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Abstract

Recently, Gekeler proved that the group of invertible analytic functions modulo
constant functions on Drinfeld’s upper half space is isomorphic to the dual of an
integral generalized Steinberg representation. In this note, we show that the group of
invertible functions is the dual of a universal extension of that Steinberg representation.
As an application, we show that lifting obstructions of rigid analytic theta cocycles of
Hilbert modular forms in the sense of Darmon–Vonk can be computed in terms of
L-invariants of the associated Galois representation. The same argument applies to
theta cocycles for definite unitary groups.
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Introduction
Let F be a local field and CF the completion of an algebraic closure of F . In [12] Drinfeld
introduced the p-adic period space � of dimension n − 1: it is a rigid analytic variety
over F whose set of CF -points is given by the complement of all F-rational hyperplanes
in P

n−1(CF ). It carries a natural PGLn(F )-action.
Let ACF be the ring of analytic functions on � that are defined over CF . In [25] (see

also [13], Theorem 2.7.11) van der Put constructed for n = 2 a PGL2(F )-equivariant
isomorphism

P : A×
CF

/C×
F

∼=−−→ Dist0(P1(F ),Z),

whereDist0(P1(F ),Z) denotes the space ofZ-valued distributions onP1(F ) with totalmass
0. Recently, Gekeler (see [18]) generalized van der Put’s result to arbitrary dimension and
constructed a PGLn(F )-equivariant isomorphism

P : A×
CF

/C×
F

∼=−−→ Dist0(Grn−1,n(F ),Z),

where Grn−1,n denotes the Grassmannian of hyperplanes in Fn or, by duality, the pro-
jective space of the dual of Fn. A similar result holds if one replaces ACF by the ring
of analytic functions defined over some extension E of F (see Theorem 12 for a precise
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formulation.) Even more recently, Junger gave a completely different proof of this result
(cf. [20], Theorem B).
By definition, the space of Z-valued distributions of total mass 0 on the Grassmannian

Grn−1,n(F ) is the Z-dual of the integral generalized Steinberg representation attached to
a maximal parabolic subgroup of GLn of type (n − 1, 1). The main aim of this note is to
determine the class of the extension

0 −→ C
×
F −→ A×

CF
−→ A×

CF
/C×

F −→ 0

in representation-theoretic terms.We show that this extension is as non-split as possible.
More precisely, in Sect. 1 we study extensions of generalized Steinberg representations

attached to maximal parabolic subgroups of arbitrary type. Let r be an integer with 0 <

r < n and denote by Grr,n(F ) the Grassmannian of r-dimensional subspaces of Fn. If N is
a topological group we denote by vr(N ) the space of continuous functions from Grr,n(F )
to N modulo constant functions. To each continuous homomorphism λ : F× → N we
construct an extension

0 −→ vr(N ) −→ E(λ) −→ Z −→ 0.

These canbe viewedasmultiplicative refinements of the extensions studied in [15], Section
2.5, which were inspired by the constructions in Section 2.2 of [11]. Results of Dat (cf.
[10]), Orlik (cf. [21]) and Colmez–Dospinescu–Hauseux–Nizioł (cf. [3]) imply that the
extension attached to the identity id : F× → F× can be regarded as a universal extension
(see Proposition 9).
In the second section we relate the PGLn(F )-module A×

CF
to a dual of the universal

extension. Let E(ι) be the extension associated with the embedding ι : F× → C
×
F . Taking

HomZ(·,C×
F ) induces an exact sequence

0 −→ C
×
F −→ HomZ(E(ι),C×

F ) −→ HomZ(vn−1(C×
F ),C

×
F ) −→ 0. (1)

Basic integration theory (see Sect. 1.2) provides a map

HomZ(vn−1(Z),Z) −→ HomZ(vn−1(C×
F ),C

×
F ). (2)

Let E(ι)∨ be the pullback of HomZ(E(ι),C×
F ) along (2). By (1), it sits inside an exact

sequence of the form

0 −→ C
×
F −→ E(ι)∨ −→ HomZ(vn−1(Z),Z) −→ 0.

The main result of this article is that there exists a PGLn(F )-equivariant isomorphism
E(ι)∨ ∼=−−→ A×

CF
that is compatible with the inverse of Gekeler’s isomorphism. Again, one

may replaceACF by the ring of analytic functions defined over some extension E of F (see
Theorem 13). The case E = F involves the universal extension.
This project started as an attempt tounderstand the relationbetween liftingobstructions

of rigid analytic theta cocycles in the sense of Darmon–Vonk (cf. [8], [7]) and automorphic
L-invariants as introduced by Spieß in [22]. As a first application of our main theorem,
we show how lifting obstructions of cuspidal theta cocycles for Hilbert modular groups
can be computed in terms of L-invariants of the associated Galois representations. We
also give an alternative construction of the Dedekind–Rademacher cocycle that was first
constructed by Darmon–Pozzi–Vonk using Siegel units (cf. [6], Theorem A). We also
discuss the example of theta cocycles for definite unitary groups of arbitrary rank and
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their connectionwith automorphic, respectively, Fontaine–MazurL-invariants for higher
rank groups as introduced in [15]. In all of the above cases, we first compute the lifting
obstruction of theta cocycles in terms of automorphic L-invariants. Second, we use the
equality of automorphic and Fontaine–MazurL-invariants as proven in [23], respectively
[17].

Notation
The space of continuous maps from a topological space X to a topological space Y is
denoted by C(X, Y ).We always endow it with the compact-open topology. If A and B are
topological groups, we write Hom(A, B) for the space of continuous homomorphism from
A to B. All rings will be commutative and unital. If R is a ring, we write R× for the group
of invertible elements of R.

1 Extensions of generalized Steinberg representations
We construct multiplicative refinements of the extensions of generalized Steinberg rep-
resentations studied in [15], Sect. 2.5. These refinements were previously constructed in
the case n = 2 in Section 6.1 of [2].
Throughout Sects. 1 and 2we fix a non-Archimedean local field F of residue characteris-

tic p and an F-vector spaceV of dimension n ≥ 2. IfW is any finite-dimensional F-vector
space, we denote by GLW (respectively PGLW ) the general (respectively projective) linear
group ofW viewed as an algebraic group over F . We endow GLW (F ) and PGLW (F ) with
the natural topology induced by the one on F . These are locally profinite groups.We often
abbreviate G = PGLV (F ).

