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Abstract

In this study, we present and analyze a virtual element discretization for a
nonselfadjoint fourth-order eigenvalue problem derived from the transmission
eigenvalue problem. Using suitable projection operators, the sesquilinear forms are
discretized by only using the proposed degrees of freedom associated with the virtual
spaces. Under standard assumptions on the polygonal meshes, we show that the
resulting scheme provides a correct approximation of the spectrum and prove an
optimal-order error estimate for the eigenfunctions and a double order for the
eigenvalues. Finally, we present some numerical experiments illustrating the behavior
of the virtual scheme on different families of meshes.
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1 Introduction
This paper deals with the numerical approximation by the virtual element method (VEM)
[5] of the transmission eigenvalue problem. This problem has important applications
in inverse scattering. For instance, it can be used to obtain estimates for the material
properties of the scattering object and have a theoretical importance for the analysis of
reconstruction in inverse scattering theory. For these reasons, this problem has attracted
much interest in the last years.
From the mathematical point of view, the transmission eigenvalue problem is nonstan-

dard and difficult to treat. As a consequence, different variational formulations have been
proposed and analyzed to solve the eigenvalue problem. More precisely, the problem can
be formulated as a fourth-order quadratic eigenvalue problem, as a mixed eigenvalue
problem, among others. Several conforming and nonconforming finite element methods,
mixed formulations have been proposed during the last years.We cite as aminimal sample
of them [14–16,20,23,26,32,41,44,47].
Among the existing techniques, in [15] it has been introduced and analyzed a variational

formulation inH2(Ω)×H1(Ω). The resulting variational problem is obtained by consid-
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ering an additional second-order elliptic problem to write a double-size linear eigenvalue
problem. By usingArgyris and Lagrange finite element spaces, a conforming discretization
is proposed. A complete analysis of the method including error estimates is proved using
the theory for compact nonselfadjoint operators. Following a similar approach, in [46] it
has been written a weak formulation in H2(Ω) × L2(Ω) for the transmission eigenvalue
problemwhich is basedona linearization techniqueby considering an additional unknown
in L2. The authors have proposed a conforming C1 − C1 finite element discretization in
2D and 3D, and error estimates have been obtained.We recall that fourth-order problems
require the use of globally C1 polynomial spaces. The construction of C1-conforming
finite elements is difficult in general, since they usually involve a large number of degrees
of freedom [21]; thus, they are often viewed as prohibitively expensive due to their high
polynomial degree.
The VEM is a recent technology introduced in [5] as a generalization of finite element

method which among its advantages permits to easily implement highly regular conform-
ing discrete spaces. This makes the method very feasible to solve fourth-order problems
[2,3,7,9,13,35]. The method has been also used to solve eigenvalue problems, among
which we mention the following recent works [8,11,18,19,24,25,29–31,33–35,37].
Regarding the approximation by VEM of the transmission eigenvalue problem, in [36]

it has been presented a C1 −C0-conforming virtual element method to solve the spectral
problem on general polygonal meshes. This scheme is based on the formulation pre-
sented in [15]. Optimal-order error estimates for the eigenfunctions and a double order
for the eigenvalues are derived. More recently, in [38] it has been introduced and ana-
lyzed a conforming C1 − C1 VEM on polytopal meshes by considering the variational
formulation introduced in [46]. Optimal-order error estimates for the eigenfunctions and
a double order for the eigenvalues are derived. The aim of this work is to consider the
same continuous formulation as in [38,46] and use a different discretization for the addi-
tional unknown introduced to transform the problem into an equivalent double-size linear
eigenvalue. We remark that by considering this new discretization, we obtain a smaller
generalized eigenvalue problem.
In the present paper, we consider a C1 − C0-conforming virtual element method to

solve the transmission eigenvalue problem. The variational formulation leads to a fourth-
order quadratic eigenvalue problem, which is transformed into an equivalent double-size
linear eigenvalue problem that fits within the functional framework for nonselfadjoint
compact bounded operators. At the continuous level, we follow [39] to obtain an appro-
priate spectral characterization. Next, we propose a C1 −C0-conforming virtual element
approximation that applies to general polygonal meshes. More precisely, the scheme is
based on the discrete space introduced in [2] for the Cahn-Hilliard equations and in [1] for
the linear reaction-diffusion equation. We construct proper L2-projection operators that
are used to approximate the sesquilinear form presented in the system. At the discrete
level, we use once again [39] to prove that the spectrum is correctly approximated and to
obtain error estimates.
Outline This paper is structured as follows: we introduce in Sect. 2 the interior transmis-
sion eigenvalue problem, first in terms of a system of second-order equations and then in
an equivalent form as a linear nonselfadjoint fourth-order eigenvalue problem. In Sect. 3,
we present the discrete spaces together with their properties. In Sect. 4, we construct the
discrete sesquilinear forms by using the projection operators. Moreover, we introduce the
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virtual element discrete formulation. In Sect. 5, we present the error analysis of the virtual
scheme. In Sect. 6, we report three numerical tests that allow us to assess the convergence
properties of the virtual element scheme.

2 Model problem
The transmission eigenvalue problem can be stated as follows (see, for instance, [22,42]).
Find k ∈ C and ψ ,φ ∈ L2(Ω) with ψ − φ ∈ H2(Ω) such that

Δψ + k2nψ = 0 in Ω , (2.1a)

Δφ + k2φ = 0 in Ω , (2.1b)

ψ − φ = 0 on Γ , (2.1c)

∂νψ − ∂νφ = 0 on Γ . (2.1d)

System (2.1a)–(2.1d) corresponds to the scattering problem for an isotropic inhomoge-
neousmedium for theHelmholtz equation, whereΩ ⊆ R

2 is a bounded simply connected
Lipschitz domain with boundary Γ := ∂Ω . Here, ν denotes the outward unit normal vec-
tor toΓ , ∂ν denotes the normal derivative, and n is the index of refraction.We assume that
n(x) =: n ∈ W2,∞(Ω) satisfying either one of the following assumptions for all x ∈ Ω :

1 < n∗ ≤ n(x) ≤ n∗ < ∞,

0 < n∗ ≤ n(x) ≤ n∗ < 1.
(2.2)

