ξ + w

2 )�(ξ + ν + w
2 )

�
(w+1

2 − ν − ξ
) dξ .

(5.4)

It is important to note here that (5.1) and (5.2) imply that the strip in the ξ -complex plane
in the sentence above (5.4) is of nonzero width.
Now we evaluate the inverse Mellin transform in (5.4) using Slater’s theorem, that is,

Theorem3.1,withA = 2, B = 1, C = 0, D = 1, a1 = w/2, a2 = ν+w/2, b1 = μ+(w+1)/2
and d1 = −ν + (w + 1)/2. Note that (5.1) and (5.2) imply that the conditions (3.5) in the
hypotheses of Slater’s theorem are satisfied.
This indeed gives (2.1) upon simplification when the conditions in (5.1) and (5.2) are

satisfied.
However, using (3.9), Theorem 4.2 and [85, p. 30, Theorem 2.3], we see that the left-

hand side of (2.1) is analytic in ν as long as ν ∈ C\ (Z\{0}) and the conditions in (5.1) are
met. Since the right-hand side of (2.1) too is analytic in ν when these conditions hold, by
the principle of analytic continuation, (2.1) holds when ν ∈ C\ (Z\{0}), Re(w) > −1/2
and Re(μ),Re(ν),Re(μ + ν) > −Re(w) − 1/2.
Equation (2.2) can be derived by simply letting μ = −ν in (2.1) and then using (1.18).

��
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Koshliakov’s (1.8) and (1.9) can now be derived simply as special cases of Theorem 2.1.

Corollary 5.1 Let x > 0. For μ �= −ν, Eq. (1.9) holds for Re(μ) > −1/2, Re(ν) > −1/2,
ν /∈ Z

+, and Re(μ + ν) > −1/2, otherwise, Eq. (1.8) holds for − 1
2 < Re(ν) < 1

2 .

Proof Let w = 0 in Theorem 2.1 and make use of the first identity in Theorem 4.1,
namely, Eq. (4.1). ��
A companion to (1.9) can also be derived from Theorem 2.1.

Corollary 5.2 Let x > 0. For μ �= −ν, if Re(μ) > −3/2, Re(ν) > −3/2, ν /∈ Z
+ ∪ {−1},

and Re(μ + ν) > −3/2, we have
∫ ∞

0
Kμ(t)tμ+ν+1

(
sin(πν)J2ν(2

√
xt) − cos(πν)L2ν(2

√
xt)

)
dt

= πx2μ+ν−1

sin(νπ )

{(x
2

)−ν �(μ + 3
2 )

�(1 − ν)�( 32 − ν) 1
F2

(
μ + 3

2
3
2 − ν, 1 − ν

∣
∣
∣
∣
x2

4

)

−
(x
2

)ν �(μ + ν + 3
2 )

�(1 + ν)�( 32 )
1F2

(
μ + ν + 3

2
3
2 , 1 + ν

∣
∣
∣
∣
x2

4

)}

,

otherwise, for −3/2 < Re(ν) < 3/2, we have7
∫ ∞

0
tKν(t)

(
sin(νπ )J2ν(2

√
xt) − cos(νπ )L2ν(2

√
xt)

)
dt = xKν(x),

Proof Letw = 1 in Theorem 2.1 use the second identity in Theorem 4.1, that is, Eq. (4.2).
��

Yet another corollary of Theorem 2.1 gives explicit evaluations of the Hankel transforms
of well-known functions.

Corollary 5.3 Let x > 0. If μ �= −1/2, then for Re(w) > −1/2, Re(μ) > −Re(w) − 1/2,
∫ ∞

0
tμ+w+ 1

2Kμ(t)J2w−1(2
√
xt) dt = 2μ

√
πxw− 1

2

{
�
(
μ + w + 1

2
)

�(w) 1F2

(
μ + w + 1

2
1
2 , w

∣
∣
∣
∣
∣

x2

4

)

− x
�(μ + w + 1)

�(w + 1
2 )

1F2

(
μ + w + 1
3
2 , w + 1

2

∣
∣
∣
∣
∣

x2

4

)}

, (5.5)

else, for Re(w) > 0,
∫ ∞

0
e−t tw− 1

2 J2w−1(2
√
xt) dt = e−xxw− 1

2 .

Proof Let ν = 1/2 in Theorem 2.1 and use (1.16) to obtain (5.5). In the second half of the
theorem, use (1.18) and (3.10). ��

6 Self-reciprocal functions in theWatson kernel and amodular relation
In (2.2), we found an example of a function which is self-reciprocal in the Watson kernel
Gν(xt, w). Letting ν = z/2 in (2.2) and replacing x and t by 2πx and 2π t, respectively, we
have an equivalent form

2π
∫ ∞

0
twK z

2
(2π t)G z

2
(4π2xt, w) dt = xwK z

2
(2πx), (6.1)

7This integral evaluation was obtained by Koshliakov [60, Equation (13)].
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valid for x > 0 and Re(w) > max
(− 1

2 ,
1
2 (|Re(z)| − 1)

)
.

Several criteria have been derived for a function to be self-reciprocal in the Watson
kernel, for example, see [17,19]. Here, in the case of a non-negative integer w, we obtain a
new criterion that seems to have beenmissed. This result is given in the following theorem.

Theorem 6.1 Let w be a non-negative integer and z ∈ C such that |Re(z)| < 2w + 1.
Suppose there exist functions f (t, z, w) and F (s, z, w) with the following three properties:

(i) F (s, z, w) = F (1 − s, z, w);
(ii) For −w ± Re

( z
2
)

< Re(s) < 1 + w ± Re
( z
2
)
, the Mellin transform of f (t, z, w) is

∫ ∞

0
ts−1f (t, z, w) dt = F (s, z, w)ζ

(
1 − s − z

2

)
ζ
(
1 − s + z

2

) ( s
2

− z
4

)

w
2

( s
2

+ z
4

)

w
2
,

(6.2)

if w is even, and
∫ ∞

0
ts−1f (t, z, w) dt = F (s, z, w)

2
(
cos

(
πz
2
) + cos(πs)

)ζ
(
1 − s − z

2

)
ζ
(
1 − s + z

2

)

×
(
s
2

− z
4

+ 1
2

)

w−1
2

(
s
2

+ z
4

+ 1
2

)

w−1
2

, (6.3)

if w is odd;
(iii) The Mellin transform of f (t, z, w), namely M[f ; c + it] and given by the right-hand

sides of (6.2) and (6.3), satisfies M[f ; 1 − c − it] ∈ L(−∞,∞).

Then f is self-reciprocal (up to the constant 2π ) in the Watson kernel, that is,

f (x, z, w) = 2π
∫ ∞

0
f (t, z, w)G z

2
(4π2xt, w) dt.

When w = 0 and w = 1, Theorem 6.1 reduces to Theorems 5.3 and 5.5 from [35],
respectively.

Proof of Theorem 6.1 We prove only the case when w is even. The case when w is odd
can be similarly proved. Replacing ν by z/2, x by 2πx and t by 2π t in (4.9), we see that if
−w ± Re

( z
2
)

< Re(s) < 3
4 , then

∫ ∞

0
ts−1G z

2
(4π2xt, w) dt = 1

2(π2x)s
�
( s+w

2 − z
4
)
�
( s+w

2 + z
4
)

�
( 1−s+w

2 − z
4
)
�
( 1−s+w

2 + z
4
) . (6.4)

Observe that the hypothesis |Re(z)| < 2w + 1 ensures that −w ± Re
( z
2
)

< 1
2 < 3

4 and
hence we can use (6.4).
From (6.2), hypothesis (iii), (6.4) and Parseval’s formula (3.3), for −w ± Re

( z
2
)

< c =
Re(s) < min

( 1
2 , 1 + w ± Re

( z
2
))
, we have

2π
∫ ∞

0
f (t, z, w)G z

2
(4π2xt, w) dt

= 1
i

∫

(c)
F (1 − s, z, w)ζ

(
s − z

2

)
ζ
(
s + z

2

)(
1 − s
2

− z
4

)

w
2

(
1 − s
2

+ z
4

)

w
2

× 1
2(π2x)s

�
( s+w

2 − z
4
)
�
( s+w

2 + z
4
)

�
( 1−s+w

2 − z
4
)
�
( 1−s+w

2 + z
4
) ds
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= 1
i

∫

(c)
F (s, z, w)ζ

(
s − z

2

)
ζ
(
s + z

2

) ( s
2

− z
4

)

w
2

( s
2

+ z
4

)

w
2

× 1
2(π2x)s

�
( s
2 − z

4
)
�
( s
2 + z

4
)

�
( 1−s

2 − z
4
)
�
( 1−s

2 + z
4
) ds, (6.5)

where in the last step we used F (s, z, w) = F (1 − s, z, w).
Next, use the asymmetric form of the functional equation of the Riemann zeta function

[4, p. 259, Theorem 12.7]

ζ (1 − s) = 21−sπ−s�(s)ζ (s) cos
(πs
2

)
(6.6)

twice, once with s replaced by s + z
2 , and then by s − z

2 resulting in

ζ
(
s − z

2

)
ζ
(
s + z

2

)
= 22sπ2s−2�

(
1 − s − z

2

)
�
(
1 − s + z

2

)
ζ
(
1 − s − z

2

)

× ζ
(
1 − s + z

2

)
sin

(π

2

(
s − z

2

))
sin

(π

2

(
s + z

2

))
. (6.7)

Now substitute (6.7) in (6.5) and use both (3.1) and (3.2) twice thereby deducing

2π
∫ ∞

0
f (t, z, w)g z

2
(4π2xt, w) dt

= 1
2π i

∫

(c)
x−sF (s, z, w)ζ

(
1 − s − z

2

)
ζ
(
1 − s + z

2

) ( s
2

− z
4

)

w
2

( s
2

+ z
4

)

w
2
ds

= f (x, z, w),

where the last step follows from (6.2). ��
Remark 4 In the case when w is a non-negative integer, (6.1) can also be derived as a
corollary of Theorem 6.1. To see this, take f (t, z, w) = twK z

2
(2π t) and

F (s, z, w) =

⎧
⎪⎨

⎪⎩

2w−2π−s�( s2− z
4 )�( s2+ z

4 )
ζ (1−s− z

2 )ζ (1−s+ z
2 )

, if w is even,
2w−1π−s�

(
s
2− z

4+ 1
2

)
�
(
s
2+ z

4+ 1
2

)
(cos( πz

2 )+cos(πs))
ζ (1−s− z

2 )ζ (1−s+ z
2 )

, if w is odd,
(6.8)

and show that the hypotheses of the theorem are satisfied if |Re(z)| < 2w + 1 and −w ±
Re

( z
2
)

< Re(s) < 1+w±Re
( z
2
)
. Thus, we note that the function F (s, z, w) may have two

different expressions depending on the parity of w.

Remark 5 Note that (6.1) is valid for any w such that Re(w) > max
(− 1

2 ,
1
2 (|Re(z)| − 1)

)
,

whereas Theorem 6.1 gives (6.1) only for a natural number w because of its hypotheses.

Our last result of this section is the following modular relation between two integrals.

Theorem 6.2 Let w be a non-negative integer and z ∈ C such that |Re(z)| < 2w + 1. Let
f (t, z, w) be as in the previous theorem. Then for α,β > 0 such that αβ = 1, we have

αw+ 1
2

∫ ∞

0
xwK z

2
(2παx)f (x, z, w) dx = βw+ 1

2

∫ ∞

0
xwK z

2
(2πβx)f (x, z, w) dx.

