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Abstract

This paper deals with the issue of stability in determining the absorption and the
diffusion coefficients in quantitative photoacoustic imaging. We establish a global
conditional Hölder stability inequality from the knowledge of two internal data
obtained from optical waves, generated by two point sources in a region where the
optical coefficients are known.
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1 Introduction
Throughout this text, n ≥ 3 is a fixed integer. If 0 < β ≤ 1, we denote by C0,β (Rn) the
vector space of bounded continuous functions f on R

n satisfying

[f ]β = sup
{ |f (x) − f (y)|

|x − y|β ; x, y ∈ R
n, x �= y

}
< ∞.

C0,β (Rn) is then a Banach space when it is endowed with its natural norm

‖f ‖C0,β (Rn) = ‖f ‖L∞(Rn) + [f ]β .

Define C1,β (Rn) as the vector space of functions f from C0,β (Rn) so that ∂j f ∈ C0,β (Rn),
1 ≤ j ≤ n. The vector space C1,β (Rn) equipped with the norm

‖f ‖C1,β (Rn) = ‖f ‖C0,β (Rn) +
n∑

j=1
‖∂j f ‖C0,β (Rn)

is a Banach space.
The data in this paper consist in ξ1, ξ2 ∈ R

n, � � R
n \ {ξ1, ξ2} a C1,1 bounded domain

with boundary �, 0 < α < 1, 0 < θ < α, λ > 1 and κ > 1. For notational convenience,
the set of data will denoted byD. That is

D = (n, ξ1, ξ2,�,α, θ , λ, κ).

Denote byD(λ, κ) the set of couples (a, b) ∈ C1,1(Rn) × C0,1(Rn) satisfying

λ−1 ≤ a and ‖a‖C1,1(Rn) ≤ λ, (1.1)

κ−1 ≤ b and ‖b‖C0,1(Rn) ≤ κ . (1.2)
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Define further the elliptic operator La,b acting as follows

La,bu(x) = −div(a(x)∇u(x)) + b(x)u(x). (1.3)

We show in Sect. 2 that if (a, b) ∈ D(λ, κ), then the operator La,b admits a unique funda-
mental solution Ga,b satisfying, where ξ ∈ R

n,

Ga,b(·, ξ ) ∈ C2,α
loc (R

n \ {ξ}), La,bGa,b(·, ξ ) = 0 in R
n \ {ξ},

and, for any f ∈ C∞
0 (Rn),

u =
∫
Rn

Ga,b(·, ξ )f (ξ )dξ

belongs to H2(Rn) and it is the unique solution of La,bu = f .
We deal in the present work with the problem of reconstructing (a, b) ∈ D(λ, κ) from

energies generated by two point sources located at ξ1 and ξ2. Precisely, if uj(a, b) =
Ga,b(·, ξj), j = 1, 2, we want to determine (a, b) from the internal measurements

vj(a, b) = buj(a, b) in �, j = 1, 2.

This inverse problem is related to photoacoustic tomography (PAT) where optical
energy absorption causes thermoelastic expansion of the tissue, which in turn gener-
ates a pressure wave [25]. This acoustic signal is measured by transducers distributed on
the boundary of the sample, and it is used for imaging optical properties of the sample.
The internal data v1(a, b) and v2(a, b) are obtained by performing a first step consisting in
a linear initial to boundary inverse problem for the acoustic wave equation. Therefore, the
inverse problem that arises from this first inversion is to determine the diffusion coeffi-
cient a and the absorption coefficient b from the internal data v1(a, b) and v2(a, b) that are
proportional to the local absorbed optical energy inside the sample. This inverse problem
is known in the literature as quantitative photoacoustic tomography [1–4,7,8,11,21].
Photoacoustic imaging provides in theory images of optical contrasts and ultrasound

resolution [25]. Indeed, the resolution is mainly due to the small wavelength of acous-
tic waves, while the contrast is somehow related to the sensitivity of optical waves to
absorption and scattering properties of the medium in the diffusive regime. However,
in practice, it has been observed in various experiments that the imaging depth, i.e., the
maximal depth of the medium at which structures can be resolved at expected resolution,
of (PAT) is still fairly limited, usually on the order of millimeters. This is mainly due to
the fact that optical waves are significantly attenuated by absorption and scattering. In
fact the generated optical signal decays very fast in the depth direction. This is indeed a
well-known faced issue in optical tomography [24]. In most physicists works dealing with
quantitative (PAT), the absorption b > 0 is assumed to be constant and the optical wave
is simplified to Ce−bz , as a function of the depth z, which is known as the Beer–Lambert–
Bouguer law [12]. Recently in [22], assuming that medium is layered, the authors derived
a stability estimate that shows that the reconstruction of the optical coefficients is stable
in the region close to the optical illumination source and deteriorates exponentially far
away.
Stability inequalities for this inverse problem were first obtained in [7,8] under a strong

non-degeneracy assumption. Later in [1], the authors improved these results by removing
the non-degeneracy assumption for well-chosen boundary conditions (Definition 2.3).
Assuming that the optical waves are generated by two point sources δξi , i = 1, 2, we aim

to derive a stability estimate for the recovery of the optical coefficients from internal data.
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We point out that taking the optical wave generated by a point source outside the sample
seems to be more realistic than assuming a boundary condition.
In the statement of Theorem 1, C = C(D) > 0 and 0 < γ = γ (D) < 1 are constants.

Theorem 1 For any (a, b), (ã, b̃) ∈ D(λ, κ) satisfying (a, b) = (ã, b̃) on �, we have

‖a − ã‖C1,α (�) + ‖b − b̃‖C0,α(�) ≤ C
(
‖v1 − ṽ1‖C(�) + ‖v2 − ṽ2‖C(�)

)γ

.

The rest of this text is organized as follows. In Sect. 2, we construct a fundamental
solution and give its regularity induced by that of the coefficients of the operator under
consideration.We derive pointwise lower and upper bounds for the fundamental solution
that are of interest themselves. These bounds show how the optical signal decays fast in
the depth direction. We also establish in this section a lower bound of the local L2-norm
of the gradient of the quotient of two fundamental solutions near one of the point sources.
This is the key point for establishing our stability inequality. This last result is then used in
Sect. 3 to obtain a uniform polynomial lower bound of the local L2-norm of the gradient
in a given region. This polynomial lower bound is obtained in two steps. In the first step,
we derive, via a three-ball inequality for the gradient, a uniform lower bound of negative
exponential type. We use then in the second step an argument based on the so-called
frequency function in order to improve this lower bound. In the last section, we prove our
main theorem following the known method consisting in reducing the original problem
to the stability of an inverse conductivity problem.

2 Fundamental solutions
2.1 Constructing fundamental solutions

In this subsection, we construct a fundamental solution of divergence form elliptic oper-
ators. Since our construction relies on heat kernel estimates, we first recall some known
results.
Consider the parabolic operator Pa,b acting as follows:

Pa,bu(x, t) = −La,bu(x, t) − ∂tu(x, t)

and set

Q = {(x, t, ξ , τ ) ∈ R
n × R × R

n × R; τ < t}.
Recall that a fundamental solutionof theoperatorPa,b is a functionEa,b ∈ C2,1(Q) verifying
Pa,bE = 0 in Q and, for every f ∈ C∞

0 (Rn),

lim
t↓τ

∫
Rn

Ea,b(x, t, ξ , τ )f (ξ )dξ = f (x), x ∈ R
n.

The classical results in the monographs by A. Friedman [14], O. A. Ladyzenskaja, V. A.
Solonnikov and N.N Ural’ceva [20] show that Pa,b admits a nonnegative fundamental
solution when (a, b) ∈ D(λ, κ).
It is worth mentioning that if a = c, for some constant c > 0, and b = 0, then the

fundamental solution Ec,0 is explicitly given by

Ec,0(x, t, ξ , τ ) = 1
[4πc(t − τ )]n/2 e

− |x−ξ |2
4c(t−τ ) , (x, t, ξ , τ ) ∈ Q.

Examining carefully the proof of the two-sided Gaussian bounds in [13], we see that these
bounds remain valid whenever a ∈ C1,1(Rn) satisfies

λ−1 ≤ a and ‖a‖C1,1(Rn) ≤ λ. (2.1)



24 Page 4 of 30 E. Bonnetier et al. ResMath Sci (2022) 9:24

More precisely, we have the following theorem in which

Ec(x, t) = c
tn/2 e

− |x|2
ct , x ∈ R

n, t > 0, c > 0.

Theorem 2 There exists a constant c = c(n, λ) > 1 so that, for any a ∈ C1,1(Rn) satisfying
(2.1), we have

Ec−1 (x − ξ , t − τ ) ≤ Ea,0(x, t; ξ , τ ) ≤ Ec(x − ξ , t − τ ), (2.2)

for all (x, t, ξ , τ ) ∈ Q.

The relationship between Ec and Ec,0 is given by the formula

Ec(x − ξ , t − τ ) = (πc)n/2+1

π
Ec/4,0(x, t, ξ , τ ), (x, t, ξ , τ ) ∈ Q. (2.3)

The following comparison principle will be useful in the sequel.

Lemma 1 Let (a, b1), (a, b2) ∈ D(λ, κ) so that b1 ≤ b2. Then, Ea,b2 ≤ Ea,b1 .

Proof Pick 0 ≤ f ∈ C∞
0 (Rn). Let u be the solution of the initial value problem

Pa,b1u(x, t) = 0 ∈ R
n × {t > τ }, u(x, τ ) = f.

We have

u(x, t) =
∫
Rn

Ea,b1 (x, t; ξ , τ )f (ξ )dξ ≥ 0. (2.4)

On the other hand, as Pa,b1u(x, t) = 0 can be rewritten as

Pa,b2u(x, t) = [b1(x) − b2(x)]u(x, t),

We obtain

u(x, t) =
∫
Rn

Ea,b2 (x, t; ξ , τ )f (ξ )dξ

−
∫ t

τ

∫
Rn

Ea,b2 (x, t; ξ , s)[b1(ξ ) − b2(ξ )]u(ξ , s)dξ ds. (2.5)

Combining (2.4) and (2.5), we get∫
Rn

Ea,b2 (x, t; ξ , τ )f (ξ )dξ ≤
∫
Rn

Ea,b1 (x, t; ξ , τ )f (ξ )dξ ,

which yields in a straightforward manner the expected inequality. 
�

Consider, for (a, b) ∈ D(λ, κ), the unbounded operator Aa,b : L2(Rn) → L2(Rn) defined

Aa,b = −La,b, D(Aa,b) = H2(Rn).