The transmission eigenvalue problem is often solved by reformulating it as a fourth-
order eigenvalue problem.More precisely, by introducing a new unknown u := (ψ −φ) ∈
H2

0(Ω), model problem (2.1a)–(2.1d) can be rewritten as follows:

(Δ + k2n)
1

n − 1
(Δ + k2)u = 0 in Ω . (2.3)

In this sectionwe introduce a continuous variational formulation associatedwith fourth-
order transmission eigenvalue problem (cf. (2.3)) and its spectral characterization. With
this aim, we multiply identity (2.3) by w ∈ H2

0(Ω) and we arrive at the following quadratic
eigenvalue problem: find k ∈ C and u ∈ H2

0(Ω), u �= 0 such that∫
Ω

1
n − 1

ΔuΔw + k2
∫

Ω

Δu
( n
n − 1

w
)

+k2
∫

Ω

1
n − 1

uΔw + k4
∫

Ω

n
n − 1

uw = 0 ∀w ∈ H2
0(Ω). (2.4)

One of the main difficulties of variational formulation (2.4) is the nonlinearity with
respect to the parameter k2. For the theoretical analysis it is convenient to transform
the above variational problem into a double-size linear eigenvalue problem. There are
different options to do that. In this work we will follow the approach used in [38,45,46].
More precisely, we consider an auxiliary variable denoted by z and defined as:

z := k2u in Ω . (2.5)

Now, we denote by H the product space H := H2
0(Ω) × L2(Ω), endowed with the

following product norm

||(w, v)||H := (||D2w||20,Ω + ||v||20,Ω
)1/2,
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where D2w denotes the Hessian matrix of w. Moreover, it is clear that the above norm is
equivalent with the usual norm in H2

0(Ω) × L2(Ω).
Using (2.5) we arrive at the following weak formulation of the transmission eigenvalue

problem:

Problem 1 Find (λ, (u, z)) ∈ C × H with (u, z) �= 0 such that∫
Ω

1
n − 1

ΔuΔw +
∫

Ω

zv

= λ

(∫
Ω

Δu
( n
n − 1

w
)

+
∫

Ω

1
n − 1

uΔw +
∫

Ω

n
n − 1

zw −
∫

Ω

uv
)
,

for all (w, v) ∈ H and with λ := −k2.

In order to write the problem in a compact form, we introduce the following forms:

A : H × H → C, A((u, z), (w, v)) :=
∫

Ω

1
n − 1

ΔuΔw +
∫

Ω

zv, (2.6)

B : H × H → C, B((u, z), (w, v)) :=
∫

Ω

Δu
( n
n − 1

w
)

+
∫

Ω

1
n − 1

uΔw

+
∫

Ω

n
n − 1

zw −
∫

Ω

uv. (2.7)

Thus, the nonselfadjoint eigenvalue problem can be written as follows:

Problem 2 Find (λ, (u, z)) ∈ C × H with (u, z) �= 0 such that

A((u, z), (w, v)) = λB((u, z), (w, v)) ∀(w, v) ∈ H.

The following lemma establishes some properties for the formsA(·, ·) and B(·, ·), which
will play an important role in the analysis of the solution operator.

Lemma 1 There exist positive constants α0 and C that depend on the index of refraction
n such that

A((w, v), (w, v)) ≥ α0||(w, v)||2H, (2.8)

|A((u, z), (w, v))| ≤ C||(u, z)||H||(w, v)||H, (2.9)

|B((u, z), (w, v))| ≤ C||(u, z)||H||(w, v)||H, (2.10)

for all (u, z), (w, v) ∈ H.

According to Lemma 1, we are in a position to introduce the solution operator.

T : H −→ H
(f, g) �−→ T (f, g) = (̂u, ẑ)

defined as the unique solution of the following source problem (see Lemma 1):

A((̂u, ẑ), (w, v)) = B((f, g), (w, v)) ∀(w, v) ∈ H. (2.11)

Thus, we have that the linear operator T is well defined and bounded. Moreover, we
have that (λ, (u, z)) solves Problem 1 if and only if (μ, (u, z)) is an eigenpair of T , i.e.,
T (u, z) = μ(u, z), with μ := 1/λ.
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We observe that no spurious eigenvalues are introduced into the problem. In fact, if
μ �= 0, then (0, z) is not an eigenfunction of the problem.
The following is an additional regularity result associated with the solution of source

problem (2.11). The proof follows from the classical regularity result for the biharmonic
problem (see for instance [10,27,40]).

Lemma 2 There exist s ∈ (0, 1] and a positive constant C depending on the index of
refraction n such that for all (f, g) ∈ H, the unique solution (̂u, ẑ) of problem (2.11) satisfies
(̂u, ẑ) ∈ H2+s(Ω) × H2

0(Ω) and

||̂u||2+s,Ω + ||̂z||2,Ω ≤ C||(f, g)||H.

Proof On the one hand, by testing problem (2.11) with (w, 0) ∈ H, we obtain a biharmonic
problemwith its right-hand side inH−1(Ω). Thus, the estimate for û follows. On the other
hand, by testing problem (2.11) with (0, v) ∈ H, we obtain that ẑ = f ∈ H2

0(Ω) and we
conclude the proof. �


Now, as a consequence of Lemma 2 and the compact inclusion H2+s(Ω) × H2
0(Ω) ↪→

H, we obtain that operator T is compact. In addition, we have the following spectral
characterization result.

Lemma 3 The spectrum ofT satisfies sp(T ) = {0}∪{μk}k∈N, where {μk}k∈N is a sequence
of complex eigenvalues which converges to 0 and their corresponding eigenspaces lie in
H2+s(Ω) × H2+s(Ω) and

||u||2+s,Ω + ||z||2+s,Ω ≤ C||(u, z)||H.

In addition, μ = 0 is not an eigenvalue of T .