When w = 0 and w = 1, the above theorem reduces to Corollaries 5.4 and 5.6 in [35].
An example of a function self-reciprocal in the first Koshliakov kernel, other than Kz

2
(x),

has been considered in [12, Theorem 15.6], which leads to the above modular relation in
the special case w = 0.
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Proof of Theorem 6.2 We are givenw ∈ N∪{0}, α,β > 0 such that αβ = 1. Replace x and
t in (6.1) by αx and βy, respectively, so that for |Re(z)| < 2w + 1,

αwxwK z
2
(2παx) = 2πβw+1

∫ ∞

0
ywK z

2
(2πβy)G z

2
(4π2xy, w) dt,

Multiply both sides of the above equation by
√

αf (x, z, w), integrate both sideswith respect
to x and use the fact αβ = 1 so as to get

αw+ 1
2

∫ ∞

0
xwK z

2
(2παx)f (x, z, w) dx

= 2πβw+ 1
2

∫ ∞

0

∫ ∞

0
ywK z

2
(2πβy)f (x, z, w)G z

2
(4π2xy, w) dy dx

= βw+ 1
2

∫ ∞

0
ywK z

2
(2πβy)

(

2π
∫ ∞

0
f (x, z, w)G z

2
(4π2xy, w) dx

)

dy

= βw+ 1
2

∫ ∞

0
ywK z

2
(2παy)f (y, z, w) dy,

where in the last step, we used Theorem 6.1. The interchange of the order of integration
in the second step is justified because of (3.8), (1.13) and (3.7). ��

7 A transformation involving series of the sums-of-squares function rk(n)
In this section, we prove Theorem 2.2. We begin with a lemma which gives an asymptotic
estimate for μKν (z, w) as z → ∞. This will be crucially required in the results established
in both this and the next sections.

Lemma 7.1 Let | arg(−z)| ≤ π and m ∈ N ∪ {0}. As z → ∞,

μKν (z, w) = π23μ+2ν+2w

sin(πν)zw+2μ+ν+1
{
Am(μ, ν, w; z) − Bm(μ, ν, w; z)

+Oμ,ν,w
(|z|−2m−2)} ,

where Am(μ, ν, w; z) is defined in (2.14) and

Bm(μ, ν, w; z) :=
m∑

k=0

(−1)−μ−ν−w− 1
2 �

(
μ + ν + w + 1

2 + k
)

k !� (−μ − ν − k)�
( 1
2 − μ − w − k

)
( z
2

)−2k
. (7.1)

Proof From [72, p. 412, Formula 16.11.8], for | arg(−z)| ≤ π , as z → ∞,

�(a1)
�(b1)�(b2)

1F2 (a1; b1, b2; z) ∼ H1,2(−z) + E1,2
(
−zeπ i

)
+ E1,2

(
−ze−π i

)
, (7.2)

where

H1,2(z) =
∞∑

k=0

(−1)k

k !
�(a1 + k)

�(b1 − a1 − k)�(b2 − a1 − k)
z−a1−k , (7.3)

λ = a1 − b1 − b2 + 1
2 , and

E1,2 (z) = 2−λ−1/2
√
2π

e2z
1
2 (2z

1
2 )λ

∞∑

k=0
ck

(
2z

1
2
)−k

, (7.4)
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with c0 = 1, b3 = 1 and

ck = − 1
4k

k−1∑

m=0
cmek,m,

ek,m =
3∑

j=1

(a1 − bj)
3∏

�=1
��=j

(b� − bj)

(1 − λ − 2bj + m)k+2−m. (7.5)

Let a1 = μ + w + 1
2 , b1 = w + 1

2 − ν, b2 = 1 − ν and replace z by −z2
4 in (7.3) and (7.4)

to get

H1,2

(

−z2

4

)

=
m∑

k=0

(−1)k

k !
�
(
μ + w + 1

2 + k
)
(−z2/4)−μ−w− 1

2−k

� (−ν − μ − k)�
( 1
2 − ν − μ − w − k

)

+ Oμ,w,ν
(|z|−2μ−2w−2m−3) , (7.6)

Taking e−π i = −1, we see that

E1,2
(

−z2

4
eπ i

)

= 2−μ−2ν
√
2π

zμ+2ν− 1
2 ez

∞∑

k=0
ckz−k , (7.7)

where c0 = 1 and

ek,m = − 1
4k

[( 1
2 − μ − 2w + m

)
k+2−m (μ + ν)

( 1
2 − w

) ( 1
2 − w + ν

)

+
(
m − 1

2 − μ
)
k+2−m

(
μ + w + ν − 1

2
)

(
w − 1

2
)
ν

+
(
m − 1

2 − μ − 2ν
)
k+2−m

(
μ + w − 1

2
)

(
w − ν − 1

2
)
(−ν)

]

. (7.8)

From (7.2), (7.6) and (7.7), as z → ∞,

�
(
μ + w + 1

2
)

�
(
w + 1

2 − ν
)
� (1 − ν)

1F2
(

μ + w + 1
2
;w + 1

2
− ν, 1 − ν;

z2

4

)

= H1,2

(

−z2

4

)

+ E1,2
(

−z2

4
e−π i

)

+ E1,2
(

−z2

4
eπ i

)

, (7.9)

where

E1,2
(

−z2

4
e−π i

)

= 2−μ−2ν
√
2π

e
√

−z2e−π i
(√

−z2e−π i
)μ+2ν− 1

2 + O
(

e−z

x
1
2−μ

)

= 2−μ−2ν
√
2π

e−z (−z)μ+2ν− 1
2 + O

(
e−z

z
3
2−μ−2ν

)

.
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Similarly, letting a1 = μ + ν + w + 1
2 , b1 = w + 1

2 , b2 = 1 + ν, replacing z by z2
4 in (7.2)

and simplifying, we see that as z → ∞,

�
(
μ + ν + w + 1

2
)

�
(
w + 1

2
)
� (1 + ν)

1F2
(

μ + ν + w + 1
2
;w + 1

2
, 1 + ν;

z2

4

)

= H∗
1,2

(

−z2

4

)

+ E∗
1,2

(

−z2

4
e−π i

)

+ E∗
1,2

(

−z2

4
eπ i

)

. (7.10)

Here,

H∗
1,2

(

−z2

4

)

=
m∑

k=0

(−1)k

k !
�
(
μ + ν + w + 1

2 + k
)
(−z2/4)−μ−ν−w− 1

2−k

� (−μ − ν − k)�
( 1
2 − μ − w − k

)

+ Oμ,ν,w
(|z|−2μ−2ν−2w−2m−3) ,

and

E∗
1,2

(

−z2

4
eπ i

)

= 2−μ

√
2π

zμ− 1
2 ez

∞∑

k=0
ckz−k ,

with ck defined in (7.5) and ek,m resulting from (7.8). Also,

E∗
1,2

(

−z2

4
e−π i

)

= 2−μ

√
2π

e−z (−z)μ− 1
2 + O

(
e−z

z
3
2−μ−2ν

)

.

From the definition of μKν (z, w) in (1.17), (7.9), (7.10) and the observation that the terms
containing ez completely cancel out each other, we deduce that

μKν (z, w) = πzw2μ+ν−1

sin(πν)

{ m∑

k=0

(−1)−μ−w− 1
2 �

(
μ + w + 1

2 + k
)

k !� (−ν − μ − k)�
( 1
2 − ν − μ − w − k

)

×
( z
2

)−2μ−ν−2w−2k−1

−
m∑

k=0

(−1)−μ−ν−w− 1
2 �

(
μ + ν + w + 1

2 + k
)

k !� (−μ − ν − k)�
( 1
2 − μ − w − k

)
( z
2

)−2μ−ν−2w−2k−1

+ Oμ,ν,w
(|z|−2μ−2ν−2w−2m−3) + (−1)μ+2ν− 1

2 2−μ−ν

√
2π

e−zzμ+ν− 1
2

− (−1)μ− 1
2 2−μ−ν

√
2π

e−zzμ+ν− 1
2

}

.

Upon using the definitions of (2.14) and (7.1), we see that the proof of Lemma 7.1 is
complete. ��

Lemma 7.2 Let8 k ∈ N. Then,

∫ ∞

0
x

k
4 − 1

2 μK 1
2

(

π2x,
k
4

)

dx =
⎧
⎨

⎩

0, if Re(μ) > − 1
2 ,

1√
2
π

−k−1
2 �

(
k
2

)
, if μ = − 1

2 .

8This lemma is valid even if k is complex such that Re(k) > 0.
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Proof First let Re(μ) > − 1
2 . The idea is to introduce the exponential dampening factor

e−π2x2y, y > 0, in the integrand, evaluate the resulting integral explicitly, then let y → 0
and finally invoke Lebesgue’s dominated convergence theorem.
From [44, p. 814, Formula 7.522.5], for p < q and Re(s) > 0, we have

∫ ∞

0
e−xxs−1

pFq(a1, . . . , ap; b1, . . . , bq ; δx) dx = �(s)p+1Fq(s, a1, . . . ap; b1, . . . , bq ; δ).

(7.11)

First replace x by π2yx2 and then let δ = π2/4y, p = 1, q = 2 in the above equation so
that

∫ ∞

0
e−π2x2yx2s−1

1F2
(

a1; b1, b2;
π4x2

4

)

dx = �(s)y−s

2π2s 2F2
(

s, a1; b1, b2;
π2

4y

)

.

(7.12)

Letting s = k
4 and a1 = μ + k

4 + 1
2 , b1 = k

4 and b2 = 1
2 in the above equation, we get

∫ ∞

0
e−π2x2yx

k
2−1

1F2
(

μ + k
4

+ 1
2
;
k
4
,
1
2
;
π4x2

4

)

dx

=
�
(
k
4

)

2π
k
2
y− k

4 1F1
(

μ + k
4

+ 1
2
;
1
2
;
π2

4y

)

. (7.13)

Again use (7.12) with s = k
4 + 1

2 and a1 = μ + k
4 + 1, b1 = k

4 + 1
2 and b2 = 3

2 to get

∫ ∞

0
e−π2x2yx

k
2 1F2

(

μ + k
4

+ 1;
k
4

+ 1
2
,
3
2
;
π4x2

4

)

dx

=
�
(
k
4 + 1

2

)

2π
k
2+1

y− k
4 − 1

2 1F1
(

μ + k
4

+ 1;
3
2
;
π2

4y

)

. (7.14)

Therefore from (7.13), (7.14) and the definition of μKν(z, w) in (1.17), we have

∫ ∞

0
x

k
4 − 1

2 e−π2x2y
μK 1

2

(

π2x,
k
4

)

dx

= √
π2μ−1y− k

4

{
�
(
μ + k

4 + 1
2

)

π
1F2

(

μ + k
4

+ 1
2
;
1
2
;
π2

4y

)

− �

(

μ + k
4

+ 1
)

y− 1
2 1F1

(

μ + k
4

+ 1;
3
2
;
π2

4y

)}

.

