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Abstract

The transmission eigenvalue problem plays an important role in the inverse scattering
theory of inhomogeneous media. In particular, transmission eigenvalues can be
reconstructed from scattering data and used to obtain qualitative information about
the material properties of the scattering medium. In this paper, we consider the inverse
spectral problem to determine the material properties given a few transmission
eigenvalues. The lack of theoretical results motivates us to propose a Bayesian
approach. The inverse problem is first formulated as a statistical inference problem
using the Bayes’ theorem. Then, the MCMC algorithm is used to compute the posterior
density. Due to the non-uniqueness nature of the problem, we adopt the local
conditional means (LCM) to characterize the posterior density function. Numerical
examples show that the proposed method can provide useful information about the
unknown material properties.

Keywords: Inverse spectral problem, Transmission eigenvalues, Bayesian inversion,
Inhomogeneous media

1 Introduction
The transmission eigenvalue problem plays an important role in the inverse scattering
theory for inhomogeneous media and received a lot of attention in the last decade. The
problem is critical to the analysis of the inversemediumproblem. Furthermore, it has been
shown that transmission eigenvalues can be reconstructed from the scattering data and
used to obtain qualitative information about the material properties. For the discreteness,
existence, and the determination of transmission eigenvalues from scattering data, we
refer the readers to [3,4,6,9,12,24].
In this paper, given a few real transmission eigenvalues, we consider the inverse spectral

problem to determine the material properties of a non-absorbing isotropic or anisotropic
medium. The problem has been treated using certain inequalities or optimization meth-
ods [11,24]. However, due to the lack of theoretical results and non-uniqueness, these
methods face some difficulties. For example, the use of inequalities can only provide
rough estimates of the material properties. The optimization method might not provide
all possible solutions when non-uniqueness of the inverse problem presents (since only a
few eigenvalues are used).
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Bayesian inversion is an effective approach for inverse problems [14,22] and can be used
to characterize non-unique solutions using the (posterior) probability distribution of the
unknowns [25].Although sometimes computationally expensive, it is an attractivemethod
for challenging inverse problems. In this paper, we propose a Bayesian approach for the
inverse transmission eigenvalue problem. First, using Bayes’ theorem, the inverse problem
is formulated as a statistical inference for the posterior density of the unknown physical
properties. Then, the MCMC algorithm is used to explore the posterior density. Due to
the non-uniqueness nature of the problem, the posterior density function concentrates
at more than one location. The classical maximum a posteriori (MAP) and conditional
mean (CM) cannot fully characterize the density.We resort to the local conditionalmeans
(LCM) [25], which can be used to reveal multiple solutions of the inverse problem.
Numerical examples validate the effectiveness of the proposedmethod. For applications

of Bayesian approach in inverse problems, we refer the readers to, e.g., [14,15,18,22]. In
particular, Bayesian inversion was employed in [20] for an inverse Stekloff eigenvalue
problem.
The rest of the paper is organized as follows. In Sect. 2, we present the transmission

eigenvalue problem for acoustic waves and state the inverse spectral problem of interest.
Section 3 is devoted to the development of a Bayesian approach and the stability analysis.
In Sect. 4, we first present a continuous finite element method to compute transmission
eigenvalues used in the MCMC algorithm. Then, we show four examples demonstrating
the performance of the proposed Bayesian approach. Conclusions and future work are
discussed in Sect. 5.

2 Inverse transmission eigenvalue problem
Let D ⊂ R

2 be a bounded Lipschitz domain. Let A(x) be a 2 × 2 real matrix valued
function with C1(D) entries and n(x) ∈ C(D). Assume that n(x) > 0 is bounded and A(x)
is bounded and symmetric such that ξ · Aξ ≥ γ |ξ |2 for all ξ ∈ R

2 with γ > 0. Given an
incident field ui (e.g., plane waves), the direct scattering problem by an inhomogeneous
medium D is to find u and the scattered field us such that

∇ · A∇u + k2nu = 0 in D, (1a)

�us + k2us = 0 in R
2 \ D, (1b)

u − us = ui on ∂D, (1c)

∂Au − ∂νus = ∂νui on ∂D, (1d)

lim
r→∞ r

(
∂us

∂r
− ikus

)
= 0 (1e)

where k is the wavenumber, r = |x|, ν is the unit outward normal to ∂D and ∂Au is the
conormal derivative

∂Au(x) := ν(x) · A(x)∇u(x), x ∈ ∂D.

