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Abstract

This paper is concerned with the geometric structure of the transmission eigenvalue
problem associated with a general conductive transmission condition. We prove that
under a mild regularity condition in terms of the Herglotz approximations of one of the
pair of the transmission eigenfunctions, the eigenfunctions must be vanishing around a
corner on the boundary. The Herglotz approximation is the Fourier extension of the
transmission eigenfunction, and the growth rate of the density function can be used to
characterize the regularity of the underlying wave function. The geometric structures
derived in this paper include the related results in Diao et al. (Commun Partial Differ Equ
46(4):630–679, 2021) and Blåsten and Liu (J Funct Anal 273:3616–3632, 2017) as special
cases and verify that the vanishing around corners is a generic local geometric property
of the transmission eigenfunctions.
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1 Introduction
1.1 Background

In its general form, the transmission eigenvalue problem is given as follows (cf. [26]):

P1(x, D)u = λu, P2(x, D)v = λv in �; C(u) = C(v) on ∂�, (1.1)

where � is a bounded Lipschitz domain in R
n, n = 2, 3, the interior of its complement is

connected and Pj(x, D) are two elliptic partial differential operators (PDOs) with D signi-
fying the differentiations with respect to x = (xj)nj=1 ∈ R

n, and C denotes the Cauchy data
set. If there exists a non-trivial pair of solutions (u, v), then λ ∈ C is called a transmission
eigenvalue and (u, v) are the corresponding pair of transmission eigenfunctions.
Though the PDOs Pj , j = 1, 2, are generally elliptic, self-adjoint and linear, the trans-

mission eigenvalue problems of the form (1.1) are a type of non-elliptic, non-self-adjoint
and nonlinear (in terms of the transmission eigenvalue λ) spectral problems, making the
corresponding spectral study highly intriguing and challenging; see [26] for some related
discussion. The transmission eigenvalue problems arise in the wave scattering theory and
connect to many aspects of the wave scattering theory in a delicate way. Indeed, many of
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the spectral results established for the transmission eigenvalue problems in the literature
have found important applications in the wave scattering theory, including generating
novel wave imaging and sensing schemes, producing important implications to invisibil-
ity cloaking and proving new uniqueness results for inverse scattering problems.We refer
to [11,12,18,26] for historical accounts and surveys on the state-of-the-art developments
of the spectral studies for the transmission eigenvalue problems in the literature.
To a great extent, the spectral properties of the (real) transmission eigenvalues resemble

those for the classical Dirichlet/Neumann Laplacian: there are infinitely many real trans-
mission eigenvalues which are discrete and accumulate only at infinity. Nevertheless, due
to the non-self-adjointness, there are complex transmission eigenvalues; see [11,18] the
references cited therein. Recently, several local and global geometric structures of distinct
features were discovered for the transmission eigenfunctions [2–9,13–16,21–24,27–29]
and all of them have produced interesting applications of practical importance in the
scattering theory. In this paper, we are concerned with the vanishing property of the
transmission eigenfunctions around a corner on the boundary of the domain, which was
first discovered in [5] and further investigated in [23]. Before discussing our major dis-
coveries, we next specify the transmission eigenvalue problem as well as its vanishing
properties in our study.
Let � be a bounded Lipschitz domain in R

n, n = 2, 3, with a connected complement
R
n\�, and V ∈ L∞(�) and η ∈ L∞(∂�) be possibly complex-valued functions. Consider

the following transmission eigenvalue problem for v, w ∈ H1(�) and λ = k2, k ∈ R+:
⎧
⎪⎪⎨

⎪⎪⎩

(
� + k2(1 + V )

)
w = 0 in �,

(� + k2)v = 0 in �,

w = v, ∂νw = ∂νv + ηv on ∂�,

(1.2)

where ν ∈ S
n−1 signifies the exterior unit normal to ∂�. Two remarks concerning the

formulation of the transmission eigenvalue problem (1.2) are in order. First, we introduce
k2 to denote the transmission eigenvalue. On the one hand, k signifies a wavenumber in
the physical setup and on the other hand, this notation shall ease the exposition of our
subsequentmathematical arguments. Though only k ∈ R+ is physicallymeaningful, some
of our subsequent results also hold for the case that k is a complex number, which should
be clear from the context. Second, the second transmission condition on ∂� in (1.2) is
known as the conductive transmission condition. This type of transmission condition
arises in modelling wave interaction with a certain material object and can find important
applications in magnetotellurics; see e.g. [14,23] and the references cited therein for more
relevant physical backgrounds. On the other hand, if one simply takes η ≡ 0, (1.2) is
reduced to the transmission eigenvalue problem that has been more intensively studied
in the literature. In order to signify such a generalization and extension, we refer to
the eigenvalue problem (1.2) as the conductive transmission eigenvalue problem, which
includes the conventional transmission eigenvalue problem as a special case.
Let xc ∈ ∂� be a corner point, which shall be made more precise in what follows.

Let Bρ(xc) denote a ball of radius ρ ∈ R+ centred at xc. The vanishing property of the
transmission eigenfunction is described as follows:

lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

|ψ(x)| dx = 0, ψ = w or v, (1.3)



Deng et al. Res Math Sci (2022) 9:2 Page 3 of 29 2

where m denotes the Lebesgue measure. It is noted that w and v are H1-functions and
the vanishing at a boundary point should be understood in the integral sense. On the
other hand, if ψ is a continuous function in a neighbourhood of xc, (1.3) clearly implies
that ψ(xc) = 0. In fact, the regularity of the transmission eigenfunctions w and v in
(1.2) is critical for the establishment of the vanishing property (1.3). Under the regularity
condition that both w and v are additionally Hölder continuous, namely Cα continuous
with α ∈ (0, 1), it is shown in [5] and [23] that the vanishing property holds, respectively,
in the cases with η ≡ 0 and η �= 0. By the classical result on the quantitative behaviours
of the solutions to elliptic PDEs around a corner (cf. [19,20,25]), we have the following
decompositions:

w = wsingular + wregular, v = vsingular + vregular, (1.4)

where the regular parts belong toH2 and hence by the standard Sobolev embedding, they
are Hölder continuous. The singular parts may also be Hölder continuous provided the
coefficients, namely V , as well as the boundary data of w and v around the corner are
sufficiently regular. However, in the transmission eigenvalue problem (1.2), the boundary
data, namely (w|∂�, ∂νw|∂�) and (v|∂�, ∂νv|∂�), are not specified. Hence, it may happen
that the transmission eigenfunctions areH1 but notHölder continuous. Clearly, according
to our discussion above, the vanishing propertymay serve as an indicator for such singular
behaviours of the transmission eigenfunctions around the corner. Indeed, according to
the extensive numerical examples in [4], though the transmission eigenfunctions generi-
cally vanish around a corner, there are cases that the transmission eigenfunctions are not
vanishing and instead they are localizing around a corner, especially when the corner is
concave. Hence, it is mathematically intriguing and physically significant to thoroughly
understand such a singularity formation of the transmission eigenfunctions and its con-
nection to the corresponding vanishing behaviour. In [5,23], a regularity criterion of a
different mathematical feature, but more physically related, has been investigated in con-
nection to the vanishing property of the transmission eigenfunction. It is given in terms
of the Herglotz approximation of the transmission eigenfunction v in (1.2). The Herglotz
approximation in a certain sense is the Fourier transform (in terms of the plane waves)
of the eigenfunction v who satisfies the homogeneous Helmholtz equation. Hence, the
growth rate of the transformed function, i.e. the density function in the Herglotz wave,
can naturally be used to characterize the regularity of the underlying wave function. This
resembles the classical way of defining the Sobolev space via the Bessel potentials. Indeed,
it is related to the Fourier restriction property in harmonic analysis. In this paper, we
shall explore along this direction and derive much sharper estimates to show that the
vanishing property of the transmission eigenfunctions holds for a much broader class of
functions in terms of the Herglotz approximation. The vanishing property of the trans-
mission eigenfunctions derived in this paper include the corresponding results in [5,23]
as special cases.

1.2 Statement of the main results and discussions

In order to present a complete and comprehensive study, the statements of our main
results are lengthy and technically involved. Nevertheless, in order to give the readers a
global picture of our study, we briefly summarize the major findings in the following two
theorems. To that end, we first introduce the Herglotz approximation.
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For gj ∈ L2
(
S
n−1), we set

vj(x) =
∫

Sn−1
eikξ ·xgj(ξ )dσ (ξ ), ξ ∈ S

n−1, x ∈ R
n, (1.5)

vj is known as a Herglotz wave with kernel gj . Physically, it is easy to see that vj is formed
by the superposition of plane waves and it is an entire solution to the Helmholtz equation
�vj + k2vj = 0. Hence, gj can be regarded as the Fourier density of the wave function vj
in terms of the plane waves. We have the following denseness property of the Herglotz
waves.
In Theorem 2 of [30], letting k = 0, we can obtain the following lemma.

Lemma 1.1 [30] Let � � R
n be a bounded Lipschitz domain with a connected comple-

ment andHk be the space of all the Herglotz wave functions of the form (1.5). Define

Sk (�) = {u ∈ C∞(�); �u + k2u = 0}
and

Hk (�) = {u|�; u ∈ Hk}.
ThenHk (�) is dense inSk (�)∩ L2(�) with respect to the topology induced by the H1(�)-
norm.

Theorem 1.2 Consider the transmission eigenvalue problem (1.2)with η �≡ 0. Let xc ∈ ∂�

be a corner point in two and three dimensions andNh be a neighbourhood of xc within �

with h ∈ R+ sufficiently small. Suppose that (1 + V )w and η are both Hölder continuous
onNh and ∂Nh ∩ ∂�, respectively, and η(xc) �= 0. If there exist constants C, 
 and ϒ with
C > 0,ϒ > 0 and 
 < ϒ such that the transmission eigenfunction v can be approximated
in H1 (Nh) by the Herglotz functions vj, j = 1, 2, . . . , with kernels gj satisfying

∥
∥v − vj

∥
∥
H1(Nh)

≤ j−ϒ ,
∥
∥gj

∥
∥
L2(Sn−1) ≤ Cj
 , (1.6)

then w and v vanish near xc in the sense of (1.3).
More detailed results are, respectively, given in Theorems 2.3 and 3.1 for the two and

three dimensions.