Now express the right-hand side of the above equation in terms of the Tricomi confluent
hypergeometric function U (a; c; z) defined by [85, p. 176, Equation (7.14)]

U (a; c; z) := �(1 − c)
�(a − c + 1) 1

F1(a; c; z) + �(c − 1)
�(a)

z1−c
1F1(a − c + 1; 2 − c; z) (7.15)
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so as to get
∫ ∞

0
x

k
4 − 1

2 e−π2x2y
μK 1

2

(

π2x,
k
4

)

dx

= y− k
4

√
π2μ+ k

2+1
�

(

2μ + k
2

+ 1
)

U
(

μ + k
4

+ 1
2
;
1
2
;
π2

4y

)

. (7.16)

Let y → 0 on both sides of (7.16). Using Lemma 7.1 with ν = 1/2, w = k/4 and z
replaced by π2x and then invoking Lebesgue’s dominated convergence theorem in order
to interchange the order of limit and summation, we have

∫ ∞

0
x

k
4 − 1

2 μK 1
2

(

π2x,
k
4

)

dx

=
�
(
2μ + k

2 + 1
)

√
π2μ+ k

2+1
lim
y→0

{

y− k
4U

(

μ + k
4

+ 1
2
;
1
2
;
π2

4y

)}

. (7.17)

From [85, p. 174, Equation (7.13)], as z → ∞,

U (a; c; z) ∼ z−a
∞∑

n=0

(a)n(a + c − 1)n
n!

(−z)n. (7.18)

Let a = μ + k
4 + 1

2 , c = 1
2 and z = π2

4y in (7.18); then as y → 0,

U
(

μ + k
4

+ 1
2
;
1
2
;
π2

4y

)

∼
(
4y
π2

)μ+ k
4 + 1

2
. (7.19)

Therefore from (7.17) and (7.19), for Re(μ) > − 1
2 , we arrive at

∫ ∞

0
x

k
4 − 1

2 μK 1
2

(

π2x,
k
4

)

dx = 0.

It remains to prove the result for μ = −1/2. From (1.18), we have

− 1
2
K 1

2

(

π2x,
k
4

)

= (π2x)
k
4K 1

2
(π2x) = 1√

2
π

k
2− 1

2 x
k
4 − 1

2 e−π2x,

where we used (3.10). Hence,
∫ ∞

0
x

k
4 − 1

2 − 1
2
K 1

2

(

π2x,
k
4

)

dx = 1√
2
π

−k−1
2 �

(
k
2

)

,

using thewell-known integral representation forGamma function.ThisprovesLemma7.2.
��

In order to prove Theorem 2.2, we now employ the following transformation of Guinand
[47, p. 264, Equation (10.7)] (also known to Popov [75, Equation (3)]) in a rigorous formu-
lation given in [11, Theorem 1.5]. The phrase ‘f (x) is an integral’ means f is an integral of
some function, that is, f can be written in the form f (x) = ∫ x

a h(t) dt for some function h
and −∞ ≤ a < x.
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Theorem 7.3 Let k be a positive integer greater than 3 and let m = ⌊ 1
2k

⌋ − 1. Let
F (x), F ′(x), F ′′(x), . . . , F (2m−1)(x) be integrals, and F (x), xF ′(x), x2F ′′(x), . . . , x2mF (2m)(x)
belong to L2(0,∞). Moreover, as x → ∞, let

F (x) = Ok
(
x− k

4 − 1
2−τ

)
, (7.20)

for some fixed τ > 0. Let the function G be defined by

G(y) = π

∫ ∞

0
F (t)J k

2−1(2π
√
yt) dt, (7.21)

and assume that it satisfies

G(y) = Ok
(
y− k

4 − 1
2−τ

)
, (7.22)

for τ > 0, as y → ∞. Then

∞∑

n=1
rk (n)n

1
2− k

4 F (n) − π
k
2

�( k2 )

∫ ∞

0
x

k
4 − 1

2 F (x) dx

=
∞∑

n=1
rk (n)n

1
2− k

4G(n) − π
k
2

�( k2 )

∫ ∞

0
x

k
4 − 1

2G(x) dx. (7.23)

For k = 2 and 3, (7.23) holds if F is continuous on [0,∞), F (x), xF ′(x) ∈ L2(0,∞), and F
satisfies (7.20), and if G is defined in (7.21) and satisfies (7.22).

Proof of Theorem 2.2 We first prove the result for z > 0 and then extend it to Re(z) > 0
by analytic continuation. The idea is to invoke Theorem 7.3 with

F (x) = xμ+ k
4 + 1

2Kμ(xz). (7.24)

To that end, we need to show that all of the hypotheses of Theorem 7.3 are satisfied.
Since F is infinitely differentiable on (0,∞), all of its derivatives, in particular, F (x), F ′(x),

. . . , F (2m−1)(x), are integrals. We next show that F (x), xF ′(x), x2F ′′(x), . . . , x2mF (2m)(x)
belong to L2(0,∞) provided Re(μ) > − k

8 − 1
2 .

First, (3.8) clearly implies that the convergence of the integral of
∣
∣
∣xnF (n)(x)

∣
∣
∣
2
at the upper

limit of integration is always secured. Next, from (3.9) and [23, p. 36, Formula 1.14.1.1]

dn

dxn
Kν(xz) =

(−z
2

)n n∑

k=0

(
n
k

)

Kν±2k∓n(xz),

for any n ∈ N ∪ {0}, as x → 0, we have

xnF (n)(x) = Oμ,k,n
(
x2μ+ k

4 + 1
2
)

+ Oμ,k,n
(
x

k
4 + 1

2
)
.

This implies F (x), xF ′(x), x2F ′′(x), . . . , x2mF (2m)(x) belong to L2(0,∞), provided Re(μ) ≥
− k

8 − 1
2 . Further, (1.1), (1.3) and (1.4) imply that F is continuous on [0,∞).

Replace x by π2x/z in Theorem 2.1 and t by tz, then let ν = 1
2 andw = k

4 in the resulting
equation, and use (1.16), so that for Re(μ) > − k

4 − 1
2 ,

∫ ∞

0
tμ+ k

4 + 1
2Kμ(tz)J k

2−1(2π
√
xt) dt = 1

zμ+ k
4 + 3

2
μK 1

2

(
π2x
z

,
k
4

)

. (7.25)
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From (7.21), (7.24) and (7.25),

G(x) = π

zμ+ k
4 + 3

2
μK 1

2

(
π2x
z

,
k
4

)

.

Equation (3.8) clearly shows that the bound in (7.20) holds for our choice of F in (7.24).
Also, Lemma 7.1 with m = 0 implies that as x → ∞, G(x) = Oμ,k,z

(
x− k

4 −2μ− 3
4
)

=
Oμ,k,z

(
x− k

4 − 1
2−τ

)
for τ > 0, provided Re(μ) > −1/2. But when μ = −1/2, along

with our assumption ν = 1/2 and (1.18), we see that G(x) =
(

π2x
z

)k/4
K 1

2

(
π2x
z

)
=

Ok,z
(
x− k

4 − 1
2−τ

)
for τ > 0, as can be clearly seen from (3.8). Hence, (7.22) is also satisfied

when Re(μ) > −1/2 or μ = −1/2.
From the above analysis, we conclude that the hypotheses of Theorem 7.3 are satisfied

for any integer k ≥ 2whenever Re(μ) > −1/2 orμ = −1/2. Therefore invokingTheorem
7.3, Lemma 7.2 and (5.3), we find that

∞∑

n=1
rk (n)nμ+1Kμ(nz) − π

k
2

�
(
k
2

)2μ+ k
2−1z−μ− k

2−1�

(
k + 2
4

)

�

(

μ + 1
2

+ k
4

)

= π

zμ+ k
4 + 3

2

∞∑

n=1
rk (n)n

1
2− k

4 μK 1
2

(
π2n
z

,
k
4

)

− π
k
2

�
(
k
2

)R(μ, k, z),

where R(μ, k, z) is defined in (2.3). The transformation in (2.4) now follows for z > 0
upon using (3.1) in the second expression on the left-hand side of the above equation.
To see that the result is valid for Re(z) > 0, note first that the series on the left-hand side

of (2.4) is analytic for Re(z) > 0 as can be seen from (3.8). Also, Lemma 7.1 with m = 0
and the bound rk (n) = Ok

(
n

k
2−1+ε

)
for any integer k ≥ 2 and ε > 0, see for example,

[11, Equation (2.9)], imply that

rk (n)n
1
2− k

4 μK 1
2

(
π2n
z

,
k
4

)

= Oμ,k,z

(
1

n2Re(μ)+2−ε

)

,

which clearly shows that as long as Re(μ) ≥ −1/2 + δ, for any δ > 0, the series
∞∑

n=1
rk (n)n

1
2− k

4 μK 1
2

(
π2n
z

,
k
4

)

converges uniformly in Re(z) > 0. Since the summand of this series is clearly analytic
in Re(z) > 0, the series itself represents an analytic function in Re(z) > 0 as long as
Re(μ) > −1/2. Moreover, (1.18) implies that the same is true for μ = −1/2. Since all
other functions in (2.4) are clearly analytic for Re(z) > 0, by analytic continuation, (2.4)
holds for Re(z) > 0. ��

Proof of Corollary 2.3 Let μ = −1/2 in Theorem 2.2, use (1.18) and simplify. ��

8 A transformation formula associated with the generalized divisor function
σa(n)
This section is devoted to proving Theorem 2.4 and several corollaries resulting from it.
We first obtain some lemmas which are interesting in their own right.
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Lemma 8.1 Let y > 0. For Re(a) > −1, we have

2π
y sin

(
πa
2
)

∫ ∞

0
x

a
2

{
x− a

2 (2π )−a

�(1 − a) 1F2
(

1;
1 − a
2

, 1 − a
2
;
4π4x2

y2

)

−
(
4π2x
y2

) a
2
cosh

(
4π2x
y

)}

dx = 2−2−aπ−a

�(−a)
sec

(πa
2

)
. (8.1)

Proof Note that one cannot separately integrate each of the two expressions in the inte-
grand as bothdiverge.As inLemma7.2, the idea is to introduce the exponential dampening
factor e−ux2 , u > 0, and evaluate the new integral. Then at the end, we let u → 0 and
appeal to Lebesgue’s dominated convergence theorem.
Let p = 1, q = 2, a1 = 1, b1 = 1

2 (1 − a), b2 = 1 − 1
2a in (7.11), replace x by x2u, and

then let s = 1
2 , δ = 4π4

uy2 , u > 0, in the resulting equation to arrive at

∫ ∞

0
e−ux2

1F2
(

1;
1 − a
2

, 1 − a
2
;
4π4x2

y2

)

dx = 1
2

√
π

u 2F2
(
1
2
, 1;

1 − a
2

, 1 − a
2
;
4π4

uy2

)

.

(8.2)

For Re(s) > 0 and Re(c) > 0, we have [69, p. 47, Equation (5.30)]
∫ ∞

0
xs−1e−cx2 cos(bx) dx = 1

2
c−

s
2 �

( s
2

)
e−

b2
4c 1F1

(
1 − s
2

;
1
2
;
b2

4c

)

. (8.3)

Let s = a + 1, c = u and b = i4π2

y in (8.3) and apply Kummer’s transformation
1F1(α1;α2; z) = ez1F1(α2 − α1;α2;−z) so as to get, for Re(a) > −1,

∫ ∞

0
xae−ux2 cosh

(
4π2x
y

)

dx = 1
2
u− a

2− 1
2 �

(
a + 1
2

)

1F1
(
1 + a
2

;
1
2
;
4π4

uy2

)

, (8.4)

From (8.2) and (8.4),

∫ ∞

0
x

a
2 e−ux2

{
x− a

2 (2π )−a

�(1 − a) 1F2
(

1;
1 − a
2

, 1 − a
2
;
4π4x2

y2

)

−
(
4π2x
y2

) a
2
cosh

(
4π2x
y

)}

dx

= (2π )−a

�(1 − a)
1
2

√
π

u 2F2
(
1
2
, 1;

1 − a
2

, 1 − a
2
;
4π4

uy2

)

−
(
4π2

y2

) a
2 1
2
u− a

2− 1
2 �

(
a + 1
2

)

1F1
(
1 + a
2

;
1
2
;
4π4

uy2

)

. (8.5)

For α �= Z∪ {0} and − 3
2π < arg(z) < π

2 , Kim [58] has obtained the following asymptotic
expansion as z → ∞:

2F2(1,α; ρ1, ρ2; z) ∼ �(ρ1)�(ρ2)
�(α)

(K22(z) + L22(−z)) , (8.6)

where, with ν = 1 + α − ρ1 − ρ2,

K22(z) = zνez2F0
(

ρ1 − α, ρ2 − α;−;
1
z

)

,
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L22(z) = z−1 �(α − 1)
�(ρ1 − 1)�(ρ2 − 1) 3

F1
(

1, 2 − ρ1, 2 − ρ2; 2 − α;
1
z

)

+ z−α �(α)�(1 − α)
�(ρ1 − α)�(ρ2 − α) 2

F0
(

1 + α − ρ1, 1 + α − ρ2;−;
1
z

)

.