The Sommerfeld radiation condition (1e) holds uniformly over all directions. It is well
known that there exists a unique solution us to the above scattering problem [9].
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The transmission eigenvalue problem associated to (1) is as follows. Find k2 ∈ C and
non-trivial functions u, v such that

∇ · A∇u + k2nu = 0 in D, (2a)

�v + k2v = 0 in D, (2b)

u − v = 0 on ∂D, (2c)

∂Au − ∂νv = 0 on ∂D. (2d)

Thewell-posedness of the above problemhas been an active research area for a decade.We
summarize some discreteness results from [3], which are relevant to the topic discussed in
the current paper. The existence results can be found in the same book (Theorems 4.12,
4.32, 4.37 therein).

(a) Let n∗ = infD n and n∗ = supD n. Assume A = I . If n ≥ n0 > 0 and either n∗ > 1 or
n∗ < 1, the set of transmission eigenvalues is discrete with +∞ as the only possible
accumulation point. The multiplicity of the eigenvalues is finite.

(b) Let a∗ = infD inf |ξ |=1 ξ · Aξ > 0 and a∗ = supD sup|ξ |=1 ξ · Aξ < ∞. Assume that
n = 1 and either a∗ > 1 or 0 < a∗ < 1. Then, the set of transmission eigenvalues is
discrete with +∞ as the only possible accumulation point.

(c) Assume that either 0 < a∗ < 1 or a∗ > 1 and
∫
D(n − 1)dx 	= 0. Then, the set

of transmission eigenvalues is discrete with +∞ as the only possible accumulation
point.

(d) Assume that either 0 < a∗ < 1 and 0 < n∗ < 1, or a∗ > 1 and n∗ > 1. Then, the set
of transmission eigenvalues is discrete with +∞ as the only possible accumulation
point.

In the rest of the paper, we assume that there exists an operator G such that

k = G(A, n), (3)

where k ∈ R
m is a vector consisting ofm transmission eigenvalues.

Let S be the space of 2×2 symmetric matrices with realC1 elements andX = S×C(D).
Let Y = R

m. Define two Sobolev spaces

V := {
(w, v) ∈ H1(D) × H1(D)|w − v ∈ H1

0 (D)
}
,

W := L2(D) × L2(D).

For w = (u, v) ∈ V and ψ = (φ,ϕ) ∈ V , we define two sesquilinear forms

a(w,ψ) = (A∇u,∇φ) + (n(x)u,φ) − (∇v,∇ϕ) − (v,ϕ),

b(w,ψ) = (n(x)u,φ) − (v,ϕ).

Then, the transmission eigenvalue problem can be written as follows [27]. Find k2 ∈ C

and non-trivial w with ‖w‖W = 1 such that

a(w,ψ) = (k2 + 1)b(w,ψ) for all ψ ∈ V. (4)

In this paper, we only consider positive real transmission eigenvalue since they represent
thewavenumbers that canbe reconstructed fromthe scatteringdata [5,24].Note thata(·, ·)
and b(·, ·) depend continuously on A and n and, as a consequence, k depends on A and n.
We assume that the following Lipschitz continuity holds

‖k − k ′‖Y ≤ C‖(A, n) − (A, n)′‖X , (A, n), (A, n)′ ∈ X (5)
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for some constant C . There exist only a few results on the dependence of transmission
eigenvalues on the materials properties. When A = I , the continuous dependence of k
on n(x) is implied in Sect. 3 of [4] (see also Sect. 3 of [23]). The authors are not aware
of similar results beyond that. Results similar to (5) are certainly desirable for general
material properties.
The interior transmission eigenvalue problem plays an essential role in the inverse

scattering theory for inhomogeneous media. It received significant attention in the last
decade. The study has focused on the discreteness, the existence, the determination of
transmission eigenvalues from scattering data, and the relation between the transmission
eigenvalues and the material properties (see, e.g., [4,5,9,11,12,24]).
In this paper, we are interested in the following inverse spectral problem.