It is well known that Aa,b generates an analytic semigroup etAa,b . Therefore in light of [6,
Theorem 4 on p. 30, Theorem 18 on p. 44 and the proof in the beginning of Sect. 1.4.2 on
page 35] ka,b(t, x; ξ ), the Schwarz kernel of etAa,b is Hölder continuous with respect to x
and ξ and satisfies

|ka,b(t, x, ξ )| ≤ e−δtEc(x − ξ , t) (2.6)
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and, for |h| ≤ √
t + |x − ξ |,

|ka,b(t, x + h, ξ ) − ka,b(t, x, ξ )| ≤ e−δt
( |h|√

t + |x − ξ |
)η

Ec(x − ξ , t), (2.7)

|ka,b(t, x, ξ + h) − ka,b(t, x, ξ )| ≤ e−δt
( |h|√

t + |x − ξ |
)η

Ec(x − ξ , t), (2.8)

where c = c(n, λ, κ) > 0 and δ = δ(n, λ, κ) > 0 and η > 0 are constants.
From the uniqueness of solutions of the Cauchy problem

u′(t) = Aa,bu(t), t > 0, u(0) = f ∈ C∞
0 (Rn), (2.9)

we deduce in a straightforward manner that ka,b(t, x; ξ ) = Ea,b(x, t; ξ , 0).
Prior to giving the construction of the fundamental solution for the variable coefficients

operators, we state a result for operators with constant coefficients. This result is proved
in “Appendix A” section.

Lemma 2 Let μ > 0 and ν > 0 be two constants. Then, the fundamental solution for the
operator −μ� + ν is given by Gμ,ν(x, ξ ) = Gμ,ν(x − ξ ), x, ξ ∈ R

n, with

Gμ,ν(x) = (2πμ)−n/2(√νμ/|x|)n/2−1Kn/2−1(
√

ν|x|/√μ), x ∈ R
n.

Here, Kn/2−1 is the usual modified Bessel function of second kind. Moreover, the following
two-sided inequality holds

C−1 e−
√

ν|x|/√μ

|x|n−2 ≤ Gμ,ν(x) ≤ C
e−

√
ν|x|/(2√μ)

|x|n−2 , x ∈ R
n, (2.10)

for some constant C = C(n,μ, ν) > 1.

The main result of this section is the following theorem.

Theorem 3 Let (a, b) ∈ D(λ, κ). Then, there exists a unique function Ga,b satisfying
Ga,b(·, ξ ) ∈ C(Rn \ {ξ}), ξ ∈ R

n, Ga,b(x, ·) ∈ C(Rn \ {x}), x ∈ R
n, and

(i) La,bGa,b(·, ξ ) = 0 inD ′(Rn \ {ξ}), ξ ∈ R
n,

(ii) For any f ∈ C∞
0 (Rn),

u(x) =
∫
Rn

Ga,b(x, ξ )f (ξ )dξ

belongs to H2(Rn) and it is the unique solution of La,bu = f ,
(iii) There exist two constants c = c(n, λ) > 1 and C = C(n, λ, κ) > 1 so that

C−1 e−2
√
cκ|x−ξ |

|x − ξ |n−2 ≤ Ga,b(x, ξ ) ≤ C
e−

|x−ξ |√
cκ

|x − ξ |n−2 . (2.11)

Proof Pick s ≥ 1 arbitrary and let f ∈ C∞
0 (Rn). Applying Hölder’s inequality, we find∫

Rn
ka,b(t, x, ξ )|f (ξ )|dξ ≤ ‖ka,b(t, x, ·)‖Ls(Rn)‖f ‖Ls′ (Rn),

where s′ is the conjugate exponent of s.
But, according to (2.6),

‖ka,b(t, x, ·)‖sLs(Rn) ≤
( c
tn/2

)s ∫
Rn

e−
s|x−ξ |2

ct dξ .
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Next, making the change of variable ξ = (
√
ct/s)η + x, we get

‖ka,b(t, x, ·)‖sLs(Rn) ≤
( c
tn/2

)s (ct
s

)n/2 ∫
Rn

e−|η|2dη.

Hence,

‖ka,b(t, x, ·)‖Ls(Rn) ≤ tn(1/s−1)/2Cs,

with

Cs = c
( c
s

)n/2
(∫

Rn
e−|η|2dη

)1/s
.

We get, by choosing 1 ≤ s < n
n−2 < s̃,

∫ +∞

0

∫
Rn

ka,b(t, x, ξ )|f (ξ )|dξ dt

=
∫ 1

0

∫
Rn

ka,b(t, x, ξ )|f (ξ )|dξ dt +
∫ +∞

1

∫
Rn

ka,b(t, x, ξ )|f (ξ )|dξ dt

≤ Cs‖f ‖Ls′ (Rn)

∫ 1

0
t
n
2 (1/s−1)dt + Cs̃‖f ‖Ls̃′ (Rn)

∫ +∞

1
t
n
2 (1/s̃−1)dt.

In light of Fubini’s theorem, we obtain
∫ +∞

0

∫
Rn

ka,b(t, x, ξ )f (ξ )dξ dt =
∫
Rn

(∫ +∞

0
ka,b(t, x, ξ )dt

)
f (ξ )dξ . (2.12)

Define Ga,b as follows

Ga,b(x, ξ ) =
∫ +∞

0
ka,b(t, x, ξ )dt.

Then, (2.12) takes the form∫ +∞

0

∫
Rn

ka,b(t, x, ξ )f (ξ )dξ dt =
∫
Rn

Ga,b(x, ξ )f (ξ )dξ . (2.13)

Noting that Aa,b is invertible, we obtain

−A−1
a,bf (x) =

(∫ +∞

0
etAa,b fdt

)
(x)

=
∫ +∞

0

∫
Rn

ka,b(t, x, ξ )f (ξ )dξ dt, x ∈ R
n.

This and (2.13) entail

−A−1
a,bf (x) =

∫
Rn

Ga,b(x, ξ )f (ξ )dξ , x ∈ R
n.

In other words, u defined by

u(x) =
∫
Rn

Ga,b(x, ξ )f (ξ )dξ , x ∈ R
n

belongs to H2(Rn) and satisfies La,bu = f .
Since, for x �= ξ ,∫ +∞

0

1
tn/2 e

− |x−ξ |2
ct dt =

(
cn/2−1

∫ +∞

0
τn/2−2e−τdτ

)
1

|x − ξ |n−2 ,
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we get in light of (2.7)

|Ga,b(x + h, ξ ) − Ga,b(x, ξ )| ≤ C
|x − ξ |n−2+η

|h|η , x �= ξ , |h| ≤ |x − ξ |,

where C = C(n, λ, κ) is a constant. In particular, Ga,b(·, ξ ) ∈ C(Rn \ {ξ}). Similarly, using
(2.8) instead of (2.7), we obtain Ga,b(x, ·) ∈ C(Rn \ {x}). More specifically, we have

|Ga,b(x, ξ + h) − Ga,b(x, ξ )| ≤ C
|x − ξ |n−2+η

|h|η , x �= ξ , |h| ≤ |x − ξ |. (2.14)

Let ξ ∈ R
n and ω � R

n \ {ξ}, and pick g ∈ C∞
0 (ω). Then, set

wa,b(y) =
∫

ω

Ga,b(x, y)g(x)dx, y ∈ B(ξ , dist(ξ ,ω)/2).

It follows from (2.14) that, for y ∈ B(ξ , dist(ξ ,ω)) and |h| < dist(y,ω), we have

|wa,b(y + h) − wa,b(y)| ≤ C
dist(y,ω)n−2+η

|h|η .

Therefore, wa,b ∈ C(B(ξ , dist(ξ ,ω)/2).
LetM(Rn) be the space of bounded measures on R

n. Pick a sequence (fk ) of a positive
functions of C∞

0 (Rn) converging in M(Rn) to δξ and let uk = −A−1
a,bfk . In that case,

according to Fubini’s theorem, we have

∫
ω

uk (x)g(x)dx =
∫

ω

∫
Rn

Ga,b(x, y)g(x)fk (y)dy dx

=
∫
Rn

wa,b(y)fk (y)dy −→ wa,b(ξ ) =
∫

ω

Ga,b(x, ξ )g(x)dx,

where we used that suppfk ⊂ B(ξ , dist(ξ ,ω)/2), provided that k is sufficiently large. That
is we proved that uk converges to Ga,b(·, ξ ) weakly in L2loc(R

n \ {ξ}) (think to the fact that
C∞
0 (ω) is dense in L2(ω)).
Now, as La,buk = fk , we find La,bGa,b(·, ξ ) = 0 in R

n \ {ξ} in the distributional sense.
The uniqueness of Ga,b follows from that of u and, as κ−1 ≤ b ≤ κ , we deduce from

Lemma 1 that

Ea,κ (x, t, ξ , 0) ≤ Ea,b(x, t, ξ , 0) ≤ Ea,κ−1 (x, t, ξ , 0).

But a simple change of variable shows that

Ea,κ−1 (x, t, ξ , 0) = e−κ−1tEa,0(x, t, ξ , 0) (2.15)

and

Ea,κ (x, t, ξ , 0) = e−κtEa,0(x, t, ξ , 0). (2.16)

Therefore, from Theorem 2 and identity (2.3), there exists a constant c = c(n, λ) > 1 so
that

e−κt (πc−1)n/2+1

π
Ec−1/4,0(x, t, ξ , 0) ≤ Ea,b(x, t, ξ , 0)

≤ e−κ−1t (πc)n/2+1

π
Ec/4,0(x, t, ξ , 0),
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which, combined with identities (2.15) and (2.16), gives

(πc−1)n/2+1

π
Ec−1/4,κ (x, t, ξ , 0) ≤ Ea,b(x, t, ξ , 0)

≤ (πc)n/2+1

π
Ec/4,κ−1 (x, t, ξ , 0).

