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Abstract

Cakoni and Nguyen recently proposed very general conditions on the coefficients of
Maxwell equations for which they established the discreteness of the set of eigenvalues
of the transmission eigenvalue problem and studied their locations. In this paper, we
establish the completeness of the generalized eigenfunctions and derive an optimal
upper bound for the counting function under these conditions, assuming additionally
that the coefficients are twice continuously differentiable. The approach is based on
the spectral theory of Hilbert–Schmidt operators.

1 Introduction
Let � ⊂ R

3 be a bounded domain of class C3. Let ε, μ, μ̂, ε̂ ∈ [L∞(�)]3×3 be symmetric
and uniformly elliptic. A complex number ω ∈ C is called a transmission eigenvalue if
there exists a nonzero solution (E,H, Ê, Ĥ ) ∈ [L2(�)]12 of the following Cauchy problem:

{ ∇ × E = iωμH in �,

∇ × H = −iωεE in �,

{ ∇ × Ê = iωμ̂Ĥ in �,

∇ × Ĥ = −iωε̂Ê in �,
(1.1)

(Ê − E) × ν = 0 on ∂�, and (Ĥ − H ) × ν = 0 on ∂�. (1.2)

Here and in what follows, ν denotes the unit, outward, normal vector to ∂�.
The transmission eigenvalue problem, proposed by Kirsch [16] and Colton and Monk

[10], has been an active research topic in the inverse scattering theory for inhomogeneous
media. It has a connection with the injectivity of the relative scattering operator. Trans-
mission eigenvalues are related to interrogating frequencies for which there is an incident
field that is not scattered by the medium. We refer the reader to [7] for a recent and
self-contained introduction to the topic.
Cakoni and Nguyen [8] have recently studied the transmission eigenvalue problem for

Maxwell equations in a very general setting. Under the assumption that ε, μ, ε̂, μ̂ are of
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class C1 in a neighborhood of the boundary, they proposed the following condition:

ε, μ, ε̂, μ̂ are isotropic on ∂�, and ε �= ε̂, μ �= μ̂, ε/μ �= ε̂/μ̂ on ∂� (1.3)

(see Remark 4 for the convention used in (1.3)). Under this assumption, Cakoni and
Nguyen showed that the set of eigenvalues λj of system (1.1)-(1.2) is discrete. In studying
the location of the eigenvalues under this condition, they showed that, for every γ > 0,
there exists ω0 > 0 such that if ω ∈ C with |�(ω2)| ≥ γ |ω|2 and |ω| ≥ ω0, then ω is not
a transmission eigenvalue. Their analysis is inspired and guided by the famous work of
Agmon, Douglis, and Nirenberg [2,3] on complementing boundary conditions.
In this paper, we further study spectral properties of the transmission eigenvalue prob-

lem under assumption (1.3) given above. More precisely, we establish the completeness
of the generalized eigenfunctions and derive an optimal upper bound for the counting
function of the transmission eigenvalues.
Before stating our results, as in [8], we denote

H(�) :=
{
(u, v, û, v̂) ∈ [L2(�)]12 : div(εu) = div(μv) = div(ε̂û) = div(μ̂v̂) = 0 in �

and ε̂û · ν − εu · ν = μ̂v̂ · ν − μv · ν = 0 on ∂�
}
. (1.4)

The functional space H(�), which plays a role in both the analysis in [8] as well as in
this paper, is a Hilbert space with the standard [L2(�)]12-scalar product. One of the
motivations for the definition of H(�) is the fact that if (E,H, Ê, Ĥ ) ∈ [L2(�)]12 is an
eigenfunction of the transmission eigenvalue problem, i.e., a solution of (1.1) and (1.2) for
some ω ∈ C, then (E,H, Ê, Ĥ ) ∈ H(�) except for ω = 0. The other motivation is on the
compactness of Tk defined below.
The first main result of this paper is on the completeness of the generalized eigenfunc-

tions. We have

Theorem 1.1 Assume that ε, μ, ε̂, μ̂ ∈ [C2(�̄)]3×3 and (1.3) holds. The space spanned
by the generalized eigenfunctions is complete in H(�), i.e., the space spanned by them is
dense in H(�).

Remark 1 See also Remark 7 for a discussion of another version of Theorem 1.1.

Remark 2 The space spanned by the generalized eigenfunctions corresponding to a given
transmission eigenvalue is of finite dimension. This follows from the compactness of the
operator Tk (see (1.11) below). As a consequence of Theorem 1.1, the number of trans-
mission eigenvalues is infinite and the space spanned by the transmission eigenfunctions
is of infinite dimension.

The second main result of this paper is on an upper bound for the counting function
N . This function is defined by, for t > 0,

N (t) := #
{
j : |λj| ≤ t

}
. (1.5)

Concerning the behavior ofN (t) for a large value of t, we have

Theorem 1.2 Assume that ε, μ, ε̂, μ̂ ∈ [C2(�̄)]3×3 and (1.3) holds. There exists a con-
stant c > 0 such that, for t > 1,

N (t) ≤ ct3. (1.6)
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Theorem 1.2, complementary to Theorem 1.1, gives an upper bound for the density of
the distribution of the transmission eigenvalues. This upper bound is optimal in the sense
that it has the same order as the standard Weyl laws for the Maxwell equations [30,35].
Some comments on Theorem 1.1 and Theorem 1.2 are in order. The generalized eigen-

functions associatedwithλj , considered inTheorem1.1, are understood as the generalized
eigenfunctions of the operatorTk , defined in (1.11) below, corresponding to the eigenvalue
(iλj − k)−1 of Tk . One can show that it is independent of k as long as Tk is well defined
(and compact). In the conclusion of Theorem 1.2, the multiplicity of eigenvalues is taken
into account. The meaning of the multiplicity λj is understood as the multiplicity of the
eigenvalue (iλj − k)−1 of the operator Tk . Again, this is independent of k . These points
follow from [1, Theorem 12.4] after applying Lemma 3.1 on the modified resolvent of Tk .
The multiplicity and the generalized eigenfunctions corresponding to λj are then under-
stood as the multiplicity of (iλj − k)−1 and the generalized eigenfunctions corresponding
to (iλj − k)−1 both corresponding to Tk from now on.
We recall here the definition of a generalized eigenfunction and the multiplicity of its

corresponding eigenvalue, see, e.g., [1, Definition 12.5], for the convenience of the reader.