1.1 Generalized Steinberg representations

We fix an integer r with 0 < r < n and write Grr,V for the Grassmannian variety that
parametrizes all r-dimensional subspaces ofV .We endowGrr,V (F ) with the natural topol-
ogy inherited from the one on F . It is a compact, totally disconnected space. Given an
abelian topological group N we define the (continuous) generalized Steinberg represen-
tations vr,V (N ) as the space of continuous functions from Grr,V (F ) toN modulo constant
functions, i.e.,

vr,V (N ) = C(Grr,V (F ), N )/N.

In the following, we often abbreviate vr(N ) = vr,V (N ). The group PGLV (F ) acts on vr(N )
via (g.f )(W ) = f (g−1.W ). Suppose that N is discrete. Then, the natural map

C(X,Z) ⊗Z N
∼=−→ C(X,N )

is an isomorphism for every compact, totally disconnected space X and, therefore, the
natural map

vr(Z) ⊗Z N
∼=−→ vr(N )

is an isomorphism.
We fix an F-rational point W0 ∈ Grr,V (F ). Its stabilizer P in GLV is a maximal proper

parabolic subgroup. The map

GLV −→ Grr,V , g �−→ g.W0
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induces a PGLV (F )-equivariant isomorphism

GLV /P
∼=−−→ Grr,V . (3)

Thus, we get an isomorphism

C(GLV (F )/P(F ), N )/N
∼=−−→ vr(N )

of G-modules.

Lemma 1 Let N be an abelian topological group. Then, we have

vr(N )PGLV (F ) = 0.

Proof Let � be an element of vr(N )PGLV (F ) and � ∈ C(Grr,V (F ), N ) a representative of
�. By (3) we may view � as a function on GLV (F ). Invariance of � implies that for all
g ∈ GLV there exists a constant c(g) ∈ N such that

�(gg ′) = c(g) + �(g ′)

holds for all g ′ ∈ GLV (F ). We may assume that �(1) = 0. Thus, c(g) = �(g) and,
therefore, � : GLN (V ) → N is a group homomorphism, which is trivial on P(F ). Since
SLV (F ) is the commutator subgroup of GLV , we see that � factors over the determinant.
Therefore, � is trivial since it is trivial on P(F ). 
�

1.2 Integration

Let X be a compact, totally disconnected space. We write Dist(X,Z) for the space of
Z-valued distributions on X , i.e.,

Dist(X,Z) = HomZ(C(X,Z),Z).

For every abelian prodiscrete group N there exists an integration pairing

C(X,N ) ⊗ Dist(X,Z) −→ N

constructed as follows: for any discrete group B the canonical map

C(X,Z) ⊗ B
∼=−−→ C(X, B)

is an isomorphism and, thus, we have a canonical pairing

C(X, B) ⊗ Dist(X,Z) −→ B

that is functorial in B. Choose a basis of neighborhoods {Ui} of the identity ofN consisting
of open subgroups with Ui+1 ⊆ Ui. Taking projective limits we get a pairing

lim←−
i
C(X,N/Ui) ⊗ Dist(X,Z) −→ lim←−

i
N/Ui = N.

The canonical map

C(X,N )
∼=−−→ lim←−

i
C(X,N/Ui)

is an isomorphism and hence, we constructed the desired pairing.
In particular, for every abelian prodiscrete group N the integration pairing induces a

map

int : HomZ(vr(Z),Z) −→ HomZ(vr(N ), N ).
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By similar arguments, we can define a canonical map

HomZp (vr(Zp),Zp) −→ HomZp (vr(N ), N )

for every abelian pro-p group N .

1.3 Preliminaries on continuous extensions

Let R be a ring and H a topological group. A topological R[H ]-module is a topological
abelian groupM that is also an R[H ]-module such that the action

H × M −→ M

is continuous. A homomorphism between topological R[H ]-modules is a homomorphism
of the underlying R[H ]-modules that is continuous. We say that a sequence

0 −→ M1
f−−→ M2

g−−→ M3 −→ 0

of topological R[H ]-modules is exact if it is exact in the category of R[H ]-modules and
the map g admits a continuous (but not necessarily linear) section s that induces a home-
omorphism

(f, s) : M1 × M3
∼=−−→ M2. (4)

We say thatM2 is a continuous extension ofM1 byM3 in this case. Two exact sequences

0 −→ M1 −→ M2 −→ M3 −→ 0

and

0 −→ M1 −→ M̃2 −→ M3 −→ 0

are said to be equivalent if there exists an R[H ]-linear map

ϕ : M2 −→ M̃2

such that the diagram

0 M1 M2 M3 0

0 M1 M̃2 M3 0
= ϕ =

commutes. One deduces from the existence of sections fulfilling (4) that ϕ is automatically
a homeomorphism.
Given two topological R[H ]-modules M1 and M2 we write Ext1R[H ],ct(M1,M2) for the

set of continuous extensions of M1 by M2 up to equivalence. The Baer sum defines the
structure of an abelian group on Ext1R[H ],ct(M1,M2). Forgetting the topology induces an
inclusion

Ext1R[H ],ct(M1,M2) ↪−→ Ext1R[H ](M1,M2).

In case R = Z the group Ext1
Z[H ],ct(M1,M2) agrees with the group Ext1S (M1,M2) defined

in Section 2 of [24]. In particular, considering Z as a discrete topological space with trivial
H-action, we have for every topological Z[H ]-module a natural isomorphism

Ext1
Z[H ],ct(Z,M) ∼= H1

ct(H,M)

where H1
ct(H,M) denotes the first continuous cohomology group.
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1.4 Continuous induction

Given a topological R[P(F )]-moduleM we define its continuous induction as

iP(M) = {
ϕ : GLV (F ) → M cont. | ϕ(gp) = p.φ(g) ∀p ∈ P(F ), g ∈ GLV (F )

}
.

The group GLV (F ) acts on iP(M) via left translation. The continuous induction iP(M) ⊆
C(GLV (M),M) becomes a topological R[GLV (F )]-module by endowing it with the sub-
space topology.
A homomorphism

f : M1 −→ M2

of topological R[P(F )]-modules induces the homomorphism

iP(f ) : iP(M1) −→ iP(M2), ϕ �−→ f ◦ ϕ

of topological R[GLV (F )]-modules.
Suppose P(F ) acts trivially on M. Then, the induction iP(M) is by definition the space

C(GLV (F )/P(F ),M) which we identify with C(Grr,V (F ),M) via (3). This in turn induces
a GLV (F )-equivariant isomorphism iP(M)/M ∼= vr(M).