From the uniqueness of Ga,b, we obtain by integrating over (0,+∞), with respect to t,
each member of the above inequalities

(πc−1)n/2+1

π
Gc−1/4,κ (x, ξ ) ≤ Ga,b(x, ξ ) ≤ (πc)n/2+1

π
Gc/4,κ−1 (x, ξ ).

These two-sided inequalities together with (2.10) yield in a straightforwardmanner (2.11).

�

The functionGa,b given by the previous theorem is usually called a fundamental solution
of the operator La,b.

2.2 Regularity of fundamental solutions

Let ξ ∈ R
n and O � O′ � R

n \ {ξ} with O′ of class C1,1. As Ga,b(·, ξ ) ∈ C(∂O′), we get
from [17, Theorem 6.18, page 106] (interior Hölder regularity) that Ga,b(·, ξ ) belongs to
C2,α(O).

Proposition 1 There exist C = C(n, λ, κ ,α) and ν = ν(α) > 2 so that, for any ξ ∈ R
n

andO � R
n \ {ξ}, we have

‖Ga,b(·, ξ )‖C2,α (O) ≤ C�(d + �)ν max
(
�−(2+α), 1

)
�−n+2. (2.17)

Here, � = dist
(
ξ ,O

)
, d = diam(O) and

�(h) = [1 + 2h + 2h2 + h3]λ, h > 0.

The proof of this proposition is based the following lemma consisting in an adaptation of
the usual interior Schauder estimates. The proof of this technical lemma will be given in
“Appendix A” section.

Lemma 3 There exist two constants C = C(n,α) and ν = ν(α) > 1 with the property
that, for any bounded subset Q of Rn, δ > 0 so that Qδ = {x ∈ Q; dist(x, ∂Q) > δ} �= ∅,
w ∈ C2,α(Q) ∩ C

(
Q

)
satisfying La,bw = 0 inQ andQ′ ⊂ Qδ , we have

‖w‖C2,α
(
Q′

) ≤ Cmax
(
δ−(2+α), 1

)
�(d)ν‖w‖C(Q), (2.18)

where � is as in Proposition 1 and d = diam(Q).

Proof of Proposition 1 We get, by applying Lemma 3 with Q′ = O, δ = �/2 and Q ={
x ∈ R

n; dist
(
x,O

)
< �/2

}
,

‖Ga,b(·, ξ )‖C2,α (O) ≤ C�(d + �)ν max
(
δ−(2+α), 1

)
‖Ga,b(·, ξ )‖C(Q).

This and (2.11) yield

‖Ga,b(·, ξ )‖C2,α (O) ≤ C�(d + �)ν max
(
δ−(2+α), 1

)
�−n+2e−�/

√
cκ , (2.19)

with C = C(n, λ, κ ,α) and c = c(n, λ). It is then clear that (2.19) implies (2.17). 
�
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The preceding proposition together with Lemma 15 enables us to state the following
corollary.

Corollary 1 There exist C = C(n, λ, κ ,α, θ ) and ν = ν(α) > 1 so that, for any ξ ∈ R
n and

O � R
n \ {ξ}, we have

‖Ga,b(·, ξ )‖H2+θ (O) (2.20)

≤ C�(d + �)ν max
(
dn/2,dn/2+α−θ

)
max

(
�−(2+α), 1

)
�−n+2,

where � = dist
(
ξ ,O

)
, d = diam(O).

Corollary 2 There exist C = C(n, λ, κ ,α) and c = c(n, λ, κ ,α) so that, for any ξ1, ξ2 ∈ R
n

andO � R
n \ {ξ1, ξ2}, we have∥∥∥∥Ga,b(·, ξ2)

Ga,b(·, ξ1)
∥∥∥∥
C2,α (O)

≤ Cec(d+�+)
(
1 + max

(
�

−(2+α)
− , 1

)
�−n+2−

)4
, (2.21)

where �− = min (dist (ξ1,O) , dist (ξ2,O)) and �+ = max (dist (ξ1,O) , dist (ξ2,O)).

Proof In this proof C = C(n, λ, κ ,α), c = c(n, λ, κ ,α) and ν = ν(α) > 2 are generic
constants.
From Proposition 1, we have

‖Ga,b(·, ξj)‖C2,α (O) ≤ C�(d + �+)ν max
(
�

−(2+α)
− , 1

)
�−n+2− , j = 1, 2. (2.22)

Let C0 ≥ 1 end c0 ≥ 1 be the constants in (2.11) and fix 0 < δ0 ≤ 1. Then, the first
inequality in (2.11) gives

1
Ga,b(·, ξ1) ≤ C0 (d + �+)n−2 e2

√c0κ(d+�+).

This inequality together with Lemma 14 in “Appendix A” yields∥∥∥∥ 1
Ga,b(·, ξ1)

∥∥∥∥
C2,α (O)

≤ Cec(d+�+)
(
1 + ‖Ga,b(·, ξ1)‖C2,α (O)

)3
. (2.23)

Then in light of (2.22) and (2.23), we get in a straightforward manner∥∥∥∥Ga,b(·, ξ2)
Ga,b(·, ξ1)

∥∥∥∥
C2,α (O)

≤ Cec(d+�+)
(
1 + (1 + d)ν max

(
�

−(2+α)
− , 1

)
�−n+2−

)4
,

and hence∥∥∥∥Ga,b(·, ξ2)
Ga,b(·, ξ1)

∥∥∥∥
C2,α (O)

≤ Cec(d+�+)
(
1 + max

(
�

−(2+α)
− , 1

)
�−n+2−

)4
.

This is the expected inequality. 
�

This corollary combined with Lemma 15 yields the following result.

Corollary 3 There exist C = C(n, λ, κ ,α, θ ) and c = c(n, λ, κ ,α, θ ) so that, for any ξ1, ξ2 ∈
R
n andO � R

n \ {ξ1, ξ2}, we have∥∥∥∥Ga,b(·, ξ2)
Ga,b(·, ξ1)

∥∥∥∥
H2+θ (O)

≤ Cec(d+�+)
(
1 + max

(
�

−(2+α)
− , 1

)
�−n+2−

)4
. (2.24)

Here, �± is the same as in Corollary 2.
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2.3 Gradient estimate of the quotient of two fundamental solutions

The following result uses the singularity of the Green function near the location of the
point source.

Lemma 4 There exist x∗ ∈ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2}, C = (n, λ, κ , |ξ1 − ξ2|) > 0 and
ρ = ρ(n, λ, κ , |ξ1 − ξ2|) > 0 so that B(x∗, ρ) ⊂ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2} and

C ≤
∥∥∥∥∇

(
Ga,b(·, ξ2)
Ga,b(·, ξ1)

)∥∥∥∥
L2(B(x∗,ρ))

.

Proof We set for notational conveniencew = Ga,b(·, ξ2)/Ga,b(·, ξ1). In light of Theorem 3,
we obtain by straightforward computations the following two-sided inequality

C−1

|x − ξ2|n−2 ≤ w(x) ≤ C
|x − ξ2|n−2 , x ∈ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2}. (2.25)

Here and until the end of this proof C = C(n, λ, κ , |ξ1 − ξ2|) is a generic constant.
Set t̃ = |ξ1 − ξ2|/4 and define

ϕ(t, θ ) = w(ξ2 + tθ ), (t, θ ) ∈ (0, t̃] × S
n−1.

According to Corollary 2, ϕ ∈ C2,α
loc ((0, t̃] × S

n−1) and hence

ϕ(t̃ , θ ) − ϕ(t, θ ) =
∫ t̃

t
∇w(ξ2 + sθ ) · θds,

which in turn gives

|ϕ(t̃ , θ ) − ϕ(t, θ )|2 ≤ (t̃ − t)
∫ t̃

t

∣∣∇w(ξ2 + sθ )
∣∣2 ds

≤ t̃
∫ t̃

t

∣∣∇w(ξ2 + sθ )
∣∣2 ds

≤ t̃
∫ t̃

t

sn−1

tn−1
∣∣∇w(ξ2 + sθ )

∣∣2 ds, (t, θ ) ∈ (0, t̃] × S
n−1.

Whence, where t ∈ (0, t̃],

tn−1
∫
Sn−1

|ϕ(t̃ , θ ) − ϕ(t, θ )|2dθ ≤ t̃
∫
C t

∣∣∇w(x)
∣∣2 dx. (2.26)

Here,

Ct = {
x ∈ R

n; t < |x − ξ2| < t̃
}
.

On the other hand, inequalities (2.25) imply, where (t, θ ) ∈ (0, t̃] × S
n−1,

C−1

tn−2 ≤ ϕ(t, θ ) ≤ C
tn−2 .

Let us then choose t0 ≤ t̃ sufficiently small in such a way that

C−1

tn−2 − C
t̃n−2 > 0, t ∈ (0, t0].

Therefore, for (t, θ ) ∈ (0, t0] × S
n−1, we have

(
C−1

tn−2 − C
t̃n−2

)2
≤ |ϕ(t̃ , θ ) − ϕ(t, θ )|2. (2.27)
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We then obtain by combining inequalities (2.26) and (2.27)

|Sn−1|
(
C−1

tn−2 − C
t̃n−2

)2
≤ t̃

∫
C t

∣∣∇w(x)
∣∣2 dx, t ∈ (0, t0].

We have in particular

C ≤
∫
C t0

∣∣∇w(x)
∣∣2 dx.

Let ρ = t0/4. Then, it is straightforward to check that, for any x ∈ Ct0 ,

B(x, ρ) ⊂ {y ∈ R
n; 3t0/4 ≤ |y − ξ2| ≤ 5t̃/4} ⊂ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2}.

Since Ct0 is compact, we find a positive integer N = N (λ, κ , |ξ1 − ξ2|) and xj ∈ Ct0 ,
j = 1, · · · , N , so that

Ct0 ⊂
N⋃
j=1

B(xj, ρ).

Hence,

C ≤
∫

∪N
j=1B(xj ,ρ)

∣∣∇w(x)
∣∣2 dx.