Definition 1.1 Let A : H → H be a linear and bounded operator on a Hilbert space H .
Let λ be an eigenvalue of A. An element v ∈ H \ {0} is a called a generalized eigenfunction
of A if there exists a positive integerm such that

(λ − A)mv = 0. (1.7)

The multiplicity of the eigenvalue λ is defined as the dimension of the set
⋃

m∈N∗ Ker(λ −
A)m.

The study of the transmission eigenvalue problem for Maxwell’s equations is not as
complete as for the scalar case,which is discussed briefly below. Before [8], the discreteness
results could be found in [6,14] (see also [9]) where the case of μ = ε̂ = μ̂ = I , and
ε − I invertible in a neighborhood ∂� was considered. Concerning the other aspects,
Cakoni, Gintides, and Haddar [5] studied the existence of real transmission eigenvalues,
and Haddar and Meng [15] studied the completeness of eigenfunctions for the setting
related to the one in [6] mentioned above. In the isotropic case, under the assumption
μ = μ̂ and εμ �= ε̂μ̂, Vodev recently derived a parabolic eigenvalue-free region [34].
The structure of the spectrum of the transmission eigenvalue problem is better under-

stood in the case of scalar inhomogeneous Helmholtz equations in � of Rd with d ≥ 2.
Let A1 and A2 be two (d × d) symmetric, uniformly elliptic, matrix-valued functions and
	1 and	2 be two bounded positive functions all defined in�. The state-of-the-art results
on the discreteness of transmission eigenvalues are given in [24]. In particular, the authors
showed that the transmission eigenvalue problem corresponding to the pairs (A1,	1) and
(A2,	2) has a discrete spectrum if the coefficients are smooth only near the boundary,
and

(i) A1(x), A2(x) satisfy the complementing boundary condition with respect to ν(x) for
all x ∈ ∂�, i.e., for all x ∈ ∂� and for all ξ ∈ R

d \ {0} with ξ · ν = 0, we have

(A2ν · ν)(A2ξ · ξ ) − (A2ν · ξ )2 �= (A1ν, ν)(A1ξ · ξ ) − (A1ν · ξ )2,

(ii) (A1ν · ν)	1 �= (A2ν · ν)	2 for all x ∈ ∂�.



6 Page 4 of 18 J. Fornerod , H.-M. Nguyen ResMath Sci (2022) 9:6

Assume i) and ii) and A1, A2,	1,	2 are continuous in �̄, the Weyl laws for eigenvalues
and the completeness of the generalized eigenfunctions in [L2(�)]2 were recently estab-
lished by Nguyen and (Q. H.) Nguyen [25]. Previous results on discreteness can be found
in [11,17,31] and references therein. Completeness of transmission eigenfunctions and
estimates on the counting function were studied by Robbiano [28,29] for C∞ boundary
and coefficients, and for the case A1 = A2 = I . Again in C∞ isotropic setting, Vodev [32],
[33] proved the sharpest known results on eigenvalue-free zones and Weyl’s law with an
estimate for the remainder.
The Cauchy problem also naturally appears in the context of negative-index materi-

als after using reflections as initiated in [18] (see also [20]). The well-posedness and the
limiting absorption principle for the Helmholtz equation with sign-changing coefficients
were developed by Nguyen [19] using the Fourier and multiplier approach. Similar prob-
lems for the Maxwell equations were studied by Nguyen and Sil [26]. Both papers [19],
[26] deal with the stability question of negative index materials and are the starting point
for the analysis of the transmission eigenvalue problems in [8,24,25]. Other aspects and
applications of negative-index materials as well as the stability and instability the Cauchy
problem (1.1) and (1.2) are discussed in [20–23] and the references therein.
The starting point and key feature of the analysis in [8] are the following result [8,

Propositions 4.1 and 4.2]:

Theorem 1.3 (Cakoni & Nguyen) Assume that ε, μ, ε̂, μ̂ ∈ [C1(�̄)]3×3 and (1.3) holds,
and let γ > 0. There exist two constants k0 ≥ 1 and C > 0 such that for k ∈ C with
|�(k2)| ≥ γ |k|2 and |k| ≥ k0, for every (Je, Jm, Ĵe, Ĵm) ∈ [L2(�)]12, there exists a unique
solution (E,H, Ê, Ĥ ) ∈ [L2(�)]12 of{ ∇ × E = kμH + Je in �,

∇ × H = −kεE + Jm in �,

{
∇ × Ê = kμ̂Ĥ + Ĵe in �,

∇ × Ĥ = −k ε̂Ê + Ĵm in �,
(1.8)

(Ê − E) × ν = 0 on ∂�, and (Ĥ − H ) × ν = 0 on ∂�. (1.9)

Moreover, if (Je, Jm, Ĵe, Ĵm) ∈ [H (div,�)]4 with (Je · ν − Ĵe · ν, Jm · ν − Ĵm · ν) ∈ [H1/2(∂�)]2,
then

|k| ‖(E,H, Ê, Ĥ )‖L2(�) + ‖(E,H, Ê, Ĥ )‖H1(�) ≤ C‖(Je, Jm, Ĵe, Ĵm)‖L2(�)

+ C
|k| ‖(div Je, div Jm, div Ĵe, div Ĵm)‖L2(�)

+ C
|k| ‖(Je · ν − Ĵe · ν, Jm · ν − Ĵm · ν)‖H1/2(∂�). (1.10)

We recall that the space H (div,�) is defined by

H (div,�) = {u ∈ [L2(�)]3 : div(u) ∈ L2(�)}.

Remark 3 In [8], the coefficients are assumed to be of class C1 near the boundary, and a
variant of (1.10), where the ‖·‖H1(�) is replaced by ‖·‖H1(D∩�) for someneighborhoodD of
∂� (see [8, (4.4) of Proposition 4.1]), was established. Nevertheless, under the smoothness
assumption considered here, (1.10) follows immediately by the same analysis.
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Fix k ∈ C such that the conclusions in Theorem 1.3 hold. One can then define the
operator Tk as follows:

Tk : H(�) → H(�)

(Je,Jm, Ĵe, Ĵm) �→ (E,H, Ê, Ĥ ),
(1.11)

where (E,H, Ê, Ĥ ) is theunique solutionof,with (Je, Jm, Ĵe, Ĵm) = (μJm,−εJe, μ̂Ĵm,−ε̂Ĵe),{ ∇ × E = kμH + Je in �,

∇ × H = −kεE + Jm in �,

{
∇ × Ê = kμ̂Ĥ + Ĵe in �,

∇ × Ĥ = −k ε̂Ê + Ĵm in �,
(1.12)

(Ê − E) × ν = 0 on ∂�, and (Ĥ − H ) × ν = 0 on ∂�. (1.13)