Remark 1.3 As discussed earlier, the vanishing properties were investigated in [23] under
a similar setup to Theorem 1.2. Compared to the corresponding results in [23], Theo-
rem 1.2 has two significant improvements in the regularity requirements. First, the Her-
glotz approximation condition in [23] was required to be

∥
∥v − vj

∥
∥
H1(Nh)

≤ j−1−ϒ ,
∥
∥gj

∥
∥
L2(Sn−1) ≤ Cj
 , (1.7)

where the constants C > 0,ϒ > 0 and 0 < 
 < 1. It is directly verified that the regularity
condition (1.7) is included in (1.6) as a special case. Second, it was required in [23] that
w−v isH2-regular away from the corner point xc, andwe relax this regularity requirement
in a certain sense in Theorem 1.2.

Theorem 1.4 Consider the transmission eigenvalue problem (1.2) with η ≡ 0. Under the
same conditions as in Theorem 1.2, one has

lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

V (x)w(x)dx = 0. (1.8)
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The similar result holds in the three-dimensional case with (1.6) replaced to be (3.21).
More detailed results are, respectively, given in Corollaries 2.4 and 3.2 for the two and

three dimensions.

Remark 1.5 If V (x) is continuous near the corner xc and V (xc) �= 0, from the fact that

lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

V (x)w(x)dx

= V (xc) lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

w(x)dx,

one can readily see that w vanishes near xc, which in turn implies the vanishing of v near
xc by noting that w and v possess the same traces on ∂�.

Remark 1.6 The vanishing of the transmission eigenfunctions in the case η ≡ 0 was also
studied in [5,23]. The regularity requirement in [23] is the same as that described in
Remark 1.3, whereas in [5], the Herglotz approximation was required to be

∥
∥v − vj

∥
∥
L2(Nh)

≤ e−j ,
∥
∥gj

∥
∥
L2(Sn−1) ≤ C(ln j)β , (1.9)

where the constants C > 0 and 0 < β < 1/(2n + 8), (n = 2, 3). It is directly verified
that the corresponding results in [5,23] are included into Theorems 1.2 and 1.4 as special
cases. Nevertheless, it is pointed out that in [5], the technical condition (1 + V )w being
Hölder continuous is not required and instead it is required that V is Hölder continuous.

The following are three general remarks on the vanishing properties of the transmission
eigenfunctions.

Remark 1.7 The vanishing properties established in Theorems 1.2 and 1.4 as well as
those in [5,23] are of a completely local feature. That is, all the results hold for the
partial-data transmission eigenvalue problem, namely in (1.2) the transmission boundary
conditions on ∂� are required to hold only in a small neighbourhood of the corner
point. In particular, this means that all the geometric properties also hold for the so-called
exterior transmission eigenfunctions; see [11] for discussions on the exterior transmission
eigenvalue problems. It is also mentioned that a global rigidity result of the geometric
structure of the transmission eigenfunctions was presented in [15].

Remark 1.8 According to our earlier discussion, if the transmission eigenfunctionsw and
v are Hölder continuous around the corner, then both of them vanish near the corner.
Hence, in order to search for the transmission eigenfunctions that are non-vanishing near
corners, especially those numerically found in [4] which are actually locally localizing
around corners, one should consider transmission eigenfunctions whose regularity lies
between H1 and Cα , α ∈ (0, 1). By using properties of the Herglotz approximation (cf.
[17]), one can show (though not straightforward) that the regularity criterion (1.7) defines
a set of functions which includes some functions that are less regular than Cα , but also
does not include some functions which are more regular than Cα . Hence, the regular-
ity characterization in terms of the Herglotz approximation is of a different theoretical
nature from the standard Sobolev regularity. Nevertheless, Theorems 1.2 and 1.4 indicate
that the vanishing near corners is a generic local geometric property of the transmission
eigenfunctions.
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Remark 1.9 The vanishing properties of the transmission eigenfunctions are closely
related to a quantitative result of physical significance in the scattering theory, which
asserts that a corner scatters every entire incident field non-trivially. The corner scat-
tering phenomenon has been extensively studied in its own context [3,6,8,10,13] and
its connection to the vanishing properties of the transmission eigenfunctions has been
extensively remarked in [5,23]. The corner scattering study makes essential use of an
assumption that the transmission eigenfunction v can be analytically extended across the
corner. In such a case, the regularity of v always fulfils the Hölder-continuity requirement
in the vanishing study of the transmission eigenfunctions. Hence, one can easily infer
that as long as an incident field is not vanishing at the corner point, it will be scattered
non-trivially by the corner. It is interesting to note that there is a special case that the trans-
mission eigenfunction v itself is a Herglotz wave function. It is widely believed that this
does not happen unless under very special situations, say � is a ball and V is a constant.
Hence, it is also believed that a corner always scatterers a Herglotz wave non-trivially.
One can easily see that the regularity criteria (1.7) and (1.9) excludemanyHerglotz waves,
whereas (1.6) includes all the possible Herglotz waves since ϒ and 
 therein can actually
be taken to be any real numbers.

In principle, we shall follow the general strategy developed in [23] in establishing the new
vanishing results for the transmission eigenfunctions. Nevertheless, we develop techni-
cally new ingredients which enable us to sharpen several critical estimates and prove that
the vanishing properties hold for a much broader class of transmission eigenfunctions.
The method developed shall be useful for the quantitative studies of the geometric prop-
erties of transmission eigenfunctions in other contexts. In what follows, Sections 2 and 3
are, respectively, devoted to the vanishing properties of the transmission eigenfunctions
in two and three dimensions.

2 Vanishing properties in two dimensions
To facilitate calculation and analysis, we introduce the two-dimensional polar coordinates
(r, θ ) such that x = (x1, x2) = (r cos θ , r sin θ ) ∈ R

2. Set Bh := Bh(0) for h ∈ R+. Define
the following open sector in R

2,

W = {
x ∈ R

2| x �= 0, θm < arg (x1 + ix2) < θM
}
, (2.1)

where −π < θm < θM < π , i := √−1 and let �+ and �−, respectively, be (r, θM) and
(r, θm) with r > 0. Define that

Sh = W ∩ Bh,�±
h = �± ∩ Bh, S̄h = W ∩ Bh,

�h = Sh ∩ ∂Bh, and ��h = Sh\Sh/2. (2.2)

In Fig. 1, we present a schematic illustration of the corner introduced above.
We shall make use the following complex geometrical optics (CGO) solution, which

was first introduced in [2],

Lemma 2.1 [2, Lemma 2.2] For x ∈ R
2 denote r = |x|, θ = arg(x1 + ix2). Define

u0(x) := exp
(√

r
(

cos
(

θ

2
+ π

)

+ i sin
(

θ

2
+ π

)))

, (2.3)



Deng et al. Res Math Sci (2022) 9:2 Page 7 of 29 2

Fig. 1 Schematic illustration of a 2D corner

then �u0 = 0 in R
2 \ R

2
0,−, where R

2
0,− := {

x ∈ R
2| x = (x1, x2); x1 ≤ 0, x2 = 0

}
and

s 
→ u0(sx) decays exponentially in R+. Choose α, s > 0, then there holds
∫

W

∣
∣u0(sx)‖x

∣
∣α dx ≤ 2 (θM − θm)�(2α + 4)

δ2α+4
W

s−α−2. (2.4)

where we define δW =: −maxθm<θ<θM cos(θ/2 + π ) > 0. Moreover, one has
∫

W
u0(sx)dx = 6i

(
e−2θM i − e−2θmi

)
s−2, (2.5)

and for a positive constant h > 0, there holds
∫

W \Bh

∣
∣u0(sx)

∣
∣ dx ≤ 6 (θM − θm)

δ4W
s−2e−δW

√
hs/2. (2.6)

By direct calculations, one can obtain the following estimates for the CGO solution
u0(sx):

Corollary 2.1 u0 /∈ H2(Bε) near the origin and |u0(sx)| ≤ 1 in Bε ∩ W for sufficiently
small ε.

Furthermore, one has the following estimates where the first and last formulas can also
be found in [23, Lemma 2.3].

Corollary 2.2 The following estimates hold for the L2 norm of u0:

∥
∥u0(sx)

∥
∥2
L2(Sh)

≤ (θM − θm) e−2
√
s�δW h2

2
, � ∈ [0, h], (2.7)

∥
∥u0(sx)

∥
∥
L2(�h)

≤ √
he−δW

√
sh√θM − θm, (2.8)

∥
∥∂νu0(sx)

∥
∥
L2(�h)

≤ 1
2
√
se−δW

√
sh√θM − θm, (2.9)
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∥
∥∂θu0(sx)

∥
∥
L2(�h)

≤
√
s
2
h2e−δW

√
sh√θM − θm, (2.10)

∥
∥|x|αu0(sx)

∥
∥2
L2(Sh)

≤ s−(2α+2) 2 (θM − θm)
(
4δ2W

)2α+2 �(4α + 4), (2.11)

where δW is defined in (2.4) and Sh, �h are defined in (2.2).

Proof First, by making use of integral mean value theorem, one has

∥
∥u0(sx)

∥
∥2
L2(Sh)

=
∫ h

0
rdr

∫ θM

θm
e2

√
sr cos(θ/2+π )dθ

≤
∫ h

0
rdr

∫ θM

θm
e−2

√
srδW dθ

= (θM − θm) e−2
√
s�δW h2

2
,

where � ∈ [0, h]. Next, on �h, it can be seen that
∣
∣u0(sx)

∣
∣ = e

√
sh cos(θ/2+π ) ≤ e−δW

√
sh,

∣
∣∂νu0(sx)

∣
∣ =

∣
∣
∣
∣
∣

√
sei cos(θ/2+π )

2
√
h

e
√
sh exp(i(θ/2+π ))

∣
∣
∣
∣
∣
≤ 1

2

√
s
h
e−δW

√
sh,

∣
∣∂θu0(sx)

∣
∣ =

∣
∣
∣
∣
∣

√
sh
2

e
√
sh exp(i(θ/2+π ))

∣
∣
∣
∣
∣
≤

√
sh
2

e−δW
√
sh,

which relates to exponentially decay property when s → ∞. By straightforward calcula-
tions, one can show that

∥
∥u0(sx)

∥
∥
L2(�h)

≤ √
he−δW

√
sh√θM − θm,

∥
∥∂νu0(sx)

∥
∥
L2(�h)

≤ 1
2
√
se−δW

√
sh√θM − θm,

∥
∥∂θu0(sx)

∥
∥
L2(�h)

≤
√
s
2
h2e−δW

√
sh√θM − θm.