Pick then x∗ ∈ {xj, 1 ≤ j ≤ N } in such a way that∫
B(x∗ ,ρ)

∣∣∇w(x)
∣∣2 dx = max

1≤j≤N

∫
B(xj ,ρ)

∣∣∇w(x)
∣∣2 dx.

Therefore,

C ≤
∫
B(x∗ ,ρ)

∣∣∇w(x)
∣∣2 dx.

This finishes the proof. 
�

3 Uniform lower bound for the gradient
LetO be a Lipschitz bounded domain of Rn and σ ∈ C0,1(O) satisfying

�−1 ≤ σ and ‖σ‖C0,1(O) ≤ � , (3.1)

for some fixed constant � > 1.
We prove in this section a polynomial lower bound of the local L2-norm of the gradient

of solutions of

Lσu = div(σ∇u) = 0 in O.

In a first step, we establish, via a three-ball inequality for the gradient, a uniform lower
bound of negative exponential type. We use then in a second step an argument based on
the so-called frequency function in order to improve this lower bound.

3.1 Preliminary lower bound

We need hereafter the following three-ball inequality for the gradient.

Theorem 4 Let 0 < k < � < mbe real. There exist two constants C = C(n, � , k, �, m) > 0
and 0 < γ = γ (n, � , k, �, m) < 1 so that, for any v ∈ H1(O) satisfying Lσ v = 0, y ∈ O and
0 < r < dist(y, ∂O)/m, we have

C‖∇v‖L2(B(y,�r)) ≤ ‖∇v‖γ

L2(B(y,kr))‖∇v‖1−γ

L2(B(y,mr)).
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A proof of this theorem can be found in [9] or [10].
Define the geometric distance dDg on the bounded domain D of Rn by

dDg (x, y) = inf
{
�(ψ); ψ : [0, 1] → D Lipschitz path joining x to y

}
,

where

�(ψ) =
∫ 1

0
|ψ̇(t)|dt

is the length of ψ .
Note that according to Rademacher’s theorem any Lipschitz continuous function ψ :

[0, 1] → D is almost everywhere differentiable with |ψ̇(t)| ≤ k a.e. t ∈ [0, 1], where k is
the Lipschitz constant of ψ .

Lemma 5 Let D be a bounded Lipschitz domain of Rn. Then, dDg ∈ L∞(D ×D) and there
exists a constant cD > 0 so that

|x − y| ≤ dDg (x, y) ≤ cD|x − y|, x, y ∈ D. (3.2)

We refer to [23, Lemma A3] for a proof.
In this subsection, we use the following notations

Oδ = {x ∈ O; dist(x, ∂O) > δ}
and

χ (O) = sup{δ > 0; Oδ �= ∅}.
Define

S (O, x0,M, η, δ) = {
u ∈ H1(O); Lσu = 0 in O, (3.3)

‖∇u‖L2(O) ≤ M, ‖∇u‖L2(B(x0 ,δ)) ≥ η
}
,

with δ ∈ (0,χ (O)/3), x0 ∈ O3δ , η > 0 andM ≥ 1 satisfying η < M.

Lemma 6 There exist two constants c = c(n, �) ≥ 1 and 0 < γ = γ (n, �) < 1 so that, for
any u ∈ S (O, x0,M, η, δ) and x ∈ O3δ , we have

e−[ln(cM/η)/γ ]e[2n| ln γ |]c|x−x0|/δ ≤ ‖∇u‖L2(B(x,δ)), (3.4)

where c = cO is as in Lemma 5.

Proof Pick u ∈ S (O, x0,M, η, δ). Let x ∈ O3δ and ψ : [0, 1] → O be a Lipschitz path
joining x = ψ(0) to x0 = ψ(1), so that �(ψ) ≤ 2dg (x0, x). Here and henceforth, for
simplicity convenience, we use dg (x0, x) instead of dO

g (x0, x).
Let t0 = 0 and tk+1 = inf{t ∈ [tk , 1]; ψ(t) /∈ B(ψ(tk ), δ)}, k ≥ 0. We claim that

there exists an integer N ≥ 1 verifying ψ(1) ∈ B(ψ(tN ), δ). If not, we would have ψ(1) /∈
B(ψ(tk ), δ) for any k ≥ 0. As the sequence (tk ) is non-decreasing and bounded from
above by 1, it converges to t̂ ≤ 1. In particular, there exists an integer k0 ≥ 1 so that
ψ(tk ) ∈ B

(
ψ(t̂), δ/2

)
, k ≥ k0. But this contradicts the fact that

∣∣ψ(tk+1) − ψ(tk )
∣∣ ≥ δ,

k ≥ 0.
Let us check that N ≤ N0, where N0 = N0(n, |x − x0|, c, δ). Pick 1 ≤ j ≤ n so that

max
1≤i≤n

∣∣ψi(tk+1) − ψi(tk )
∣∣ = ∣∣ψj(tk+1) − ψj(tk )

∣∣ ,



E. Bonnetier et al. Res Math Sci (2022) 9:24 Page 13 of 30 24

where ψi is the ith component of ψ . Then,

δ ≤ n
∣∣ψj(tk+1) − ψj(tk )

∣∣ = n
∣∣∣∣
∫ tk+1

tk
ψ̇j(t)dt

∣∣∣∣ ≤ n
∫ tk+1

tk
|ψ̇(t)|dt.

Consequently, where tN+1 = 1,

(N + 1)δ ≤ n
N∑
k=0

∫ tk+1

tk
|ψ̇(t)|dt = n�(ψ) ≤ 2ndg (x0, x) ≤ 2nc|x − x0|.

Therefore,

N ≤ N0 =
[
2nc|x − x0|

δ

]
.

Let y0 = x and yk = ψ(tk ), 1 ≤ k ≤ N . If |z − yk+1| < δ, then |z − yk | ≤ |z − yk+1| +
|yk+1 − yk | < 2δ. In other words, B(yk+1, δ) ⊂ B(yk , 2δ). We get from Theorem 4

‖∇u‖L2(B(yj ,2δ)) ≤ C‖∇u‖1−γ

L2(B(yj ,3δ))
‖∇u‖γ

L2(B(yj ,δ))
, 0 ≤ j ≤ N, (3.5)

for some constants C = C(n, �) > 0 and 0 < γ = γ (n, �) < 1.
Set Ij = ‖∇u‖L2(B(yj ,δ)), 0 ≤ j ≤ N and IN+1 = ‖∇u‖L2(B(x0 ,δ)). Since B(yj+1, δ) ⊂

B(yj, 2δ), 1 ≤ j ≤ N − 1, estimate (3.5) implies

Ij+1 ≤ CM1−γ Iγj , 0 ≤ j ≤ N. (3.6)

Let C1 = C1+γ+···+γN+1 and β = γN+1. Then, by a simple induction argument, estimate
(3.6) yields

IN+1 ≤ C1M1−β Iβ0 . (3.7)

Without loss of generality, we assume in the sequel thatC ≥ 1 in (3.6). Using thatN ≤ N0,
we have

β ≥ β0 = γN0+1,

C1 ≤ C
1

1−γ ,(
I0
M

)β

≤
(
I0
M

)β0

.

These estimates in (3.7) give

IN+1
M

≤ C
1

1−γ

(
I0
M

)γN0+1

,

from which we deduce that

‖∇u‖L2(B(x0 ,δ)) ≤ C
1

1−γ M1−γN0+1‖∇u‖γN0+1

L2(B(x,δ)).

ButM ≥ 1. Whence

η ≤ ‖∇u‖L2(B(x0 ,δ)) ≤ C
1

1−γ M‖∇u‖γN0+1

L2(B(x,δ)).

The expected inequality follows readily from this last estimate. 
�
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3.2 An estimate for the frequency function

Some tools in the present section are borrowed from [15,16,19]. Let u ∈ H1(O) and
σ ∈ C0,1(O) satisfying the bounds (3.1). We recall that the usual frequency function,
relative to the operator Lσ , associated with u is defined by

N (u)(x0, r) = rD(u)(x0, r)
H (u)(x0, r)

,

provided that B(x0, r) � O, with

D(u)(x0, r) =
∫
B(x0 ,r)

σ (x)|∇u(x)|2dx,

H (u)(x0, r) =
∫

∂B(x0 ,r)
σ (x)u2(x)dS(x).

Define also

K (u)(x0, r) =
∫
B(x0 ,r)

σ (x)u2(x)dx.

Prior to studying the properties of the frequency function, we prove some preliminary
results. Fix u ∈ H2(O) so that Lσu = 0 in O and, for simplicity convenience, we drop in
the sequel the dependence on u of N , D, H and K .

Lemma 7 For x0 ∈ Oδ and 0 < r < δ, we have

∂rH (x0, r) = n − 1
r

H (x0, r) + H̃ (x0, r) + 2D(x0, r), (3.8)

∂rD(x0, r) = n − 2
r

D(x0, r) + 1
r
D̃(x0, r) + 2Ĥ (x0, r). (3.9)

Here,

H̃ (x0, r) =
∫

∂B(x0 ,r)
u2∇σ (x) · ν(x)dS(x),

Ĥ (x0, r) =
∫

∂B(x0 ,r)
σ (x)(∂νu(x))2dS(x),

D̃(x0, r) =
∫
B(x0 ,r)

|∇u(x)|2∇σ (x) · (x − x0)dx.

Proof Pick x0 ∈ Oδ and 0 < r < δ. A simple change of variable yields

H (x0, r) =
∫

∂B(0,1)
σ (x0 + ry)u2(x0 + ry)rn−1dS(y).
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Hence,

∂rH (x0, r) = n − 1
r

H (x0, r) +
∫

∂B(0,1)
∇(σu2)(x0 + ry) · yrn−1dS(y)

= n − 1
r

H (x0, r) +
∫

∂B(0,1)
u2(x0 + ry)∇σ (x0 + ry) · yrn−1dS(y)

+
∫

∂B(0,1)
σ (x0 + ry)∇(u2)(x0 + ry) · yrn−1dS(y)

= n − 1
r

H (x0, r) +
∫

∂B(x0 ,r)
u2(x)∇σ (x) · ν(x)dS(x)

+
∫

∂B(x0 ,r)
σ (x)∇(u2)(x) · ν(x)dS(x)

= n − 1
r

H (x0, r) + H̃ (x0, r) +
∫

∂B(x0 ,r)
σ (x)∇(u2)(x) · ν(x)dS(x).