3 Virtual element discretization
In this section, we will introduce the virtual element spaces (local and global) to be used
in the discretization of Problem 2.
We begin with the mesh construction and the assumptions considered to introduce the

discrete virtual element spaces (see e.g., [1,5]). Let {Th}h>0 be a sequence of decomposi-
tions of Ω into general polygonal elements E. We will denote by hE the diameter of the
element E and by h the maximum of the diameters of all the elements of the mesh, i.e.,
h := maxE∈Th hE . In addition, we denote byNE andNE

v the number of polygons in Th and
the number of vertices of E, respectively. Moreover, we denote by e a generic edge of Th
and for all e ∈ ∂E, we define a unit normal vector νeE that points outside of E.
As in [5], we need to assume regularity of the polygonal meshes in the following sense:

there exists a positive real number γ such that, for every h and every E ∈ Th,

A1: E ∈ Th is star-shaped with respect to every point of a ball of radius γ hE ;
A2: the ratio between the shortest edge and the diameter hE of E is larger than γ .

Now, for all m ∈ N, we will denote by Pm(O) the space of polynomials of degree up to
m defined on the subsetO ⊆ R

2.
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We introduce on each element E ∈ Th the following finite-dimensional spaces:

W̃h(E) :=
{
wh ∈ H2(E) : Δ2wh ∈ P2(E), wh|∂E ∈ C0(∂E), wh|e ∈ P3(e) ∀e ∈ ∂E,

∇wh|∂E ∈ [C0(∂E)]2, ∂νeE
wh|e ∈ P1(e) ∀e ∈ ∂E

}
,

and

Ṽh(E) := {vh ∈ H1(E) : Δvh ∈ P1(E), vh|∂E ∈ C0(∂E), vh|e ∈ P1(e) ∀e ∈ ∂E}.

Moreover, in W̃h(E) and Ṽh(E) we define the following sets of linear operators. For all
wh ∈ W̃h(E) and vh ∈ Ṽh(E) we consider

DW1: evaluation of wh at the NE
v vertices of E;

DW2: evaluation of ∇wh at the NE
v vertices of E;

DV: evaluation of vh at the NE
v vertices of E.

Projection operators and local virtual spaces In order to introduce the local virtual space,
we define the projector ΠΔ

E : W̃h(E) −→ P2(E) as follows:

⎧⎨
⎩

∫
E
D2ΠΔ

E wh : D2q =
∫
E
D2wh : D2q ∀q ∈ P2(E),

((ΠΔ
E wh, q))E = ((wh, q))E ∀q ∈ P1(E),

(3.1)

where ((ϕh,φh))E is defined as follows:

((ϕh,φh))E :=
NE

v∑
i=1

ϕh( vi)φh( vi) ∀ϕh,φh ∈ C0(∂E),

with vi, 1 ≤ i ≤ NE
v , being the vertices of E.

Remark 1 The second equation in (3.1) is to select an element from the nontrivial kernel
of the operator ΠΔ

E . We mention that it could be substituted by any other appropriate
compatible average on ∂E, for instance,

(ΠΔ
E wh, q)∂E = (wh, q)∂E ∀q ∈ P1(E),

where (·, ·)∂E is the standard L2 inner product over the boundary of E.

We refer to [2] to prove that operator ΠΔ
E is computable from the output values of the

sets DW1 and DW2.
In a similar way, we define the projector Π∇

E : Ṽh(E) −→ P1(E) for each ψ ∈ Ṽh(E) as
the solution of⎧⎨

⎩
∫
E

∇Π∇
E vh · ∇q =

∫
E

∇vh · ∇q ∀q ∈ P1(E),

(Π∇
E vh, q)∂E = (vh, q)∂E ∀q ∈ P0(E).

We observe that operator Π∇
E can be computed using only the output values of the set

DV (see [1]).
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We introduce on each element E ∈ Th the following local virtual space Wh(E) (see, for
instance, [2]).

Wh(E) :=
{
wh ∈ W̃h(E) :

∫
E
(ΠΔ

E wh)q =
∫
E
whq ∀q ∈ P2(E)

}
.

Now, sinceWh(E) ⊆ W̃h(E) the projectorΠΔ
E is well defined and computable inWh(E).

Moreover, the sets of linear operatorsDW1 andDW2 constitute a set of degrees of freedom
forWh(E); we refer to [2, Lemma 2.3] for further details.
Now, we introduce the following local virtual space (see [1]):

Vh(E) :=
{
vh ∈ Ṽh(E) :

∫
E
(Π∇

E vh)q =
∫
E
vhq ∀q ∈ P1(E)

}
.

It is clear that Vh(E) ⊆ Ṽh(E). Thus, the linear operator Π∇
E is well defined on Vh(E).

Moreover, the set of operators DV constitutes a set of degrees of freedom for the space
Vh(E) (see [1]).
We also have that P2(E) × P1(E) ⊆ Wh(E) × Vh(E). This will guarantee the good

approximation properties for the spaces.
Now, for allm ∈ N ∪ {0} and E ∈ Th, we define the following projector:

Πm
E : L2(E) → Pm(E);

∫
E
(r − Πm

E r)q = 0 ∀q ∈ Pm(E). (3.2)

It easy to check that for all wh ∈ Wh(E) the scalar functions Π2
Ewh and Π0

EΔwh are
computable from the degrees of freedom DW1 and DW2 (see [2]). Moreover, for all vh ∈
Vh(E) the scalar function Π1

Evh is computable from the degrees of freedom DV (see [1]).
Global virtual spaces
Now,we introduce the global virtual spaces to be used in the discretization of Problem 2.
For every decomposition Th ofΩ into simple polygons E, the first global virtual element

space is defined as
Wh := {

wh ∈ H2
0(Ω) : wh|E ∈ Wh(E)

}
.

A set of degrees of freedom forWh is given by all pointwise values of wh on all vertices of
Th together with all pointwise values of ∇wh on all vertices of Th, excluding the vertices
on the boundary (where the values vanish).
Next, we introduce the following global virtual space.

Vh := {vh ∈ H1
0(Ω) : vh|E ∈ Vh(E)}.

In this case, a set of degrees of freedom for Vh is given by all pointwise values vh on all
vertices of Th excluding the vertices on the boundary (where the values vanish).
Finally, for every decomposition Th ofΩ into simple polygons E, we introduce the global

virtual space denoted byHh as follows:
Hh := Wh × Vh.