From (1.10) and the compactness criterion related to the Maxwell equations, one can
derive that Tk is compact. It is easy to check that ω is an eigenvalue of the transmission
eigenvalue problem if and only if (iω− k)−1 is an eigenvalue of Tk . The discreteness of the
eigenvalues of the transmission eigenvalue problem then follows from the discreteness of
the eigenvalues of Tk .
In this paper, to derive further spectral properties of the transmission eigenvalue prob-

lem, we develop the analysis in [8] in order to be able to apply the spectral theory of
Hilbert–Schmidt operators. This strategy was previously used in the acoustic setting [25].
To this end, we establish a regularity result (see Theorem 2.1) for solutions given in The-
orem 1.3. In addition to this, one of the main ingredients in the proof of Theorem 1.1
is the density of the range of the map Tk in H(�) with respect to the [L2(�)]12-norm
(see Proposition 3.2). The proof of Theorem 1.1 is also given in a way which does not
involve any extra topological property of � than its connectivity (see Step 2 of the proof
of Proposition 3.2).
The paper is organized as follows. In Sect. 2, we establish the regularity result on the

transmission eigenvalue problem. The last two sections are devoted to the proof of The-
orem 1.1 and Theorem 1.2, respectively.

2 A regularity result for the transmission eigenvalue problem
The following regularity result for the Maxwell transmission eigenvalue problem is the
main result of this section (compare with Theorem 1.3).

Theorem 2.1 Let ε, μ, ε̂, μ̂ ∈ [C2(�̄)]3×3 be symmetric, and let γ > 0. Assume that there
exist � ≥ 1 and �1 > 0 such that

�−1 ≤ ε,μ, ε̂, μ̂ ≤ � in �, ‖(ε,μ, ε̂, μ̂)‖C2(�̄) ≤ �, (2.1)

ε, μ, ε̂, μ̂ are isotropic on ∂�, (2.2)

and, for x ∈ ∂�,

|ε(x) − ε̂(x)| ≥ �1, |μ(x) − μ̂(x)| ≥ �1, |ε(x)/μ(x) − ε̂(x)/μ̂(x)| ≥ �1. (2.3)

There exist two constants k0 ≥ 1 and C > 0 such that, for k ∈ C with |�(k2)| ≥ γ |k|2 and
|k| ≥ k0, the conclusion of Theorem 1.3 holds for (Je, Jm, Ĵe, Ĵm) ∈ [L2(�)]12. Moreover, for
Je, Jm, Ĵe, Ĵm ∈ [H1(�)]3 with div Je, div Jm, div Ĵe, div Ĵm ∈ H1(�) and Je · ν − Ĵe · ν, Jm · ν −
Ĵm · ν ∈ H3/2(∂�), we have

‖(E,H, Ê, Ĥ )‖H2(�) + |k|‖(E,H, Ê, Ĥ )‖H1(�) + |k|2 ‖(E,H, Ê, Ĥ )‖L2(�)
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≤ C|k|‖(Je, Jm, Ĵe, Ĵm)‖L2(�) + C‖(Je, Jm, Ĵe, Ĵm)‖H1(�)

+C‖(div Je, div Jm, div Ĵe, div Ĵm)‖L2(�) + C
|k| ‖(div Je, div Jm, div Ĵe, div Ĵm)‖H1(�)

+C‖(Je · ν − Ĵe · ν, Jm · ν − Ĵm · ν)‖H1/2(∂�)

+ C
|k| ‖(Je · ν − Ĵe · ν, Jm · ν − Ĵm · ν)‖H3/2(∂�), (2.4)

for some positive constant C depending only on �, �, �1, and γ .

Remark 4 The convention used in (1.3) and in (2.3) is as follows. A 3 × 3 matrix-valued
functionM defined in a subset O ⊂ R

3 is called isotropic at x ∈ O if it is proportional to
the identity matrix at x, i.e., M(x) = mI for some scalar m = m(x), where I denotes the
3 × 3 identity matrix. In this case, for notational ease, we also denotem(x) byM(x). IfM
is isotropic for x ∈ O, then M is said to be isotropic in O. Conditions (1.3) and (2.3) are
understood under the conventionm(x) = M(x).

Denote

R
3+ =

{
x = (x1, x2, x3) ∈ R

3; x3 > 0
}

and

R
3
0 =

{
x = (x1, x2, x3) ∈ R

3; x3 = 0
}
.

One of the main ingredients of the proof of Theorem 2.1 is the following lemma, which is
a variant of [8, Corollary 3.1] (see also Remark 5).

Lemma 2.1 Let γ > 0, k ∈ C with |�(k2)| ≥ γ |k|2, and |k| ≥ 1, and let ε, μ, ε̂, μ̂ ∈
[C1(R̄3+)]3×3 be symmetric, uniformly elliptic. Let � ≥ 1 be such that

�−1 ≤ ε, μ, ε̂, μ̂ ≤ � in B1 ∩ R
3+ and ‖(ε,μ, ε̂, μ̂)‖C1(R3+∩B1) ≤ �.

Assume that ε(0), ε̂(0), μ(0), μ̂(0) are isotropic, and for some �1 ≥ 0

|ε(0) − ε̂(0)| ≥ �1, |μ(0) − μ̂(0)| ≥ �1, and |ε(0)/μ(0) − ε̂(0)/μ̂(0)| ≥ �1.

Let Je, Jm, Ĵe, Ĵm ∈ [L2(R3+)]3, and assume that (E,H, Ê, Ĥ ) ∈ [L2(R3)]12 be a solution of the
system1

{ ∇ × E = kμH + Je in R
3+,

∇ × H = −kεE + Jm in R
3+,

{ ∇ × Ê = kμ̂Ĥ + Ĵe in R
3+,

∇ × Ĥ = −k ε̂Ê + Ĵm in R
3+,

(2.5)

(Ê − E) × e3 = 0 on R
3
0, and (Ĥ − H ) × e3 = 0 on R

3
0. (2.6)

There exist 0 < r0 < 1 and k0 > 1 depending only on γ ,�, and�1 such that if the supports
of E, H, Ê, Ĥ are in Br0 ∩ R

3+, then, for |k| > k0,

(i)

|k| ‖(E,H, Ê, Ĥ )‖L2(R3+) ≤ C‖(Je, Jm, Ĵe, Ĵm)‖L2(R3+). (2.7)

(ii) if Je, Jm, Ĵe, Ĵm ∈ H (div,R3+) and Je,3 − Ĵe,3, Jm,3 − Ĵm,3 ∈ H1/2(R3
0), then

‖(E,H, Ê, Ĥ )‖H1(R3+) + |k| ‖(E,H, Ê, Ĥ )‖L2(R3+) ≤ C
(
‖(Je, Jm, Ĵe, Ĵm)‖L2(R3+)

1Here and in what follows, e3 = (0, 0, 1).
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+ 1
|k| ‖(div Je, div Jm, div Ĵe, div Ĵm)‖L2(R3+)

+ 1
|k| ‖(Je,3 − Ĵe,3, Jm,3 − Ĵm,3)‖H1/2(R3

0)

)
. (2.8)

(iii) assume in addition that ε, μ, ε̂, μ̂ ∈ [C2(R̄3+)]3×3 and

‖(ε,μ, ε̂, μ̂)‖C2(R3+∩B1) ≤ �.