Identity (3.8) will follow if we prove

2D(x0, r) =
∫

∂B(x0 ,r)
σ (x)∇(u2)(x) · ν(x)dS(x). (3.10)

To this end, we observe that div(σ∇u) = 0 implies

div(σ∇(u2)) = 2udiv(σ∇u) + 2σ |∇u|2 = 2σ |∇u|2.
We then get by applying the divergence theorem

2D(x0, r) =
∫
B(x0 ,r)

div(σ (x)∇(u2)(x))dx (3.11)

=
∫

∂B(x0 ,r)
σ (x)∇(u2)(x) · ν(x)dS(x).

This proves (3.10).
By a change of variable, we have

D(x0, r) =
∫ r

0

∫
∂B(0,1)

σ (x0 + ty)|∇u(x0 + ty)|2tn−1dS(y) dt.

Hence,

∂rD(x0, r) =
∫

∂B(0,1)
σ (x0 + ry)|∇u(x0 + ry)|2rn−1dS(y)

=
∫

∂B(x0 ,r)
σ (x)|∇u(x)|2dS(x)

= 1
r

∫
∂B(x0 ,r)

σ (x)|∇u(x)|2(x − x0) · ν(x)dS(x).

An application of the divergence theorem then gives

∂rD(x0, r) = 1
r

∫
B(x0 ,r)

div(σ (x)|∇u(x)|2(x − x0))dx.

Therefore,

∂rD(x0, r) = 1
r

∫
B(x0 ,r)

|∇u(x)|2div(σ (x)(x − x0))dx

+ 1
r

∫
B(x0 ,r)

σ (x)(x − x0) · ∇(|∇u(x)|2)dx
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implying

∂rD(x0, r) = n
r
D(x0, r) + 1

r
D̃(x0, r) (3.12)

+ 1
r

∫
B(x0 ,r)

σ (x)(x − x0) · ∇(|∇u(x)|2)dx.

On the other hand,
∫
B(x0 ,r)

σ (x)(xj − x0,j)∂j(∂iu(x))2dx = 2
∫
B(x0 ,r)

σ (x)(xj − x0,j)∂2iju∂iu(x)dx

= −2
∫
B(x0 ,r)

∂i
[
∂iu(x)σ (x)(xj − x0,j)

]
∂ju(x)dx

+ 2
∫

∂B(x0 ,r)
σ (x)∂iu(x)(xj − x0,j)∂ju(x)νi(x)dS(x)

= −2
∫
B(x0 ,r)

∂2iiu(x)σ (x)(xj − x0,j)∂ju(x)dx

− 2
∫
B(x0 ,r)

∂iu(x)∂ju(x)∂i
[
σ (x)(xj − x0,j)

]
dx

+ 2
∫

∂B(x0 ,r)
σ (x)∂iu(x)(xj − x0,j)∂ju(x)νi(x)dS(x).

Thus, taking into account that σ�u = −∇σ · ∇u,
∫
B(x0 ,r)

σ (x)(x − x0) · ∇(|∇u(x)|2)dx = −2
∫
B(x0 ,r)

σ (x)|∇u(x)|2dx

+ 2r
∫

∂B(x0 ,r)
σ (x)(∂νu(x))2dS(x).

This identity in (3.12) yields

∂rD(x0, r) = n − 2
r

D(x0, r) + 1
r
D̃(x0, r) + 2Ĥ (x0, r).

That is we proved (3.9). 
�

Lemma 8 We have

K (x0, r) ≤ rer�
2
H (x0, r), x0 ∈ Oδ , 0 < r < δ.

Proof Taking into account that H (x0, r) ≥ 0 and D(x0, r) ≥ 0, we obtain from identity
(3.8)

∂rH (x0, r) ≥
∫

∂B(x0 ,r)
∂νσ (x)u2(x)dS(x)

≥
∫

∂B(x0 ,r)

∂νσ (x)
σ (x)

σ (x)u2(x)dS(x) ≥ −�2H (x0, r).

Consequently, r → er�2H (x0, r) is non-decreasing and then
∫ r

0
H (x0, t)dt ≤

∫ r

0
et�

2
H (x0, t)dt

≤
∫ r

0
er�

2
H (x0, r)dt ≤ rer�

2
H (x0, r).
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As

K (x0, r) =
∫ r

0
H (x0, t)dt,

We end up getting

K (x0, r) ≤ rer�
2
H (x0, r).

This completes the proof. 
�
Now, straightforward computations yield, for x0 ∈ Oδ and 0 < r < δ,

∂rN (x0, r)
N (x0, r)

= 1
r

+ ∂rD(x0, r)
D(x0, r)

− ∂rH (x0, r)
H (x0, r)

. (3.13)

Lemma 9 For x0 ∈ Oδ and 0 < r < δ, we have

N (x0, r) ≤ e2�
2δN (x0, δ).

Proof We have from formulas (3.8) and (3.9) and identity (3.13)

∂rN (x0, r)
N (x0, r)

= D̃(x0, r)
rD(x0, r)

− H̃ (x0, r)
H (x0, r)

+ 2
Ĥ (x0, r)
D(x0, r)

− 2
D(x0, r)
H (x0, r)

(3.14)

= D̃(x0, r)
rD(x0, r)

− H̃ (x0, r)
H (x0, r)

+ 2
Ĥ (x0, r)H (x0, r) − D(x0, r)2

D(x0, r)H (x0, r)
.

But from (3.11), we have

D(x0, r) =
∫

∂B(x0 ,r)
σ (x)u(x)∂νu(x)dS(x).

Then, we find by applying Cauchy–Schwarz’s inequality

D(x0, r)2 ≤
(∫

∂B(x0 ,r)
σ (x)u2(x)dS(x)

) (∫
∂B(x0 ,r)

σ (x)(∂νu)2(x)dS(x)
)
.

That is

D2(x0, r) ≤ H (x0, r)Ĥ (x0, r). (3.15)

This and (3.14) lead
∂rN (x0, r)
N (x0, r)

≥ D̃(x0, r)
rD(x0, r)

− H̃ (x0, r)
H (x0, r)

. (3.16)

On the other hand∣∣H̃ (x0, r)
∣∣ ≤ �‖∇a‖∞H (x0, r) ≤ �2H (x0, r), (3.17)

and similarly∣∣D̃(x0, r)∣∣ ≤ �2rD(x0, r). (3.18)

In light of (3.16), (3.17) and (3.18), we derive
∂rN (x0, r)
N (x0, r)

≥ −2�2,

that is to say

∂r(e2�
2rN (x0, r)) ≥ 0.

Consequently,

N (x0, r) ≤ e2�
2(δ−r)N (x0, δ) ≤ e2�

2δN (x0, δ),

as expected. 
�
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3.3 Polynomial lower bound

Lemma 10 There exist a universal constant � and two constants c = c(n, �) > 0 and
0 < γ = γ (n, �) < 1 so that if

C0(h) = M��4(1 + d)δ−1e3�
2δ+[2 ln(cM/η)/γ ]e[6n| ln γ |]ch

, h > 0,

then

‖N (u)(x, ·)‖L∞(0,δ) ≤ C0(|x − x0|/δ),
for any u ∈ S (O, x0,M, η, δ/3), where c = cO is as in Lemma 5.

Proof Pick x ∈ Oδ . Then, from Lemma 6

‖∇u‖L2(B(x,δ/3)) ≥ e−[ln(cM/η)/γ ]e[6n| ln γ |]c|x−x0|/δ
,

for some constant c = c(n, �) and 0 < γ = γ (n, �)) < 1.
On the other hand, we establish in a quite classical manner the following Caccioppoli’s

inequality

‖∇u‖2L2(B(x,δ/3)) ≤ ��2(1 + d)
δ2

‖u‖2L2(B(x,δ)),
where � is a universal constant. Therefore,

‖u‖2L2(B(x,δ)) ≥ C̃0(|x − x0|/δ), (3.19)

where

C̃0(h) = δ2

��2(1 + d)
e−[2 ln(cM/η)/γ ]e[6n| ln γ |c]h

, h > 0. (3.20)

Since K (u)(x, δ) ≥ �−1‖u‖2L2(B(x,δ)), we find

K (u)(x, δ) ≥ δ2

��3(1 + d)
e−[2 ln(cM/η)/γ ]e[6n| ln γ |]c|x−x0|/δ

. (3.21)

In light of Lemma 8, we derive from (3.21)

H (u)(x, δ) ≥ δe−�2δ

��3(1 + d)
e−[2 ln(cM/η)/γ ]e[6n| ln γ |]c|x−x0|/δ

. (3.22)

In light of Lemma 9, we get

N (x, r) ≤ �e2�
2δ ‖∇u‖L2(O)

H (u)(x, δ)
, 0 < r < δ,

This inequality and (3.22) give, where c = c(n, �) is a constant,

N (x, r) ≤ M��4(1 + d)δ−1e3�
2δ+[2 ln(cM/η)/γ ]e[6n| ln γ |]c|x−x0|/δ

, 0 < r < δ,

which is the expected inequality. 
�
Proposition 2 Let C0 be as in Lemma 10, C̃0 as in (3.20) and set

C1(h) = 2C0(h) + n, h > 0, (3.23)

C̃2(h) = �−2e−�2δ C̃0(h), h > 0. (3.24)

If u ∈ S (O, x0,M, η, δ/3), then

C̃2(|x − x0|/δ)
( r

δ

)C1(|x−x0|/δ) ≤ ‖u‖2L2(B(x,r)), x ∈ Oδ , 0 < r < δ.
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Proof Observing that, where H = H (u),

∂r

(
ln

H (x, r)
rn−1

)
= ∂rH (x, r)

H (x, r)
− n − 1

r
,

We get from Lemma 10, (3.8) and the fact that |H̃ (x, r)| ≤ �2H (x, r),

∂r

(
ln

H (x, r)
rn−1

)
≤ �2 + 2N (x, r)

r
≤ �2 + 2C0(|x − x0|/δ)

r
, 0 < r < δ,

Thus,∫ sδ

sr
∂t

(
ln

H (x, t)
tn−1

)
dt = ln

H (x, sδ)rn−1

H (x, sr)δn−1 ≤ �2(δ − r)s + 2C0(|x − x0|/δ) ln δ

r
,

for 0 < s < 1 and 0 < r < δ. Hence,

H (x, sδ) ≤ e�
2δ

(
δ

r

)C1(|x−x0|/δ)−1
H (x, sr),

and then

‖u‖2L2(B(x,δ)) ≤ �δ

∫ 1

0
H (x, sδ)ds

≤ �δe�
2δ

(
δ

r

)C1(|x−x0|/δ)−1 ∫ 1

0
H (x, rs)ds

≤ �2e�
2δ

(
δ

r

)C1(|x−x0|/δ)
‖u‖2L2(B(x,r)).