Finally, by making use of polar coordinates, one can readily deduce that

∥
∥|x|αu0(sx)

∥
∥2
L2(Sh)

=
∫ h

0
rdr

∫ θM

θm
r2αe2

√
sr cos(θ/2+π )dθ

≤
∫ h

0
rdr

∫ θM

θm
r2αe−2

√
srδwdθ

= (θM − θm)
∫ h

0
r2α+1e−2δW

√
srdr

(
t = 2δW

√
sr
)

= s−(2α+2) 2 (θM − θm)
(
4δ2W

)2α+2

∫ 2δW
√
sh

0
t4α+3e−tdr

≤ s−(2α+2) 2 (θM − θm)
(
4δ2W

)2α+2 �(4α + 4),

(2.12)

which completes the proof. �


Next, by direct computations and the compact embeddings of Hölder spaces, one can
easily obtain the following result:
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Lemma 2.2 For the Herglotz wave function vj defined in (1.5) in two dimensions,
∥
∥vj

∥
∥
C1(Sh)

≤ √
2π (1 + k)

∥
∥gj

∥
∥
L2(S) ,

∥
∥vj

∥
∥
Cα (Sh)

≤ diam (Sh)1−α
∥
∥vj

∥
∥
C1(Sh)

.
(2.13)

where 0 < α < 1 and diam (Sh) is the diameter of Sh.

Furthermore, using the Jacobi–Anger expansion [17, Page 75] in R
2, we can obtain the

following lemma.

Lemma 2.3 TheHerglotz wave function vj defined in (1.5) admits the following asymptotic
expansion:

vj(x) = J0(k|x|)
∫

S

gj(θ )dσ (θ ) + 2
∞∑

p=1
ipJp(k|x|)

∫

S

gj(θ ) cos(pϕ)dσ (θ )

:= vj(0)J0(k|x|) + 2
∞∑

p=1
ipJp(k|x|)γpj, x ∈ R

2,
(2.14)

where Jp(t) stands for the pth Bessel function. Indeed,

Jp(t) = tp

2pp!
+ tp

2p
∞∑

�=1

(−1)�t2�

4�(�!)2
, p = 0, 1, 2, . . . (2.15)

The following lemma shows the elementary expansion result for functions with Cα regu-
larity:

Lemma 2.4 Suppose f (x) ∈ Cα , then the following expansion holds near the origin:

f (x) = f (0) + δf (x), |δf (x)| ≤ ∥
∥f

∥
∥
Cα |x|α . (2.16)

Lemma 2.5 Let v, w ∈ H1(�) be a pair of conductive transmission eigenfunctions to (1.2),
Dε = Sh \ Bε for 0 < ε < h, η ∈ Cα

(
�̄±
h
)
for 0 < α < 1 and �±

h , Sh be defined in (2.2),
then

lim
ε→0

∫

Dε

�(v − w)u0(sx)dx =
∫

�h

(u0(sx)∂ν(v − w) − (v − w)∂νu0(sx)) dσ

−
∫

�±
h

η(x)u0(sx)v(x)dσ .
(2.17)

Proof By making use of Green’s formula, together with the boundary condition in (1.2),
one can deduce that

∫

Dε

�(v − w)u0(sx)dx

=
∫

Dε

(v − w)�u0(sx)dx +
∫

∂Dε

(u0(sx)∂ν(v − w) − (v − w)∂νu0(sx)) dσ (x)

=
∫

�h

(u0(sx)∂ν(v − w) − (v − w)∂νu0(sx)) dσ (x)

+
∫

�ε

(u0(sx)∂ν(v − w) − (v − w)∂νu0(sx)) dσ (x)

−
∫

�±
(ε,h)

η(x)u0(sx)v(x)dσ (x),

(2.18)
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where �±
(ε,h) = �± ∩ (Bh\Bε) and �ε = Sh ∩ ∂Bε . Using the trace theorem, we have

v ∈ L2
(
�±
(0,ε)

)
, where �±

(0,ε) = �± ∩ Bε . By Corollary 2.1, one can see that

lim
ε→0

∫

�ε

(u0∂ν(v − w) − (v − w)∂νu0) dσ = 0,

and

lim
ε→0

∫

�±
(0,ε)

ηu0v dσ = 0.

Thus, (2.17) is obtained by taking the limit on both sides of Eq. (2.18). �

We next present two auxiliary lemmas which are extended from the related estimates

in [23].

Lemma 2.6 Suppose η ∈ Cα
(
�̄±
h
)
for 0 < α < 1, θM, θm are defined in (2.1) and θM −

θm �= π . Define

ω(θ ) = − cos(θ/2 + π ), μ(θ ) = − cos(θ/2 + π ) − i sin(θ/2 + π ), (2.19)

and

I±2 =
∫

�±
h

η(x)u0(sx)vj(x)dσ . (2.20)

Then, it holds that

I−2 = 2η(0)vj(0)s−1
(
μ (θm)−2 − μ (θm)−2 e−

√
shμ(θm) − μ (θm)−1 √

she−
√
shμ(θm)

)

+ vj(0)η(0)I−21 + η(0)I−22 + I−η ,
(2.21)

and

I+2 = 2η(0)vj(0)s−1
(
μ (θM)−2 − μ (θM)−2 e−

√
shμ(θM ) − μ (θM)−1 √

she−
√
shμ(θM )

)

+ vj(0)η(0)I+21 + η(0)I+22 + I+η ,
(2.22)

where

I−21 ≤ O(s−3), I+21 ≤ O(s−3),

I−22 ≤ O(‖gj‖L2(Sn−1)s−2), I+22 ≤ O(‖gj‖L2(Sn−1)s−2),

|I−η | ≤ ‖η‖Cα

(
vj(0)O(s−1−α) + O(‖gj‖L2(Sn−1)s−2−α)

)
,

|I+η | ≤ ‖η‖Cα

(
vj(0)O(s−1−α) + O(‖gj‖L2(Sn−1)s−2−α)

)
.

Proof Using Lemma 2.4, we have

I−2 = η(0)
∫

�−
h

u0(sx)vj(x)dσ +
∫

�−
h

δη(x)u0(sx)vj(x)dσ .

Note that ω(θ ) > 0 for θm ≤ θ ≤ θM . By Lemma 2.3, we can obtain that
∫

�−
h

u0(sx)vj(x)dσ =
∫ h

0

⎛

⎝vj(0)J0(kr) + 2
∞∑

p=1
γpjipJp(kr)

⎞

⎠ e−
√
srμ(θm)dr

= vj(0)

⎡

⎣

∫ h

0
e−

√
srμ(θm)dr +

∞∑

p=1

(−1)pk2p

4p(p!)2

∫ h

0
r2pe−

√
srμ(θm)dr

⎤

⎦
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+
∫ h

0
2

∞∑

p=1
γpjipJp(kr)e−

√
srμ(θm)dr

:= vj(0)
[∫ h

0
e−

√
srμ(θm)dr + I−21

]

+ I−22. (2.23)

Furthermore, we have
∫ h

0
e−

√
srμ(θm)dr = 2s−1

(
μ (θm)−2 − μ (θm)−2 e−

√
shμ(θm) − μ (θm)−1 √

she−
√
shμ(θm)

)
,

(2.24)

and

∣
∣I−21

∣
∣ ≤

∞∑

p=1

k2ph2p−2

4p(p!)2

∫ h

0
r2e−

√
srω(θm)dr = O (

s−3) . (2.25)

By using Lemma 2.3, one can drive that

∣
∣I−22

∣
∣ ≤ 2

∥
∥gj

∥
∥
L2(S)

∞∑

p=1

[
kp

2pp!

∫ h

0
rpe−

√
srω(θm)dr

+ (kh)p

2p
∞∑

�=1

k2�h2(�−1)

4�(�!)2

∫ h

0
r2e−

√
srω(θm)dr

]

≤ 2
∥
∥gj

∥
∥
L2(S)

∞∑

p=1

[
kphp−1

2pp!

∫ h

0
re−

√
srω(θm)dr + O (

s−3)
]

= O
(∥
∥gj

∥
∥
L2(S) s

−2
)
,

(2.26)

with the assumption that kh < 1 for sufficiently small h. Taking

I−η =
∫

�−
h

δη(x)u0(sx)vj(x)dσ . (2.27)

By Lemmas 2.3 and 2.4, it holds that

∣
∣
∣I−η

∣
∣
∣ ≤‖η‖Cα

∫ h

0
rα

⎛

⎝vj(0)J0(kr) + 2
∞∑

p=1

∣
∣γpj

∣
∣ Jp(kr)

⎞

⎠ e−
√
srω(θm)dr

=‖η‖Cαvj(0)(
∫ h

0
rαe−

√
srω(θm)dr

+
∞∑

p=1

(−1)pk2p

4p(p!)2

∫ h

0
rα+2pe−

√
srω(θm)dr)

+ 2‖η‖Cα

∞∑

p=1

∫ h

0
rαγpjipJp(kr)e−

√
srμ(θm)dr.

(2.28)

Since ω(θm) > 0, as s → ∞, we have
∫ h

0
rαe−

√
srω(θm)dr = O (

s−1−α
)
, (2.29)

and
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∣
∣
∣
∣
∣
∣

∞∑

p=1

(−1)pk2p

4p(p!)2

∫ h

0
rα+2pe−

√
srω(θm)dr)

∣
∣
∣
∣
∣
∣

≤
∞∑

p=1

h2p−2k2p

4p(p!)2

∫ h

0
rα+2e−

√
srω(θm)dr = O (

s−3−α
)
, (2.30)

for kh < 1. Furthermore, by direct computations, one can obtain that

∣
∣
∣
∣
∣
∣

∞∑

p=1

∫ h

0
rαγpjipJp(kr)e−

√
srμ(θm)dr

∣
∣
∣
∣
∣
∣

≤ ∥
∥gj

∥
∥
L2(S)

∞∑

p=1

[
kp

2pp!

∫ h

0
rp+αe−

√
srω(θm)dr

+kp

2p
∞∑

�=1

k2�h2(�−1)

4�(�!)2

(∫ h

0
rp+α+2e−

√
srω(θm)dr

)]

≤ ∥
∥gj

∥
∥
L2(S)

∞∑

p=1

[
kp

2pp!

∫ h

0
rp+αe−

√
srω(θm)dr

+ (kh)p

2p
∞∑

�=1

k2�h2(�−1)

4�(�!)2

(∫ h

0
rα+2e−

√
srω(θm)dr

)]]

≤ ∥
∥gj

∥
∥
L2(S)

∞∑

p=1

[
kphp−1

2pp!