Lemma 2 For every exact sequence

0 −→ M1
f−−→ M2

g−−→ M3 −→ 0

of topological R[P(F )]-modules, the induced sequence

0 −→ iP(M1)
iP (f )−−→ iP(M2)

iP (g)−−−→ iP(M3) −→ 0

is an exact sequence of topological R[GLV (F )]-modules.

Proof The only non-trivial step is to show that iP(g) is surjective and that it admits a
topological section.
By the Bruhat decomposition the map

π : GLV −→ GLV /P

is a locally trivial fibration. Thus, since GLV (F )/P(F ) is totally disconnected and compact,
we can find finitely many closed subsets Ui ⊆ GLV (F ) such that the maps

Ui × P(F ) −→ GLV (F ), (u, p) �−→ u · p
are homeomorphisms onto their images, their images are disjoint and form an open cover
of GLV (F ).
Letϕ : GLV (F ) → M3 be anelementof iP(M3).Weconstruct apreimage� : GLV (F ) →

M2 of ϕ as follows: every g in G can be uniquely written as a product u · p with u in a
uniqueUi and p ∈ P(F ).We put�(g) = p.s(ϕ(u)),where s : M3 → M2 is a fixed section of
g . Thus, the homomorphism iP(g) is surjective. Moreover, themap sending ϕ to� defines
a topological section of iP(g). 
�

1.5 Extensions

Let R be a topological ring and N a topological R-module, i.e., N is an abelian topological
group and an R-module such that the multiplication map R×N → N is continuous. We
consider both R and N as P(F )-modules via the trivial action.
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Toacontinuous grouphomomorphismλ : P(F ) → N weattach the topologicalR[P(F )]-
moduleMλ = N ⊕ R with the P(F )-action given by

p.(n, r) = (n + r · λ(p), r)

for p ∈ P(F ), n ∈ N and r ∈ R. By definition Mλ is a continuous extension of R by N . By
Lemma 2 the sequence

0 −→ iP(N ) −→ iP(Mλ) −→ iP(R) −→ 0

is an exact sequence of topologicalR[GLV (F )]-modules. Let Ẽ(λ) be the pullback of iP(Mτ )
along R ↪→ iP(R), i.e., Ẽ(λ) sits inside an exact sequence

0 −→ iP(N ) −→ Ẽ(λ) −→ R −→ 0

of topological R[GLV (F )]-modules. More concretely we can identify Ẽ(λ) with the set of
pairs (�, r) ∈ C(GLV (F ), N ) × R such that

�(gp) = �(g) + r · λ(p)

for all p ∈ P(F ) and g ∈ GLV (F ). The group GLV (F ) acts via left multiplication on the
first factor. The subspace Ẽ(λ)0 of tuples of the form (�, 0) with constant � is GLV (F )-
invariant. By definition the quotient E(λ) = Ẽ(λ)/Ẽ(λ)0 sits inside an exact sequence

0 −→ vr(N ) −→ E(λ) −→ R −→ 0

of topological R[GLV (F )]-modules. It is easy to see that the center of GLV (F ) acts trivially
on E(λ). Let bλ,R be the associated class in Ext1R[G],ct(R, vr(N )).

Lemma 3 The map

Hom(P(F ), N ) −→ Ext1R[G],ct(R, vr(N )), λ �−→ bλ,R

is a group homomorphism that is functorial in R and N.

Proof Functoriality in R and N follows directly from the construction. Thus, we only
have to show that the map is a group homomorphism: let λ, λ′ : P(F ) → A be continuous
homomorphisms. The Baer sum of the two extensions E(λ) and E(λ′) is the space of triples
(�1,�2, r) with (�1, r) ∈ E(λ) and (�2, r) ∈ E(λ′)) modulo triples of the form (�,−�, 0)
with � ∈ vr(A). Sending a triple (�1,�2, r) to the tuple (�1 + �2, r) defines a map from
the Baer sum to E(λ + λ′) and thus, they define the same extension class. 
�

Lemma 4 We have bλ,R = 0 if and only if λ can be extended to a continuous homomor-
phism λ : GLV (F ) → N.

Proof The class bλ,R is split if and only if there exists an element (�, 1) ∈ E(λ) such that
� is GLV (F )-invariant, i.e., for every g ∈ GLV (F ) there exists a constant c(g) ∈ N such
that

�(gg ′) = c(g) + �(g ′)

for all g ′ ∈ GLV (F ). We may assume that �(1) = 0. But then c(g) = �(g) and, hence, �
is a homomorphism that extends λ. 
�

Remark 5 Note that the underlyingR[G]-module ofE(λ) does not depend on the topology
on R.
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One should view the representations iP(Mλ) as infinitesimal deformations of iP(R):
consider R ⊕ N as an R-algebra by putting n1 · n2 = 0 for all n1, n2 ∈ N. For example, if
N is a free R-module of rank s, there exists an R-algebra isomorphism

R ⊕ N ∼= R[ε1, . . . , εs]/(ε21 , . . . , ε
2
s ).

The map

Hom(F×, N ) −→ {
χ ∈ Hom(F×, (R ⊕ N )×) | χ ≡ 1 mod N

}

λ �−→ χλ = 1 + λ

is an isomorphism and the induction iP(Mλ) = iP(χλ) is a module over R ⊕ N .

1.6 Homomorphisms

We keep the notations from last section. There is a canonical isomorphism

Hom(P(F ), N )
∼=−→ Hom(F×, N )2, λ �−→ (λ1, λ2), (5)

which is functorial in N : every homomorphism from P(F ) to N has to be trivial on the
unipotent radical of P(F ). Thus, it factors through the canonical map

P(F ) −→ GLW0 (F ) × GLV/W0 (F ).

Since SLW (F ) is the commutator subgroup of GLW (F ) for every finite-dimensional F-
vector spaceW , every homomorphism

λ : GLW0 (F ) × GLV/W0 (F ) −→ N

is of the form

λ(g1, g2) = λ1(det(g1)) + λ2(det(g2))

for unique homomorphisms λi : F× → N.We will identify λ with the pair (λ1, λ2).
By the same argument every continuous homomorphism λ : GLV (F ) → N is of the

form λ = λ′ ◦ det for a unique continuous homomorphism λ′ : F× → N . Therefore,
Lemma 4 implies the following:

Corollary 6 We have bλ,R = 0 if and only if λ1 = λ2.