Combined with (3.19), this estimate yields in a straightforward manner

�−2e−�2δ C̃0(|x − x0|/δ)
( r

δ

)C1(|x−x0|/δ) ≤ ‖u‖2L2(B(x,r)).
This is the expected inequality. 
�
For a bounded domain D, we denote the first nonzero eigenvalue of the Laplace–

Neumann operator onD byμ2(D). Sinceμ2(B(x0, r)) = μ2(B(0, 1))/r2, we get by applying
Poincaré–Wirtinger’s inequality

‖w − {w}‖2L2(B(x,r)) ≤ 1
μ2(B(x, r))

‖∇w‖2L2(B(x,r)) (3.25)

≤ r2

μ2(B(0, 1))
‖∇w‖2L2(B(x,r)),

for any w ∈ H1(B(x, r)), where {w} = 1
|B(x,r)|

∫
B(x,r) w(x)dx.

Noting thatS (O, x0,M, η, δ/3) is invariant under the transformation u → u − {u}, we
can state the following consequence of Proposition 2

Corollary 4 With the notations of Proposition 2, if u ∈ S (O, x0,M, η, δ/3), then

C2(|x − x0|/δ)
( r

δ

)C1(|x−x0|/δ) ≤ ‖∇u‖2L2(B(x,r)), x ∈ Oδ , 0 < r < δ,

with

C2(h) = μ2(B(0, 1))δ−2C̃2(h), h > 0, (3.26)

with C̃2 as in Proposition 2.
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It is important to remark that the argument we used to obtain Corollary 4 from Propo-
sition 2 is no longer valid if we substitute Lσ by Lσ plus a multiplication operator by a
function σ0.
The following consequence of the preceding corollary will be useful in the proof of

Theorem 1.

Lemma 11 Let ω � O and set δ = dist(ω, ∂O). Let u ∈ S (O, x0,M, η, δ/3) and f ∈
C0,α(O). Then, we have

‖f ‖L∞(ω) ≤ Ĉ3‖f ‖1−μ̂

C0,α (O)‖f |∇u|2‖μ̂

L1(O), (3.27)

with

μ̂ = α

maxx∈O C1(|x − x0|/δ) + α
,

Ĉ3 = max
(
2δα(max

(
1, (Ĉ2δα)−1

)
,max

(
1,M2) (Ĉ2δα)−1

)
,

where Ĉ2 = maxx∈O C2(|x − x0|/δ) with C2 being as in Corollary 4.

Proof By homogeneity, it is enough to consider those functions f ∈ C0,α(O) sat-
isfying ‖f ‖C0,α (O) = 1. Let C1 and C2 be, respectively, as in (3.23) and (3.26). Let
u ∈ S (O, x0,M, η, δ/3) and f ∈ C0,α(O) satisfying ‖f ‖C0,α (O) = 1. Pick then x ∈ ω.
From Corollary 4, we have

C2(|x − x0|/δ)
( r

δ

)C1(|x−x0|/δ) ≤ ‖∇u‖2L2(B(x,r)), 0 < r < δ. (3.28)

On the other hand, it is straightforward to check that

|f (x)| ≤ |f (y)| + rα , y ∈ B(x, r).

Whence

|f (x)|
∫
B(x,r)

|∇u(y)|2dy ≤
∫
B(x,r)

|f (y)||∇u(y)|2dy

+ rα

∫
B(x,r)

|∇u(y)|2dy.

That is we have

|f (x)|‖∇u‖2L2(B(x,r) ≤ ‖f |∇u|2‖L1(B(x,r)) + rα‖∇u‖2L2(B(x,r)).
Since u is non-constant, by the unique continuation property, we have ‖∇u‖2L2(B(x,r)) �= 0,
0 < r < δ. Therefore,

|f (x)| ≤ ‖f |∇u|2‖L1(B(x,r))
‖∇u‖2L2(B(x,r))

+ rα , 0 < r < δ.

This and (3.28) entail

|f (x)| ≤ C2(|x − x0|/δ)−1
(

δ

r

)C1(|x−x0|)
‖f |∇u|2‖L1(B(x,r)) + rα , 0 < r < δ.

Hence,

|f (x)| ≤ C2(|x − x0|/δ)−1
(
1
s

)C1(|x−x0|)
‖f |∇u|2‖L1(O) + δαsα , 0 < s < 1.
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In consequence,

‖f ‖L∞(ω) ≤ Ĉ2
(
1
s

)α̂

‖f |∇u|2‖L1(O) + δαsα , 0 < s < 1,

where α̂ = maxx∈O C1(|x − x0|/δ). The expected inequality follows by minimizing the
right-hand side of the last inequality, with respect to s. 
�

4 Proof of Theorem 1
Pick (a, b), (ã, b̃) ∈ D(λ, κ) and let uj = Ga,b(·, ξj) and ũj = Gã,b̃(·, ξj), j = 1, 2. By simple
computations we can check that w = u2/u1 is the solution of the equation

div(σ∇w) = 0 in R
n \ {ξ1, ξ2},

with

σ = au21 = av21
b2

.

Similarly, w̃ = ũ2/ũ1 is the solution of the equation

div(σ̃∇w̃) = 0 in R
n \ {ξ1, ξ2},

with

σ̃ = ãũ21 = ãṽ21
b̃2

.

Weknow from Lemma 4 that there exist x∗ ∈ B(ξ2, |ξ1−ξ2|/2)\{ξ2}, η0 = η0(n, λ, κ , |ξ1−
ξ2|) > 0 and ρ = ρ(n, λ, κ , |ξ1 − ξ2|) > 0 so that B(x∗, ρ) ⊂ B(ξ2, |ξ1 − ξ2|/2) \ {ξ2} and

η0 ≤ ‖∇w‖L2(B(x∗ ,ρ)). (4.1)

Fix then a bounded domainQ ofRn \ {ξ1, ξ2} is such a way that � ∪B(x∗, ρ) � Q, and set

δ = dist(� ∪ B(x∗, ρ), ∂Q).

In the rest of this proof, d = diam(Q). According to Corollary 3

‖∇w‖L2(Q) ≤ M = Cec(d+�+)
(
1 + max

(
�

−(2+α)
− , 1

)
�−n+2−

)4
, (4.2)

with C = C(n, λ, κ ,α, θ ) and c = c(n, λ, κ ,α, θ ), �− = min (dist (ξ1,Q) , dist (ξ2,Q)) and
�+ = max (dist (ξ1,Q) , dist (ξ2,Q)).
Now, since

‖σ‖C0,1(Q) ≤ ‖a‖C0,1(Q)‖u1‖2C0,1(Q),

we get, similarly to the end of the proof of Corollary 3, from [17, Lemma 6.35, page 135]

‖σ‖C0,1(Q) ≤ C‖a‖C0,1(Q)‖u1‖2C2,α (Q),

where C = C(n, λ, κ ,d, ξ1, ξ2) > 0 is a constant. This inequality together with Proposi-
tion 1 yields

‖σ‖C0,1(Q) ≤ C, (4.3)

for some constant C = C(n, λ, κ ,d, ξ1, ξ2) > 0.
On the other hand, we have from (2.11)

C−1 min
x∈Q

e−2
√
cκ|x−ξ1|

|x − ξ1|n−2 ≤ u1, in Q, (4.4)
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with constants c = c(n, λ) > 0 and C = C(n, λ, κ) > 0.
We get by combining (4.3) and (4.4) that there exists � = �(n, λ, κ ,α,�, ξ1, ξ2) > 1 so

that

�−1 ≤ σ and ‖σ‖C0,1(Q) ≤ � .

Next, if ρ ≤ δ/3, then (4.1) implies obviously

η0 ≤ ‖∇w‖L2(B(x0 ,δ/3)), (4.5)

with η0 as in (4.1). When ρ > δ/3, we can use the three-ball inequality in Theorem 4 in
order to get

C̃‖∇w‖L2(B(x∗ ,ρ)) ≤ ‖∇w‖sL2(B(x0 ,δ/3))‖∇w‖1−s
L2(B(x∗ ,ρ+δ/3)),

where C̃ = C̃(n, λ, κ ,�, ξ1, ξ2) and 0 < s = s(n, λ, κ ,�, ξ1, ξ2) < 1 are constants. Whence

(C̃η0)1/sM(s−1)/s ≤ ‖∇w‖L2(B(x0 ,δ/3)). (4.6)

In light of (4.2), (4.5) and (4.6),wecan infer that, for someconstantη = η(n, λ, κ ,�, ξ1, ξ2) >

0, w ∈ S (Q, x∗,M, η, δ/3), where M is as in (4.2) and S (Q, x∗,M, η, δ/3) is defined in
(3.3).

Lemma 12 We have

C‖(σ − σ̃ )|∇w|2‖L1(�) ≤ ‖w − w̃‖θ/(2+θ )
L2(�) + ‖σ − σ̃‖L∞(�), (4.7)

where C = C(n, λ, κ ,�,α, θ , ξ1, ξ2) > 0 is a constant.

Proof Clearly, if ζ = σ − σ̃ and u = w − w̃, then

div(σ̃∇u) = div(ζ∇w).