Remark 2 We observe that the virtual element space Vh is a conforming space in H1(Ω).
This space will be used for the approximation of the auxiliary variable z ∈ L2(Ω). This
choice permits us to incorporate a Dirichlet boundary condition for z and also facilitates
the analysis of the proposed virtual method. Other virtual element discretizations based
on piecewise discontinuous polynomials will be studied in a future work.
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4 Discrete spectral problem
In this section, we will introduce a virtual element scheme to approximate the spectrum
of the transmission eigenvalue problem stated in Problem 2 and using the virtual spaces
introduced in Sect. 3
In what follows, for simplicity, we assume that the index of refraction n is piecewise

constant with respect to the decomposition Th, i.e., n is constant on each polygon E ∈ Th.
Next, we decompose continuous sesquilinear forms (2.6)–(2.7) in an element by element

contribution as follows:

A((u, z), (w, v)) :=A1(u, w) + A2(z, v),

=
∑
E∈Ωh

[A1
E(u, w) + A2

E(z, v)],

with

A1
E(u, w) :=

∫
E

1
n − 1

ΔuΔw, and A2
E(z, v) :=

∫
E
zv.

Moreover, we introduce

BE((u, z), (w, v)) :=
∫
E

Δu
( n
n − 1

w
)

+
∫
E

1
n − 1

uΔw +
∫
E

n
n − 1

zw −
∫
E
uv.

Now, in order to propose the discrete scheme, we need to introduce some definitions.
First, we consider SΔ

E (·, ·) and S0
E(·, ·) any Hermitian positive definite forms satisfying:

α∗A1
E(wh, wh) ≤ SΔ

E (wh, wh) ≤ α∗A1
E(wh, wh) ∀wh ∈ Wh(E) ΠΔ

E wh = 0, (4.1)

β∗A2
E(vh, vh) ≤ S0

E(vh, vh) ≤ β∗A2
E(vh, vh) ∀vh ∈ Vh(E), (4.2)

where α∗,β∗ and α∗,β∗ are positive constants depending only on the constant γ from
mesh assumptions A1–A2.
Next, we define the discrete versions of the sesquilinear forms presented in (2.6)–(2.7)

as follows:

A1h : Wh × Wh → C; A1h(uh, wh) :=
∑
E∈Th

A1h
E (uh, wh),

A2h : Vh × Vh → C; A2h(zh, vh) :=
∑
E∈Th

A2h
E (zh, vh),

Bh : Hh × Hh → C; Bh((uh, zh), (wh, vh)) :=
∑
E∈Th

Bh
E((uh, zh), (wh, vh)),

where

A1h
E : Wh(E) × Wh(E) → C, A2h

E : Vh(E) × Vh(E) → C, Bh
E : HE

h × HE
h → C,

are local sesquilinear forms given by

A1h
E (uh, wh) := A1

E(Π
Δ
E uh,ΠΔ

E wh) + SΔ
E (uh − ΠΔ

E uh, wh − ΠΔ
E wh), (4.3)

A2h
E (zh, vh) := A2

E(Π
1
Ezh,Π

1
Evh) + S0

E(zh − Π1
Ezh, vh − Π1

Evh), (4.4)

Bh
E((uh, zh), (wh, vh)) :=

∫
E

n
n − 1

Π0
EΔuhΠ2

Ewh +
∫
E

1
n − 1

Π2
EuhΠ

0
EΔwh

+
∫
E

n
n − 1

Π1
EzhΠ

2
Ewh −

∫
E

Π2
EuhΠ

1
Evh, (4.5)



D. Mora, I. Velásquez Res Math Sci (2021) 8:56 Page 9 of 21 56

withHE
h := Wh(E) × Vh(E).

The following lemma establishes properties of consistency and stability for the local
sesquilinear forms A1h

E (·, ·) and A2h
E (·, ·). The proof follows standard arguments in the

VEM literature (see [1]).

Proposition 1 The local formsA1h
E (·, ·) andA2h

E (·, ·) satisfy the following properties:
– Consistency for all h > 0 and for all E ∈ Th we have that

A1h
E (q, wh) = A1

E(q, wh) ∀q ∈ P2(E) ∀wh ∈ Wh(E); (4.6)

A2h
E (q, vh) = A2

E(q, vh) ∀q ∈ P1(E) ∀vh ∈ Vh(E). (4.7)

– Stability and boundedness There exist positive constants α1,α2,β1,β2 depending on
the index of refraction n and the constant γ from mesh assumptions A1–A2 such that:

α1A1
E(wh, wh) ≤ A1h

E (wh, wh) ≤ α2A1
E(wh, wh) ∀wh ∈ Wh(E); (4.8)

β1A2
E(vh, vh) ≤ A2h

E (vh, vh) ≤ β2A2
E(vh, vh) ∀vh ∈ Vh(E). (4.9)

Now, for all (uh, zh), (wh, vh) ∈ Hh, we introduce the discrete sesquilinear form

Ah : Hh × Hh → C; Ah((uh, zh), (wh, vh)) := A1h(uh, wh) + A2h(zh, vh). (4.10)

As a consequence of Proposition 1, we have the following result, which is the discrete
version of Lemma 1.

Lemma 4 There exist positive constants C and α that depend on the index of refraction n
and the constants in (4.8)–(4.9) such that for all (uh, zh), (wh, vh) ∈ Hh we have

Ah((wh, vh), (wh, vh)) ≥ α||(wh, vh)||2H, (4.11)

|Ah((uh, zh), (wh, vh))| ≤ C||(uh, zh)||H||(wh, vh)||H, (4.12)

|Bh((uh, zh), (wh, vh))| ≤ C||(uh, zh)||H||(wh, vh)||H. (4.13)

Proof It is straightforward to prove estimates (4.11)–(4.13) from Proposition 1 and defi-
nition (4.5). �


For the sesquilinear form Bh(·, ·), we do not require any lower bound. Thus, we do not
need to stabilize this form.
Now, we are in a position to write the virtual element discretization of Problem 2.