Then, if Je, Jm, Ĵe, Ĵm ∈ [H1(R3+)]3, div Je, div Jm, div Ĵe, div Ĵm ∈ H1(R3+), and Je,3 −
Ĵe,3, Jm,3 − Ĵm,3 ∈ H3/2(R3

0), we have

‖(E,H, Ê, Ĥ )‖H2(R3+) + |k|‖(E,H, Ê, Ĥ )‖H1(R3+) + |k|2 ‖(E,H, Ê, Ĥ )‖L2(R3+)

≤ C|k|‖(Je, Jm, Ĵe, Ĵm)‖L2(R3+) + C‖(Je, Jm, Ĵe, Ĵm)‖H1(R3+)

+ C‖(div Je, div Jm, div Ĵe, div Ĵm)‖L2(R3+)

+ C
|k| ‖(div Je, div Jm, div Ĵe, div Ĵm)‖H1(R3+)

+ C‖(Je,3 − Ĵe,3, Jm,3 − Ĵm,3)‖H1/2(R3
0)

+ C
|k| ‖(Je,3 − Ĵe,3, Jm,3 − Ĵm,3)‖H3/2(R3

0)
.

(2.9)

Here, C denotes a positive constant depending only on γ , �, and �1.

Remark 5 Parts (i) and (ii) are from [8, Corollary 3.1], which are restated here for the
convenience of the reader. The new material is in part (iii).

Proof We only prove (iii) (see Remark 5). The idea of the proof is as follows. To derive
(2.9), we first differentiate the system with respect to xj for j = 1, 2 and then derive the
corresponding estimates for (∂xjE, ∂xjH, ∂xj Ê, ∂xj Ĥ ) using (i) and (ii). After that, we use the
system of (E,H ) and (Ê, Ĥ ) to obtain similar estimates for (∂x3E, ∂x3H, ∂x3 Ê, ∂x3Ĥ ). This
strategy is quite standard at least in the regularity theory of second elliptic equations, see,
e.g., [4]. Themain goal of the process is to keep track of the dependence on |k|. The details
are now given.
Fix k0 and r0 such that (i) and (ii) hold. By (ii), we have

‖(E,H, Ê, Ĥ )‖H1(R3+) + |k|‖(E,H, Ê, Ĥ )‖L2(R3+)

≤ C
(

‖(Je, Jm, Ĵe, Ĵm)‖L2(R3+) + 1
|k| ‖(div Je, div Jm, div Ĵe, div Ĵm)‖L2(R3+)

+ 1
|k| ‖(Je,3 − Ĵe,3, Jm,3 − Ĵm,3)‖H1/2(R3

0)

)
. (2.10)

Let j = 1, 2. Differentiating (2.5) and (2.6) with respect to xj , we obtain{ ∇ × ∂xjE = kμ∂xjH + Je in R
3+,

∇ × ∂xjH = −kε∂xjE + Jm in R
3+,

{
∇ × ∂xj Ê = kμ̂∂xj Ĥ + Ĵe in R

3+,
∇ × ∂xj Ĥ = −k ε̂∂xj Ê + Ĵm in R

3+,

(∂xj Ê − ∂xjE) × e3 = 0 on R
3
0, and (∂xj Ĥ − ∂xjH ) × e3 = 0 on R

3
0,

where

Je = ∂xj Je + k(∂xjμ)H, Jm = ∂xj Jm − k(∂xjε)E,

Ĵe = ∂xj Ĵe + k(∂xj μ̂)Ĥ , Ĵm = ∂xj Ĵm − k(∂xj ε̂)Ê.
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Applying (ii) to (∂xjE, ∂xjH, ∂xj Ê, ∂xj Ĥ ), we deduce that

‖(∂xjE, ∂xjH, ∂xj Ê, ∂xj Ĥ )‖H1(R3+) + |k|‖(∂xjE, ∂xjH, ∂xj Ê, ∂xj Ĥ )‖L2(R3+) ≤ C(R1 + R2),
(2.11)

where

R1 =‖(∂xj Je, ∂xj Jm, ∂xj Ĵe, ∂xj Ĵm)‖L2(R3+)

+ 1
|k| ‖(div ∂xj Je, div ∂xj Jm, div ∂xj Ĵe, div ∂xj Ĵm)‖L2(R3+)

+ 1
|k| ‖(∂xj Je,3 − ∂xj Ĵe,3, ∂xj Jm,3 − ∂xj Ĵm,3)‖H1/2(R3

0)
, (2.12)

and

R2 = |k|‖(E,H, Ê, Ĥ )‖L2(R3+) + ‖(E,H, Ê, Ĥ )‖H1(R3+) + ‖(E,H, Ê, Ĥ )‖H1/2(R3
0)
. (2.13)

Combing (2.10), (2.12), and (2.13), we derive from (2.11) that

‖(∂xjE, ∂xjH, ∂xj Ê, ∂xj Ĥ )‖H1(R3+) + |k|‖(∂xjE, ∂xjH, ∂xj Ê, ∂xj Ĥ )‖L2(R3+)

≤ the RHS of (2.9). (2.14)

On the other hand, from the system of (E,H ), we have, in R
3+,

∂x3E2 = ∂x2E3 − k(μH )1 − Je,1, ∂x3E1 = ∂x1E3 + k(μH )2 + Je,2 and

∂x3

⎛
⎝ 3∑

j=1
ε3jEj

⎞
⎠ = −

2∑
�=1

3∑
j=1

∂x�
ε�jEj + 1

k
div(Jm). (2.15)

Combining (2.10), (2.14), and (2.15), and using the fact that ε33 ≥ �−1, one has

‖E‖H2(R3+) + |k|‖E‖H1(R3+) + |k|2 ‖E‖L2(R3+) ≤ the RHS of (2.9). (2.16)

Similarly, one obtains

‖(H, Ê, Ĥ )‖H2(R3+) + |k|‖(H, Ê, Ĥ )‖H1(R3+)

+|k|2 ‖(H, Ê, Ĥ )‖L2(R3+) ≤ the RHS of (2.9). (2.17)

The conclusion of Lemma 2.1 follows from (2.14), (2.16), and (2.17). ��
We are ready to give

Proof of Theorem 2.1 Let K be a compact subset of �. Fix ϕ ∈ C2
c (�) such that ϕ = 1 in

K . Set

(Eϕ , Hϕ , Êϕ , Ĥϕ) = ϕ(E,H, Ê, Ĥ ) in �.