Recall that sgn0 is the sign function defined on R by: sgn0(t) = −1 if t < 1, sgn0(0) = 0
and sgn0(t) = 1 if t > 0. Since

div(|ζ |∇w) = ∇|ζ | · ∇w + |ζ |�w

= sgn0(ζ )∇ζ · ∇w + sgn0(ζ )ζ�w

= sgn0(ζ )div(ζ∇w) = sgn0(ζ )div(σ̃∇u),

we get by integrating by parts
∫

�

|ζ ||∇w|2dx = −
∫

�

div(|ζ |∇w)wdx +
∫

�

|ζ |w∂νwdS(x) (4.8)

= −
∫

�

sgn0(ζ )div(σ̃∇u)wdx +
∫

�

|ζ |w∂νwdS(x).

Thus,∫
�

|ζ ||∇w|2dx ≤ C
(‖u‖H2(�) + ‖ζ‖L∞(�)

)
.

Thus, the following interpolation inequality

‖u‖H2(�) ≤ c�‖u‖θ/(2+θ )
L2(�) ‖u‖2/(2+θ )

H2+θ (�)

and Corollary 3 give (4.7). 
�
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We have from (3.27) in Lemma 11

‖σ̃ − σ‖C(�) ≤ Ĉ3‖σ̃ − σ‖1−μ̂

C0,α (�)‖(σ − σ̃ )|∇w|2‖μ̂

L1(�),

from which we obtain

‖σ̃ − σ‖C(�) ≤ Ĉ3 max
(
1, ‖σ̃ − σ‖C0,α (�)

)
‖(σ − σ̃ )|∇w|2‖μ̂

L1(�).

Combined with Proposition 1, this inequality gives

‖σ̃ − σ‖C(�) ≤ C‖(σ − σ̃ )|∇w|2‖μ̂

L1(�).

Here and henceforward, C = C(n, λ, κ ,�,α, θ , ξ1, ξ2) > 0 is a generic constant.
Therefore, we obtain in light of Lemma 12

‖σ̃ − σ‖C(�) ≤ C
(
‖w − w̃‖θ/(2+θ )

L2(�) + ‖σ − σ̃‖C(�)
)μ̂

.

Since ã = a and b̃ = b on � and regarding the regularity of ui and ũi, i = 1, 2, we finally
get

‖σ̃ − σ‖C(�) ≤ C
(
‖v1 − ṽ1‖C(�) + ‖v2 − ṽ2‖C(�)

)μ̂0
, (4.9)

with

μ̂0 = θμ̂

2 + θ
.

The following lemma will be used in sequel.

Lemma 13 We have

‖u−1
1 − ũ−1

1 ‖C2,α (�) ≤ C
(
‖v1 − ṽ1‖C(�) + ‖v2 − ṽ2‖C(�)

)μ̂1
, (4.10)

where 0 < μ̂1 = μ̂1(n,�, λ, κ ,α, θ , ξ1, ξ2) < 1 and C = C(n,�, λ, κ ,α, θ , ξ1, ξ2) > 0 are
constants.

Proof In this proof C = C(n,�, λ, κ ,α, θ , ξ1, ξ2) > 0 is a generic constant. It is not hard
to check that

− div(σ∇u−1
1 ) = v1 in �,

− div(σ̃∇ũ−1
1 ) = ṽ1 in �.

Hence,

−div(σ∇(u−1
1 − ũ−1

1 )) = (v1 − ṽ1) + div((σ − σ̃ )∇ũ−1
1 ) in �.

By the usual Hölder a priori estimate (see [17, Theorem 6.6, page 98])

C‖u−1
1 − ũ−1

1 ‖C2,α (�) ≤ ‖v1 − ṽ1‖C0,α(�)

+ ‖div((σ − σ̃ )∇ũ−1
1 )‖C0,α (�) + ‖u−1

1 − ũ−1
1 ‖C0,α (�).

Consequently,

‖u−1
1 − ũ−1

1 ‖C2,α (�) ≤ C
(
‖v1 − ṽ1‖C0,α(�) + ‖σ − σ̃‖C1,α (�)

)
, (4.11)

where we used∥∥∥u−1
1 − ũ−1

1

∥∥∥
C0,α(�)

=
∥∥∥b (

v−1
1 − ṽ−1

1

)∥∥∥
C0,α (�)

.
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On the other hand, since

‖σ − σ̃‖C1,1(�) ≤ C, ‖v1 − ṽ1‖C1,α (�) ≤ C

and � is C1,1, we get again from the interpolation inequality in [17, Lemma 6.35, page
135]

‖σ − σ̃‖C1,α (�) ≤ C‖σ − σ̃‖τ

C(�), ‖v1 − ṽ1‖C0,α (�) ≤ C‖v1 − ṽ1‖τ

C(�), (4.12)

where 0 < τ = τ (�,α) < 1 is a constant. Inequality (4.12) in (4.11) yields∥∥∥u−1
1 − ũ−1

1

∥∥∥
C2,α (�)

≤ C
(
‖v1 − ṽ1‖τ

C(�) + ‖σ − σ̃‖τ

C(�)

)
. (4.13)

On the other hand, we have from (4.9)

‖σ̃ − σ‖C(�) ≤ C
(
‖v1 − ṽ1‖C(�) + ‖v2 − ṽ2‖C(�)

)μ̂0
. (4.14)

Whence, we get in light of inequalities (4.13) and (4.14), where μ̂1 = τ μ̂0,∥∥∥u−1
1 − ũ−1

1

∥∥∥
C2,α (�)

≤ C
(
‖v1 − ṽ1‖C(�) + ‖v2 − ṽ2‖C(�)

)μ̂1
.

This is the expected inequality. 
�

Also, since

‖σ − σ̃‖C1,1(�) ≤ C, ‖v1 − ṽ1‖C2,α (�) ≤ C,

we can proceed as in the preceding proof to get

‖σ − σ̃‖C1,α (�) ≤ C‖σ − σ̃‖τ

C(�), ‖v1 − ṽ1‖C1,α (�) ≤ C‖v1 − ṽ1‖τ

C(�), (4.15)

the constant 0 < τ = τ (�,α) < 1. But

a − ã = σu−2
1 − σ̃ ũ1−2 = (σ − σ̃ )u−2

1 + σ̃
(
u−2
1 − ũ−2

1

)

= (σ − σ̃ )u−2
1 + σ̃

(
u−1
1 + ũ−1

1

) (
u−1
1 − ũ−1

1

)
.

Hence,

‖a − ã‖C1,α (�) ≤ C
(
‖u−1

1 − ũ−1
1 ‖C1,α (�) + ‖σ − σ̃‖C1,α (�)

)
. (4.16)

This inequality together with (4.9), (4.10) and (4.15) implies

‖a − ã‖C1,α (�) ≤ C
(
‖v1 − ṽ1‖C(�) + ‖v2 − ṽ2‖C(�)

)μ̂1
. (4.17)

We proceed similarly for b − b̃. Since

b − b̃ = v1u−1
1 − ṽ1ũ−1

1 = (v1 − ṽ1)u−1
1 + ṽ1(u−1

1 − ũ−1
1 ),

we have

‖b − b̃‖C0,α (�) ≤ C
(
‖v1 − ṽ1‖C(�) + ‖v2 − ṽ2‖C(�)

)μ̂1
. (4.18)

The expected inequality follows by putting together (4.17) and (4.18).
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Appendix A: Proof of technical lemmas
Proof of Lemma 2 In this proof, C = C(n,μ, ν) > 1 is a generic constant.
It is well known that G1,ν , ν > 0, the fundamental solution of the operator −� + ν, is

given by G1,ν(x, ξ ) = G1,ν(x − ξ ), x, ξ ∈ R
n, with

G1,ν(x) = (2π )−n/2(
√

ν/|x|)n/2−1Kn/2−1(
√

ν|x|).
In the particular case n = 3, we have K1/2(z) = √

π/(2z)e−z and therefore

G1,ν(x) = e−
√

ν|x|

4π |x| .

Let f ∈ C∞
0 (Rn), μ > 0 and ν > 0 be two constants, and denote by u the solution of the

equation

(−μ� + ν)u = f in R
n.

Then,

u(x) =
∫
Rn

Gμ,ν(x, ξ )f (ξ )dξ , x ∈ R
n. (A.1)

We remark that v(x) = u(√μx), x ∈ R
n satisfies (−� + ν)v = f (√μ ·). Whence

u(√μx) = v(x) =
∫
Rn

G1,κ (x − ξ )f (√μξ )dξ

= μ−n/2
∫
Rn

G1,ν(x − ξ/
√

μ)f (ξ )dξ , x ∈ R
n.

Hence,

u(x) = μ−n/2
∫
Rn

G1,ν((x − ξ )/√μ)f (ξ )dξ , x ∈ R
n. (A.2)

Comparing (A.1) and (A.2), we find

Gμ,ν(x, ξ ) = μ−n/2G1,ν((x − ξ )/√μ), x, ξ ∈ R
n.