For a continuous group homomorphism λ : F× −→ N we define

cλ,R = b(λ,0) ∈ Ext1R[G],ct(R, vr(N )) and E(λ) = E(λ, 0).
If λ1, λ2 : F× −→ N are two group homomorphism, the corollary above implies that

b(λ1,λ2),R = cλ1−λ2 ,R.

The next claim follows immediately.

Corollary 7 The map

Hom(F×, N ) −→ Ext1R[G],ct(R, vr(N )), λ �−→ cλ,R

is an injective group homomorphism that is functorial in R and N.
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1.7 Universality

It is a natural question to ask whether there exists a class of topological R-modules such
that the map in Corollary 7 is an isomorphism.
In case R = Z one could reformulate the question as follows: Let

cun = cid,Z ∈ H1
ct(G, vr(F×))

be the extension associated with the identity id : F× → F×. Functoriality implies that for
every continuous homomorphism λ : F× → N the equality

λ∗(cun) = cλ,Z
holds in H1

ct(G, vr(F×)). Thus, the question is whether cun is a universal extension.
We give a partial answer to this question. Let F̂× (resp. Ẑ) be the profinite completion

of F× (resp.Z).We define ĉun = ci,̂Z,where i : F× → F̂× is the natural inclusion. LetN be
an abelian profinite group. Continuous homomorphisms from F× to N can be identified
with continuous homomorphisms from F̂× to N and, by functoriality, we have

λ∗ (̂cun) = cλ,̂Z
for every continuous homomorphism λ : F× → N .

Definition 8 LetN be a profinite group.We say thatN is pretty good ifN is topologically
finitely generated and every prime divisor l of the pro-order ofN that is prime to p is bon
and banal for GLV (F ) in the sense of [10], Section 2.1.5.

Proposition 9 Let F be a p-adic field. For every abelian profinite group N that is pretty
good the homomorphism

Hom(F×, N ) −→ Ext1
Ẑ[G],ct(Ẑ, vr(N )), λ �−→ λ∗ (̂cun)

is an isomorphism.

Proof Let 0 ≤ t ≤ s be integers. It is enough to check that the map

Hom(F×,Z/ltZ) −→ Ext1
Z/lsZ[PGLV (F )](Z/lsZ, vr(Z/ltZ)) (6)

surjects onto the space of smooth extensions for l = p and every prime l �= p that is bon
and banal. The exact sequence

0 −→ Z/ltZ ·ls−t−−→ Z/lsZ −→ Z/ls−t
Z −→ 0

induces the exact sequence

0 −→ vr(Z/ltZ) −→ vr(Z/lsZ) −→ vr(Z/ls−t
Z) −→ 0.

We get the following commutative diagram with exact columns and injective horizontal
maps:

0

Hom(F×,Z/ltZ)

Hom(F×,Z/lsZ)

Hom(F×,Z/ls−t
Z)

0

Ext1
Z/lsZ[PGLV (F )](Z/lsZ, vr(Z/ltZ))

Ext1
Z/lsZ[PGLV (F )](Z/lsZ, vr(Z/lsZ))

Ext1
Z/lsZ[PGLV (F )](Z/lsZ, vr(Z/ls−t

Z))
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The exactness of the second column follows from Lemma 1. By a simple diagram chase,
we see that it is enough to prove the claim above in the case s = t.
The case l �= p: By assumption l does not divide the order of the torsion subgroup of

F×. In particular, Hom(F×,Z/lsZ) is a freeZ/lsZ-module of rank 1. By [10], Theorem 1.3,
respectively [21], Theorem 1, the space of smooth extension is also free of rank 1. Thus,
the claim follows from the injectivity of (6).
The case l = p: By [3], Theorem 1.10 (2), there exists an isomorphism between

Hom(F×,Z/psZ) and the space of continuous extensions. The claim now follows by injec-
tivity of (6) and the finiteness of Hom(F×,Z/psZ). 
�

Remark 10 We expect that Proposition 9 also holds in the case that F is a local function
field.More precisely, we expect that themap (6) for l = p is inverse to the one constructed
in [3].

2 Invertible analytic functions on Drinfeld symmetric spaces
Using themain theoremof [18]wewill prove that the group of invertible analytic functions
on Drinfeld’s upper half space is isomorphic to a dual of the universal extension (for r =
n-1) defined in Sect. 1.7.

2.1 Zero cycles

Let us recall thatDrinfeld’s upper half space� = �V of dimensionn−1 is the complement
of all F-rational hyperplanes in P(V ), i.e.,

� = P(V ) \
⋃

H�V
P(H ).

It is a rigid analytic variety over F on which the group G = PGLV (F ) acts naturally. Let
CF be the completion of an algebraic closure of F with respect to the unique extension of
the norm. Let Z0(�CF ) = Z[�(CF )] be the free abelian group on the CF -valued points of
�. We define Z0

0 (�CF ) as the kernel of the degree map

deg : Z0(�CF ) −→ Z,
∑

x
ax[x] �−→

∑
ax.

In the following, by an extension E/F we always mean a closed subextension ofCF/F and
we write ιE : F ↪→ E for the inclusion. For such an extension E we put

Z0(�E) = Z0(�CF )
Aut(CF ,E)

and

Z0
0 (�E) = Z0

0 (�CF )
Aut(CF ,E).

The support of a zero cycle z ∈ Z0(�E) is always defined over a finite extension of E. Let
cgeo(E) ∈ Ext1

Z[G](Z0
0 (�E),Z) be the class of the exact sequence

0 −→ Z0
0 (�E) −→ Z0(�E)

deg−−→ Z −→ 0.
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2.2 Zero cycles of degree 0 and Steinberg representations

We put V ∗ = HomF (V, F ). Let z = ∑
x ax[x] ∈ Z0

0 (�E) be a zero cycle of degree 0. There
exist lifts vx ∈ V ⊗F CF \ {0} of the elements x such that the formal sum

∑
x ax[vx] is

invariant under Aut(CF , E). By definition of � we have 
(vx) �= 0 for all nonzero elements

 ∈ V ∗. Since the cycle z is of degree 0, the function

�̃0(z) : V ∗ \ {0} −→ E×, 
 �−→
∏

x

(vx)ax

descends to a map

�̃0(z) : PV ∗ (F ) −→ E×.