Hence letting α = 1
2 , ρ1 = 1−a

2 , ρ2 = 1 − a
2 and z = 4π4

uy2 in (8.6), we find that as u → 0,

2F2
(

1,
1
2
;
1 − a
2

, 1 − a
2
;
4π4

uy2

)

= �
( 1−a

2
)
�
(
1 − a

2
)

�
( 1
2
)

⎧
⎨

⎩

(
4π4

uy2

)a
exp

(
4π4

uy2

)

2F0
(

−a
2
,
1 − a
2

;−;
uy2

4π4

)

+ uy2
√

π

2π4�
(−a

2
)
�
(−a−1

2
) + Oa,y(u2) +

(

−4π4

uy2

)− 1
2 π

�
(− a

2
)
�
( 1−a

2
) + Oa,y(u3/2)

⎫
⎬

⎭
.

(8.7)

From [85, p. 189, Exercise (7.7)], for − 3
2π < arg(z) < π

2 , as z → ∞,

1F1(b; c; z) ∼ ezzb−c�(c)
�(b)

∞∑

n=0

(c − b)n(1 − b)n
n!

z−n

+ e−π ibz−b�(c)
�(c − b)

∞∑

n=0

(b)n(1 + b − c)n
n!

(−z)−n. (8.8)

Let b = 1+a
2 , c = 1

2 and z = 4π4

uy2 in (8.8) and observe that the infinite series in the first

expression on the right-hand side is nothing but 2F0
(
− a

2 ,
1−a
2 ;−; 4π4

uy2

)
, so that, as u → 0,

1F1
(
1 + a
2

;
1
2
;
4π4

uy2

)

=
√

π exp
(
4π4

uy2

)

�
( 1+a

2
)

(
4π4

uy2

) a
2

2F0
(

−a
2
,
1 − a
2

;−;
4π4

uy2

)

+ √
π
exp

(−π i(a+1)
2

)

�
(− a

2
)

(
4π4

uy2

)−a−1
2

+ Oa,y
(
u

1
2 (a+3)

)
. (8.9)

Using (8.7) and (8.9) and observing that the expressions involving 2F0 completely cancel
out, we deduce that

lim
u→0

{
(2π )−a

�(1 − a)
1
2

√
π

u 2F2
(
1
2
, 1;

1 − a
2

, 1 − a
2
;
4π4

uy2

)

−
(
4π2

y2

) a
2 1
2
u− a

2− 1
2 �

(
a + 1
2

)

1F1
(
1 + a
2

;
1
2
;
4π4

uy2

)}

= 2−a−3y
iπa+1�(−a)

−
y exp

(−π i(a+1)
2

)

4πa+ 3
2

�
( a+1

2
)

�
(− a

2
)

= y2−a−3

�(−a)πa+1

(
1
i

+ 2i
e

−π ia
2

cos
(

πa
2
)

)

= y2−a−3

�(−a)πa+1 tan
(πa

2

)
, (8.10)
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where in the penultimate step, we used (3.1) as well as the well-known variant of the
reflection formula in (3.2), namely, �

( 1+a
2

)
�
( 1−a

2
) = π

cos( πa
2 )

.
Finally, let u → 0 in (8.5), invoke (8.10) and use dominated convergence theorem of

Lebesgue to arrive at

∫ ∞

0
x

a
2

{
x− a

2 (2π )−a

�(1 − a) 1F2
(

1;
1 − a
2

, 1 − a
2
;
4π4x2

y2

)

−
(
4π2x
y2

) a
2
cosh

(
4π2x
y

)}

dx

= y2−a−3

�(−a)πa+1 tan
(πa

2

)
.

Now multiply both sides of the above equation by 2π
y sin( πa

2 )
to obtain (8.1). ��

Lemma 8.2 Let y > 0. Then, for −1 < Re(a) < 1, we have

∫ ∞

0
x− a

2

⎧
⎨

⎩

x− a
2 (2π )−a

�(1 − a) 1F2
(

1;
1 − a
2

, 1 − a
2
;
4π4x2

y2

)

−
(
4π2x
y2

) a
2
cosh

(
4π2x
y

)
⎫
⎬

⎭
dx = 0.

(8.11)

Proof Let p = 1, q = 2, a1 = 1, b1 = 1
2 (1 − a), b2 = 1 − 1

2a in (7.11), replace x by x2u,
and then in the resulting equation let s = 1−a

2 , δ = 4π4

uy2 so that for Re(a) < 1,

∫ ∞

0
e−ux2x−a

1F2
(

1;
1 − a
2

, 1 − a
2
;
4π4x2

y2

)

dx = �
( 1−a

2
)

2u
1−a
2

1F1
(

1; 1 − a
2
;
4π4

uy2

)

.

(8.12)

Let s = 1, c = u and b = 4π2i
y in (8.3) to get

∫ ∞

0
e−ux2 cosh

(
4π2x
y

)

dx = 1
2

√
π

u
e
4π4
uy2 . (8.13)

From (8.12) and (8.13), for Re(a) < 1, we find that

∫ ∞

0
x− a

2 e−ux2
{
x− a

2 (2π )−a

�(1 − a) 1F2
(

1;
1 − a
2

, 1 − a
2
;
4π4x2

y2

)

−
(
4π2x
y2

) a
2
cosh

(
4π2x
y

)}

dx

= (2π )−a

2�(1 − a)u
1−a
2

�

(
1 − a
2

)

1F1
(

1; 1 − a
2
;
4π4

uy2

)

− 1
2

√
π

u

(
2π
y

)a
e
4π4
uy2 .

(8.14)

Let b = 1, c = 1− a
2 and z = 4π4

uy2 in (8.8). Observe that only the constant term of the first
infinite series on the right-hand of (8.8) survives, so that as u → 0,

1F1
(

1; 1 − a
2
;
4π4

uy2

)

=
(
4π4

uy2

) a
2
�
(
1 − a

2

)
e
4π4
uy2 + uy2

4π4 e
−π i �

(
1 − a

2
)

�
(− a

2
) + Oa,y

(
u2

)
.

(8.15)
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Using (8.15), we see that for −1 < Re(a) < 1,

lim
u→0

(
(2π )−a

2�(1 − a)u
1−a
2

�

(
1 − a
2

)

1F1
(

1; 1 − a
2
;
4π4

uy2

)

− 1
2

√
π

u

(
2π
y

)a
e
4π4
uy2

)

= lim
u→0

(
ay2

(2π )a+4�(1 − a)
u

a+1
2 + Oa,y

(
(u

1
2 (a+3)

))

= 0. (8.16)

Now let u → 0 in (8.14), invoke Lebesgue’s dominated convergence theorem and then
employ (8.16) to complete the proof of (8.11). ��

We are now ready to prove our new transformation involving infinite series of the gener-
alized divisor function σa(n). We do this by employing the following analogue of Voronoï
summation formula for σa(n) due to Guinand [46, Equation (1)].

Theorem 8.3 Let − 1
2 < Re(a) < 1

2 . Let Ma(x) be defined in (1.7). If f (x) and f ′(x) are
integrals, f tends to zero as x → ∞, f (x), xf ′(x) and x2f ′′(x) belong to L2(0,∞), and

g(x) = 2π
∫ ∞

0
f (t)

(
cos

(πa
2

)
Ma(4π

√
xt) − sin

(πa
2

)
Ja(4π

√
xt)

)
dt, (8.17)

then the following transformation holds:

∞∑

n=1
σ−a(n)n

a
2 f (n) − ζ (1 + a)

∫ ∞

0
x

a
2 f (x) dx − ζ (1 − a)

∫ ∞

0
x− a

2 f (x) dx

=
∞∑

n=1
σ−a(n)n

a
2 g(n) − ζ (1 + a)

∫ ∞

0
x

a
2 g(x) dx − ζ (1 − a)

∫ ∞

0
x− a

2 g(x) dx.

(8.18)

Proof of Theorem 2.4 We first prove the result for 0 < a < 1
2 and y > 0, and then extend

it to Re(a) > −1 and Re(y) > 0 by analytic continuation.
Let w = 0,μ = 1

2 , ν = a
2 and replace x by 4π2x in Theorem 2.1 (or, equivalently,

μ = 1
2 , ν = a

2 and replace x by 4π2x in (1.9)) and then use (3.10) and (4.1) in the resulting
equation to obtain

∫ ∞

0
e−t t

a
2

{

cos
(πa

2

)
Ma(4π

√
xt) − sin

(πa
2

)
Ja(4π

√
xt)

}

dt

= 1
sin

(
πa
2
)

{
x− a

2 π
1
2−a

�
(
1 − a

2
)
�
( 1−a

2
) 1F2

(

1;
1 − a
2

, 1 − a
2
; 4π4x2

)

,

− (4π2x)
a
2 cosh(4π2x)

}

where we used the fact that 0F1(−; 1/2; x2) = cosh(2x).
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Replace t by yt and replace x by x
y in the above equation to get

∫ ∞

0
e−tyt

a
2
(
cos

(πa
2

)
Ma(4π

√
xt) − sin

(πa
2

)
Ja(4π

√
xt)

)
dt

= 1
y sin

(
πa
2
)

{
x− a

2 (2π )−a

�(1 − a) 1F2
(

1;
1 − a
2

, 1 − a
2
;
4π4x2

y2

)

−
(
2π

√
x

y

)a
cosh

(
4π2x
y

)}

. (8.19)

We would like to now put f (x) := e−xyx
a
2 in Theorem 8.3. To that end, observe that f (x)

and f ′(x) are integrals. Also, it is easy to see that f (x) → 0 as x → ∞, and that f (x), xf ′(x)
and x2f ′′(x) belong to L2(0,∞).
From (8.17) and (8.19), we have

g(x) = 2π
y sin

(
πa
2
)

{
x− a

2 (2π )−a

�(1 − a) 1F2
(

1;
1 − a
2

, 1 − a
2
;
4π4x2

y2

)

−
(
2π

√
x

y

)a
cosh

(
4π2x
y

)}

. (8.20)

Our next task is to evaluate the four integrals in (8.18) for 0 < a < 1/2. To that end, note
that

∫ ∞

0
x

a
2 f (x) dx = y−a−1�(a + 1),

∫ ∞

0
x− a

2 f (x) dx = 1
y
. (8.21)

Further, from (8.20), Lemmas 8.1 and 8.2,

∫ ∞

0
x

a
2 g(x) dx = 2−2−aπ−a sec

(
πa
2
)

�(−a)
,

∫ ∞

0
x− a

2 g(x) dx = 0. (8.22)

Thus, from (8.18), (8.21) and (8.22) and the elementary fact σ−a(n)na = σa(n), for 0 <

a < 1
2 and y > 0,

∞∑

n=1
σa(n)e−ny − ζ (1 + a)�(1 + a)

y1+a − ζ (1 − a)
y

+ ζ (1 + a)
2−2−aπ−a sec

(
πa
2
)

�(−a)

= 2π
y sin

(
πa
2
)

∞∑

n=1
σa(n)

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

))

.