Problem 3 Find (λh, (uh, zh)) ∈ C × Hh with (uh, zh) �= 0 such that

Ah((uh, zh), (wh, vh)) = λhBh((uh, zh), (wh, vh)) ∀(wh, vh) ∈ Hh. (4.14)

In order to characterize the spectrum of Problem 3, we introduce the discrete version
of the solution operator T .

Th : H −→ Hh ⊆ H
(f, g) �−→ Th(f, g) = (̂uh, ẑh),



56 Page 10 of 21 D. Mora, I. Velásquez ResMath Sci (2021) 8:56

defined as the unique solution of the following source problem (see Lemma 4):

Ah((̂uh, ẑh), (wh, vh)) = Bh((f, g), (wh, vh)) ∀(wh, vh) ∈ Hh. (4.15)

We have that operator Th is well defined and uniformly bounded. Once more, as in the
continuous case, we have that (λh, (uh, zh)) solves Problem 3 if and only if (μh, (uh, zh)) is
an eigenpair of Th, i.e., Th(uh, zh) = μh(uh, zh), with μh := 1/λh.

5 Convergence and error estimates
In what follows, we focus on proving the convergence and error analysis of the proposed
virtual element scheme for the transmission eigenvalue problem. First, we recall some
well-known results on star-shaped polygons [12].

Proposition 2 There exists a positive constant C, such that for all w ∈ Hδ(E) there exists
wπ ∈ Pk (E), k ∈ N such that

|w − wπ |�,E ≤ Chδ−�
E |w|δ,E 0 ≤ δ ≤ k + 1, � = 0, . . . , [δ],

with [δ] denoting largest integer equal to or smaller than δ ∈ R+.

Now,we consider interpolation operators in the virtual element spacesWh andVh. First,
for theC1 interpolation operator, we have the following result and the proof can be found
in [2, Proposition 3.1].

Proposition 3 Assume A1–A2 are satisfied, let w ∈ Hε(Ω) with ε ∈ [2, 3]. Then, there
exist wI ∈ Wh and C > 0, independent of h, such that

‖w − wI‖�,Ω ≤ Chε−�‖w‖ε,Ω , � = 0, 1, 2.

For the C0 interpolation operator, we have the following result whose proof can be
obtained by repeating the arguments in [17, Theorem 11] (see also [34, Proposition 4.2]).

Proposition 4 Assume A1–A2 are satisfied, let v ∈ H2(Ω). Then, there exist vI ∈ Vh and
C > 0, independent of h, such that

‖v − vI‖0,Ω + h|v − vI |1,Ω ≤ Ch2‖v‖2,Ω .

The following lemma shows that Th converges in norm to T as h goes to zero.

Lemma 5 There exist s ∈ (0, 1] and a positive constant C > 0 that depends on the
index of refraction n, both independent of the meshsize h such that: For all (f, g) ∈ H, if
(̂u, ẑ) = T (f, g) and (̂uh, ẑh) = Th(f, g), then

|| (T − Th) (f, g)||H ≤ Chs||(f, g)||H.

Proof Let (f, g) ∈ H. As a consequence of Lemma 2, there exists s ∈ (0, 1] such that
(̂u, ẑ) ∈ H2+s(Ω) × H2(Ω). Let (̂uI , ẑI ) ∈ Hh be such that Propositions 3 and 4 hold true.
By using the triangle inequality, we have

|| (T − Th) (f, g)||H = ||(̂u, ẑ) − (̂uh, ẑh)||H
≤ ||(̂u, ẑ) − (̂uI , ẑI )||H + ||(̂uI , ẑI ) − (̂uh, ẑh)||H. (5.1)
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We define (wh, vh) := (̂uh − ûI , ẑh − ẑI ) ∈ Hh. Then, for all ûπ ∈ P2(E) and ẑπ ∈ P1(E),
from (4.11) (ellipticity of the sesquilinear formAh(·, ·)), we have

α||(wh, vh)||2H ≤Ah((wh, vh), (wh, vh)) (5.2)

=Ah((̂uh, ẑh), (wh, vh)) − Ah((̂uI , ẑI ), (wh, vh))

=Bh((f, g), (wh, vh)) −
∑
E∈Th

{
A1h

E (̂uI , wh) + A2h
E (̂zI , vh)

}

=Bh((f, g), (wh, vh)) −
∑
E∈Th

{
{A1h

E (̂uI − ûπ , wh) + A1
E (̂uπ − û, wh)}

+ {A2h
E (̂zI − ẑπ , vh) + A2

E (̂zπ − ẑ, vh)} + {A1
E (̂u, wh) + A2

E (̂z, vh)}
}

=
∑
E∈Th

{Bh
E((f, g), (wh, vh)) − BE((f, g), (wh, vh))}︸ ︷︷ ︸

R1E

−
∑
E∈Th

{A1h
E (̂uI − ûπ , wh) + A1

E (̂uπ − û, wh)}︸ ︷︷ ︸
R2E

−
∑
E∈Th

{A2h
E (̂zI − ẑπ , vh) + A2

E (̂zπ − ẑ, vh)}︸ ︷︷ ︸
R3E

, (5.3)

where we have used the definition of the solution operators T and Th and consistency
properties (4.6) and (4.7). In what follows, we will bound the terms R1

E, R
2
E and R3

E .
We start with the term R1

E : we use the definitions of BE(·, ·) and Bh
E(·, ·) (cf. (2.7) and

(4.5), respectively) to obtain

R1
E =

∫
E

{ n
n − 1

Π0
EΔf Π2

Ewh − n
n − 1

Δf wh
}

︸ ︷︷ ︸
R11E

+
∫
E

{ 1
n − 1

Π2
Ef Π

0
EΔwh − 1

n − 1
f Δwh

}
︸ ︷︷ ︸

R12E

+
∫
E

{ n
n − 1

Π1
EgΠ

2
Ewh − n

n − 1
gwh

}
︸ ︷︷ ︸

R13E

+
∫
E

{
Π2

Ef Π
1
Evh − f vh

}
︸ ︷︷ ︸

R14E

=: R11
E + R12

E + R13
E + R14

E . (5.4)