From the system of (E,H, Ê, Ĥ ), we have{ ∇ × Eϕ = kμHϕ + Jϕ,e in �,

∇ × Hϕ = −kεEϕ + Jϕ,m in �,

{ ∇ × Êϕ = kμ̂Ĥϕ + Ĵϕ,e in �,

∇ × Ĥϕ = −k ε̂Êϕ + Ĵϕ,m in �,
(2.18)

(Êϕ − Eϕ) × ν = 0 on ∂�, and (Ĥϕ − Hϕ) × ν = 0 on ∂�. (2.19)

Here, in �,

Jϕ,e = ∇ϕ × E + ϕJe, Jϕ,m = ∇ϕ × H + ϕJm,
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Ĵϕ,e = ∇ϕ × Ê + ϕ Ĵe, Ĵϕ,m = ∇ϕ × Ĥ + ϕ Ĵm.

Differentiating the system of (Eϕ , Hϕ , Êϕ , Ĥϕ) with respect to xj (1 ≤ j ≤ 3) and applying
Theorem 1.3, we obtain, as in the proof of Lemma 2.1,

‖(Eϕ , Hϕ , Êϕ , Ĥϕ)‖H2(�) ≤ C|k|‖(Jϕ,e, Jϕ,m, Ĵϕ,e, Ĵϕ,m)‖L2(�)

+C‖(Jϕ,e, Jϕ,m, Ĵϕ,e, Ĵϕ,m)‖H1(�)

+C‖(div Jϕ,e, div Jϕ,m, div Ĵϕ,e, div Ĵϕ,m)‖L2(�)

+ C
|k| ‖(div Jϕ,e, div Jϕ,m, div Ĵϕ,e, div Ĵϕ,m)‖H1(�).

This implies

‖(Eϕ , Hϕ , Êϕ , Ĥϕ)‖H2(�) ≤ C|k|‖(Je, Jm, Ĵe, Ĵm)‖L2(�) + C‖(Je, Jm, Ĵe, Ĵm)‖H1(�)

+C‖(div Je, div Jm, div Ĵe, div Ĵm)‖L2(�) + C
|k| ‖(div Je, div Jm, div Ĵe, div Ĵm)‖H1(�)

+C|k|‖(E,H, Ê, Ĥ )‖L2(�) + C‖(E,H, Ê, Ĥ )‖H1(�). (2.20)

Applying Theorem 1.3 again, we derive from (2.20) that

‖(Eϕ , Hϕ , Êϕ , Ĥϕ)‖H2(�) + |k|‖(Eϕ , Hϕ , Êϕ , Ĥϕ)‖H1(�)

+|k|2‖(Eϕ , Hϕ , Êϕ , Ĥϕ)‖L2(�) ≤ the RHS of (2.4). (2.21)

The conclusion of Theorem 2.1 now follows from (2.21) and Lemma 2.1 via local charts.
The proof is complete. ��

3 Completeness of the generalized eigenfunctions: Proof of Theorem 1.1
To establish the completeness of the generalized eigenfunctions, we use Theorem 2.1 and
apply the theory of Hilbert–Schmidt operators. To this end, we first recall

Definition 3.1 LetH be a separable Hilbert space, and let (φk )∞k=1 be an orthogonal basis.
A bounded, linear operator T : H → H is Hilbert–Schmidt if its finite double norm

T :=
( ∞∑
k=1

‖T(φk )‖2H
)1/2

< +∞.

Remark 6 The definition of T does not depend on the choice of (φk ), see, e.g., [1,
Chapter 12].

Using Theorem 2.1, we can establish the following result.

Proposition 3.1 Assume that ε, μ, ε̂, μ̂ ∈ [C2(�̄)]3×3 and (1.3) holds, and let γ > 0. Let
k0 ≥ 1 and C > 0 be constants such that for k ∈ C with |�(k2)| ≥ γ |k|2 and |k| ≥ k0, the
conclusions of Theorem 2.1 hold. Then, for such a complex number k,

‖T 2
k (J )‖H2(�) + |k|‖T 2

k (J )‖H1(�) + |k|2‖T 2
k (J )‖L2(�)

≤ C‖J ‖L2(�) ∀J = (Je,Jm, Ĵe, Ĵm) ∈ H(�). (3.1)

Consequently,

(i) T 2
k is a Hilbert–Schmidt operator defined in H(�); moreover,

T 2
k ≤ C

|k|1/2 , (3.2)
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for some positive constant C, independent of k.
(ii) For θ ∈ R with |�(e2iθ )| > 0, eiθ is a direction of minimal growth of the modified

resolvent of T 2
k .

For the convenience of the reader, we recall briefly here some notions associated with
the concept of the minimal growth. Let A be a continuous, linear transformation from
a Hilbert space H into itself. The modified resolvent set ρm(A) of A is the set of all
λ ∈ C \ {0} such that I − λA is bijective (and continuous). If λ ∈ ρm(A), then the map
Aλ := A(I − λA)−1 is the modified resolvent of A (see [1, Definition 12.3]). For θ ∈ R,
eiθ is a direction of minimal growth of the modified resolvent of A if for some a > 0, the
following two facts hold for all r > a: i) reiθ is in the modified resolvent set ρm(A) of A
and ii) ‖Areiθ ‖ ≤ C/r (see [1, Definition 12.6]).
Another key ingredient of the proof of Theorem 1.1 is:

Proposition 3.2 Assume that ε, μ, ε̂, μ̂ ∈ [C2(�̄)]3×3 and (1.3) holds. Let k ∈ C be such
that the conclusion of Theorem 2.1 holds. We have

Tk (H(�))L
2(�) = H(�).

The rest of this section contains three subsections. In the first subsection, we give the
proof of Proposition 3.1. The proofs of Proposition 3.2 and Theorem 1.1 are given in the
last two subsections, respectively.

3.1 Proof of Proposition 3.1

We first state and prove a lemma used in the proof of Proposition 3.1.