Now use the functional equation (6.6) with s = −a twice to write ζ (1 + a) in the above
equation in terms of ζ (−a) thereby obtaining (2.12) after simplification. This proves
Theorem 2.4 for 0 < a < 1/2 and y > 0.
Next, we show the validity of the transformation for Re(a) > −1. From Remark 1, the

series on the right-hand side of (2.12) is
∑∞

n=1 σa(n)n− a
2 1

2
Ka

2

(
4π2n
y , 0

)
. Now Lemma 7.1

gives 1
2
Ka

2

(
4π2n
y , 0

)
= Oa,y

(
n− 1

2 Re(a)−2
)

as n → ∞. Along with the elementary
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bound σa(n)n− a
2 = O

(
n

1
2 |Re(a)|+ε

)
which is valid for every ε > 0, we see that

∑∞
n=1 σa(n)n− a

2 1
2
Ka

2

(
4π2n
y , 0

)
converges uniformly as long as Re(a) > −1. Since the sum-

mand of the series is also analytic for Re(a) > −1, by Weierstrass’ theorem on analytic
functions, we see that it represents an analytic function of a when Re(a) > −1.
Since the left-hand side of (2.12) is analytic for Re(a) > −1, by the principle of analytic

continuation, we see that (2.12) holds for Re(a) > −1 and y > 0. Using similar method as
above, both sides of (2.12) are seen to be analytic, as a function of y, in Re(y) > 0. Therefore
by the principle of analytic continuation, (2.12) holds for Re(a) > −1 and Re(y) > 0.

��

Theorem 2.4, which we just proved, can be analytically continued to Re(a) > −2m − 3,
wherem is any non-negative integer. This is done in Theorem 2.5 and is crucial in deriving
Corollary 2.8 and Theorem 2.12.

Proof of Theorem 2.5 From Theorem 2.4 and Remark 1, we have Re(a) > −1,

∞∑

n=1
σa(n)e−ny + 1

2

((
2π
y

)1+a
cosec

(
πa
2
) + 1

)

ζ (−a) − 1
y
ζ (1 − a)

= 2
√
2π

y1+
a
2

∞∑

n=1

σa(n)
n
a
2

1
2
Ka

2

(
4π2n
y

, 0
)

.

We rewrite the above identity as

∞∑

n=1
σa(n)e−ny + 1

2

((
2π
y

)1+a
cosec

(πa
2

)
+ 1

)

ζ (−a) − ζ (1 − a)
y

= 2
√
2π

y1+ a
2

∞∑

n=1
σa(n)n− a

2

{

1
2
Ka

2

(
4π2n
y

, 0
)

− π2
3
2+a

sin
(

πa
2
)

(
4π2n
y

)− a
2−2

× Am

(
1
2
,
a
2
, 0;

4π2n
y

)}

+ yπ−a−5/2

2 sin
(

πa
2
)

∞∑

n=1

σa(n)
na+2 Am

(
1
2
,
a
2
, 0;

4π2n
y

)

. (8.23)

Using the definition of Am in (2.14) and employing (3.1), we see that

yπ−a−5/2

2 sin
(

πa
2
)

∞∑

n=1

σa(n)
na+2 Am

(
1
2
,
a
2
, 0;

4π2n
y

)

= −y(2π )−a−3

sin
(

πa
2
)

m∑

k=0

1
�(−a − 1 − 2k)

(
4π2

y

)−2k ∞∑

n=1

σa(n)
na+2k+2

= −y(2π )−a−3

sin
(

πa
2
)

m∑

k=0

ζ (a + 2k + 2)ζ (2k + 2)
�(−a − 1 − 2k)

(
4π2

y

)−2k
, (8.24)

where in the last stepwe used formula [86, p. 8, Equation (1.3.1)]
∑∞

n=1
σz (n)
ns = ζ (s)ζ (s−z),

valid for Re(s) > max{1, 1 + Re(z)}. Hence from (8.23) and (8.24), for Re(a) > −1,
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∞∑

n=1
σa(n)e−ny + 1

2

((
2π
y

)1+a
cosec

(πa
2

)
+ 1

)

ζ (−a) − ζ (1 − a)
y

= 2
√
2π

y1+ a
2

∞∑

n=1
σa(n)n− a

2

{

1
2
Ka

2

(
4π2n
y

, 0
)

− π2
3
2+a

sin
(

πa
2
)

(
4π2n
y

)− a
2−2

Am

(
1
2
,
a
2
, 0;

4π2n
y

)}

− y(2π )−a−3

sin
(

πa
2
)

m∑

k=0

ζ (a + 2k + 2)ζ (2k + 2)
�(−a − 1 − 2k)

(
4π2

y

)−2k
. (8.25)

Invoking Lemma 7.1 and the fact Bm
(
1
2 ,

a
2 , 0;

4π2n
y

)
= 0, we see that for any ε > 0,

σa(n)n− a
2

{

1
2
Ka

2

(
4π2n
y

, 0
)

− π2
3
2+a

sin
(

πa
2
)

(
4π2n
y

)− a
2−2

Am

(
1
2
,
a
2
, 0;

4π2n
y

)}

= Oa,y
(
n−2m−4− 1

2 Re(a)+ 1
2 |Re(a)|+ε

)
.

This implies that the series

∞∑

n=1
σa(n)n− a

2

{

1
2
Ka

2

(
4π2n
y

, 0
)

− π2
3
2+a

sin
(

πa
2
)

(
4π2n
y

)− a
2−2

Am

(
1
2
,
a
2
, 0;

4π2n
y

)}

is uniformly convergent in Re(a) ≥ −2m − 3 + ε for any ε > 0. Since the summand of
the above series is analytic in Re(a) > −2m − 3, we see by Weierstrass’ theorem that this
series represents an analytic function of a for Re(a) > −2m − 3.
Since the left-hand side of (8.25) as well as the finite sum on its right-hand side are also

analytic in Re(a) > −2m − 3, by the principle of analytic continuation, we see that (8.25)
holds for Re(a) > −2m − 3 for anym ≥ 0. This completes the proof of Theorem 2.5. ��

9 Transformation formulas for
∑∞

n=1 σa(n)e−ny for a even
Here, we derive some lemmas crucial in obtaining the transformations for

∑∞
n=1 σa(n)e−ny

for a = 2m as well as −2m.

Lemma 9.1 Let Re(w) > 0. Let Shi(z) and Chi(z) be defined in (2.10). Then
∫ ∞

0

t cos t dt
t2 + w2 = sinh(w)Shi(w) − cosh(w)Chi(w). (9.1)

Proof First, let w > 0. From [76, p. 395, Formula 2.5.9.12],
∫ ∞

0

t cos t dt
t2 + w2 = −1

2
(
ewEi(−w) + e−wEi(w)

)
, (9.2)

where Ei(x) is the exponential integral given [76, p. 788] for x > 0 by Ei(x) := ∫ x
−∞ et/t dt,

or, as can be equivalently seen from [52, p. 1], by Ei(−x) := − ∫ ∞
x e−t/t dt. Also, from [44,

p. 884, 8.214.1, 8.214.2],

Ei(x) = γ + log(−x) +
∞∑

k=1

xk

kk !
(x < 0), Ei(x) = γ + log x +

∞∑

k=1

xk

kk !
(x > 0).

(9.3)
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Hence from (9.2) and (9.3), for w > 0,

∫ ∞

0

t cos t dt
t2 + w2

= −1
2

{

ew
(

γ + logw +
∞∑

k=1

(−w)k

kk !

)

+ e−w
(

γ + logw +
∞∑

k=1

wk

kk !

)}

= ew

2

{ ∞∑

k=1

w2k−1

(2k − 1)(2k − 1)!
−

∞∑

k=1

w2k

(2k)(2k)!
− γ − logw

}

+ e−w

2

{

−
∞∑

k=1

w2k−1

(2k − 1)(2k − 1)!
−

∞∑

k=1

w2k

(2k)(2k)!
− γ − logw

}

= sinh(w)Shi(w) − cosh(w)Chi(w),

where in the last step, we used the series representations of Shi(x) and Chi(x), namely,

Shi(x) =
∞∑

k=1

x2k−1

(2k − 1)(2k − 1)!
, Chi(x) = γ + log x +

∞∑

k=1

x2k

(2k)(2k)!
, (9.4)

which can be easily derived from their definitions in (2.10). Thus, (9.1) is established for
w > 0. Using (9.4), we see that both sides of (9.1) are analytic for Re(w) > 0 Hence by
analytic continuation, (9.1) holds for Re(w) > 0. ��

Lemma 9.2 Let m ∈ N ∪ {0}. Then for9 Re(z) > 0,

∞∑

j=0

ψ(2j + 2m + 1)
(m + 1)j

(
m + 1

2
)
j
z2j = �(2m + 1)

(2z)2m
{
sinh(2z)Shi(2z) − cosh(2z)Chi(2z)

+ log(2z) cosh(2z)
}

− �(2m + 1)
(2z)2

m−1∑

j=0

ψ(2m − 2j − 1)
�(2m − 2j − 1)

(2z)−2j . (9.5)

Proof Note that

∞∑

j=0

ψ(2j + 2m + 1)
(m + 1)j

(
m + 1

2
)
j
z2j = �(2m + 1)

∞∑

j=0

ψ(2j + 2m + 1)
� (2j + 2m + 1)

(2z)2j .

Changing the index of summation from j to k with k = j + m on the right-hand side of
the above equation, we see that

∞∑

j=0

ψ(2j + 2m + 1)
(m + 1)j

(
m + 1

2
)
j
z2j = �(2m + 1)

(2z)2m
∞∑

k=m

ψ(2k + 1)
� (2k + 1)

(2z)2k

= �(2m + 1)
(2z)2m

∞∑

k=0

ψ(2k + 1)
� (2k + 1)

(2z)2k − �(2m + 1)
(2z)2

m−1∑

j=0

ψ(2m − 2j − 1)
� (2m − 2j − 1)

(2z)−2j .

(9.6)

9This result is actually true for all z ∈ C. Note that at any non-positive real number z, the right-hand side has a
removable singularity.



34 Page 38 of 54 Dixit et al. ResMath Sci (2022) 9:34

However, from [32, Lemma 3.2] and Lemma 9.1, for Re(z) > 0,

∞∑

k=0

ψ(2k + 1)
� (2k + 1)

(2z)2k = sinh(2z)Shi(2z) − cosh(2z)Chi(2z) + log(2z) cosh(2z). (9.7)

Now substitute (9.7) in (9.6) to arrive at (9.5). ��

9.1 A transformation for
∑∞

n=1 σ2m(n)e−ny ,m ∈ N

Lemma 9.3 Let n ∈ N, m ∈ N ∪ {0} and y ∈ C. Then

d
da

(
1

�(1 − a) 1
F2

(

1; 1 − a
2
,
1 − a
2

;
4π4n2

y2

)) ∣
∣
∣
∣
∣
a=2m

=
(
4π2n
y

)2m {

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)

+ log
(
4π2n
y

)

cosh
(
4π2n
y

)

+
m∑

j=1
(2j − 1)!