ISP: Given a few real transmission eigenvalues k ∈ Y , reconstruct A and n.
In particular, we assume that D is known as an a priori. Note that both D and the

eigenvalues k can be obtained from the scattering data. For interested readers, we refer to
[5,9,24] and the references therein.
Except a few special cases, e.g., A = I and n = n0 for some constant n0 or spherically

stratified media, little is known about the above inverse spectral problem. In addition,
since only a few transmission eigenvalues are given, non-uniqueness can happen and it is
highly challenging to develop effective deterministic methods for the ISP. This motivates
us to develop a Bayesian approach to seek useful information about A and n.

3 Bayesian inversion
In the Bayesian framework, the ISP is treated as a problem of statistical inference. All
the parameters are modeled as random variables and the uncertainties of their values
are expressed by distributions. The solution is the posterior probability distribution that
provides a probabilistic description of the unknowns [14,22].
Denote by N the normal distribution and U the uniform distribution. Consider the

inverse problem of (3) to reconstruct (A, n) ∈ X from the measurement k ∈ Y . Since the
measurement k contains noise, the statistical problem can be written as

k = G(A, n) + E, (6)

where k = (k1, k2, . . . , km)T is a vector of transmission eigenvalues, A(x) and n(x) are
random, G is the operator mapping (A(x), n(x)) to k based on (2), and E is the additive
noise, mutually independent of A and n. We assume that the noise E follows a Gaussian
distribution, i.e., E ∼ N (0, 	noise), where 	noise ∈ R

m×m is positive definite.
In the Bayesian statistical theory, the prior information can be coded into the prior

density π0(A, n). For example, if n is known to be a real constant n0 such that a < n0 < b,
one may take the prior as the continuous uniform distribution, i.e., n ∼ U (a, b). The
conditional distribution of the measurement k given (A, n) is referred to as the likelihood,
denoted by π (k|(A, n)). From (6), π (k|(A, n)) = N (k − G(A, n),	noise).
Given k , the goal of the Bayesian inverse problem is to seek statistical information of

(A, n) by exploring the conditional probability distribution πk ((A, n)|k), called the poste-
rior distribution of (A, n). According to Bayes’ rule, one has that

πk ((A, n)|k) = π (k|(A, n))π0(A, n)∫
X π (k|(A, n))π0(A, n)d(A, n)

. (7)
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Let P(A, n; k) = 1
2 (k −G(A, n))�	−1

noise(k −G(A, n)). Assume that the posterior measure
μk with density πk is absolutely continuous with respect to the prior measure μ0 with
density π0. Using (7), we can relate μk with μ0 by

dμk
dμ0

= 1
Z(k) exp (−P(A, n; k)) , (8)

where Z(k) = ∫
X exp(−P(A, n; k))dμ0(A, n) is the normalization constant. The formula

(8) is understood as the Radon–Nikodym derivative of the posterior probability measure
μk with respect to the prior measure μ0.
Now we study the stability of the Bayesian inversion scheme for the ISP following [22].

From (4) and the boundedness of A and n, the following lemma holds.

Lemma 3.1 For every ε > 0, there exists C := C(ε) ∈ R such that, for all (A, n) ∈ X,

‖G(A, n)‖Y ≤ exp(ε‖(A, n)‖2X + C).

The assumption (5) implies that G : X → R
m satisfies the following property. For

every r > 0 there exists a C := C(r) > 0 such that, for all (A, n)1, (A, n)2 ∈ X with
max{‖(A, n)1‖X , ‖(A, n)2‖X } < r,

‖G((A, n)1) − G((A, n)2)‖Y ≤ C‖(A, n)1 − (A, n)2‖X .
Then, the function P : X × Y → R has the following properties [22].