∫ h

0
rα+1e−

√
srω(θm)dr + O (

s−α−3)
]

= O
(∥
∥gj

∥
∥
L2(S) s

−α−2
)
.

(2.31)

Combining (2.27)-(2.31), one finally obtains

|I−η | ≤ ‖η‖Cα

(
vj(0)O

(
s−1−α

) + O
(∥
∥gj

∥
∥
L2(Sn−1) s

−α−2
))

. (2.32)

Similarly, one can prove (2.22), which completes the proof. �


Lemma 2.7 Suppose that η ∈ Cα
(
�̄±
h
)
for 0 < α < 1, �±

h is defined in (2.2), θM, θm are
defined in (2.1) and θM − θm �= π . Define

ξ±
j (s) =

∫

�±
h

η(x)u0(sx)
(
v(x) − vj(x)

)
dσ . (2.33)

Then, the following estimate holds,
∣
∣
∣ξ

±
j (s)

∣
∣
∣ ≤C

(
|η(0)|

√
θM − θme−

√
s�δWh

√
2

+ ‖η‖Cα s−(α+1)
√
2 (θM − θm)�(4α + 4)

(2δW )2α+2

) ∥
∥v − vj

∥
∥
H1(Sh)

,
(2.34)

where δw is defined in (2.4).
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Proof By Lemma 2.4, the trace theorem and Cauchy–Schwarz inequality, one has

∣
∣
∣ξ

±
j (s)

∣
∣
∣ ≤ |η(0)|

∫

�±
h

∣
∣u0(sx)

∣
∣
∣
∣v(x) − vj(x)

∣
∣ dσ

+ ‖η‖Cα

∫

�±
h

|x|α ∣
∣u0(sx)

∣
∣
∣
∣v(x) − vj(x)

∣
∣ dσ

≤ |η(0)| ∥∥v − vj
∥
∥
H1/2(�±

h )
∥
∥u0(sx)

∥
∥
H−1/2(�±

h )
+ ‖η‖Cα

∥
∥v − vj

∥
∥
H1/2(�±

h )
∥
∥|x|α u0(sx)

∥
∥
H−1/2(�±

h )
≤ |η(0)| ∥∥v − vj

∥
∥
H1(Sh)

∥
∥u0(sx)

∥
∥
L2(Sh)

+ ‖η‖Cα

∥
∥v − vj

∥
∥
H1(Sh)

∥
∥ |x|α u0(sx)

∥
∥
L2(Sh)

.

Combining with Corollary 2.2, one readily obtains (2.34).
The proof is complete. �


With the above preliminary results, we present our first main result on the vanishing
properties of v in two dimensions.

Theorem 2.3 Let v ∈ H1(�) and w ∈ H1(�) be a pair of eigenfunctions to (1.2) for
k ∈ R+. Let � ⊂ R

2 be a Lipschitz domain which contains a corner � ∩ W, with xc be the
vertex, whereW is a sector defined in (2.1). Let Sh be defined in (2.2)with h > 0 sufficiently
small. Furthermore, suppose that qw ∈ Cα

(
S̄h

)
with q := 1 + V and η ∈ Cα

(
�̄±
h
)
for

0 < α < 1. If the following conditions are fulfilled:

(a) there exists Herglotz functions vj, j = 1, 2, . . . , defined in (1.5), with kernels gj such
that

∥
∥v − vj

∥
∥
H1(Sh)

≤ j−ϒ ,
∥
∥gj

∥
∥
L2(S) ≤ Cj
 . (2.35)

hold for some constants C > 0,ϒ > 0 and 
 < ϒ .
(b) the function η(x) does not vanish at the corner xc, that is,

η (xc) �= 0. (2.36)

(c) the corner in the sector W is a real corner, that is

− π < θm < θM < π and θM − θm �= π . (2.37)

Then, there holds the following vanishing property:

lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

|v(x)|dx = 0. (2.38)

Proof of Theorem 2.3 It is well known that � + k2 is invariant under rigid motions; thus,
we assume, without loss of generality, that xc = 0. By (1.2) we define

�v = −k2v := f1, �w = −k2qw := f2, (2.39)

which in combination with the boundary conditions in (1.2), yields that

�(v − w) = f1 − f2 in Sh, v − w = 0, ∂ν(v − w) = −ηv on �±
h .
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For national simplicity, we define f1j(x) = −k2vj . Consider the following integral:
∫

Sh
�(v − w)u0(sx)dx =

∫

Sh
(k2qw − k2v)u0(sx)dx

=
∫

Sh
u0(sx)(f1j − f2)dx − k2

∫

Sh
(v − vj)u0(sx)dx

:= I1 + �j(s).

(2.40)

By Corollary 2.1, one has that u0 /∈ H2 near the origin. Consider the domain Dε = Sh\Bε

for 0 < ε < h. Using the fact that
∫

Sh
�(v − w)u0(sx)dx = lim

ε→0

∫

Dε

�(v − w)u0(sx)dx, (2.41)

and by Lemma 2.5, one can drive that

I1 + �j(s) = I3 − I±2 − ξ±
j (s), (2.42)

where I1 and �j(s) are defined in (2.40), and

I±2 =
∫

�±
h

η(x)u0(sx)vj(x)dσ ,

I3 =
∫

�h

(u0(sx)∂ν(v − w) − (v − w)∂νu0(sx)) dσ ,

ξ±
j (s) =

∫

�±
h

η(x)u0(sx)
(
v(x) − vj(x)

)
dσ .

(2.43)

Recalling that I1 is defined in (2.40), by Lemma 2.4 and the compact embedding, one can
deduce that

I1 = (
f1j(0) − f2(0)

)
∫

Sh
u0(sx)dx +

∫

Sh
δf1j(x)u0(sx)dx −

∫

Sh
δf2(x)u0(sx)dx, (2.44)

where δf1j(x) and δf2(x) are deduced by Lemma 2.4. Using the fact that
∫

Sh
u0(sx)dx =

∫

W
u0(sx)dx −

∫

W \Sh
u0(sx)dx,

and combining (2.5) and (2.6) in Lemma 2.1, it can be derived that
∣
∣
∣
∣

∫

Sh
u0 (sx) dx

∣
∣
∣
∣ ≤ 6

∣
∣
∣e−2θM i − e−2θmi

∣
∣
∣ s−2 + 6 (θM − θm)

δ4W
s−2e−

δW
√
hs

2 . (2.45)

From Lemma 2.1, Corollary 2.2, Lemmas 2.4 and 2.2, one can derive that
∣
∣
∣
∣

∫

Sh
δf1j(x)u0(sx)dx

∣
∣
∣
∣ ≤

∫

Sh

∣
∣δf1j(x)

∣
∣
∣
∣u0(sx)

∣
∣ dx

≤ ∥
∥f1j

∥
∥
Cα

∫

W

∣
∣u0(sx)‖x

∣
∣α dx

≤ 2 (θM − θm)�(2α + 4)
δ2α+4
W

∥
∥f1j

∥
∥
Cα s−α−2

≤ 2
√
2π (θM − θm)�(2α + 4)

δ2α+4
W

k2 diam (Sh)1−α

× (1 + k)Cj
s−α−2,

(2.46)

where δf1j(x) is deduced by Lemma 2.4. Using the assumption (2.35), we further obtain
that

∣
∣
∣
∣

∫

Sh
δf1j(x)u0(sx)dx

∣
∣
∣
∣ ≤ C ′j
s−α−2, (2.47)
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where C ′ = (1 + k)C 2
√
2π (θM−θm)�(2α+4)

δ2α+4
W

k2 diam (Sh)1−α and C is defined in (2.35). Simi-
larly, we have

∣
∣
∣
∣

∫

Sh
δf2(x)u0(sx)dx

∣
∣
∣
∣ ≤ 2 (θM − θm)�(2α + 4)

δ2α+4
W

∥
∥f2

∥
∥
Cα s−α−2. (2.48)

As for the �j(s) defined in (2.40), using the Cauchy–Schwarz inequality, Corollary 2.2
and the assumption (2.35), we can drive that

∣
∣�j(s)

∣
∣ ≤ k2

∥
∥v − vj

∥
∥
L2(Sh)

∥
∥u0(sx)

∥
∥
L2(Sh)

≤
√

θM − θmk2e−
√
s�δwh√

2
j−ϒ .

(2.49)

By using the Hölder inequality, Corollary 2.2, and the trace theorem, one can prove that

|I3| ≤ ∥
∥u0(sx)

∥
∥
H1/2(�h)

∥
∥∂ν(v − w)

∥
∥
H−1/2(�h)

+ ∥
∥∂νu0(sx)

∥
∥
L2(�h)

‖v − w‖L2(�h)

≤
(∥
∥u0(sx)

∥
∥
H1(�h)

+ ∥
∥∂νu0(sx)

∥
∥
L2(�h)

)
‖v − w‖H1

(
��h

) ≤ Ce−c′√s,
(2.50)

where c′ > 0 as s → ∞.
By multiplying s on both sides of (2.42), using Lemma 2.6 and (2.44), one can then get

that
2vj(0)η(0)

[(
μ (θM)−2 − μ (θM)−2 e−

√
sh(θM ) − μ (θM)−1 √

she−
√
shμ(θM )

)

+
(
μ (θm)−2 − μ (θm)−2 e−

√
shμ(θm) − μ (θm)−1 √

she−
√
shμ(θm)

)]

= s
[

I3 − (
f1j(0) − f2(0)

)
∫

Sh
u0(sx)dx − �j(s)

−vj(0)η(0)
(
I+21 + I−21

) − η(0)
(
I+22 + I−22

)

−I+η − I−η −
∫

Sh
δf1j(x)u0(sx)dx +

∫

Sh
δf2(x)u0(sx)dx − ξ±

j (s)
]

.

(2.51)

Taking s = jβ , where max{
, 0} < β < ϒ , and letting j → ∞, by (2.45), (2.47), (2.48),
(2.50), Lemmas 2.6 and 2.7, we can deduce that

η(0)
(
μ (θm)−2 + μ (θM)−2) lim

j→∞ vj(0) = 0. (2.52)

Using the assumption of (2.37), one has that

μ (θm)−2 + μ (θM)−2 = (cos θm + cos θM) + i (sin θm + sin θM)
(cos θm + i sin θm) (cos θM + i sin θM)

�= 0. (2.53)

By assumption (2.36), it holds that η(0) �= 0. Combining (2.52) with (2.53), we know that

lim
j→∞ vj(0) = 0.