(
4π2n
y

)−2j }

.

Proof Using the series definition of 1F2 and (3.1) in the first step, we see that

d
da

(
1

�(1 − a) 1
F2

(

1; 1 − a
2
,
1 − a
2

;
4π4n2

y2

))

= d
da

( ∞∑

k=0

22k

�(1 − a + 2k)

(
4π4n2

y2

)k)

=
∞∑

k=0

ψ(1 − a + 2k)
�(1 − a + 2k)

(
16π4n2

y2

)k
.

We evaluate the derivative in the above equation at a = 2m to get

d
da

(
1

�(1 − a) 1
F2

(

1; 1 − a
2
,
1 − a
2

;
4π4n2

y2

)) ∣
∣
∣
∣
∣
a=2m

= lim
a→2m

m−1∑

k=0

ψ(1 + 2k − a)
�(1 + 2k − a)

(
16π4n2

y2

)k
+

∞∑

k=m

ψ(1 + 2k − 2m)
�(1 + 2k − 2m)

(
16π4n2

y2

)k

=
(
16π4n2

y2

)m
⎛

⎝
m∑

j=1
lim

a→2m

ψ(1 + 2m − 2j − a)
�(1 + 2m − 2j − a)

(
16π4n2

y2

)−j

+
∞∑

j=0

ψ(1 + 2j)
�(1 + 2j)

(
16π4n2

y2

)j
⎞

⎠

=
(
4π2n
y

)2m { m∑

j=1
(2j − 1)!

(
4π2n
y

)−2j
+ sinh

(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)

+ log
(
4π2n
y

)

cosh
(
4π2n
y

)}

,

where in the last step, we used the fact that lima→2m
ψ(1 + 2m − 2j − a)
�(1 + 2m − 2j − a)

= (2j − 1)! as

well as Lemma 9.2 withm = 0 and z = 2π2n/y. ��
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We are now ready to prove Theorem 2.11.

Proof of Theorem 2.11 First, using the series definition of 1F2, we have

lim
a→2m

1
�(1 − a) 1

F2
(

1; 1 − a
2
,
1 − a
2

;
4π4n2

y2

)

=
(
4π2n
y

)2m
cosh

(
4π2n
y

)

. (9.8)

Using the above identity, we see that right-hand side of(2.12) has 0
0 form. Also due to the

term
ζ (−a)
sin

(
πa
2
) , the left-hand side of (2.12) has 0

0 form. Therefore in order to let a → 2m

in Theorem 2.4, we use L’Hopital’s rule. First note that

d
da

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

))

= − (2πn)−a log(2πn)
�(1 − a) 1F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

+ (2πn)−a d
da

(
1

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

))

−
(
2π
y

)a
log

(
2π
y

)

cosh
(
4π2n
y

)

. (9.9)

Let a → 2m in (9.9), then invoke Lemma 9.3 with z = 2π2n
y and then use (9.8) so as to

arrive at

d
da

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

)) ∣
∣
∣
∣
∣
a=2m

=
(
2π
y

)2m
{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)

+
m∑

j=1
(2j − 1)!

(
4π2n
y

)−2j }

. (9.10)

Wewish to take limit a → 2m on both sides of (2.12). First, the right-hand side is evaluated
using L’Hopital’s rule and (9.10).

lim
a→2m

{
2π

y sin
(

πa
2
)

∞∑

n=1
σa(n)

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

))}

= (−1)m
2
π

(
2π
y

)2m+1 ∞∑

n=1
σ2m(n)

{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)

+
m∑

j=1
(2j − 1)!

(
4π2n
y

)−2j }

. (9.11)
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We now evaluate the left-hand side of (2.12) as a → 2m. Using ζ (−2m) = 0, we have

lim
a→2m

{ ∞∑

n=1
σa(n)e−ny + 1

2

((
2π
y

)1+a
cosec

(πa
2

)
+ 1

)

ζ (−a) − ζ (1 − a)
y

}

=
∞∑

n=1
σ2m(n)e−ny − (−1)m

π

(
2π
y

)2m+1
ζ ′(−2m) − ζ (1 − 2m)

y

=
∞∑

n=1
σ2m(n)e−ny − (2m)!

y2m+1 ζ (2m + 1) + B2m
2my

, (9.12)

where in the last step we used [55, Equation (1)]

ζ ′(−2m) = (−1)m
(2m)!

2(2π )2m
ζ (2m + 1) (9.13)

as well as [4, p. 264, Equation (17)]

ζ (1 − 2m) = −B2m
2m

. (9.14)

Hence from (9.11) and (9.12), we obtain (2.20). ��

9.2 A transformation for
∑∞

n=1 σ−2m(n)e−ny ,m ∈ N

Lemma 9.4 Letm ∈ N∪{0}. Let Shi(z) andChi(z) be defined in (2.10). Then forRe(z) > 0,

d
da 1F2

(

1;
1 − a
2

, 1 − a
2
; z2

) ∣
∣
∣
∣
∣
a=−2m

= �(2m + 1)
(2z)2m

{
sinh(2z)Shi(2z) − cosh(2z)Chi(2z) + log(2z) cosh(2z)

}

− �(2m + 1)
(2z)2

m−1∑

j=0

ψ(2m − 2j − 1)
�(2m − 2j − 1)

(2z)−2j − ψ(2m + 1)1F2
(

1;m + 1, m + 1
2
; z2

)

.

(9.15)

Proof Using the series definition of 1F2, we have

d
da 1F2

(

1;
1 − a
2

, 1 − a
2
; z2

)

= −
∞∑

j=0

z2j
( 1−a

2
)
j
(
1 − a

2
)
j

d
da

(

log
(
1 − a
2

)

j
+ log

(
1 − a

2

)

j

)

= 1
2

∞∑

j=0

z2j
( 1−a

2
)
j
(
1 − a

2
)
j

j−1∑

k=0

(
1

1−a
2 + k

+ 1
1 − a

2 + k

)

=
∞∑

j=0
z2j

ψ(2j + 1 − a) − ψ(1 − a)
(1 − a

2 )j(
1−a
2 )j

.
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Thus,

d
da 1F2

(

1;
1 − a
2

, 1 − a
2
; z2

) ∣
∣
∣
∣
∣
a=−2m

=
∞∑

j=0
z2j

ψ(2j + 2m + 1)
(m + 1)j(m + 1

2 )j

− ψ(2m + 1)1F2
(

1;m + 1, m + 1
2
; z2

)

.

Using Lemma 9.2 in the above equation, we arrive at (9.15). ��

Lemma 9.5 Let m ∈ N ∪ {0}, n ∈ C and y ∈ C\{0},

1
�(2m + 1) 1

F2
(

1;m + 1, m + 1
2
;
4π4n2

y2

)

=
(
4π2n
y

)−2m
cosh

(
4π2n
y

)

− y2

16π4n2
m−1∑

k=0

1
�(2m − 2k − 1)

(
4π2n
y

)−2k
. (9.16)

Proof Using the series definition of 1F2, it is easy to see that

1F2 (a + 1; b + 1, c + 1; x) = −bc
x

(1F2 (a; b, c; x) − 1F2 (a + 1; b, c; x)) . (9.17)

Use (9.17) with a = 0, b = m, c = m − 1/2 and x = 4π4n2/y2 to see that

1F2
(

1;m + 1, m + 1
2
;
4π4n2

y2

)

= −m
(

m − 1
2

)(
4π4n2

y2

)−1 (

1 − 1F2
(

1;m,m − 1
2
;
4π4n2

y2

))

.

Again invoke (9.17) with a = 0, b = m − 1, c = m − 3/2 and x = 4π4n2/y2 on the
right-hand side of the above equation to get

1F2
(

1;m + 1, m + 1
2
;
4π4n2

y2

)

= −m
(

m − 1
2

)(
4π4n2

y2

)−1
− m(m − 1)

(

m − 1
2

)(

m − 3
2

)(
4π4n2

y2

)−2

×
(

1 − 1F2
(

1;m − 1, m − 3
2
;
4π4n2

y2

))

= �(m + 1)�
(

m + 1
2

){

− 1
�(m)�

(
m − 1

2
)

(
4π4n2

y2

)−1

− 1
�(m − 1)�

(
m − 3

2
)

(
4π4n2

y2

)−2

+ 1
�(m − 1)�

(
m − 3

2
)

(
4π4n2

y2

)−2

1F2
(

1;m − 1, m − 3
2
;
4π4n2

y2

)}

.
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Iterating this process using (9.17) and employing the elementary fact 1F2
(
1; 1, 12 ;

4π4n2
y2

)
=

cosh
(
4π2n
y

)
, we deduce that

1F2
(

1;m + 1, m + 1
2
;
4π4n2

y2

)

= −�(m + 1)�
(

m + 1
2

)(m−1∑

k=0

(4π4n2/y2)−(k+1)

�(m − k)�
(
m − k − 1

2
)

− 1√
π

(
4π4n2

y2

)−m
cosh

(
4π2n
y

))

.

Using (3.1) twice and then dividing both sides by �(2m + 1), we arrive at (9.16). ��

We are now ready to prove Theorem 2.12.

Proof of Theorem 2.12 Using (1.17) and (2.14), we rewrite (2.13) as

∞∑

n=1
σa(n)e−ny + 1

2
ζ (−a) − ζ (1 − a)

y
+ 1

sin
(

πa
2
)

{
1
2

(
2π
y

)1+a
ζ (−a)

+ y(2π )−a−3
m−1∑

k=0

ζ (a + 2k + 2)ζ (2k + 2)
�(−a − 1 − 2k)

(
4π2

y

)−2k }

= 1
sin

(
πa
2
)

∞∑

n=1
σa(n)

{
2π
y

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

))

+ yn−a−2

2πa+ 5
2

m−1∑

k=0

(2π2n/y)−2k

�
(− a

2 − 1
2 − k

)
�
(− a

2 − k
)

}

. (9.18)

We wish to take a → −2m in (9.18). We show that we have 0
0 form on both sides of (9.18)

at a = −2m. By invoking Lemma 9.5, we observe that

[
2π
y

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

))

+ yn−a−2

2πa+ 5
2

m−1∑

k=0

(2π2n/y)−2k

�
(− a

2 − 1
2 − k

)
�
(− a

2 − k
)

]

a=−2m
= 0. (9.19)

Also,

[
1
2

(
2π
y

)1+a
ζ (−a) + y(2π )−a−3

m−1∑

k=0

ζ (a + 2k + 2)ζ (2k + 2)
�(−a − 1 − 2k)

(
4π2

y

)−2k]

a=−2m

= 1
2

(
2π
y

)1−2m
ζ (2m) +

(
2π
y

)1−2m
ζ (0)ζ (2m)

+ y(2π )2m−3
m−2∑

k=0

ζ (−2m + 2k + 2)ζ (2k + 2)
�(2m − 1 − 2k)

(
4π2

y

)−2k



Dixit et al. Res Math Sci (2022) 9:34 Page 43 of 54 34

= y(2π )2m−3
m−2∑

j=0

ζ (−2j − 2)ζ (2m − 2j − 4)
�(2j + 3)

(
4π2

y

)2j−2m+4

= 0, (9.20)

where, in the first stepwe separated out the term k = m−1 from the summation to cancel
out the first term of the right-hand side, in the penultimate step we let k = m− 2− j, and
in the last step we used the fact that ζ (s) has zeros at negative even integers.
By using (9.19), (9.20) and the fact that sin(mπ ) = 0, we see that we have 0