Lemma 3.1 Let k, s ∈ C be such that Tk ,Tk+s : H(�) → H(�) are bounded. We have

(i) If Tk is compact, then s ∈ ρm(Tk ).
(ii) Assume s ∈ ρm(Tk ). Then,

Tk (I − sTk )−1 = (I − sTk )−1Tk = Tk+s. (3.3)

Proof of Lemma 3.1 We begin with assertion i). Since Tk is compact, it suffices to prove
that I − sTk is injective. Indeed, let (E,H, Ê, Ĥ ) ∈ H(�) be a solution of the equation
I − sTk = 0. One can check that (E,H, Ê, Ĥ ) = Tk+s(0) = 0. Assertion i) follows.
We next establish ii). Let J = (Je,Jm, Ĵe, Ĵm) ∈ H(�) be arbitrary. Set

(E,H, Ê, Ĥ ) = Tk+s(J ), (3.4)

J 1 = (J 1
e ,J 1

m, Ĵ 1
e , Ĵ 1

m) = (I − sTk )−1(J ), (3.5)

(E1, H1, Ê1, Ĥ1) = Tk (J 1). (3.6)

We claim that

(E1, H1, Ê1, Ĥ1) = (E,H, Ê, Ĥ ),

which implies Tk (I − sTk )−1 = Tk+s since J is arbitrary.
To prove the claim, we will show that (E1, H1, Ê1, Ĥ1) and (E,H, Ê, Ĥ ) satisfy the same

Cauchy problem. We have

∇ × E (3.4)= (k + s)μH + μJm,
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∇ × E1 (3.6)= kμH1 + μJ 1
m,

J 1 − J (3.5)= sTk (J1)
(3.6)= s(E1, H1, Ê1, Ĥ1). (3.7)

This implies

∇ × E1 = (k + s)μH1 + μJm,

(compare with (3.7)). Similarly, we can derive that (E1, H1, Ê1, Ĥ1) and (E,H, Ê, Ĥ ) satisfy
the same system since it is clear that, on ∂�,

(Ê1 − E1) × ν = (Ĥ1 − H1) × ν = 0 = (Ê − E) × ν = (Ĥ − H ) × ν.

The claim is proved.
Since

(I − sTk )(I − sTk )−1 = I = (I − sTk )−1(I − sTk ),

and s �= 0 by the definition of ρm(Tk ), we obtain

Tk (I − sTk )−1 = (I − sTk )−1Tk .

The proof is complete. ��

We are ready to give

Proof of Proposition 3.1 Assertion (3.1) is a consequence of Theorem 1.3 and Theorem
2.1. Indeed, as a consequence of (3.1) and Gagliardo–Nirenberg’s inequality, see [12,27],
we derive, for J ∈ H(�), that T 2

k (J ) ∈ [C(�̄)]12, and

‖T 2
k (J )‖L∞(�) ≤ C‖T 2

k (J )‖
3
4
H2(�)‖T 2

k (J )‖
1
4
L2(�) ≤ C

|k|1/2 ‖J ‖L2(�).

It follows from the theory of Hilbert–Schmidt operators, see, e.g., [25, Lemma 3] 2, that
T 2
k is a Hilbert–Schmidt operator defined onH(�) and

T 2
k ≤ C

|k|1/2 .

We next check the assertion on the minimal growth of the modified resolvent of Tk . We
have

lim
r→+∞ |�(

(k + reiθ )2
)|/|k + reiθ |2 = |�(e2iθ )| ≥ 2γ ,

for some γ > 0. It follows, for a large enough, that k + reiθ satisfies the conclusion of
Theorem 2.1 for r > a. On the other hand, let (E,H, Ê, Ĥ ) ∈ H(�). We first note that, for
s ∈ C,

(I − sTk )(E,H, Ê, Ĥ ) = 0 if and only if (E,H, Ê, Ĥ ) = Tk+s(0) = 0,

provided that Tk+s is well defined. Since Tk is compact, it follows that reiθ ∈ ρm(Tk ) for
r > a. By Lemma 3.1, we also have, with s = reiθ ,

Tk (I − sTk )−1 = (I − sTk )−1Tk = Tk+s.

2In [25, Lemma 3], the statement is on [L2(�)]m for somem ≥ 1; nevertheless, the proof also gives the result forH(�)
sinceH(�) is equipped with the [L2(�)]12-norm.



6 Page 12 of 18 J. Fornerod , H.-M. Nguyen ResMath Sci (2022) 9:6

Let s1 = ir1/2eiθ/2 and s2 = −ir1/2eiθ/2. Thus, (t − s1)(t − s2) = t2 − s for t ∈ C. One
then can check that

T 2
k (I − sT 2

k )
−1 = T 2

k (I − s1Tk )−1(I − s2Tk )−1

Lemma3.1= Tk (I − s1Tk )−1Tk (I − s2Tk )−1 = Tk+s1Tk+s2 .

It follows from Theorem 1.3 that

‖T 2
k (I − sT 2

k )
−1‖H(�)→H(�) = ‖Tk+s1Tk+s2‖H(�)→H(�)

≤ ‖Tk+s1‖H(�)→H(�)‖Tk+s2‖H(�)→H(�)

≤ C
1

|s1|
1

|s2| = C
|s| .

The assertion on the minimal growth of the modified resolvent of T 2
k follows. ��

3.2 Proof of Proposition 3.2

We first state and prove the following technical result, which is used in the proof of
Proposition 3.2.

Lemma 3.2 LetM ∈ [C1(�̄)]3×3 be symmetric and uniformly elliptic. Let U ∈ [H1(�)]3

be such that div(MU ) = 0 in �. There exists a sequence (Un)n ⊂ [H1(�)]3 such that

div(MUn) = 0 in �, (3.8)

MUn · ν = MU · ν on ∂�, Un × ν = 0 on ∂�, (3.9)

and

Un → U in [L2(�)]3 as n → +∞. (3.10)

Proof of Lemma 3.2 Since � is connected, U ∈ [H1(�)]3 and div(MU ) = 0 in �, by [13,
lemma 2.2], there exists Ṽ ∈ [H1(�)]3 such that

div Ṽ = 0 in � and Ṽ = MU · ν

Mν · ν
Mν on ∂�. (3.11)

Set V = M−1Ṽ in �. One can easily check from the definition of V and (3.11) that

div(MV ) = 0 in �, MV · ν = MU · ν on ∂� and V × ν = 0 on ∂�. (3.12)

Set Ũ = U −V in �. Since div(MU ) = 0 in �, we derive from (3.12) that div(MŨ ) = 0
in� andMŨ ·ν = 0 on ∂�. It follows from [13, Theorem 2.8] that there exists a sequence
(Ũn)n ⊂ [C1

c (�)]3 such that

div(Ũn) = 0 in � (3.13)

and

Ũn → MŨ in [L2(�)]3 as n → +∞. (3.14)

Set

Un = M−1Ũn + V.