Consequently, Gμ,ν(x, ξ ) = Gμ,ν(x − ξ ) with

Gμ,ν(x) = (2πμ)−n/2(√νμ/|x|)n/2−1Kn/2−1(
√

ν|x|/√μ), x ∈ R
n. (A.3)

By the usual asymptotic formula for modified Bessel functions of the second kind (see for
instance [5, 9.7.2, page 378]), we have, when |x| → ∞,

Kn/2−1(
√

ν|x|/√μ) =
(

π
√

μ

2
√

ν|x|
)1/2

e−
√

ν|x|/√μ (1 + O(1/|x|)) ,

where O(1/|x|) only depends on n, μ and ν.
Consequently, there exists R = R(n,μ, ν) > 0 so that

C−1 e−
√

ν|x|/√μ

|x|1/2 ≤ Kn/2−1(
√

ν|x|/√μ) ≤ C
e−

√
ν|x|/√μ

|x|1/2 , |x| ≥ R. (A.4)

Substituting if necessary R by max(R, 1), we have
1

|x|n/2−1 ≤ 1
|x|1/2 , |x| ≥ R. (A.5)

Moreover, we have

e−
√

ν|x|/√μ

|x|1/2 =
[
|x|(n−3)/2e−

√
ν|x|/(2√μ)

] e−
√

ν|x|/(2√μ)

|x|n/2−1 , |x| ≥ R.
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Since the function x → |x|(n−3)/2e−
√

ν|x|/(2√μ) is bounded in R
n, we deduce

e−
√

ν|x|/√μ

|x|1/2 ≤ C
e−

√
ν|x|/(2√μ)

|x|n/2−1 , |x| ≥ R. (A.6)

Using (A.5) and (A.6) in (A.4) in order to obtain

C−1 e−
√

ν|x|/√μ

|x|n/2−1 ≤ Kn/2−1(
√

ν|x|/√μ) ≤ C
e−

√
ν|x|/(2√μ)

|x|n/2−1 , |x| ≥ R. (A.7)

We now establish a similar estimate when |x| → 0. To this end, we recall that according
to formula [5, 9.6.9, p. 375] we have

Kn/2−1(ρ) ∼ 1
2
�(n/2 − 1)

(
2
ρ

)n/2−1
as ρ → 0,

from which we deduce in a straightforward manner that there exists 0 < r ≤ R so that

C−1 e−
√

ν|x|/√μ

|x|n/2−1 ≤ Kn/2−1(
√

ν|x|/√μ) ≤ C
e−

√
ν|x|/(2√ν)

|x|n/2−1 , |x| ≤ r. (A.8)

The expected two-sided inequality (2.10) follows by combining (A.4), (A.7) and (A.8). 
�

Proof of Lemma 3 LetQ be an open subset of Rn, set d = diam(Q), dx = dist(x, ∂Q) and
dx,y = min(dx, dy).
We introduce the following weighted Hölder semi-norms and Hölder norms, where

σ ∈ R, 0 < γ ≤ 1, and k is nonnegative integer,

[w](σ )k,0;Q = [w](σ )k,Q = sup
x∈Q, |β|=k

dk+σ
x |∂βw(x)|,

[w](σ )k,γ ;Q = sup
x,y∈Q, |β|=k

dk+γ+σ
x,y

|∂βw(y) − ∂βw(x)|
|y − x|γ ,

|w|(σ )k ;Q =
k∑

j=0
[w](σ )j;Q,

|w|(σ )k,γ ;Q = |w|(σ )k ;Q + [w](σ )k,γ ;Q.

In terms of these notations, we have

|a|(0)0,α;Q = sup
x∈Q

|a(x)| + sup
x,y∈Q

dα
x,y

|a(y) − a(x)|
|y − x|α ≤ (1 + d)λ,

|∂ja|(1)0,α;Q = sup
x∈Q

dx|∂ja(x)| + sup
x,y∈O

d1+α
x,y

|∂ja(y) − ∂ja(x)|
|y − x|α ≤ (d + d2)λ,

|b|(2)0,α;Q = sup
x∈O

d2x |b(x)| + sup
x,y∈Q

d2+α
x,y

|b(y) − b(x)|
|y − x|α ≤ (d2 + d3)λ.

In consequence,

|a|(0)0,α;Q + |∂ja|(1)0,α;Q + |b|(2)0,α;Q ≤ �(d) = [
1 + 2d + 2d2 + d3

]
λ. (A.9)
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Following [17], we define also

[w]∗k,0;Q = [w]∗k,O = sup
x∈Q, |β|=k

dkx |∂βw(x)|,

[w]∗k,γ ;Q = sup
x,y∈Q, |β|=k

dk+α
x,y

|∂βw(y) − ∂βw(x)|
|y − x|γ ,

|w|∗k ;Q =
k∑

j=0
[w]∗j;Q,

|w|∗k,γ ;Q = |w|∗k ;Q + [w]∗k,γ ;O .

From [17, Lemma 6.32, page 130] and its proof, we have the following interpolation
inequalities: Suppose that j and k , nonnegative integers, and 0 ≤ β , γ ≤ 1 are so that
j + β < k + γ . Then, there exist C = C(n,α,β) > 0 and ϑ = ϑ(α,β) so that, for any
w ∈ Ck,α(Q) and ε > 0, we have

[w]∗j,β ;Q ≤ Cε−ϑ |w|0;Q + ε[w]∗k,γ ;Q, (A.10)

|w|∗j,β ;Q ≤ Cε−ϑ |w|0;Q + ε[w]∗k,γ ;Q. (A.11)

Here, |w|0;Q = supx∈Q |w(x)|.
Checking carefully the proof of interior Schauder estimates in [17, Theorem 6.2, page

90], we get, taking into account inequalities (A.9)-(A.11), the following result: There exist
a constant C = C(n) > 0 and τ = τ (α) so that, for any 0 < μ ≤ 1/2 and w ∈ Ck,α(Q)
satisfying La,bw = 0 inQ, we have

[w]∗2,α,Q ≤ C�(d)
(
μ−τ |w|0;Q + μα[w]∗2,α,Q

)
. (A.12)

Substituting in (A.12) C by max(C, 2α−1), we may assume in (A.12) that C = C(n,α) ≥
2α−1. Bearing in mind that �(d) > 1, we can take in (A.12), μ = (2C�(d))−1/α . We find

[w]∗2,α,Q ≤ C�(d)� |w|0;Q, (A.13)

for some constants C = C(n,α) > 0 and � = �(α) > 1.
Using again interpolation inequalities (A.10) and (A.11), we deduce that

|w|∗2,α,Q ≤ C�(d)� |w|0;Q. (A.14)

Let δ > 0 be so that Qδ = {x ∈ Q; dist(x, ∂Q) > δ} is non-empty. If Q′ is an open
subset ofQδ , then (A.14) yields in a straightforward manner

‖w‖C2,α
(
Q′

) ≤ Cmax
(
δ−(2+α), 1

)
�(d)� |w|0;Q.

This is the expected inequality. 
�

Lemma 14 LetK bea compact subset ofRn and f ∈ C2,α(K ) satisfyingminK |f | ≥ c− > 0.
Then,

‖1/f ‖C2,α (K ) ≤ Cc4+
(
1 + ‖f ‖C2,α (K )

)3 , (A.15)

where c+ = max(1, c−1− ) and C = C(diam(K )) is a constant.
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Proof Let x, y ∈ K . Using |1/f |0;K ≤ c+ and the following identities

1
f 2(y)

− 1
f 2(x)

=
(

1
f (x)f 2(y)

+ 1
f (x)2f (y)

)
(f (x) − f (y)),

1
f 3(y)

− 1
f 3(x)

=
(

1
f (x)f 3(y)

+ 1
f 2(x)f 2(y)

+ 1
f (x)3f (y)

)
(f (x) − f (y)),

we easily get

[1/f j]α;K ≤ 3c4+[f ]α;K , j = 2, 3. (A.16)

Also, we have

∂if (y)∂j f (x)
f 3(y)

− ∂if (y)∂j f (x)
f 3(x)

= ∂if (y)
f 3(y)

(∂j f (y) − ∂j f (x))

+ ∂j f (x)
f 3(y)

(∂if (y) − ∂if (x))

+
(

1
f 3(y)

− 1
f 3(x)

)
(∂if (y)∂j f (x)).

In light of (A.16), this identity yields

[
∂if ∂j f /f 3

]
α;K ≤ c4+

(
[∂if ]α;K |∂j f |0;K (A.17)

+[∂j f ]α;K |∂if |0;K + [f ]α;K |∂if |0;K |∂j f |0;K
)
.

On the other hand, since

∂2ij f (y)
f 2(y)

− ∂2ij f (x)
f 2(x)

= 1
f 2(y)

(
∂2ij f (y) − ∂2ij f (x)

)
+

(
1

f 2(y)
− 1

f 2(y)

)
∂2ij f (x),

we find, by using again (A.16),
[
∂2ij f /f

2
]
α;K

≤ 3c4+
([

∂2ij f
]
α;K

+ [f ]α;K
∣∣∣∂2ij f

∣∣∣
0,K

)
. (A.18)

Inequalities (A.17), (A.18), the identity ∂2ij(1/f ) = 2∂if ∂j f /f 3 − ∂2ij f /f
2 and the interpola-

tion inequality [17, Lemma 6.35, p. 135] (by proceeding as in Corollary 2) imply

[∂2ij(1/f )]α,K ≤ Cc4+
(
1 + ‖f ‖C2,α (K )

)3 , (A.19)

where C = C(diam(K )) is a constant.
The other terms for 1/f appearing in the norms ‖ · ‖C2,α (K ) can be estimated similarly

to the semi-norm in (A.19). Inequality (A.15) then follows. 
�

Recall that 0 < θ < α < 1.

Lemma 15 C2,α(O) is continuously embedded in H2+θ (O). Furthermore, there exists C =
C(n,α − θ ) so that, for any w ∈ C2,α(O), we have

‖w‖H2+θ (O) ≤ Cmax
(
dn/2,dn/2+α−θ

) ‖w‖C2,α(O), (A.20)

where d = diam(O).
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Proof Let w ∈ C2,α(O) and, for fixed 1 ≤ i, j ≤ n, set g = ∂2ijw. Then,
∫
O

∫
O

|g(x) − g(y)|2
|x − y|n+2θ dxdy ≤ [g]2α;O

∫
O

∫
O

1
|x − y|n−2(α−θ ) dxdy.

In light of [10, Lemma A3, p. 246], this inequality yields
∫
O

∫
O

|g(x) − g(y)|2
|x − y|n+2θ dxdy ≤ |Sn−1||O|d2(α−θ )

2(α − θ )
[g]2α;O ,

But |O| ≤ |B(0,d)|. Hence,
∫
O

∫
O

|g(x) − g(y)|2
|x − y|n+2θ dxdy ≤ |Sn−1|2dn+2(α−θ )

2(α − θ )
[g]2α;O . (A.21)

Using (A.21) and the inequality

‖h‖2L2(O) ≤ |Sn−1|dn|h|0,O , h ∈ C(O),

we get from the definition of the norm of Hs-spaces in [18, formula (1.3.2.2), page 17]

‖w‖H2+θ (O) ≤ Cmax
(
dn/2,dn/2+α−θ

) ‖w‖C2,α (O),

for some constant C = C(n,α − θ ) > 0. This is the expected inequality 
�
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