Choosing different lifts vx changes �̃0(z) only up to a constant and, therefore, the induced
element �(z) ∈ v1,V ∗ (E×) does not depend on the chosen lifts. The resulting map

�0 : Z0
0 (�E) −→ v1,V ∗ (E×), z �−→ �0(z)

is G-equivariant. Here and in the following we always identify GLV and GLV ∗ via the
GLV -action on V ∗ given by (g.
)(v) = 
(g−1(v)). Given a topological abelian group we
also abbreviate v(N ) = v1,V ∗ (N ) ∼= vn−1,V (N ).

2.3 Zero cycles and the universal extension

We fix an element y0 ∈ PV ∗ (F ) and denote by P ⊆ GLV ∗ ∼= GLV its stabilizer. Let cun be
the universal extension of Z by v(F×) associated with the identity id : F× → F× and the
parabolic subgroup P as in Sect. 1.7.
The following is a generalization of [2], Lemma 6.8, from the case n = 2 to arbitrary

dimension.

Proposition 11 For every extension E/F the equality

�0∗ (cgeo(E)) = ιE,∗(cun)

holds in H1(G, v(E×)).

Proof We fix a lift 
0 ∈ V ∗ of y0. Under identification (5) we have

p.
0 = (id, 1)(p) · 
0 (7)

for all p ∈ P(F ). For x ∈ �(CF ) we choose a lift vx ∈ VCF and define the function

�x : GLV ∗ (F ) −→ C
×
F , g �−→ (g.
0)(vx)


0(vx)
.

The function is independent of the choices of lifts of y0 and x and, by (7), fulfils

�x(gp) = �x(g) · (id, 1)(p)
for all g ∈ GLV ∗ (F ) and p ∈ P(F ). We thus get a well-defined map

� : Z0(�E) −→ E(ιE),
∑

x
ax[x] �−→ (

∏

x
(�x)ax ,

∑

x
ax).

Note that a priori � takes values in E(ιCF ) but one can argue as before that it factors
through E(ιE).
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For all g, g ′ ∈ GLV ∗(F ) and all x ∈ �(E) we have

�(g ′.[x])(g) = (g.
0)(g ′.vx)

0(g ′.vx)

= (g ′g.
0)(vx)

0(vx)

· 
0(vx)
(g ′.
0)(vx)

= (g ′.�(g))(x) · kx,g ′ ,

where kx,g ′ is a constant that does not depend on g . Thus, the homomorphism � is
GLV ∗ (F )-equivariant.
Similarly, for x, x′ ∈ �(E) we have

�([x] − [x′])(g) = (g.
0)(vx)

0(vx)


0(vx′ )
(g.
0)(vx′ )

= (g.
0)(vx)
(g.
0)(vx′ )

· kx,x′

where kx,x′ is a constant independent of g . Thus, the restriction of � to cycles of degree 0
agrees with �0, i.e., the diagram

0 Z0
0 (�E) Z0(�E) Z 0

0 v(E×) E((ιE, 1)) Z 0

�0 � =

of Z[G]-modules is commutative and, therefore, the claim follows. 
�

2.4 Gekeler’s theorem

For an extension E/F we write AE = O�E (�E) for the ring of rigid analytic functions on
� that are defined over E. If N is any abelian group, we identify HomZ(Z0(�CF ), N ) with
the space F (�(CF ), N ) of all (set theoretic) functions from �(CF ) to N . Choosing a base
point x′ ∈ �(CF ) we also get a GLV (F )-equivariant isomorphism

HomZ(Z0
0 (�CF ), N ) −→ F (�(CF ), N )/N, f �−→ f ([x] − [x′])

that is independent of the choice of x′. Thus, by taking HomZ(·,C×
F ) the map �0 induces

the homomorphism

(�0)∗ : HomZ(v(C×
F ),C

×
F ) −→ F (�(CF ),C×

F )/C
×
F .

Precomposing with the map

int : HomZ(v(Z),Z) −→ HomZ(v(C×
F ),C

×
F )

defined by the integration pairing in Sect. 1.2 yields the homomorphism

�0 = (�0)∗ ◦ int : HomZ(v(Z),Z) −→ F (�(CF ),C×
F )/C

×
F .

By an easy argument with Riemann sums (or rather Riemann products) we see that the
map takes values in A×

CF
/C×

F . A rationality argument as before shows that the map �0

factors throughA×
F /F×. For an extension E/F let

�0
E : HomZ(v(Z),Z) −→ A×

E /E×

be the induced homomorphism.

Theorem 12 For every extension E/F the map

�0
E : HomZ(v(Z),Z) −→ A×

E /E×

is aGLV (F )-equivariant isomorphism. In particular, theGLV (F )-moduleA×
E /E× does not

depend on E.
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Proof For every extension E the canonical map

A×
E /E× −→ A×

CF
/C×

F

is injective. Thus, it is enough to prove that

�0 : HomZ(v(Z),Z) −→ A×
CF

/C×
F

is an isomorphism. But this follows directly from the proof of [18], Theorem 3.11. 
�

2.5 The main theorem

Let E/F be an extension. Applying HomZ(·, E×) to the exact sequence

0 −→ v(E×) −→ E(ιE) −→ Z −→ 0

induces the exact sequence

0 −→ E× −→ HomZ(E(ιE), E×) −→ HomZ(v(E×), E×) −→ 0.

Let E∨
un,E be the pullback of this extension along int, i.e., we have an exact sequence

0 −→ E× −→ E∨
un,E −→ HomZ(v(Z),Z) −→ 0.