Thus, it is an easy consequence that

lim
j→∞ |vj(0)| = lim

ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

∣
∣vj(x)

∣
∣ dx.

Combining with the triangular inequality

lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

|v(x)|dx

≤ lim
j→∞

(

lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

∣
∣v(x) − vj(x)

∣
∣ dx

+ lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

∣
∣vj(x)

∣
∣ dx

)

,
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one finally arrives at

lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

|v(x)|dx = 0.

The proof is complete. �


If η ≡ 0, then by slightly modifying the proof of Theorem 2.3, one can show that the
following result holds:

Corollary 2.4 Let v ∈ H1(�)andw ∈ H1(�)beapair of eigenfunctions to (1.2)withη ≡ 0
and k ∈ R+. Let the corner xc be the same as that in Theorem 2.3. Suppose qw ∈ Cα

(
S̄h

)

for 0 < α < 1 and there exists Herglotz functions vj, j = 1, 2, . . . , defined in (1.5), with
kernels gj such that

∥
∥v − vj

∥
∥
H1(Sh)

≤ j−ϒ ,
∥
∥gj

∥
∥
L2(S) ≤ Cj
 , (2.54)

for some constants C > 0,ϒ > 0 and 
 < αϒ/2, then one has

lim
ρ→+0

1
m (B (xc, ρ) ∩ �)

∫

B(xc ,ρ)∩�

V (x)w(x)dx = 0. (2.55)

Proof The proof is similar to that of Theorem 2.3, we only outline some necessary mod-
ifications in the following. Again, we assume that xc = 0. Since η(x) ≡ 0, from (2.42),
(2.43) and (2.44), we have the following integral identity

(
f1j(0) − f2(0)

)
∫

Sh
u0(sx)dx + �j(s)

= I3 −
∫

Sh
δf1j(x)u0(sx)dx +

∫

Sh
δf2(x)u0(sx)dx, (2.56)

where �j(s) and I3 are defined in (2.40) and (2.43), δf1j(x) and δf2(x) are deduced by
Lemma 2.4 with f2(x) defined in (2.39) and f1j(x) = −k2vj . Multiplying s2 on both sides
of (2.56), taking s = Jβ where max{
/α, 0} < β < ϒ/2, together with the assumptions
(2.54) and (2.37), from (2.45), (2.46), (2.48), (2.49) and (2.50), one can derive that

lim
j→∞ vj(0) = f2(0)

−k2
. (2.57)

Since

lim
j→∞ vj(0) = lim

j→∞ lim
ρ→+0

1
m(B(0, ρ) ∩ �)

∫

B(0,ρ)∩�

vj(x)dx

= lim
ρ→+0

1
m(B(0, ρ) ∩ �)

∫

B(0,ρ)∩�

v(x)dx,

and
f2(0)
−k2

= lim
ρ→+0

1
m(B(0, ρ) ∩ �)

∫

B(0,ρ)∩�

qw(x)dx,

which together with the fact that

lim
ρ→+0

1
m(B(0, ρ) ∩ �)

∫

B(0,ρ)∩�

v(x)dx = lim
ρ→+0

1
m(B(0, ρ) ∩ �)

∫

B(0,ρ)∩�

w(x)dx,

readily implies (2.55).
The proof is complete. �
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3 Vanishing properties in three dimensions
In this section, we shall consider the vanishing properties of the transmission eigenfunc-
tions in the three-dimensional case. First, we introduce thenotion of edge corner geometry
in the three-dimensional setting, wemention that this kind of notation is also given in [23].
LetW is a sector defined in (2.1) andM ∈ R+. It can be readily seen thatW × (−M,M)
actually describes an edge singularity and we call it a 3D corner. In what follows, suppose
a Lipschitz domain � ⊂ R

3 possesses a 3D corner. Let xc ∈ R
2 be the vertex of W and

xc3 ∈ (−M,M). Then,
(
xc, xc3

)
is defined as an edge point of W × (−M,M). We shall use

x = (x′, x3) ∈ W × (−M,M) to signify a point in the edge corner. Now, we consider the
following three dimensional conductive transmission eigenvalue problem:

⎧
⎪⎪⎨

⎪⎪⎩

(
� + k2(1 + V )

)
w = 0 in W × (−M,M),

(� + k2)v = 0 in W × (−M,M),

w = v, ∂νw = ∂νv + ηv on �± × (−M,M),

(3.1)

where �± are the two boundary pieces ofW .
For the subsequent use, we introduce the following dimension reduction operator.

Definition 3.1 [23, Definition 3.1] Let W ⊂ R
2 be defined in (2.1), M > 0. For a given

function g with the domain W × (−M,M). Pick up any point xc3 ∈ (−M,M). Suppose
ψ ∈ C∞

0
((
xc3 − L, xc3 + L

))
is a non-negative function and ψ �= 0, where L is sufficiently

small such that
(
xc3 − L, xc3 + L

) ⊂ (−M,M), and write x = (
x′, x3

) ∈ R
3, x′ ∈ R

2. The
dimension reduction operatorR is defined by

R(g)
(
x′) =

∫ xc3+L

xc3−L
ψ (x3) g

(
x′, x3

)
dx3. (3.2)

where x′ ∈ W .

For later usage, we need the following regularity result of the dimension reduction oper-
ator.

Lemma 3.1 Let g ∈ H1(W × (−M,M)) ∩ Cα(W̄ × [−M,M]), where 0 < α < 1. Then,

R(g)
(
x′) ∈ H1(W ) ∩ Cα(W̄ ).

Proof Wefirst show thatR : H1(W×(−M,M)) → H1(W ) is a boundedoperator. Let g ∈
H1(W × (−M,M)), by the dominated convergence theorem, we know that ∂α

x′R(g)(x′) =
R(∂α

x′g)(x′) for α = (i, j) with i, j = 0, 1 and i + j ≤ 1, so

|∂α
x′R(g)(x′)| ≤

∫ xc3+L

xc3−L
‖ψ‖∞

∣
∣∂α

x′g(x′, x3)
∣
∣ dx3.

Furthermore, by Minkowski integral, we have

‖R(g)(x′)‖H1(W ) ≤ ‖ψ‖∞‖g(x′, x3)‖H1(W×(−M,M)).

When g ∈ Cα(W̄ × [−M,M]), it can be easily derived that

|R(g)(x′) − R(g)(y′)| ≤ 2‖ψ‖∞‖g‖Cα |x′ − y′|α .
which means thatR(g)(x′) ∈ Cα(W̄ ). �

Similar to Lemma 2.2, one can prove similarly the following result:
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Lemma 3.2 For the Herglotz wave function vj defined in (1.5) in three dimensions, it holds
that

‖R(vj)‖C1 ≤ 4L
√

π‖ψ‖C∞ (1 + k)‖gj‖L2(S2),
‖R(vj)‖Cα ≤ diam(Sh)1−α‖R(vj)‖C1 ,

(3.3)

where 0 < α < 1 and diam(Sh) is the diameter of Sh.

Using the Jacobi–Anger expansion [17, Page 33] inR3, one can derive the following result:

Lemma 3.3 The Herglotz function vj has the expansion in three dimensions as follows:

vj(x) = vj(0)j0(k|x|) +
∞∑

�=1
γ�ji�(2� + 1)j�(k|x|), x ∈ R

3, (3.4)

where

vj(0) =
∫

S2
gj(d)dσ (d), γ�j :=

∫

S2
gj(d)P�(cos(ϕ))dσ (d), d ∈ S

2. (3.5)

Here, P� denotes the Legendre polynomial and ϕ is the angle between x and d. j�(t) stands
for the spherical Bessel function of order � (see e.g. [1]), and more explicitly, one has

j�(t) = t�

(2� + 1)!!

(

1 −
∞∑

l=1

(−1)l t2l

2l l!N�,l

)

, � = 0, 1, 2, . . . , (3.6)

where N�,l = (2� + 3) · · · (2� + 2l + 1).

Applying the dimension reduction operator to the above spherical Bessel function, we
can obtain the following lemma.

Lemma 3.4 [23, Lemma 3.5]R(j0)(x′) andR (j�)
(
x′) have the deformation as following:

R(j0)(x′) = C(ψ)
[

1 −
∞∑

l=1

(−1)lk2l

2l l!(2l + 1)!!

(∣
∣x′∣∣2 + a20,l

)l
]

,

R (j�)
(
x′) =

k�
(∣
∣x′∣∣2 + a2�

)(�−1)/2

(2� + 1)!!

⎡

⎢
⎣1 −

∞∑

l=1

(−1)lk2l
(∣
∣x′∣∣2 + a2

�,l

)l

2l l!N�,l

⎤

⎥
⎦C1(ψ)

∣
∣x′∣∣2 ,

(3.7)

where

N�,l = (2� + 3) · · · (2� + 2l + 1), a0,l , a�, a�,l ∈ [−L, L],

and

C(ψ) =
∫ L

−L
ψ (x3) dx3, C1(ψ) =

∫ arctan L/|x′|
− arctan L/|x′|

ψ
(∣
∣x′∣∣ tan�

)
sec3 �d� ,

with

� ∈ [− arctan L/
∣
∣x′∣∣ , arctan L/

∣
∣x′∣∣] .

We further derive several critical auxiliary lemmas.
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Lemma 3.5 Let v, w ∈ H1(W × (−M,M)) be a pair of conductive transmission eigenfunc-
tions to (3.1) and Dε = Sh \ Bε for 0 < ε < h, η ∈ Cα(�̄±

h × [−M,M]) for 0 < α < 1 and
η = η(x′) is independent of x3. Then, it holds that

lim
ε→∞

∫

Dε

u0(sx′) (�x′R(v) − �x′R(w)) dx′

=
∫

�h

(
u0

(
sx′) ∂νR(v − w)

(
x′) − R(v − w)

(
x′) ∂νu0

(
sx′)) dσ

−
∫

�±
h

η
(
x′)R(v)

(
x′)u0

(
sx′) dσ ,

(3.8)

where �h = Sh ∩ ∂Bh and �±
h = �± ∩ Bh.