(i) For every ε > 0 and r > 0 there is anM = M(ε, r) ∈ R such that, for all (A, n) ∈ X
and k ∈ Y with ‖k‖Y < r,

P(A, n; k) ≥ M − ε‖(A, n)‖X .
(ii) For every r > 0 there is a K = K (r) > 0 such that, for all (A, n) ∈ X and k ∈ Y

with max{‖(A, n)‖X , ‖k‖Y } < r,

P(A, n; k) ≤ K.

(iii) For every r > 0, there is an L = L(r) > 0 such that, for all (A, n)1, (A, n)2 ∈ X and
k ∈ Y with max{‖(A, n)1‖X , ‖(A, n)2‖X , ‖k‖Y } < r,

|P((A, n)1; k) − P((A, n)2; k)| ≤ L‖(A, n)1 − (A, n)2‖X .
(iv) For every ε > 0 and r > 0, there is a C = C(ε, r) ∈ R such that, for all k1, k2 ∈ Y

with max{‖k1‖Y , ‖k2‖Y } < r, and (A, n) ∈ X ,

|P((A, n); k1) − P((A, n); k2)| ≤ exp(ε‖(A, n)‖2X + C)‖k1 − k2‖Y .

Definition 3.1 TheHellinger distance between two probability measuresμ1 andμ2 with
common reference measure ν is defined as

dHell(μ1,μ2) =
(∫ (√

dμ1/dν − √
dμ2/dν

)2
dν

)1/2
.

The following theorem guarantees the well-posedness of the Bayesian inverse problem
(8).

Theorem 3.1 Suppose X is a Banach space and μ0 is a Borel probability measure on X
with μ0(X) = 1. Then, the Bayesian inverse problem (8) is well-posed in Hellinger metrics,
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i.e., for k1 and k2 withmax{‖k1‖Y , ‖k2‖Y } ≤ r, there exists M = M(r) > 0 such that

dHell(μk1 ,μk2 ) ≤ M‖k1 − k2‖Y .
Proof By the definition of Z(k) = ∫

X exp(−P(A, n; k))dμ0(A, n) and μ0(X) = 1, we have
0 < Z(k) ≤ 1.
Applying the mean value theorem and using properties (i) and (iv), it holds that

|Z(k1) − Z(k2)| ≤
∫
X
exp(−P(A, n; k1))

∣∣P(A, n; k1) − P(A, n; k2)
∣∣ dμ0(A, n)

≤
∫
X
exp(ε‖(A, n)‖X − M) exp(ε‖(A, n)‖2X + C)dμ0(A, n)‖k1 − k2‖Y

≤ C‖k1 − k2‖Y (9)

By the definition of the Hellinger distance, we obtain that

d2Hell(μk1 ,μk2 ) = 1
2

∫
X

{(
exp (−P(A, n; k1))

Z(k1)

)1/2
−

(
exp (−P(A, n; k2))

Z(k2)

)1/2
}2

dμ0(A, n)

= 1
2

∫
X

{(
exp (−P(A, n; k1))

Z(k1)

)1/2
−

(
exp (−P(A, n; k2))

Z(k1)

)1/2

+
(
exp (−P(A, n; k2))

Z(k1)

)1/2
−

(
exp (−P(A, n; k2))

Z(k2)

)1/2
}2

dμ0(A, n)

≤ Z(k1)−1
∫
X

{
exp

(
−1
2
P(A, n; k1)

)
− exp

(
−1
2
P(A, n; k2)

)}2
dμ0(A, n)

+ ∣∣Z(k1)−1/2 − Z(k2)−1/2∣∣2 ∫
X
exp(−P(A, n; k2))dμ0(A, n). (10)

Applying again the mean value theorem and using property (iv), we have that
∫
X

{
exp

(
− 1

2
P(A, n; k1)

)
− exp

(
− 1

2
P(A, n; k2)

)}2
dμ0(A, n)

≤
∫
X

∣∣∣12P(A, n; k1) − 1
2
P(A, n; k2)

∣∣∣2dμ0(A, n)

≤ 1
4

∫
X

∣∣∣ exp(ε‖(A, n)‖2X + C)‖k1 − k2‖Y
∣∣∣2dμ0(A, n)

≤ M‖k1 − k2‖2Y .