0 form on
both sides of (9.18). Therefore, we use L’Hopital’s rule after letting a → −2m on both
sides of (9.18). To that end,

d
da

(
1
2

(
2π
y

)1+a
ζ (−a) + y(2π )−a−3

m−1∑

k=0

ζ (a + 2k + 2)ζ (2k + 2)
�(−a − 1 − 2k)

(
4π2

y

)−2k)

= 1
2

(
2π
y

)1+a
log

(
2π
y

)

ζ (−a) − 1
2

(
2π
y

)1+a
ζ ′(−a) − y(2π )−a−3 log(2π )

×
{

ζ (a + 2m)ζ (2m)
�(−a + 1 − 2m)

(
4π2

y

)2−2m
+

m−2∑

k=0

ζ (a + 2k + 2)ζ (2k + 2)
�(−a − 1 − 2k)

(
4π2

y

)−2k}

+ y(2π )−a−3
{

ζ (2m)
(
4π2

y

)2−2m (
ζ ′(a + 2m)

�(−a + 1 − 2m)

+ζ (a + 2m)ψ(−a + 1 − 2m)
�(−a + 1 − 2m)

)

+
m−2∑

k=0
ζ (2k + 2)

(
4π2

y

)−2k (
ζ ′(a + 2k + 2)
�(−a − 1 − 2k)

+ζ (a + 2k + 2)ψ(−a − 1 − 2k)
�(−a − 1 − 2k)

)}

,

where we separate the k = m − 1 term in each of the two sums. Thus,

d
da

(
1
2

(
2π
y

)1+a
ζ (−a) + y(2π )−a−3

×
m−1∑

k=0

ζ (a + 2k + 2)ζ (2k + 2)
�(−a − 1 − 2k)

(
4π2

y

)−2k) ∣
∣
∣
∣
∣
a=−2m

= 1
2

(
2π
y

)1−2m
log

(
2π
y

)

ζ (2m) − 1
2

(
2π
y

)1−2m
ζ ′(2m) + γ

2

(
2π
y

)1−2m
ζ (2m)

+ y(2π )2m−3
m−2∑

k=0

ζ ′(−2m + 2k + 2)ζ (2k + 2)
�(2m − 1 − 2k)

(
4π2

y

)−2k

=
(
2π
y

)1−2m (
1
2
log

(
2π
y

)

ζ (2m) − 1
2
ζ ′(2m) + γ

2
ζ (2m)

)

+ 1
2

( y
2π

)2m−3 m−2∑

k=0
(−1)k+1ζ (2k + 3)ζ (2m − 2k − 2)

(
2π
y

)2k
, (9.21)
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where we employed (9.13) in the last step. Next, invoking Lemma 9.4 with z = 2π2n
y and

Lemma 9.5, we see upon simplification that

d
da

[
2π
y

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

))

+ y(2π )−3(2πn)−a

n2
m−1∑

k=0

1
� (−a − 2k − 1)

(
4π2n
y

)−2k ]∣∣
∣
∣
∣
a=−2m

=
( y
2π

)2m−1
{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)}

. (9.22)

Now let a → −2m in (9.18), interchange the order of limit and summation on both sides,
which is permissible because of uniform convergence, and then use (9.21) and (9.22) so as
to obtain

∞∑

n=1
σ−2m(n)e−ny + 1

2
ζ (2m) − 1

y
ζ (2m + 1)

+ 2(−1)m

π

{(
2π
y

)1−2m
(
1
2
log

(
2π
y

)

ζ (2m) − 1
2
ζ ′(2m) + γ

2
ζ (2m)

)

+ 1
2

( y
2π

)2m−3 m−2∑

k=0
(−1)k+1ζ (2k + 3)ζ (2m − 2k − 2)

(
2π
y

)2k
}

= 2(−1)m

π

( y
2π

)2m−1 ∞∑

n=1
σ−2m(n)

{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)}

.

Finally, to get to (2.21) from the above identity, note that − 1
y ζ (2m + 1) can be inducted

into the finite sum thereby resulting in its upper index of summation beingm − 1.
We now simplify (2.21) further and represent it in the equivalent form given in (2.22).

Note that the right-hand side of (2.21) can be written using (9.1) in the form

2(−1)m

π

( y
2π

)2m−1 ∞∑

n=1
σ−2m(n)

{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)}

= 2(−1)m

π

( y
2π

)2m−1 ∞∑

n=1
σ−2m(n)

∫ ∞

0

t cos(t)

t2 +
(
4π2n
y

)2 dt

= 2(−1)m

π

( y
2π

)2m−1 ∞∑

d=1
d−2m

∞∑

k=1

∫ ∞

0

t cos(t)

t2 +
(
4π2d
y

)2
k2

dt

= (−1)m

π

( y
2π

)2m−1 ∞∑

d=1
d−2m

{

log
(
2πd
y

)

− 1
2

(

ψ

(
2π id
y

)

+ ψ

(

−2π id
y

))}

,

(9.23)
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where we used (2.11) with u = 4π2d
y in the last step. Using the fact that ζ ′(s) =

−∑∞
n=1 log n/ns whenever Re(s) > 1, we see that

∞∑

n=1

1
n2m

log
(
2πn
y

)

= ζ (2m) log
(
2π
y

)

− ζ ′(2m). (9.24)

Finally, substitute (9.23) and (9.24) in (2.21), replace k by m − 1 − k in the finite sum
of the resulting identity and then use Euler’s formula in (2.7) to arrive at (2.22) upon
simplification. ��

We now use (2.22) to obtain a nice companion to Ramanujan’s formula (2.8). See also
(11.1).

Proof of Corollary 2.13 Let y = 2α,αβ = π2 in (2.22) andmultiply both sides by α
−
(
m− 1

2

)

to arrive at (2.23) after simplification. ��

As special cases of (2.22), we obtain two following corollaries involving ζ (3) and ζ (5).

Corollary 9.6 For Re(y) > 0, we have

∞∑

n=1

n−2

eny − 1
+ π2 − γ y

12
− 1

y
ζ (3) = y

4π2

∞∑

n=1

1
n2

(

ψ

(
2π in
y

)

+ ψ

(

−2π in
y

))

.

(9.25)

Proof Letm = 1 in (2.22). ��

Corollary 9.7 Let Re(y) > 0. Then

∞∑

n=1

n−4

eny − 1
+

(

1 + γ y3

4π4

)
π4

180
− 1

y
ζ (5) − y

12
ζ (3)

= − y3

16π4

∞∑

n=1

1
n4

(

ψ

(
2π in
y

)

+ ψ

(

−2π in
y

))

.

Proof Letm = 2 in (2.22). ��

Remark 6 Corollaries 9.6 and 9.7 together give the following representation for ζ (5):

ζ (5) =
(

1 + γ y3

4π4

)
π4y
180

− y3(π2 − γ y)
144

+
∞∑

n=1

(
y
n4

− y3

12n2

)
1

eny − 1

+ y4

16π2

∞∑

n=1

(
1
3n2

+ 1
π2n4

)(

ψ

(
2π in
y

)

+ ψ

(

−2π in
y

))

,

which is valid for Re(y) > 0.
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9.3 A transformation for
∑∞

n=1 d(n)e
−ny

Proof of Corollary 2.10 Let a → 0 in Theorem 2.4. This gives

∞∑

n=1
d(n)e−ny + lim

a→0

(
1
2

(
2π
y

)1+a
cosec

(πa
2

)
ζ (−a) − 1

y
ζ (1 − a)

)

+ 1
2
ζ (0)

= 2π
y

∞∑

n=1
d(n) lim

a→0

1
sin

(
πa
2
)

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

))

. (9.26)

We first evaluate the limit on the right-hand side. Note that since 1F2
(
1; 12 , 1;

4π4n2
y2

)
=

cosh
(
4π2n
y

)
, we have 0

0 form. Hence, we need to use L’Hopital’s rule. To that end, use
Lemma 9.3 withm = 0 so as to obtain

lim
a→0

1
sin

(
πa
2
)

(
(2πn)−a

�(1 − a) 1
F2

(

1;
1 − a
2

, 1 − a
2
;
4π4n2

y2

)

−
(
2π
y

)a
cosh

(
4π2n
y

))

= 2
π

{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)

+ log
(
4π2n
y

)

cosh
(
4π2n
y

)

− log(2πn) cosh
(
4π2n
y

)

− log
(
2π
y

)

cosh
(
4π2n
y

)}

= 2
π

(

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

))

. (9.27)

We next evaluate the limit on the left-hand side of (9.26). Using the well-known power-
series expansions of ζ (−a), ζ (1 − a), (2π )1+a, y−(1+a) and csc

(
πa
2
)
, as a → 0, we find

that

lim
a→0

(
1
2

(
2π
y

)1+a
cosec

(πa
2

)
ζ (−a) − 1

y
ζ (1 − a)

)

= −γ + log y
y

. (9.28)

Finally, from (9.26), (9.27) and (9.28) and the fact that ζ (0) = −1/2, we arrive at the first
identity in (2.18).
To obtain (2.19), we invoke Lemma 9.1 with w = 4π2n/y in the first step below and

then use (2.11) with u = 4π2n/y in the second step so that

∞∑

n=1
d(n)

{

sinh
(
4π2n
y

)

Shi
(
4π2n
y

)

− cosh
(
4π2n
y

)

Chi
(
4π2n
y

)}

=
∞∑

k=1

∞∑

n=1

∫ ∞

0

t cos(t)

t2 +
(
4π2nk

y

)2 dt

= 1
2

∞∑

n=1

{

log
(
2πn
y

)

− 1
2

(

ψ

(
2π in
y

)

+ ψ

(

−2π in
y

))}

.

This completes the proof of (2.19). ��
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As an equivalent form of Corollary 2.10, we obtain a result ofWigert and Bellman given
in [56, Theorem 2]10.

Corollary 9.8 Let U (a; c; z) be defined in (7.15). For Re(y) > 0,

∞∑

n=1
d(n)e−ny − 1

4
− (γ − log(y))

y

= 2
y

∞∑

n=1
d(n)

{

U
(

1; 1;
4π2n
y

)

+ U
(

1; 1;−4π2n
y

)}

,

Proof In view of (2.18), it suffices to show that for Re(x) > 0,

U (1; 1; x) + U (1; 1;−x) = 2 (sinh(x)Shi(x) − cosh(x)Chi(x)) . (9.29)

First let x > 0. From [56, p. 612], U (1; 1; x) = ex�(0, x). Also, from [44, p. 902, Equation
8.359.1], �(0, x) = −Ei(−x). Hence,

U (1; 1; x) + U (1; 1;−x) = ex�(0, x) + e−x�(0,−x)

= − (
exEi(−x) + e−xEi(x)

)
. (9.30)

The equality in (9.29) now follows for x > 0 from (9.30) and by equating the right-hand
sides of (9.1) and (9.2). By analytic continuation, it holds for Re(x) > 0. ��

10 Transformation formulas for
∑∞

n=1 σa(n)e−ny for a odd
As discussed in Sect. 2, we get some results in modular forms as corollaries of our master
identity, that is, Theorem 2.5. These results are derived in this section.