Thus, we have to bound each term on the right-hand side above. First, the terms R11
E

and R12
E can be bounded repeating the same arguments in [38, Lemma 4.2]. We obtain

R11
E ≤ ChE

∥∥∥∥ n
n − 1

∥∥∥∥
L∞(E)

|f |2,E
{
|wh|2,E + |wh|1,E

}
, (5.5)

and

R12
E ≤ ChE

∥∥∥∥ n
n − 1

∥∥∥∥
L∞(E)

{
|f |2,E + |f |1,E

}
|wh|2,E . (5.6)
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Now, to bound the term R13
E , we use the fact that n is piecewise constant, the definition

of Π1
E and Π2

E , the Cauchy–Schwarz inequality and n/(n − 1) ∈ L∞(Ω) to have

R13
E =

∫
E

{ n
n − 1

Π1
EgΠ

2
Ewh − n

n − 1
gwh

}
(5.7)

=
∫
E

n
n − 1

Π1
Eg(Π

2
Ewh − Π1

Ewh) +
∫
E

n
n − 1

(Π1
Eg − g)(Π1

Ewh − wh)

≤ Ch2E

∥∥∥∥ n
n − 1

∥∥∥∥
L∞(E)

||g ||0,E |wh|2,E . (5.8)

For the term R14
E , we use the definition of Π2

E and the Cauchy–Schwarz inequality to
obtain

R14
E =

∫
E

{
Π2

Ef Π
1
Evh − f vh

}
(5.9)

=
∫
E
(Π2

Ef − Π1
Ef )Π

1
Evh +

∫
E
(Π1

Ef − f )(Π1
Evh − vh)

≤ Ch2E |f |2,E ||vh||0,E . (5.10)

Now, taking sum over E in terms (5.5),(5.6),(5.8) and (5.10) and applying Cauchy–
Schwarz inequality for sequences we obtain

∑
E∈Th

R1,E ≤ Chmax
{∥∥∥∥ n

n − 1

∥∥∥∥
L∞(E)

,
∥∥∥∥ 1
n − 1

∥∥∥∥
L∞(E)

}
||(f, g)||H||(wh, vh)||H. (5.11)

Next, we bound the term
∑
E∈Th

R2
E . By using the Cauchy–Schwarz inequality and the

stability and boundedness properties ofA1
E(·, ·) (cf. (4.8)), we obtain

∑
E∈Th

R2
E =

∑
E∈Th

{
A1h

E (̂uI − ûπ , wh) + AE
1 (̂uπ − û, wh)

}

≤
∑
E∈Th

{
|̂uI − ûπ |2,E |wh|2,E + |̂uπ − û|2,E |wh|2,E

}

≤
∑
E∈Th

{
|̂uI − û|2,E + 2|̂u − ûπ |2,E

}
|wh|2,E .

Next, from Propositions 2, 3 and Lemma 2, we have

∑
E∈Th

R2
E ≤ Chs||(f, g)||H||(wh, vh)||H. (5.12)

To bound the last term:
∑
E∈Th

R3
E , we use the Cauchy–Schwarz inequality and we add and

subtract the term ẑ, to obtain

∑
E∈Th

R3
E =

∑
E∈Th

{
A2h

E (̂zI − ẑπ , vh) + A2
E (̂zπ − ẑ, vh)

}

≤
∑
E∈Th

{
||̂zI − ẑ||0,E + 2||̂z − ẑπ ||0,E

}
||vh||0,E .
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Hence, applying Proposition 2 and Proposition 4 (with � = 0), and Lemma 2 in the
above inequality we deduce

∑
E∈Th

R3
E ≤ Ch2||(f, g)||H||(wh, vh)||H. (5.13)

Now, by combining (5.3) with (5.11), (5.12) and (5.13), we obtain

||(̂uI , ẑI ) − (̂uh, ẑh)||H ≤ C
α
hs||(f, g)||H. (5.14)

Finally, we complete the proof from (5.1), (5.14), Propositions 3, 4 and Lemma 2. �


Since Problem 1 is nonselfadjoint, we need to analyze the adjoint solution operators
(continuous and discrete). Thus, first we introduce the adjoint solution operator T∗:

T∗ : H −→ H
(f, g) �−→ T∗(f, g) = (̂u∗, ẑ∗)

defined as the unique solution (see Lemma 1) of the following source problem:

A((w, v), (̂u∗, ẑ∗)) = B((w, v), (f, g)) ∀(w, v) ∈ H. (5.15)

It is simple to prove that ifμ is an eigenvalue ofT withmultiplicitym, μ̄ is an eigenvalue
of T∗ with the same multiplicity m. In addition, a result analogous to Lemma 2 can be
proven in this case.

Lemma 6 There exist s ∈ (0, 1] and a positive constant C depending on the index of
refraction n such that for all (f, g) ∈ H, the unique solution (̂u∗, ẑ∗) of (5.15) satisfies
(̂u∗, ẑ∗) ∈ H2+s(Ω) × H2

0(Ω) and

||̂u∗||2+s,Ω + ||̂z∗||2,Ω ≤ C||(f, g)||H.

Now, let T∗
h : H → Hh ⊆ H be the adjoint operator of Th. This operator is defined by

T∗
h(f, g) := (̂u∗

h, ẑ
∗
h), where (̂u

∗
h, ẑ

∗
h) is the unique solution of the following source problem:

Ah((wh, vh), (̂u∗
h, ẑ

∗
h)) = Bh((wh, vh), (f, g)) ∀(wh, vh) ∈ Hh. (5.16)

The next result establishes the convergence in norm of the operator T∗
h to T

∗ as h goes
to zero. The proof follows repeating the same arguments as those used to prove Lemma 5.

Lemma 7 There exists a positive constant C that depends on the index of refraction n and
s ∈ (0, 1], both independent of the meshsize h, such that: For all (f, g) ∈ H, if (̂u∗, ẑ∗) =
T∗(f, g) and (̂u∗

h, ẑ
∗
h) = T∗

h(f, g), then

|| (T∗ − T∗
h
)
(f, g)||H ≤ Chs||(f, g)||H.
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Nowwe are ready to prove the convergence and obtain error estimates of the eigenvalue
problem. First, we recall that in [39], the author gives the convergence conditions under
which the eigenvalues of Th converge to those of T , where T is a nonselfadjoint compact
operator (see also [4]).
We first recall the definition of the spectral projectors. Let μ be a nonzero eigenvalue of

T with algebraic multiplicity m. Denote by C a circle in the complex plane centered at μ

such that no other eigenvalue lies inside C. Define the spectral projection E as

E := (2π i)−1
∫
C
(z − T )−1dz.