Theorem 13 For every extension E/F there is a unique PGLV (F )-equivariant isomor-
phism

�E : E∨
un,E −→ A×

E

such that the following diagram commutes:

0A×
E /E×A×

EE×0

0Hom(v(Z),Z)E∨
un,EE×0

�0
E�E=

Proof As before, we only treat the case E = CF . Applying HomZ(·,C×
F ) to the commuta-

tive diagram in the proof of Lemma 11 (with E = CF ) yields the following commutative
diagram with exact rows:

0F (�(CF ),C×
F )/C

×
FF (�(CF ),C×

F )C
×
F0

0HomZ(v,C×
F )HomZ(E(ιCF ),C

×
F )C

×
F0

(�0)∗�∗=

Thus, by construction there exists a map �CF : E∨
un,CF

−→ F (�(CF ),C×
F ). We know

that modulo constants the map takes values in analytic functions. Therefore, �CF itself
takes values in analytic functions, and the claim follows from Theorem 12. 
�
Let us end this section by giving an explicit description of the “p-adic completion” of

E∨
un,F in the case that F is a p-adic field: let F̃× be the torsion-free part of the pro-p

completion of F×. It is a free Zp-module of rank [F : Qp]+ 1 = d + 1.Write i : F× → F̃×

for the natural map and E(i) for the associated extension of Zp by v(̃F×). Let E∨,p
un be the

pullback of HomZp (E(i), F̃×) along

HomZp (v(Zp),Zp) −→ HomZp (v(̃F×), F̃×).
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Thus, we have an exact sequence

0 −→ F̃× −→ E∨,p
un −→ HomZp (v(Zp),Zp) −→ 0.

Choosing a basis
{
λ1, . . . λd+1

}
of the free Zp-module Hom(F×,Zp) we get an isomor-

phism

E∨,p
un ∼= HomZp (E(λ1) ⊕v(Zp) · · · ⊕v(Zp) E(λd+1),Zp),

where E(λi) is the extension of Zp by v(Zp) associated with λi.

3 Lifting obstructions of theta cocycles
The aim of this section is to apply our main result to the study of lifting obstructions
of theta cocycles. In [8] Darmon and Vonk initiated the theory of rigid meromorphic
cocycles, i.e., elements in the cohomology group H1(SL2(Z[1/p]),M×), where M× is
the group of invertible meromorphic functions on Drinfeld’s p-adic upper half plane
�. They provide a large supply of classes in the space of theta cocycles, i.e., elements of
H1(SL2(Z[1/p]),M×/C×

p ) (see also [16] and [19] for a generalization of the theory to other
number fields and congruence subgroups). It is thus a natural question to ask whether
these classes can be lifted to genuine meromorphic cocycles.
In the following, we want to show that for rigid analytic theta cocycles, i.e., classes

in H1(PGL2(Z[1/p]),A×
Qp

/Q×
p ) the answer is often negative. But one may still lift these

classes to elements in H1(SL2(Z[1/p]),A×
Qp

/�), where � ⊆ Q
×
p is a discrete subgroup

that can be computed in terms of Galois representations. In fact, we give general results
for cuspidal analytic theta cocycles for Hilbert modular groups. In addition, we explain
that our methods also yield a new proof of a recent result of Darmon–Pozzi–Vonk on the
Dedekind–Rademacher cocycle (cf. [6], TheoremA).We end this note by a generalization
of the whole story to higher rank unitary groups.
We will use the following notation throughout this section: IfM is an abelian group, we

denote its Z-dual byM∗ = HomZ(M,Z).

3.1 L-invariants of Galois representations

Let F be a p-adic field with absolute Galois group GF . Let ρ : GF → GL2(Qp) be a
Galois representation that is an extension of Qp by Qp(1), i.e., it defines a class [ρ] in
H1(GF ,Qp(1)). Local class field theory gives an isomorphism

Hom(F×,Qp) ∼= H1(GF ,Qp).

We define the L-invariant
L(ρ) ⊆ Hom(F×,Qp)

of ρ as the orthogonal complement of [ρ] under the local Tate pairing

H1(GF ,Qp) × H1(GF ,Qp(1))
∪−−→ H2(GF ,Qp(1)) ∼= Qp.

Since the pairing is non-degenerate, L(ρ) is a subspace of codimension at most one. Its
codimension is one if and only if ρ is non-split.
Suppose the p-adic valuation ordF : F× −→ Z is not an element of L(ρ). Equivalently,

ρ is not crystalline. Then, the subgroup

�ρ = {
q ∈ F× | λ(q) = 0 ∀λ ∈ L(ρ)} ⊆ F×

is discrete. Moreover, it is a finitely generated abelian group of rank one.
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3.2 Cuspidal theta cocycles for Hilbert modular groups

Let F be a totally real field of degree d and with ring of integersOF . We assume that F has
narrow class number one. (One can drop this assumption by formulating everything in
the adelic language as in [22] or [14]. For ease of exposition we stick to the case of narrow
class number one.) We fix a prime p of F lying above the rational prime p. We write Fp
for the completion of F at p,Op for the valuation ring of Fp with local uniformizer � and
q for the cardinality of the residue field ofOF . We put

Gp = PGL2(Fp), Kp = PGL2(Op)

and

Ip = {
k ∈ Kp | k upper triangular mod p

}

The matrix

w =
(
0 1
� 0

)

normalizes the Iwahori subgroup Ip. We define Ĩp to be the subgroup generated by Ip and
w and let

χp : Ĩp −→ {±1}
be the unique non-trivial homomorphism that is trivial on Ip.
Let f be a cuspidal Hilbert newform with trivial nebentypus and parallel weight 2. We

assume that f is Steinberg at p, i.e., p divides the level of f exactly once and Upf = f.
For simplicity, we assume that all Hecke eigenvalues of f are rational. In that case one
can attach to f an elliptic curve Ef /F that has split multiplicative reduction at p. Let
ρf : GF → GL2(Qp) be the associated Galois representation. By Tate’s p-adic uniformiza-
tion theorem, the restriction ρf,p of ρf to a decomposition group at p is a non-crystalline
extension of Qp by Qp(1). Thus, we can define the discrete subgroup �ρf,p ⊆ F×

p .
We put St(Z) = C(P1(Fp),Z)/Z and for any nonzero ideal n ofOF we define

�0(n) = {
γ ∈ PGL2(OF )+ | γ is upper triangular modulo n

}
,

respectively

�0(n)p = {
γ ∈ PGL2(OF [1/p])+ | γ is upper triangular modulo n

}
,

where the superscript + denotes matrices with totally positive determinant.
Suppose that p divides n exactly once. Then, by [22], Proposition 5.8 (b), the map

H∗(�0(n)p, St(Z)∗) ⊗ Q −→ H∗(�0(n),Q)

given by evaluation at a nonzero Iwahori-fixed vector induces an isomorphism on f -
isotypic components for the Hecke algebra away from p. In particular, the f -isotypic
component vanishes for i �= d and is nonzero for i = d and large enough level. Let us
give a sketch of the proof: first let us remind ourselves of the definition of a (compactly)
induced module. Given a group V , a subgroup U ⊆ V and an Z[U ]-module A the
induction c-indVU A of A to V is the space all functions f : V → A such that
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• f (vu) = u−1f (v) for all u ∈ U , v ∈ V and
• f has finite support modulo U .