10.1 Modular transformation for Eisenstein series on SL2(Z)

Proof of Corollary 2.7 Let a = 2m − 1, m > 1, in Theorem 2.4. Using (9.14), the fact that
ζ (−2m) = 0, m ∈ N, and noting that

lim
a→2m−1

1
�(1 − a) 1

F2
(

1; 1 − a
2
,
1 − a
2

,
4π4n2

y2

)

=
(
4π2n
y

)2m−1
sinh

(
4π2n
y

)

,

(10.1)

we see that
∞∑

n=1
σ2m−1(n)e−ny − 1

2

(

(−1)m+1
(
2π
y

)2m
+ 1

)
B2m
2m

= 2π (−1)m

y

∞∑

n=1
σ2m−1(n)

{(
2π
y

)2m−1
cosh

(
4π2n
y

)

−
(
2π
y

)2m−1
sinh

(
4π2n
y

)}

= (−1)m
(
2π
y

)2m ∞∑

n=1
σ2m−1(n)e−

4π2n
y .

10In the statement of their theorem, the 1/π2 appearing in front of the summation on the right-hand side should be
1/π .
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This gives

∞∑

n=1
σ2m−1(n)e−ny − 1

2

(

(−1)m+1
(
2π
y

)2m
+ 1

)
B2m
2m

= (−1)m
(
2π
y

)2m ∞∑

n=1
σ2m−1(n)e−

4π2n
y . (10.2)

To prove (2.15), let y = 2α with αβ = π2 in (10.2) and simplify. ��

10.2 Transformation formula for weight-2 Eisenstein series on SL2(Z)

Proof of Corollary 2.9 Let a = 1 in Theorem 2.4. Using the well-known special values
ζ (−1) = −1/12, ζ (0) = −1/2 and invoking (10.1), we see that

∞∑

n=1
σ (n)e−ny − 1

24

(

1 + 4π2

y2

)

+ 1
2y

= −4π2

y2
∞∑

n=1
σ (n)

(

cosh
(
4π2n
y

)

− sinh
(
4π2n
y

))

= −4π2

y2
∞∑

n=1
σ (n)e−

4π2n
y .

Letting y = 2α with αβ = π2 then leads to (2.17). ��

10.3 Ramanujan’s famous formula for ζ(2m + 1)

We begin with a lemma which evaluates 1
2
K−2m−1

2
(z, 0) in terms of elementary functions.

Lemma 10.1 Let z ∈ C and m ∈ N ∪ {0}. Then

1
2
K−2m−1

2
(z, 0) = (−1)m

√
π√

2

{

z− 2m+1
2 e−z + z

2m−3
2

m∑

k=0

z−2k

� (2m − 2k)

}

. (10.3)

Proof Using the definition of μKν(z, w) from (1.17), we see that

1
2
K−2m−1

2
(z, 0) = (−1)m+1√π√

2

{
z
2m+1

2

�(2m + 2) 1
F2

(

1;m + 1, m + 3
2
;
z2

4

)

− cosh(z)
z
2m+1

2

}

.

(10.4)

Now it can be proved along the similar lines as in the proof of Lemma 9.5 that

1
�(2m + 2) 1

F2
(

1;m + 1, m + 3
2
;
z2

4

)

= − 1
z2

m−1∑

k=0

z−2k

�(2m − 2k)
+ 1

z2m+1 sinh(z).

(10.5)

Substitute (10.5) in (10.4) to arrive at (10.3). ��
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Proof of Corollary 2.6 Let a = −2m − 1 in Theorem 2.5 to get

∞∑

n=1
σ−2m−1(n)e−ny + 1

2

((
2π
y

)−2m
(−1)m+1 + 1

)

ζ (2m + 1) − ζ (2m + 2)
y

= 2
√
2π

y
1
2−m

∞∑

n=1
σ−2m−1(n)n

2m+1
2

{

1
2
K−2m−1

2

(
4π2n
y

, 0
)

− (−1)m+1π2
1
2−2m

(
4π2n
y

) 2m−3
2

× Am

(
1
2
,
−2m − 1

2
, 0;

4π2n
y

)}

− (−1)m+1y(2π )2m−2
m∑

k=0

ζ (2k − 2m + 1)ζ (2k + 2)
�(2m − 2k)

(
4π2

y

)−2k
. (10.6)

By using (10.3) with z = 4π2n/y and the definition of Am in (2.14), we see that

1
2
K−2m−1

2

(
4π2n
y

, 0
)

− (−1)m+1π2
1
2−2m

(
4π2n
y

) 2m−3
2

Am

(
1
2
,
−2m − 1

2
, 0;

4π2n
y

)

= (−1)m
√

π√
2(ny)m+ 1

2

(
2π
y

)−2m−1
exp

(

−4π2n
y

)

. (10.7)

From (10.6) and (10.7),

∞∑

n=1
σ−2m−1(n)e−ny + 1

2

((
2π
y

)−2m
(−1)m+1 + 1

)

ζ (2m + 1) − ζ (2m + 2)
y

=
(
2π
y

)−2m
(−1)m

∞∑

n=1
σ−2m−1(n) exp

(

−4π2n
y

)

− (−1)m+1y(2π )2m−2
m∑

k=0

ζ (2k − 2m + 1)ζ (2k + 2)
�(2m − 2k)

(
4π2

y

)−2k

=
(
2π
y

)−2m
(−1)m

∞∑

n=1
σ−2m−1(n) exp

(

−4π2n
y

)

− y2m+1

2

m∑

k=0

(−1)kB2m+2−2kB2k
(2m + 2 − 2k)!(2k)!

(
2π
y

)2k
, (10.8)

where in the last step, we replaced k by m − k in the finite sum and then used (2.7) and
(9.14). Now use (2.7) on the left-hand side of (10.8) to obtain

∞∑

n=1
σ−2m−1(n)e−ny + 1

2
ζ (2m + 1) + (−1)m+1

2

( y
2π

)2m
ζ (2m + 1)

+ (−1)m+1(2π )2m+2B2m+2
2y(2m + 2)!

=
(
2π
y

)−2m
(−1)m

∞∑

n=1
σ−2m−1(n) exp

(

−4π2n
y

)

− y2m+1

2

m∑

k=0

(−1)kB2m+2−2kB2k
(2m + 2 − 2k)!(2k)!

(
2π
y

)2k
.
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Now multiply both sides of the above expression by
( y
2
)−m and simplify to see that

( y
2

)−m
{
1
2
ζ (2m + 1) +

∞∑

n=1
σ−2m−1(n)e−ny

}

−
( −y
2π2

)m
{
1
2
ζ (2m + 1) +

∞∑

n=1
σ−2m−1(n)e−

4π2n
y

}

= −2m−1ym+1
m+1∑

k=0

(−1)kB2m+2−2kB2k
(2m + 2 − 2k)!(2k)!

(
2π
y

)2k
.

Finally let y = 2α and αβ = π2 and simplify to get (2.8). ��

10.4 Transformation formula for the logarithm of the Dedekind eta function

Proof of Corollary 2.8 Letm = 0 in Theorem 2.5 and then let a → −1 so that

∞∑

n=1
σ−1(n)e−ny + lim

a→−1

{((
2π
y

)1+a
cosec

(πa
2

)
+ 1

)

ζ (−a)
}

− 1
y
ζ (2)

= 2
√
2π√y

∞∑

n=1
σ−1(n)

√
n 1

2
K−1

2

(
4π2n
y

, 0
)

+ 2
√
2π√y

(
y3/2

24
√
2π

lim
a→−1

ζ (a + 2)
�
(−1−a

2
)

)

.

Using the limit evaluations lim
a→−1

ζ (a + 2)
�
(−1−a

2
) = −1

2
and

lim
a→−1

{((
2π
y

)1+a
cosec

(πa
2

)
+ 1

)

ζ (−a)
}

= log
(
2π
y

)

in the above identity, invoking (1.18) with ν = −1/2 and using ζ (2) = π2/6, we are led to

∞∑

n=1
σ−1(n)e−ny + 1

2
log

(
2π
y

)

− π2

6y
+ y

24
=

∞∑

n=1
σ−1(n)e−

4π2n
y .

upon simplification. To obtain (2.16), simply let y = 2α and use the fact that αβ = π2 in
the above identity. ��

11 Concluding remarks and future directions
Koshliakov [60] studied an integral transform with respect to the w = 0 case of Watson’s
kernel Gν(x, w), that is, the first Koshliakov kernel (1.5), which motivated us to obtain an
explicit transformation formula for

∑∞
n=1 σa(n)e−ny for any a ∈ C and Re(y) > 0 that

was missing in the literature. The wealth of information that this transformation contains
is evident from the numerous corollaries derived from it in Sect. 2. These include the
modular properties of Eisenstein series on SL2 (Z) as well as explicit transformations for
the series

∑∞
n=1 σ2m(n)e−ny,m ∈ Z. They include a novel companion of Ramanujan’s

famous formula for ζ (2m + 1) given in Corollary 2.13.
Are there any applicationsof results suchas (2.19) or (9.25) fromthepoint of viewof tran-

scendental number theory? Note that Erdös [43] has shown that the series
∑∞

n=1 d(n)q−n

is irrational for any integer q with |q| ≥ 2. Now observe that, if we let y = log(2) in (2.19),
the left-hand side becomes

∑∞
n=1

1
en log 2−1 = ∑∞

n=1 d(n)2−n so that, Erdös result implies
that it is an irrational number and hence (2.19), in turn, implies that
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(γ − log(log(2)))
log(2)

+ 2
y

∞∑

n=1

{

log
(

2πn
log(2)

)

− 1
2

(

ψ

(
2π in
log(2)

)

+ ψ

(

− 2π in
log(2)

))}

is irrational.
The two-variable extension of themodified Bessel function, namely, μKν(z, w), is instru-

mental in generalizing the well-knownmodular transformations (as well asmodular-type)
appearing in the results of Sect. 2, and hence deserves further study. In this paper, we have
restricted ourselves to obtaining only those properties of μKν(z, w) relevant to deriving
various transformations.
Ramanujan conceived anoverarching generalizationof his formula (2.8). See [9, pp. 429–

432] for its rigorous formulation and a proof. In the same spirit, it may be interesting to
look at the corresponding generalization of (2.13).
Our companion to Ramanujan’s formula for ζ (2m+ 1), namely Eq. (2.23), contains the

higher Herglotz function of Vlasenko and Zagier. We note that the Herglotz as well as the
higher Herglotz functions are useful in algebraic as well as analytic number theory. Thus,
it would be of merit to study (2.23) from this viewpoint.
Letting α = β = π in Corollary 2.13 implies that the hyperbolic cotangent Dirichlet

series and
∑∞

n=1 (ψ(in) + ψ(−in)) n−2m are intimately connected at even positive integers
s = 2m, that is,

∞∑

n=1

coth(πn)
n2m

= (−1)m+1 2γ
π

ζ (2m) + 2
π

m−1∑

k=0

22k−1B2kζ (2m − 2k + 1)π2k

(2k)!

+ (−1)m+1

π

∞∑

n=1

ψ(in) + ψ(−in)
n2m

. (11.1)

Equation (11.1) is an analogue of Lerch’s formula [62], namely, whenm ∈ N is odd,
∞∑

n=1

coth(πn)
n2m+1 = 22mπ2m+1

m+1∑

k=0
(−1)k+1 B2k

(2k)!
B2m+2−2k

(2m + 2 − 2k)!
.

This suggests further work, in the setting of (11.1), along the lines in [59,84].
Finally, it may be worthwhile extending our Theorem 2.1 wherein the kernel Gν(x, w),

or equivalently �μ,ν(x), is replaced by its generalizations, for example, those studied in
[17,20,71].
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