We claim that the sequence (Un)n has the required properties. Indeed,

div(MUn) = div(Ũn) + div(MV ) (3.12),(3.13)= 0 in �,
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and since Ũn ∈ [C1
c (�)]3, we also have

MUn · ν = Ũn · ν + MV · ν
(3.12)= MU · ν on ∂�,

and

Un × ν = M−1Ũn × ν + V × ν
(3.12)= 0 on ∂�.

Moreover, since V ∈ [H1(�)]3, it follows that Un ∈ [H1(�)]3. By (3.14), we obtain

Un → Ũ + V = U in [L2(�)]3 as n → +∞.

The proof is complete. ��
We are ready to give

Proof of Proposition 3.2 Since Tk is a map from H(�) into H(�), it suffices to prove the
following two facts

[H1(�)]12 ∩ H(�) ⊂ Tk
(
H(�)

)L2(�)
, (3.15)

and

[H1(�)]12 ∩ H(�) is dense inH(�) with respect to [L2(�)]12 − norm. (3.16)

These will be proved in Steps 1 and 2 below.
Step 1 Proof of (3.15). Let (E,H, Ê, Ĥ ) ∈ [H1(�)]12 ∩ H(�). By applying Lemma

3.2 with (M, U ) equal to (ε, E), (μ, H ), (ε̂, Ê), and (μ̂, Ĥ ), there exists a sequence(
(En, Hn, Ên, Ĥn)

)
n ⊂ [H1(�)]12 ∩ H(�) such that

En × ν = Hn × ν = Ên × ν = Ĥn × ν = 0 on ∂�, (3.17)

and

(En, Hn, Ên, Ĥn) → (E,H, Ê, Ĥ ) in [L2(�)]12 as n → +∞. (3.18)

Set, in �,

J ne = ∇ × En − kμHn, Jnm = ∇ × Hn + kεHn, (3.19)

Ĵ ne = ∇ × Ên − kμ̂Ĥn, Ĵ nm = ∇ × Ĥn + k ε̂Ĥn, (3.20)

and define (J n
e ,J n

m, Ĵ n
e , Ĵ n

m) in � via (J ne , J nm, Ĵ ne , Ĵ nm) = (μJ n
m,−εJ n

e , μ̂Ĵ n
m,−ε̂Ĵ n

e ).
It follows that (1.12) holdswith (E,H, Ê, Ĥ ) and (Je, Jm, Ĵe, Ĵm) replacedby (En, Hn, Ên, Ĥn)

and (J ne , J nm, Ĵ ne , Ĵ nm). Since (En, Hn, Ên, Ĥn) ∈ H(�), it follows that

div J ne = div J nm = div Ĵ ne = div Ĵ nm = 0 in �. (3.21)

On the other hand, from (3.19) and (3.20), we have, on ∂�,

(Ĵ ne − J ne ) · ν = (∇ × Ên − ∇ × Ên) · ν − k(μ̂Ĥn − μHn) · ν.

This implies

(Ĵ ne − J ne ) · ν = 0 on ∂�, (3.22)

since (μ̂Ĥn − μHn) · ν = 0 on ∂� and div∂�

(
(Ên − En) × ν

)
= 0 on ∂� by (3.17).

Similarly, we have

(Ĵ nm − J nm) · ν = 0 on ∂�. (3.23)
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Combining (3.21), (3.22), and (3.23) yields that (J n
e ,J n

m, Ĵ n
e , Ĵ n

m) ∈ H(�).Consequently,

(En, Hn, Ên, Ĥn) ∈ Tk
(
H(�)

)
.

The conclusion of Step 1 now follows from (3.18).
Step 2 Proof of (3.16). Fix (E, H, Ê, Ĥ ) ∈ H(�) arbitrary. There exist sequences

(En)n, (Hn)n ⊂ [H2(�)]3 such that

(εEn, μHn) → (εE, μH ) in [H (div,�)]2. (3.24)

Since

div(ε̂Ê − εE) = div(μ̂Ĥ − μH ) = 0 in � and

(ε̂Ê − εE) · ν = (μ̂Ĥ − μH ) · ν = 0 on ∂�,

by [13, Theorem 2.8], there exist sequences (Un
e )n, (Un

m)n ⊂ [H2(�)]3 such that

divUn
e = divUn

m = 0 in �, (3.25)

and

(Un
e , U

n
m) → (ε̂Ê − εE, μ̂Ĥ − μH ) in [L2(�)]6 as n → +∞. (3.26)

Define Ên, Ĥn ∈ [L2(�)]3 via

ε̂Ên = Un
e + εEn in � and μ̂Ĥn = Un

m + μ̂Hn in �. (3.27)

From (3.24), (3.25), and (3.26), we have

(ε̂Ên, μ̂Ĥn) → (ε̂Ê, μ̂Ĥ ) in [H (div,�)]2. (3.28)

Using (3.24) and (3.28), we derive from the trace theory that, as n → +∞,

(εEn − εE) · ν, (μHn − μH ) · ν, (ε̂Ên − ε̂Ê)

·ν, (μ̂Ĥn − μ̂Ĥ ) · ν → 0 in H−1/2(∂�). (3.29)

Since (ε̂Ê − εE) · ν = (μ̂Ĥ − μH ) · ν = 0 on ∂�, we obtain

(ε̂Ên − εEn) · ν, (μ̂Ĥn − μ̂Hn) · ν → 0, in H−1/2(∂�) as n → +∞. (3.30)

Set

αn
e = 1

|∂�|
∫

∂�

εEn · ν and αn
m = 1

|∂�|
∫

∂�

μHn · ν, (3.31)

where |∂�| denotes the 2-Hausdorff measure of ∂�. We derive that

lim
n→+∞ αn

e
(3.29)= 1

|∂�|
∫

∂�

εE · ν = 1
|∂�|

∫
�

div(εE) = 0. (3.32)

Similarly, we obtain

lim
n→+∞ αn

m = 0. (3.33)

Denote

H1
� (�) =

{
u ∈ H1(�) :

∫
�

u = 0
}
.