Proof Since w
(
x′, x3

) = v
(
x′, x3

)
when x′ ∈ � and −L < x3 < L, we have

R(w)
(
x′) = R(v)

(
x′) on �. (3.9)

Similarly, using the fact that η is independent of x3, we can obtain that

∂νR(v)
(
x′) + η

(
x′)R(v)

(
x′) = ∂νR(w)

(
x′) on �. (3.10)

Therefore, by Green’s formula, we have
∫

Dε

�x′
(R(v)

(
x′) − R(w)

(
x′))u0

(
sx′) dx′

=
∫

∂Dε

(
u0

(
sx′) ∂νR(v − w)

(
x′) − R(v − w)

(
x′) ∂νu0

(
sx′)) dσ

=
∫

�h

(
u0

(
sx′) ∂νR(v − w)

(
x′) − R(v − w)

(
x′) ∂νu0

(
sx′)) dσ

+
∫

�ε

(
u0

(
sx′) ∂νR(v − w)

(
x′) − R(v − w)

(
x′) ∂νu0

(
sx′)) dσ

−
∫

�±
(ε,h)

η
(
x′)R(v)

(
x′)u0

(
sx′) dσ ,

where �h = Sh ∩ ∂Bh,�ε = Sh ∩ ∂Bε and �±
(ε,h) = �± ∩ (Bh\Bε).

Since v, w ∈ H1 (Sh × (−L, L)) , from Lemma 3.1 we know thatR(v − w) ∈ H1(Sh), and
it can be derived that

lim
ε→0

∫

�c

(
u0

(
sx′) ∂νR(v − w)

(
x′) − R(v − w)

(
x′) ∂νu0

(
sx′)) dσ = 0.

One the other hand, since v ∈ H1 ((Sh ∩ Bε) × (−L, L)), then by Lemma 3.1, one also has
R(v)

(
x′) ∈ H1 (Sh ∩ Bε). The trace theorem then implies that R(v)

(
x′) ∈ L2

(
�±
(0,e)

)

where �±
(0,c) = �± ∩ Bε . For sufficiently small ε, we further see that

∣
∣u0

(
sx′)∣∣ ≤ 1 and

η ∈ Cα
(
�̄±
h × [−M,M]

)
. Hence, we have

lim
ε→0

∫

�±
(0,c)

η
(
x′)R(v)

(
x′)u0

(
sx′) dσ = 0.

The proof is complete. �


Lemma 3.6 Suppose that η ∈ Cα
(
�̄±
h × [−M,M]

)
for 0 < α < 1 and η = η(x′) is

independent of x3, and θM, θm are defined in (2.1) and θM − θm �= π . Define

I±2 =
∫

�±
h

η
(
x′)u0

(
sx′)R (

vj
) (
x′) dσ . (3.11)
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Then, it holds that

I−2 = 2η(0)vj(0)s−1
(
μ (θm)−2 − μ (θm)−2 e−

√
shμ(θm) − μ (θm)−1 √

she−
√
shμ(θm)

)
C−
2

+ vj(0)η(0)I−21 + η(0)I−22 + I−η , (3.12)

and

I+2 = 2η(0)vj(0)s−1
(
μ (θM)−2 − μ (θM)−2 e−

√
shμ(θM ) − μ (θM)−1 √

she−
√
shμ(θM )

)
C+
2

+ vj(0)η(0)I+21 + η(0)I+22 + I+η . (3.13)

where C±
2 are positive constants, and

I−21 ≤O (
s−3) , I−22 ≤ O

(∥
∥gj

∥
∥
L2(S2) s

−3
)
,

∣
∣
∣I−η

∣
∣
∣ ≤‖η‖Cα

(
vj(0)O

(
s−1−α

) + O
(∥
∥gj

∥
∥
L2(S2) s

−3−α
))

,

I+21 ≤O (
s−3) , I+22 ≤ O

(∥
∥gj

∥
∥
L2(S2) s

−3
)
,

∣
∣
∣I+η

∣
∣
∣ ≤‖η‖Cα

(
vj(0)O

(
s−1−α

) + O
(∥
∥gj

∥
∥
L2(S2) s

−3−α
))

.

Proof This is basically Lemma 3.6 in [23]. Its proof shall be needed in our subsequent
analysis. For self-containedness and convenient reference of the readers, we present its
proof in what follows.
Using Lemma 2.4, we have

I−2 = η(0)
∫

�−
h

u0
(
sx′)R (

vj
) (
x′) dσ +

∫

�−
h

δη
(
x′)u0

(
sx′)R (

vj
) (
x′) dσ .

Recall the definition in (2.19). Combining Lemmas 3.3 and 3.4, we can obtain that
∫

�−
h

u0
(
sx′)R (

vj
) (
x′) dσ

= vj(0)
∫

�−
h

u0
(
sx′)R (j0)

(
x′) dσ

+
∞∑

�=1
γ�ji�(2� + 1)

∫

�−
h

u0
(
sx′)R (j�)

(
x′) dσ .

Using Newton’s binomial expansion (see also Lemma 3.4), we have
∫

�−
h

u0
(
sx′)R (j0)

(
x′) dσ

= C(ψ)
∫ h

0

[

1 −
∞∑

l=1

(−1)lk2l

(2l + 1)!!
(
r2 + a20,l

)l
]

e−
√
srμ(θm)dr

= C(ψ)
[

1 −
∞∑

l=1

(−1)lk2l

(2l + 1)!!
a2l0,l

]∫ h

0
e−

√
srμ(θm)dr

− C(ψ)
∞∑

l=1

(−1)lk2l

(2l + 1)!!

⎛

⎝
l∑

i1=1
C (l, i1) a2(l−i1)

0,l

∫ h

0
r2i1e−

√
srμ(θm)dr

⎞

⎠

:= 2s−1
(
μ (θm)−2 − μ (θm)−2 e−

√
shμ(θm) − μ (θm)−1 √

she−
√
shμ(θm)

)
C−
2 + I−21,

(3.14)

where C(ψ) = ∫ L
−L ψ (x3) dx3 > 0, C (l, i1) = l!

i1!(l−i1)! is the combinatorial number of

order l and C−
2 = C(ψ)

[
1 − ∑∞

l=1
(−1)l k2l
(2l+1)!! a

2l
0,l

]
. By choosing L such that kL < 1, we have

that
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∣
∣
∣
∣
∣

∞∑

l=1

(−1)lk2l

(2l + 1)!!
a2l0,l

∣
∣
∣
∣
∣
≤

∞∑

l=1
(kL)2l = (kL)2

1 − (kL)2
.

Therefore, we can deduce that

0 <
C(ψ)

(
1 − 2(kL)2

)

1 − (kL)2
≤ C−

2 ≤ C(ψ)
1 − (kL)2

. (3.15)

For I−21, choosing h and L such that k2(h2 + L2) < 1, we can deduce that

|I−21| ≤ |C(ψ)|
∞∑

l=1

k2l

(2l + 1)!!

l∑

i1=1
C (l, i1) h2(i1−1)L2(l−i1)

∫ h

0
r2e−

√
srω(θm)dr

= |C(ψ)|
∞∑

l=1

k2l

(2l + 1)!!h2
l∑

i1=1
C (l, i1) h2i1L2(l−i1)

∫ h

0
r2e−

√
srω(θm)dr

= |C(ψ)|
∞∑

l=1

k2l

(2l + 1)!!h2
((
h2 + L2

)l − L2l
) ∫ h

0
r2e−

√
srω(θm)dr

≤ 2L‖ψ‖∞
∞∑

l=1

k2l

(2l + 1)!!h2
((
h2 + L2

)l − L2l
)
O (

s−3)

= O (
s−3) .

(3.16)

Taking

I−22 =
∞∑

�=1
γ�ji�(2� + 1)

∫

�−
h

u0
(
sx′)R (j�)

(
x′) dσ ,

we then have

∣
∣I−22

∣
∣ ≤ C1(ψ)

∥
∥gj

∥
∥
L2(S2)

·
∞∑

�=1

∫ h

0
r2e−

√
srω(θm) k

�
(|r|2 + a2�

)(�−1)/2

(2� − 1)!!

∣
∣
∣
∣
∣
∣
∣

1 −
∞∑

l=1

(−1)lk2l
(
|r|2 + a2

�,l

)l

2l l!N�,l

∣
∣
∣
∣
∣
∣
∣

dr

= C1(ψ)
∥
∥gj

∥
∥
L2(S2)

∞∑

�=1

k�
(|β�|2 + a2�

)(�−1)/2

(2� − 1)!!

∣
∣
∣
∣
∣
∣
∣

1 −
∞∑

l=1

(−1)lk2l
(∣
∣β�,l

∣
∣2 + a2

�,l

)l

2l l!N�,l

∣
∣
∣
∣
∣
∣
∣

·
∫ h

0
r2e−

√
srω(θm)dr

= O
(∥
∥gj

∥
∥
L2(S2) s

−3
)
, (3.17)

where C1(ψ) is defined in Lemma 3.4. Taking

I−η =
∫

�−
h

δη
(
x′)u0

(
sx′)R (

vj
) (
x′) dσ ,

and by Lemmas 3.3 and 3.4, we can obtain that

I−η = vj(0)
∫

�−
h

δη
(
x′)u0

(
sx′)R (j0)

(
x′) dσ

+
∞∑

�=1
γ�ji�(2� + 1)

∫

�−
h

δη
(
x′)u0

(
sx′)R (j�)

(
x′) dσ .
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Furthermore, we have
∣
∣
∣
∣
∣

∫

�−
h

δη
(
x′)u0

(
sx′)R (j0)

(
x′) dσ

∣
∣
∣
∣
∣

≤ |C(ψ)|‖η‖Cα

∫ h

0
rα

∣
∣
∣
∣
∣
1 −

∞∑

l=1

(−1)lk2l

(2l + 1)!!
(
r2 + a20,l

)l
∣
∣
∣
∣
∣
e−

√
srω(θm)dr

= 2L‖ψ‖∞‖η‖Cα

∣
∣
∣
∣
∣
1 −

∞∑

l=1

(−1)lk2l

(2l + 1)!!
(
β2
0,l + a20,l

)l
∣
∣
∣
∣
∣

∫ h

0
rαe−

√
srω(θm)dr

≤ O (
s−α−1) ,

(3.18)

where β0,l ∈ [0, h] such that k2
(
β2
0,l + a20,l

)
≤ k2

(
h2 + L2

)
< 1 for sufficiently small h

and L. Next, we can deduce that
∣
∣
∣
∣
∣

∞∑

�=1
γ�ji�(2� + 1)

∫

�−
h

δη
(
x′)u0

(
sx′)R (j�)

(
x′) dσ

∣
∣
∣
∣
∣

≤ C1(ψ)‖η‖Cα

·
∞∑

�=1

∣
∣γ�j

∣
∣
∫ h

0
rα

k�
(
r2 + a2�

)(�−1)/2

(2� − 1)!!