The group V acts on c-indVU A via left translation. The Ip-invariants of Stp(Z) are a free
Z-module of rank 1 that generate Stp as a Gp-module. The matrix w acts on it by χp.
Hence, Frobenius reciprocity induces a surjective Gp-equivariant homomorphism

c-indGp

Ĩp
χp −� Stp(Z).

In fact, this surjection fits into a short exact sequence

0 −→ c-indGp

Kp
Z −→ c-indGp

Ĩp
χp −→ Stp(Z) −→ 0 (8)

ofGp-modules that identifies the Steinberg representation with the first cohomology with
compact support of the Bruhat–Tits tree (see for example [22], equation (18)). Utilizing
Shapiro’s Lemma the short exact sequence above induces a long exact sequence in coho-
mology of the form

. . . → Hi(�0(n)p, St(Z)∗) → Hi(�0(n),Z)Wp=−1 → Hi(�0(np−1),Z) → . . .

whereWp denotes the Atkin–Lehner operator at p. Since p divides the conductor of f , we
see that

(Hi(�0(np−1) ⊗ Q)f = 0,

where the superscript f denotes taking the f -isotypic component. Thus, the claim follows.
Let us mention that the above argument also yields the following: if g is a cuspidal Hecke
eigenform that is not Steinberg at p, then we have

(Hi(�0(n)p, St(Z)∗) ⊗ Q)g = 0

for all i ≥ 0.
Let A denote the ring of analytic functions on Drinfeld’s p-adic upper half plane over

Fp. By Theorem 12, which in this case is due to van der Put (see [25], Proposition 1.1), we
have

(Hi(�0(n)p,A×/F×
p ) ⊗ Q)f = 0 for i �= d.

Moreover, we have

(Hd(�0(n)p,A×/F×
p ) ⊗ Q)f �= 0

if the level n is large enough.
By our main theorem the following diagram is commutative:

(Hd+1(�0(n)p, F×
p ) ⊗ Q)f(Hd(�0(n)p,A×/F×

p ) ⊗ Q)f

(Hd+1(�0(n)p, F×
p ) ⊗ Q)f(Hd(�0(n)p, St(Z)∗) ⊗ Q)f

=∼=

where the horizontal maps are the boundarymaps induced by the short exact sequences

0 −→ F×
p −→ A× −→ A×/F×

p −→ 0

and

0 −→ F×
p −→ E∨

un,Fp −→ St(Z)∗ −→ 0.
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By [22], Lemma 6.2 (b), the composition of the lower horizontal map with the homomor-
phism

Hd+1(�0(n)p, F×
p ) ⊗ Q)f

ordp−−−→ Hd+1(�0(n)p,Z) ⊗ Q)f

inducedby thep-adic valuation is an isomorphism.This shouldbe seen as the automorphic
analogue of the fact that the local Galois representation ρf,p is non-crystalline. Again we
give a short sketch of the proof: The map under consideration

Hd(�0(n)p, St(Z)∗) ⊗ Q)f −→ Hd+1(�0(n)p,Z) ⊗ Q)f (9)

is the boundary map of the long exact sequence induced by the short exact sequence

0 −→ Z −→ E(ordp)∗ −→ St(Z)∗ −→ 0 (10)

attached to the homomorphism ordp : F×
p → Z. By [22], Lemma 3.11 (c), there exists an

exact sequence of PGL2(Fp)-modules of the form

0 −→ c-indGp

Kp
Z

Tp−q−1−−−−−→ c-indGp

Kp
Z −→ E(ordp) −→ 0. (11)

As before, we have

Hi(�0(np−1),Q)f = 0

for all i ≥ 0. Thus, via the long exact sequence induced by the short exact sequence above
we also see that

Hi(�0(n)p, E(ordp)∗) ⊗ Q)f = 0

holds for all i, which proves that (9) is an isomorphism.
Let �̂0(n)p ⊆ PGL2(OF [1/p]) be the subgroup given by the same congruence conditions

as �0(n)p but without the positivity condition. The quotient group

� = �̂0(n)p/�0(n)p ∼= {±1}d

naturally acts on all the cohomology groups considered above. For any character ε : � →
{±1} the ε-isotypic component

(Hd(�0(n)p, St(Z)∗) ⊗ Q)f,ε

is an irreducible module over the Hecke algebra away from p. Hence, the above result by
Spieß implies that there exists a discrete subgroup

�ε
f,p ⊆ F×

p

of rank one, which is unique up to homothety, such that the image of the ε-component
under the lower horizontal map in the commutative diagram above is equal to

(Hd+1(�0(n)p,�f,p) ⊗ Q)f,ε .

The equality of automorphic and Fontaine–Mazur L-invariants, which in this case is
Theorem 4.1 of [17], respectively, Theorem 3.7 of [23], implies that we may take

�ε
f,p = �ρf ,p.

Combining all the results above, we have proven the following:
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Proposition 14 The canonical map

(Hd(�0(n)p,A×/�ρf,p ) ⊗ Q)f −→ (Hd(�0(n)p,A×/F×
p ) ⊗ Q)f

is an isomorphism. Moreover, we have

(Hd(�0(n)p,A×) ⊗ Q)f = 0.

Remark 15 The same reasoning implies the result for forms of parallel weight 2 on inner
twists of PGL2(F ) that are split at p.
In case F = Q the equality of automorphic and Fontaine–Mazur L-invariants was

already known by work of Darmon (cf. [4], Theorem 1) if f corresponds to an elliptic
curve, and in general by work of Dasgupta (cf. [9], Proposition 5.20).

3.3 An accidentalL-invariant

In the previous section, we always assumed that theHecke eigenform under consideration
is cuspidal. In this section, we treat the Eisenstein case for F = Q. We abbreviate �p =
PGL2(Z[1/p]).
Let E2(p) be the Eisenstein series of weight 2 for the congruence subgroup �0(p) ⊆

PGL2(Z). The p-adic Galois representation ρE2(p) attached to E2(p) is the direct sum
Qp ⊕ Qp(1) and, thus, we have

�ρE2(p),p
= {0} ⊆ Q

×
p .