Let ξne , ξnm, ξ̂ne , ξ̂nm ∈ H1
� (�) be a solution of{− div(ε∇ξne ) = − div(εEn) in �,

ε∇ξne · ν = αn
e on ∂�,
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{− div(μ∇ξnm) = − div(μHn) in �,

μ∇ξnm · ν = αn
m on ∂�,

(3.34)

{ − div(ε̂∇ ξ̂ne ) = − div(ε̂Ên) in �,

ε̂∇ ξ̂ne · ν = (ε̂Ên − εEn) · ν + αn
e on ∂�,{ − div(μ̂∇ ξ̂nm) = − div(μ̂Ĥn) in �,

μ̂∇ ξ̂nm · ν = (μ̂Ĥn − μHn) · ν + αn
m on ∂�.

(3.35)

By the definition of αn
e and αn

m (3.31), we have∫
�

div(εEn) =
∫

∂�

αn
e and

∫
�

div(μHn) =
∫

∂�

αn
m. (3.36)

It follows that ξne and ξnm are well defined and uniquely determined. We also have∫
�

div(ε̂Ên) −
∫

∂�

(
(ε̂Ên − εEn) · ν + αn

e

) (3.31)= 0

and ∫
�

div(μ̂Ĥn) −
∫

∂�

(
(μ̂Ĥn − μHn) · ν + αn

m

) (3.31)= 0.

Hence, ξ̂ne and ξ̂nm are well defined and uniquely determined as well. From the regularity
theory of elliptic equations, it follows that

(ξne , ξnm, ξ̂ne , ξ̂nm) ∈ [H2(�)]4 . (3.37)

Using (3.30), (3.32), and (3.33), we derive that

ξne , ξnm, ξ̂ne , ξ̂nm → 0 in H1(�) as n → +∞. (3.38)

Set

(En, Hn, Ên, Ĥn) = (En − ∇ξne , Hn − ∇ξnm, Ên − ∇ ξ̂ne , Ĥn − ∇ ξ̂nm) in �. (3.39)

We have, by (3.24), and (3.28), and (3.38),

(En, Hn, Ên, Ĥn) → (E,H, Ê, Ĥ ) in [L2(�)]12. (3.40)

From the definition of ξne , ξnm, ξ̂nn , ξ̂nm, we have

div(εEn) = div(ε̂Ên) = div(μHn) = div(μ̂Ĥn) = 0 in �, (3.41)

and, on ∂�,

(ε̂Ên − εEn) · ν = (μ̂Ĥn − μHn) · ν = 0 on ∂�. (3.42)

Combining (3.37), (3.41), and (3.42) yields

(En, Hn, Ên, Ĥn) ∈ H(�) ∩ [H1(�)]12. (3.43)

The conclusion of Step 2 now follows from (3.40).
The proof is complete. ��

Remark 7 One can rewrite (1.1) and (1.2) under the following form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇ × (
μ−1(∇ × E)

) − ω2εE = 0 in �,

∇ × (
μ̂−1(∇ × Ê)

) − ω2ε̂Ê = 0 in �,

Ê × ν = E × ν on ∂�,(
μ̂−1(∇ × Ê)

) × ν = (
μ−1(∇ × E)

) × ν on ∂�.

(3.44)
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Then, a complex numberω ∈ C is called a transmission eigenvalue if there exists a nonzero
solution (E, Ê) ∈ [L2(�)]6 of (3.44). Theorem 1.1 might be translated as follows:
Completeness:Assume that ε, μ, ε̂, μ̂ ∈ [C2(�̄)]3×3 and (1.3) holds. The space spanned

by the generalized eigenfunctions is complete in G(�), i.e., the space spanned by them is
dense in G(�), where

G(�) =
{
(u, û) ∈ [H (curl,�)]2; div(εu) = div(ε̂û) = 0 in �,

(û − u) × ν = 0 on ∂�,
(
μ̂−1(∇ × û)

) × ν − (
μ−1(∇ × u)

) × ν = 0 on ∂�
}

(3.45)

Remark 8 In [15], the authors studied the completeness of generalized eigenfunctions in
the isotropic case under the assumption that

ε = μ = μ̂ = I in �,

ε̂ ∈ C∞(�̄) and ε̂ is constant different from 1 in a neighborhood of ∂�.

They considered the system under the form (3.44). Since ε = μ = I , their settings and
ours are different.

3.3 Proof of Theorem 1.1

Applying Proposition 3.1, one has

– T 2
k : H(�) → H(�) is a Hilbert–Schmidt operator.

– For θ ∈ R with |�(e2iθ )| > 0, eiθ is a direction of minimal growth of the modified
resolvent of T 2

k .

Applying the theory ofHilbert–Schmidt operators, see, e.g., [1, Theorem16.4], one derives
that
(1) the closure of the space spanned by all generalized eigenfunctions of T 2

k is equal to
T 2
k (H(�)). (The closures are taken with respect to the [L2(�)]12-norm.)

On the other hand, we have
(2) T 2

k (H(�)) = H(�) since

H(�) = Tk (H(�)) (by Proposition 3.2)

= TkTk (H(�)) (by Proposition 3.2)

= T 2
k (H(�)) (by the continuity of Tk ).

(3) The space spanned by the generalized eigenfunctions of T 2
k associated with the

nonzero eigenvalues of T 2
k is equal to the space spanned by the generalized eigenfunctions

of Tk associated with the nonzero eigenvalues of Tk . This can be done as in the last part
of the proof of [1, Theorem 16.5]. Consequently, the space spanned by all generalized
eigenfunctions of T 2

k is equal to the space spanned by all generalized eigenfunctions of Tk .
The conclusion now follows from (1), (2), and (3). ��

4 An upper bound for the counting function: Proof of Theorem 1.2
Let λ̃j be the nonzero eigenvalues of Tk . Note that the nonzero eigenvalue values of T 2

k ,
counted according to multiplicity, are λ̃2j . (This can be proved as in the last part of the
proof of [1, Theorem 16.5].) Applying the spectral theory of Hilbert–Schmidt operators,
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see, e.g., [1, Theorem 12.14] to T 2
k , we have∑

j
|̃λj|4 ≤ T 2

k
2. (4.1)

Applying i) of Proposition 3.1, we obtain∑
j

|̃λj|4 ≤ C|k|−1.

Note that λj is an transmission eigenvalue if and only if (iλj − k)−1 is an eigenvalue of Tk ,
and they have the same multiplicity. It follows that∑

j

1
|iλj − k|4 ≤ C|k|−1. (4.2)

Note that if |λj| ≤ |k|, then |iλj − k| ≤ 2|k|. We then derive from (4.2) that
1

|k|4
∑

j:|λj |≤|k|
1 ≤ C|k|−1.

This implies

N (|k|) ≤ C|k|3.
The proof is complete. ��
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