In a similar way, we define the spectral projector E∗ as follows:

E∗ := (2π i)−1
∫
C
(z − T∗)−1dz.

We have that E and E∗ are projections onto the space of generalized eigenvectors R(E)
and R(E∗), respectively. It is easy to check that R(E), R(E∗) ∈ H2+s(Ω) × H2+s(Ω) (see
Lemma 3).
As a consequence of the convergence in norm of Th to T (cf. Lemma 5), there exist m

eigenvalues (which lie in C) μ
(1)
h , . . . ,μ(m)

h of Th (repeated according to their respective
multiplicities) which will converge to μ as h goes to zero.
Analogously, we introduce the following spectral projector Eh := (2π i)−1 ∫

C(z −
Th)−1dz, which is a projector onto the invariant subspace R(Eh) of Th spanned by the
generalized eigenvectors of Th corresponding to μ

(1)
h , . . . ,μ(m)

h .
We recall the definition of the gap δ̂ between two closed subspacesX andY of a Hilbert

spaceH:

δ̂(X ,Y) := max
{
δ(X ,Y), δ(Y ,X )

}
, where δ(X ,Y) := sup

x∈X : ‖x‖H=1

(
inf
y∈Y

∥∥x − y
∥∥
H

)
.

The following error estimates for the approximation of eigenvalues and eigenfunctions
hold true.

Theorem 1 There exists a strictly positive constant C that depends on the index of refrac-
tion such that

δ̂(R(E), R(Eh)) ≤ Chs, (5.17)

|μ − μ̂h| ≤ Ch2s, (5.18)

where μ̂h := 1
m

m∑
i=1

μ
(i)
h and s ∈ (0, 1] as in Lemma 3.

Proof The proof follows repeating the same arguments used in [38, Theorem 4.1]. �


6 Numerical results
We report in this section a series of numerical tests to approximate the transmission
eigenvalues k described in system (2.1a)–(2.1d), using the virtual element method pro-
posed and analyzed in this paper. Thus, we have implemented in a MATLAB code the
proposed VEM on arbitrary polygonal meshes (see [6]). Moreover, the spectral problem
is solved by using the built-in function eigs in MATLAB.
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Fig. 1 Sample meshes: Ω s
h (top left), Ω tz

h (top middle), Ωhex
h (top right), Ω t

h (bottom left) and Ωv
h (bottom

right)

In order to compare our results with the ones reported in the literature of the trans-
mission eigenvalue problem, we have chosen three configurations for the computational
domain Ω :

Square domain: ΩS := (0, 1)2, (6.1)

L-shaped domain: ΩL := (−1/2, 1/2)2\([0, 1/2] × [−1/2, 0]), (6.2)

Circular domain: ΩC := {(x, y) ∈ R
2 : x2 + y2 < 1/4}. (6.3)

Additionally, we have tested the method by using different families of polygonal meshes
(see Fig. 1):

– Omegash: Quadrilateral meshes;
– Ω tz

h : Trapezoidal meshes;
– Ω t

h: Triangular meshes;
– Ωhex

h : Hexagonal meshes made of convex hexagons;
– Ωv

h : Voronoi meshes which have been partitioned with NP number of polygons.

On the other hand, to complete the choice of the VEM scheme, we had to fix the forms
SΔ
E (·, ·) andS0

E(·, ·) satisfying (4.1) and (4.2), respectively. In particular, we have considered
the forms

SΔ
E (uh, wh) := h−2

E

NE
v∑

i=1
[uh( vi)wh( vi) + h2vi∇uh( vi) · ∇wh( vi)] ∀uh, wh ∈ Wh(E),

S0
E(zh, vh) := h2E

NE
v∑

i=1
zh( vi)vh( vi) ∀zh, vh ∈ Vh(E),
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Table 1 Test 1: Lowest transmission eigenvalues kih , i = 1, 2, 3, computed on different families of
meshes, on the square domain ΩS and with different index of refraction

n ΩS k1h k2h k3h

N = 32 4.2551-1.1855i 4.2551+1.1855i 5.5954

N = 64 4.2674-1.1573 i 4.2674+1.1573 i 5.5048

N = 128 4.2706-1.1499i 4.2706+1.1499i 5.4832

Order 1.94 1.94 2.07

4 Ωhex
h Extrap. 4.2718-1.1473i 4.2718+1.1473i 5.4765

[28] [Multigrid FEM] 4.2717-1.1474i 4.2717+1.1474i 5.4761

[36] [C1-C0-VEM] 4.2718-1.1475i 4.2718+1.1475i 5.4779

[38] [C1-C1-VEM] 4.2717-1.1474i 4.2717+1.1474i 5.4768

N = 32 1.8897 2.4607 2.4660

N = 64 1.8821 2.4483 2.4496

N = 128 1.8802 2.4452 2.4456

Order 2.03 2.03 2.02

16 Ω tz
h Extrap. 1.8796 2.4442 2.4442

[23] [Argyris method] 1.8651 2.4255 2.4271

[36] [C1-C0-VEM] 1.8796 2.4442 2.4442

[38] [C1-C1-VEM] 1.8796 2.4442 2.4442

N = 32 2.8329 3.5512 3.5570

N = 64 2.8248 3.5418 3.5434

N = 128 2.8228 3.5395 3.5401

Order 2.03 2.03 2.03

8 + x − y Ω t
h Extrap. 2.8222 3.5387 3.5390

[20] [C0-FEM] 2.8221 3.5383 3.5387

[38] [C1-C1-VEM] 2.8222 3.5387 3.5390

where v1, . . . , vNE
v
are the vertices of E, h vi corresponds to the maximum diameter of

the elements with vi as a vertex. With the above choice, we have that (4.1) and (4.2) are
satisfied (see [1,2] for further details).