Therefore, we expect that there should be a class in H1(�p,A×) attached to E2(p). But it
turns out that the non-existence of the Eisenstein series of weight 2 and level 1 implies
that no such class exists. We will sketch in the following how our results together with
the strategy of [17] gives a class

JDR ∈ H1(�p,A×/pZ) ⊗ Q.

This class was recently constructed by Darmon–Pozzi–Vonk using Siegel units (see [6],
Theorem A).
Clearly, we have

H0(PGL2(Z),Z) = Z, H0(�0(p),Z)Wp=−1 = 0 and H1(PGL2(Z),Z) = 0.

Therefore, the long exact sequence associated with (8) induces the short exact sequence

0 −→ H0(PGL2(Z),Z) −→ H1(�p, Stp(Z)∗) −→ H1(�0(p),Z)Wp=−1 −→ 0.

We define Jtriv ∈ H1(�p, Stp(Z)∗) to be the image of the canonical generator under the left
arrow.
Furthermore, we see that

Hi(�p, Stp(Z)∗) = 0 ∀i �= 1.

Next, by analyzing the long exact sequence coming from (11) we deduce that

H0(�p, E(ordp)∗) = H1(�p, E(ordp)∗) = Z

and

Hi(�p, E(ordp)∗) = 0 ∀i �= 0, 1.
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Remark 16 Note that only the cohomology of arithmetic groups in degree 0—or in other
words the trivial representation—contributes to the cohomology of E(ordp)∗. If the Eisen-
stein series of weight 2 and level 1 would exist, then it would also contribute to the
cohomology of E(ordp)∗.
One can enlarge H1(�p, E(ordp)∗) by raising the level away from p. This process is often

called smoothing (see for example the constructions of Darmon–Dasgupta in [5]).

It is well-known that

H1(�p,Z) = 0.

Thus, the long exact sequence associated with (10) induces the short exact sequence

0 −→ H1(�p, E(ordp)∗) −→ H1(�p, Stp(Z)∗) −→ H2(�p,Z) −→ 0.

By the discussion in Section 3.4 of [22] the exact sequences (8), (10) and (11) all fit together
nicely into the following big commutative diagram with exact rows and columns:

0 0

0 c-indGp
Kp

Z c-indGp
Ĩp

χp Stp(Z) 0

0 c-indGp
Kp

Z c-indGp
Kp

Z E(ordp) 0

Z Z

0 0

=

=

This immediately implies the image of the generator of H1(�p, E(ordp)∗) under themap

H1(�p, E(ordp)∗) −→ H1(�p, Stp(Z)∗)

is equal to Jtriv . Thus, we get canonical isomorphisms

H1(�0(p),Z)
∼=←−− H1(�p, Stp(Z)∗)/ < Jtriv >

∼=−−→ H2(�p,Z).

Remember that van der Put’s theorem gives a canonical isomorphism

H1(�p, Stp(Z)∗) = H1(�p,A×/Q×
p ).

We denote the image of Jtriv under this isomorphism also by Jtriv. The Eisenstein series
E2(p) defines a class in H1(�0(p),Z) and, thus, also a class

JDR ∈ H1(�p,A×/Q×
p )

that is unique up to powers of Jtriv.Arguing as in the previous section we see that this class
cannot be lifted to a class in H1(�p,A×). But there exists a discrete subgroup

�E2(p),p ⊆ Q
×
p

of rank one such that JDR can be lifted to a class in H1(�p,A×/�E2(p),p). Thus, we have to
show that this discrete subgroup is homothetic to the one generated by p.
Although Theorem 3.16 of [17] is stated only for cusp forms it is enough to assume that

the system of eigenvalues for the full Hecke algebra (including the Hecke operator at p)
shows up only in a single degree in cohomology. This is certainly the case for E2(p). Thus,
one can argue as in loc.cit. to show that �E2(p),p is homothetic to the lattice generated by
any element q ∈ Q

×
p such that
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• ordp(q) �= 0 and
• logp(q) = −2 dα

dk |k=2 ,

where α is the Up-eigenvalue of the Hida family passing through E2(p). As the Up-
eigenvalue in the Eisenstein family is constant (and equal to 1) we see that q = p fulfils
the two properties above.

3.4 Theta cocycles for definite unitary groups

We end this note with some remarks about theta cocycles for definite unitary groups. The
author hopes to return to the study of these cocycles and their arithmetic applications in
the future. Let GU be the group of unitary similitudes of a definite Hermitian form over
a totally real number field F and let G be GU modulo its center. Assume that G is split at
a prime p of F , i.e., G(Fp) ∼= PGLn(Fp).
Let π be an automorphic representation which is cohomological with respect to the

trivial coefficient system and such that its local component at πp is the Steinberg repre-
sentation of PGLn(Fp). We assume for simplicity that all Hecke eigenvalues are rational.
By the result of many authors (see Theorem 2.1.1 of [1] for an overview), one can attach a
Galois representation ρπ to π and the restriction ρπ ,p of ρπ to a decomposition group at
p is of the following form: it is upper triangular and the i-th diagonal entry is the n − i-th
cyclotomic character.
Let ρπ ,p,1 be the 2-dimensional subrepresentation given by the upper-left-2 × 2-block

of that matrix, i.e., ρπ ,p,1 is an extension of Qp(n − 1) by Qp(n − 2). It is known that this
extension is not crystalline. Thus, we can define the lattice

�ρ = �ρπ ,p,1(n).
Let A be the ring of analytic function on Drinfeld’s upper half space of dimension

n − 1 over Fp. Under suitable strong multiplicity one assumptions [15], Proposition 3.9,
togetherwithGekeler’s isomorphism implies that, for appropriate p-arithmetic subgroups
�p ⊆ G(F ), the π-isotypic part of H∗(�p,A×/F×

p ) ⊗ Q is concentrated in degree n − 2
and nonzero. Using [17], Theorem 4.3, and [15], Theorem 3.19, we see that (under mild
assumptions on ρ) the map

(Hn−2(�p,A×/�ρ) ⊗ Q)π −→ (Hn−2(�p,A×/F×
p ) ⊗ Q)π

is an isomorphism and that
(Hn−2(�p,A×) ⊗ Q)π = 0.
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