∣
∣
∣
∣
∣
∣
∣

1 −
∞∑

l=1

k2l
(
r2 + a2

�,l

)l

2l l!N�,l

∣
∣
∣
∣
∣
∣
∣

r2e−
√
srω(θm)dr

≤ 2C1(ψ)‖η‖Cα

∥
∥gj

∥
∥
L2(S2)

∫ h

0
r2+αe−

√
srω(θm)dr

·
∞∑

�=1

k�
(
β2

� + a2�
)(�−1)/2

(2� − 1)!!

∣
∣
∣
∣
∣
∣
∣

1 −
∞∑

l=1

k2l
(
β2

�,l + a2
�,l

)l

2l l!N�,l

∣
∣
∣
∣
∣
∣
∣

= O
(∥
∥gj

∥
∥
L2(S2) s

−α−3
)
,

(3.19)

where we have used the estimates k2
(
β2

� + a2�
) ≤ k2

(
h2 + L2

)
< 1, k2

(
β2

�,l + a2
�,l

)
≤

k2
(
h2 + L2

)
< 1 for sufficiently small h and L, as well as the estimate

∣
∣γ�j

∣
∣ =

∣
∣
∣

∫

S2
gj(d)P�(x̂|�−

h
· d)dσ (d)

∣
∣
∣ ≤ √

2π
√

2
2l + 1

∥
∥gj

∥
∥
L2(S2) ≤ 2

√
π
∥
∥gj

∥
∥
L2(S2) .

Finally, by combining (3.14), (3.16), (3.17), (3.18) and (3.19), we can prove (3.12). Using
a similar argument, one can prove (3.13).
The proof is complete. �


Lemma 3.7 Let η ∈ Cα
(
�̄±
h × [−M,M]

)
for 0 < α < 1 and η = η(x′) be independent of

x3, θM, θm be defined in (2.1) and θM − θm �= π . Set

ξ±
j (s) =

∫

�±
h

η
(
x′)u0

(
sx′)R (

v
(
x′, x3

) − vj
(
x′, x3

))
dσ . (3.20)

Then, it holds that
∣
∣
∣ξ

±
j (s)

∣
∣
∣ ≤ C‖ψ‖∞

(
|η(0)| ∥∥u0

(
sx′)∥∥

L2(Sh)
+ ‖η‖Cα

∥
∥
∣
∣x′∣∣α u0

(
sx′)∥∥

L2(Sh)

)

∥
∥v − vj

∥
∥
H1(Sh×(−L,L)) ,

where C is a positive constant.
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Proof UsingCauchy–Schwarz inequality and the trace theorem,we candeduce as follows:

∣
∣
∣ξ

±
j (s)

∣
∣
∣ ≤ |η(0)|

∫

�±
h

∣
∣u0

(
sx′) ‖R (

v
(
x′, x3

) − vj
(
x′, x3

))∣
∣ dσ

+ ‖η‖Cα

∫

�±
h

∣
∣x′∣∣α ∣

∣u0
(
sx′) ‖R (

v
(
x′, x3

) − vj
(
x′, x3

))∣
∣ dσ

≤ |η(0)| ∥∥R (
v − vj

)∥
∥
H1/2(�±

h )
∥
∥u0

(
sx′)∥∥

H−1/2(�±
h )

+ ‖η‖Cα

∥
∥R (

v − vj
)∥
∥
H1/2(�±

h )
‖‖x′

∣
∣
∣
α

u0
(
sx′) ‖H−1/2(�±

h )
≤ |η(0) ∥∥R (

v − vj
)∥
∥
H1(Sh)

∥
∥u0

(
sx′)∥∥

L2(Sh)

+ ‖η‖Cα

∥
∥R (

v − vj
)∥
∥
H1(Sh)

‖‖x′
∣
∣
∣
α

u0
(
sx′) ‖L2(Sh)

≤ C‖ψ‖∞
∥
∥v − vj

∥
∥
H1(Sh×(−L,L))

(
|η(0)| ∥∥u0

(
sx′)∥∥

L2(Sh)
+ ‖η‖Cα

∥
∥
∣
∣x′∣∣α u0

(
sx′)∥∥

L2(Sh)

)
,

which readily completes the proof. �


We are now in a position of showing the vanishing properties of v in the three-
dimensional case.

Theorem 3.1 Let v, w ∈ H1(W × (−M,M)) be a pair of eigenfunctions to (3.1) associated
with k ∈ R+, where W ⊂ R

2 is defined in (2.1) and M > 0. For any fixed xc3 ∈ (−M,M),
suppose L > 0, defined in Definition 3.1, is sufficiently small such that

(
xc3 − L, xc3 + L

) ⊂
(−M,M). Moreover, there exists a sufficiently small neighbourhood Sh of xc ∈ R

2 such that
qw ∈ Cα

(
Sh × [−M,M]

)
, v − w ∈ Cα(Sh × [−M,M]) and η ∈ Cα

(
�̄±
h × [−M,M]

)
for

0 < α < 1, where q := 1 + V . If the following conditions are fulfilled:

(a) there exists Herglotz functions vj, j = 1, 2, . . . , defined in (1.5), with kernels gj such
that

∥
∥v − vj

∥
∥
H1(Sh×(−M,M)) ≤ j−ϒ ,

∥
∥gj

∥
∥
L2(S2) ≤ Cj
 , (3.21)

for some constants C > 0,ϒ > 0 and 
 < (1 + α)ϒ ;
(b) the function η = η

(
x′) is independent of x3 and does not vanish at xc, that is,

η (xc) �= 0; (3.22)

(c) the corner in the sector W is a real corner, that is

− π < θm < θM < π and θM − θm �= π ; (3.23)

then for every edge point
(
xc, xc3

) ∈ R
3 of W × (−M,M) where xc3 ∈ (−M,M), one has

lim
ρ→+0

1
m

(
B
((
xc, xc3

)
, ρ

) ∩ (W × (−M,M))
)

∫

B((xc ,x3),ρ)∩(W×(−M,M))
|v(x)|dx = 0.
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Proof For an edge point
(
xc, xc3

) ∈ W × (−M,M), we assume, without loss of generality,
that the vertex

(
xc, xc3

) = 0. By direct calculations, we have

�x′R(v)
(
x′) = �x′

∫ L

−L
ψ(x3)v(x′, xn)dx3

=
∫ L

−L
ψ(x3)

(−k2v(x′, xn) − ∂2x3v(x
′, xn)

)
dx3

= −
∫ L

−L
ψ(x3)∂2x3v(x

′, xn)dx3 − k2R(v)(x′)

=
∫ L

−L
ψ ′′ (x3) v

(
x′, x3

)
dx3 − k2R(v)

(
x′) .

(3.24)

Similarly, we can obtain that

�x′R(w)
(
x′) =

∫ L

−L
ψ ′′ (x3)w

(
x′, x3

)
dx3 − k2R(qw)

(
x′) . (3.25)

Therefore, we have

�x′R(v)
(
x′) − �x′R(w)

(
x′)

=
∫ L

−L
ψ ′′ (x3)

(
v
(
x′, x3

) − w
(
x′, x3

))
dx3 + k2R(qw)

(
x′) − k2R(v)

(
x′)

:= F1
(
x′) + F2

(
x′) + F3

(
x′) .

(3.26)

Next, we set

F3j
(
x′) = −k2R (

vj
) (
x′) , (3.27)

and consider the following integral
∫

Sh

(
�x′R(v)

(
x′) − �x′R(w)

(
x′))u0

(
sx′) dx′

=
∫

Sh

(
F1

(
x′) + F2

(
x′) + F3j

(
x′))u0

(
sx′) dx′

+
∫

Sh

(
F3

(
x′) − F3j

(
x′)) dx′

:= I1 + �j(s).

(3.28)

Using the fact that
∫

Sh

(
�x′R(v)

(
x′) − �x′R(w)

(
x′))u0

(
sx′) dx′

= lim
ε→0

∫

Dε

(
�x′R(v)

(
x′) − �x′R(w)

(
x′))u0

(
sx′) dx′,

(3.29)

where Dε = Sh\Bε for 0 < ε < h, and by Lemma 3.5, we can deduce that

I1 + �j(s) = I3 − I±2 − ξ±
j (s), (3.30)

where ξ±
j (s) is defined in Lemma 3.7, I±2 is defined in Lemma 3.6, and

I3 =
∫

�h

(
u0

(
sx′) ∂νR(v − w) − R(v − w)∂νu0

(
sx′)) dσ , (3.31)

with�h = Sh∩∂Bh. Since v−w ∈ H1(Sh× (−L, L)) and qw ∈ Cα(S̄h× [−L, L]),α ∈ (0, 1),
from Lemma 3.1 we know that F1

(
x′) ∈ Cα(Sh) and F2

(
x′) ∈ Cα(Sh). In addition, we
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haveR(vj)(x′) ∈ Cα(Sh). Therefore, by Lemma 2.4, we have

I1 = (
F1(0) + F2(0) + F3j(0)

)
∫

Sh
u0

(
sx′) dx′ +

∫

Sh
δF1

(
x′)u0

(
sx′) dx′

+
∫

Sh
δF2

(
x′)u0

(
sx′) dx′ +

∫

Sh
δF3j

(
x′)u0

(
sx′) dx′.

(3.32)

where δF1(x′), δF2(x′) and δF3j(x′) are deduced by Lemma 2.4 with F1(x′), F2(x′) and
F3j(x′) defined in (3.26) and (3.27). By Lemmas 3.2 and 2.1, we can deduce that

∣
∣
∣
∣

∫

Sh
δF1

(
x′)u0

(
sx′) dx′

∣
∣
∣
∣ ≤2 ‖F1‖Cα (θM − θm)�(2α + 4)

δ2α+4
W

s−α−2,
∣
∣
∣
∣

∫

Sh
δF2

(
x′)u0

(
sx′) dx′

∣
∣
∣
∣ ≤2 ‖F2‖Cα (θM − θm)�(2α + 4)

δ2α+4
W

s−α−2,
∣
∣
∣
∣

∫

Sh
δF3j

(
x′)u0

(
sx′) dx′

∣
∣
∣
∣ ≤8L

√
π‖ψ‖C∞ (θM − θm)�(2α + 4)

δ2α+4
W

k2 diam (Sh)1−α

× (1 + k)
∥
∥gj

∥
∥
L2(S2) s

−α−2.