6.1 Test 1: square domainΩS

In this numerical test, we have computed the three lowest transmission eigenvalues kih,
i = 1, 2, 3, with three different index of refraction n on the unit square ΩS.
We report in Table 1 the three lowest in magnitude transmission eigenvalues computed

with the virtual scheme introduced in this work. The table includes orders of convergence
as well as accurate values extrapolated by means of a least-squares fitting. We consider
three different values for the index of refraction and three different families of meshes.
We compare the results with the ones reported in references [20,23,28,36,38].
It can be seen from Table 1 that the eigenvalue approximation order of the proposed

method is quadratic and that the results obtained by the different methods agree per-
fectly well. We illustrate in Fig. 2 the eigenfunctions corresponding to the four lowest
transmission eigenvalues obtained with meshes Ωhex

h and n = 16.

6.2 Test 2: L-shaped domainΩL

In order to compare our results with those presented in the literature of the transmission
eigenvalue (for instance [15,36,38]), in this numerical test we have computed the three
lowest transmission eigenvalues kih, i = 1, 2, 3, with the index of refraction n = 16 on the
L-shaped domain ΩL and with meshes Ω t

h and Ωs
h.
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Fig. 2 Test 1. Eigenfunctions: u1h (top left), u2h (top right), u3h (bottom left) and u4h (bottom right) obtained
with meshes Ωhex

h and n = 16

Wereport inTable 2 the three lowest inmagnitude transmission eigenvalues, forn = 16,
and computed with VEM (4.14) on the meshes Ω t

h (triangular meshes), and Ωs
h (square

meshes) (cf. Fig. 1). The table includes orders of convergence as well as accurate values
extrapolated by means of a least-squares fitting. Once again, the last rows show the values
obtained by extrapolating those computedwith differentmethods presented in [15,36,38].
It can be seen from Table 2 that the results obtained by our method agree perfectly

well with those reported in [15,36,38]. Moreover, we observe that for the first transmis-
sion eigenvalue the associated eigenfunction presents a singularity. Thus, the order of
convergence is affected by this singularity and we obtain an order close to 1.54, which cor-
responds to the Sobolev regularity for the biharmonic equation in both cases. In addition,
the method converges with larger orders for the rest of the transmission eigenvalues (k2h
and k3h).
Figure 3 shows the eigenfunctions corresponding to the four lowest transmission eigen-

values with index of refraction n = 16 on an L-shaped domain with meshes Ω t
h.

6.3 Test 3: Circular domainΩC

Finally, we have computed the three lowest transmission eigenvalues kih, i = 1, 2, 3,
with three different index of refraction n on the circular domain ΩC. The domain ΩC is
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Table 2 Test 2: Lowest transmission eigenvalues kih , i = 1, 2, 3, computed on meshes Ω t
h and Ω s

h
with an index of refraction n = 16 on the L-shaped domain ΩL

n ΩL k1h k2h k3h

N = 32 2.9706 3.1472 3.4237

N = 64 2.9589 3.1414 3.4141

16 Ω t
h N = 128 2.9549 3.1400 3.4114

Order 1.53 1.96 1.82

Extrap. 2.9528 3.1394 3.4103

N = 32 2.9678 3.1481 3.4281

N = 64 2.9571 3.1414 3.4149

16 Ω s
h N = 128 2.9539 3.1399 3.4114

Order 1.76 2.11 1.94

Extrap. 2.9526 3.1394 3.4102

[15] [Argyris method] 2.9553 - -

[36] [C1-C0-VEM] 2.9527 3.1395 3.4103

[38] [C1-C1-VEM] 2.9528 3.1394 3.4103

Fig. 3 Test 2. Eigenfunctions: u1h (top left), u2h (top right), u3h (bottom left) and u4h (bottom right) obtained
with meshes Ω t

h and n = 16
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Table 3 Test 3: Lowest transmission eigenvalues kih , i = 1, 2, 3, computed on different families of
meshes, on the circular domain ΩC and with different index of refraction

n ΩC k1h k2h k3h

NP = 1024 4.5271-1.1913i 4.5271+1.1913i 5.9298

NP = 4096 4.5393-1.1667i 4.5393+1.1667i 5.8351

NP = 16384 4.5422-1.1604i 4.5422+1.1604i 5.8125

Order 1.97 1.97 2.07

4 Ωv
h Extrap. 4.5431-1.1582i 4.5431+1.1582i 5.8055

[26] [C0IPG] 4.5434-1.1583i - -

[38] [C1-C1-VEM] 4.5431-1.1582i 4.5431+1.1582i 5.8054

NP = 1024 1.9961 2.6301 2.6308

NP = 4096 1.9900 2.6173 2.6173

NP = 16384 1.9885 2.6140 2.6140

Order 2.03 1.97 2.03

16 Ωv
h Extrap. 1.9880 2.6129 2.6129

[20] [C0-FEM] 1.9879 2.6124 2.6124

[36] [C1-C0-VEM] 1.9880 2.6129 2.6129

[38] [C1-C1-VEM] 1.9880 2.6129 2.6129

NP = 1024 3.0126 3.7918 3.7956

NP = 4096 2.9857 3.7805 3.7834

NP = 16384 2.9792 3.7778 3.7806

Order 2.06 2.05 2.12

8 + x − y Ωv
h Extrap. 2.9772 3.7769 3.7798

[38] [C1-C1-VEM] 1.9880 2.6129 2.6129

partitionedusing a sequence of polygonalmeshes (centroidalVoronoi tessellation) created
with PolyMesher [43].
We report in Table 3 the three lowest in magnitude transmission eigenvalues computed

with the virtual scheme introduced in this work. The table includes orders of convergence
as well as accurate values extrapolated by means of a least-squares fitting. We consider
three different values for the index of refraction and three different families of meshes.
Once again, a quadratic order of convergence can be clearly appreciated from Table 3.
Moreover, Fig. 3 shows the eigenfunctions corresponding to the four lowest transmission
eigenvalues on a circular domain with index of refraction n = 16.
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