(3.33)

For �j(s), using Cauchy–Schwarz inequality, Corollary 2.2 and the assumption (3.21),
we can drive that

∣
∣�j(s)

∣
∣ ≤ k2

∥
∥R(v) − R (

vj
)∥
∥
L2(Sh)

∥
∥u0

(
sx′)∥∥

L2(Sh)

≤ k2‖ψ‖∞
√
C(L, h) (θM − θm)e−

√
s�δW h√

2
j−ϒ ,

(3.34)

where C(L, h) is a positive constant depending on L and h and � ∈ [0, h].
By Lemma 3.1, and the same arguments in (2.50), we have

|I3| ≤ Ce−c′√s, (3.35)

where c′ > 0 as s → ∞.
By Lemma 3.6 and (3.32), multiplying s on the both sides of (3.30), we can deduce that

2vj(0)η(0)
[(

μ (θM)−2 − μ (θM)−2 e−
√
shμ(θM ) − μ (θM)−1 √

she−
√
shμ(θM )

)
C+
2

+
(
μ (θm)−2 − μ (θm)−2 e−

√
shμ(θm) − μ (θm)−1 √

she−
√
shμ(θm)

)
C−
2

]

= s
[

I3 − (
F1(0) + F2(0) + F3j(0)

)
∫

Sh
u0

(
sx′) dx′ − �j(s)

−η(0)
(
I+22 + I−22

) − I+η − I−η −
∫

Sh
δF1

(
x′)u0

(
sx′) dx′

−
∫

Sh
δF2

(
x′)u0

(
sx′) dx′

−
∫

Sh
δF3j

(
x′)u0

(
sx′) dx′ − vj(0)η(0)

(
I−21 + I+21

) − ξ±
j (s)

]

.

Taking s = jβ , with max
{
0, 


1+α

}
< β < ϒ and letting j → ∞, together with the use of

(2.45), (3.33),(3.34), (3.35), Lemmas 3.6 and 3.7, we can deduce that

lim
j→∞ η(0)

(
C−
2 μ (θm)−2 + C+

2 μ (θM)−2) vj(0) = 0. (3.36)

Moreover, by straightforward calculations, we know that

C−
2 μ (θm)−2 + C+

2 μ (θM)−2

=
(
C+
2 cos θm + C−

2 cos θM
) + i

(
C+
2 sin θm + C−

2 sin θM
)

(cos θm + i sin θm) (cos θM + i sin θM)
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Because of the assumption (3.23), one can directly verify that the following two quantities
(
cos θm + cos θM

)
and

(
sin θm + sin θM

)

cannot be vanishing simultaneously. Suppose that sin θm + sin θM �= 0, while the same
result can be obtained if the other one is not vanishing. The arguments are divided into
the following two cases:

(1) sin θm + sin θM > 0, and
(2) sin θm + sin θM < 0.

For the first case, if sin θm and sin θM have the same sign, then from (3.15), we know
that C+

2 sin θm + C−
2 sin θM �= 0 which means that

C−
2 μ (θm)−2 + C+

2 μ (θM)−2 �= 0. (3.37)

If sin θm and sin θM have different signs, under the assumption (3.23) one has sin θm < 0
and sin θM > 0. From (3.15), we have

C(ψ)
1 − (kL)2

(
sin θm + (

1 − 2(kL)2
)
sin θM

) ≤ C+
2 sin θm + C−

2 sin θM

≤ C(ψ)
1 − (kL)2

((
1 − 2(kL)2

)
sin θm + sin θM

)
.

For fixed 0 < ε < 1, one can choose L sufficiently small such that 0 < kL <
√

ε/2, and
from which one can derive the bounds as follows:

C(ψ)
1 − (kL)2

(sin θm + (1 − ε) sin θM) ≤ C+
2 sin θm + C−

2 sin θM

≤ C(ψ)
1 − (kL)2

((1 − ε) sin θm + sin θM) .
(3.38)

Since sin θm + sin θM > 0, we can establish the lower bound in (3.38) as follows. Denote
ε0 = min

{
sin θm+sin θM

2 sin θM
, 1
}
and choose ε ∈ (0, ε0). It can be verified that

C+
2 sin θm + C−

2 sin θM ≥ C(ψ)
1 − (kL)2

(sin θm + (1 − ε) sin θM) > 0,

which indicates that (3.37) holds as well.
For the second case, if sin θm = 0 or sin θM = 0 is satisfied, from (3.38) we know that

C+
2 sin θm + C−

2 sin θM < 0. (3.39)

Otherwise, if |sin θm| ≤ |sin θM | , by using the fact that (1 − ε) |sin θm| ≤ |sin θM | and the
condition that sin θm + sin θM < 0, (3.39) still holds by using the upper bound in (3.38).
If |sin θm| > |sin θM | then one can choose ε with ε > 1 − |sin θM | / |sin θm| > 0 such that
(3.39) still holds by using the upper bound of (3.38). Therefore, for the second case, (3.37)
is always fulfilled. Thus, by (3.36) and (3.22) we know that

lim
j→∞ vj(0) = 0.

Next, in order to simplify the notations, we define

κ := B((xc, xcn), ρ) ∩ (W × (−M,M)).

Then, by using the fact that

lim
ρ→+0

1
m(κ)

∫

κ

|v(x)|dx

≤ lim
j→∞

(

lim
ρ→+0

1
m (κ)

∫

κ

∣
∣v(x) − vj(x)

∣
∣ dx + lim

ρ→+0

1
m (κ)

∫

κ

∣
∣vj(x)

∣
∣ dx

)

,
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we finally have

lim
ρ→+0

1
m (κ)

∫

κ

|v(x)|dx = 0.

The proof is complete. �


Similar to Corollary 2.4, we consider the vanishing property of the transmission eigen-
functions in the case η ≡ 0 in three dimensions.

Corollary 3.2 Let v, w ∈ H1(W × (−M,M)) be a pair of eigenfunctions to (3.1) associated
with η ≡ 0, k ∈ R+ and W ⊂ R

2 being defined in (2.1), and M > 0. For any fixed
xc3 ∈ (−M,M), suppose L > 0, defined in Definition 3.1, is sufficiently small such that
(
xc3 − L, xc3 + L

) ⊂ (−M,M). Moreover, there exists a sufficiently small neighbourhood
Sh of xc ∈ R

2 such that qw ∈ Cα
(
Sh × [−M,M]

)
and v − w ∈ Cα(Sh × (−M,M)) for

0 < α < 1. If the following conditions are fulfilled:

(a) there exists Herglotz functions vj, j = 1, 2, . . . , defined in (1.5), with kernels gj such
that

∥
∥v − vj

∥
∥
H1(Sh×(−M,M)) ≤ j−ϒ ,

∥
∥gj

∥
∥
L2(S2) ≤ Cj
 , (3.40)

for some constants C > 0,ϒ > 0 and 
 < αϒ/2;
(b) the corner in the sector W is a real corner, that is

− π < θm < θM < π and θM − θm �= π ; (3.41)

then it holds that

lim
ρ→+0

1
m (B (xc, ρ) ∩ W )

∫

B(xc ,ρ)∩W
R(Vw)

(
x′) dx′ = 0,

where q
(
x′, x3

) = 1 + V
(
x′, x3

)
.

Proof We assume that xc = 0. Since η ≡ 0, from (3.30), (3.32), we can obtain that

(
F1(0) + F2(0) + F3j(0)

)
∫

Sh
u0

(
sx′) dx′ + �j(s)

= I3 −
∫

Sh
δF1

(
x′)u0

(
sx′) dx′

−
∫

Sh
δF2

(
x′)u0

(
sx′) dx′ −

∫

Sh
δF3j

(
x′)u0

(
sx′) dx′,

(3.42)

where �j(s) and I3 are defined in (3.28) and (3.31), and δF1(x′), δF2(x′) and δF3j(x′) are
deduced by Lemma 2.4 with F1(x′), F2(x′) and F3j(x′) defined in (3.26) and (3.27). Since
v = w on �± × (−M,M), it is easy to see that

F1(0) =
∫ L

−L
ψ ′′ (x3) (v (0, x3) − w (0, x3)) dx3 = 0.

Multiplying s2 on both sides of (3.42), taking s = jβ with max{
/α, 0} < β < ϒ/2, using
the assumptions (3.40) and (3.41), and by letting j → ∞, from (3.43), (2.45), (3.33), (3.34)
and (3.35), we can prove that

lim
j→∞ F3j(0) = −F2(0),
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which in turn implies that

lim
j→∞R (

vj
)
(0) = R(qw)(0).

Using the boundary condition in (3.1) and Definition 3.1, we have that R(w)
(
x′) =

R(v)
(
x′) on �. Hence, we have

lim
ρ→+0

1
m(B(0, ρ) ∩ W )

∫

B(0,ρ)∩W
R(v)

(
x′) dx′

= lim
ρ→+0

1
m(B(0, ρ) ∩ W )

∫

B(0,ρ)∩W
R(w)

(
x′) dx′.

which together with the facts that

lim
j→∞R (

vj
)
(0) = lim

j→∞ lim
ρ→+0

1
m(B(0, ρ) ∩ W )

∫

B(0,ρ)∩W
R (

vj
) (
x′) dx′

= lim
ρ→+0

1
m(B(0, ρ) ∩ W )

∫

B(0,ρ)∩W
R(v)

(
x′) dx′,

R(qw)(0) = lim
ρ→+0

1
m(B(0, ρ) ∩ W )

∫

B(0,ρ)∩W
R(qw)

(
x′) dx′.

readily completes the proof of the corollary. �


Remark 3.8 If V (x′, xn) is continuous near the edge point (xc, xc3) and V (xc, xc3) �= 0, by
the dominant convergent theorem and Definition 3.1, we can prove that

lim
ρ→+0

1
m (B (xc, ρ) ∩ W )

∫

B(xc ,ρ)∩W

∫ xc3+L

xc3−L
ψ (x3)w

(
x′, x3

)
dx′dx3 = 0.

Furthermore, if ψ(xc3) �= 0, we can show that

lim
ρ→+0

1
m (B (xc, ρ) ∩ W )

∫

B(xc ,ρ)∩W

∫ xc3+L

xc3−L
w
(
x′, x3

)
dx′dx3 = 0.

which describes the vanishing property of the transmission eigenfunctions near the edge
corner in three dimensions.
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