(11)

Due to the bounds on Z(k1) and Z(k2), it holds that∣∣Z(k1)−1/2 − Z(k2)−1/2∣∣2 ≤ Mmax
(
Z(k1)−3, Z(k2)−3

)
|Z(k1) − Z(k2)|2. (12)

Combining (9)-(12), we obtain that

dHell(μk1 ,μk2 ) ≤ M‖k1 − k2‖Y .
��

Now we present the MCMC (Markov chain Monte Carlo) method to explore the pos-
terior density functions of A and n given k .
MCMC-ISP:

1. Given D and k .
2. Draw (A, n)1 from π0(A, n) such that A is positive definite.
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3. For j = 2, . . . , J , do

a. Generate (A, n)∗ from π0(A, n) such that A∗ is positive definite;

b. Compute α((A, n)∗, (A, n)j−1) = min
(
1,

πk ((A, n)∗|k)
πk

(
(A, n)j−1|k

)
)
;

c. Draw α̃ ∼ U (0, 1).
d. If α > α̃, then (A, n)j = (A, n)∗, otherwise (A, n)j = (A, n)j−1.

As discussed above, the solution of the Bayesian inverse problem is the posterior prob-
ability densities of the unknown parameters. To characterize the posterior density func-
tions, point estimators such as maximum a posteriori (MAP) and conditional mean (CM)
are usually used. The CM of (A, n) is defined as

(A, n)CM = E{(A, n)|k} =
∫
X
(A, n)πk ((A, n)|k)d(A, n).

The MAP of (A, n) is defined as

(A, n)MAP = argmax
(A,n)

πk ((A, n)|k).

However, for the problem considered in this paper, such estimators might not carry suffi-
cient/correct information of the unknowns due to the presence of non-unique solutions.
For example, see Figs. 1d, e and 2b. Hence, we shall use the local estimators introduced in
[25] when necessary.

Definition 3.2 (LMAP) We call (A∗, n∗) a local MAP, denoted by (A, n)LMAP , if

πk (A∗, n∗) ≥ ε max
(A,n)

πk (A, n) and (A∗, n∗) = arg max
x∈N (A∗ ,n∗)

πk (A, n)

for some constant ε ∈ (0, 1) and N (A∗, n∗) a neighborhood of (A∗, n∗).

Definition 3.3 (LCM) The local conditional mean (A, n)LCM is defined as

(A, n)LCM =
∫
X1
(A, n)πk (A, n)d(A, n),

where X1 is a subset of X .

If it is found that a significant number of samples aggregate in more than one region, we
shall use the local estimators instead of the global estimators. Numerical examples show
that the local estimators can identify multiple solutions to the inverse spectral problems
considered here. For more details of CM, MAP, and LCM, we refer the readers to Chp. 3
of [14] and [25].

4 Numerical examples
In this section, we present some numerical examples. For theMCMC-ISP algorithm, one
needs an effective method to compute several transmission eigenvalues of (2) given A and
n. Numerical methods for the transmission eigenvalue problem have been developed by
many researchers. We refer the readers to [1,8,10,16,17,21,23,26,28] and the references
therein. In particular, finite element methods for (2) of anisotropic media are discussed
in [2,13,27]. In the following, we present a continuous finite element method from [13],
which is used in the simulation. Note that, from the finite element convergence theory for
the transmission eigenvalue problem [13,26,27], the numerical method defines a discrete
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operator Gh such that

kh = Gh(A, n). (13)

The operator Gh approximates G in the sense that

kh → k as h → 0,

where h is the size of the finite element mesh for D.
We first multiply (2a) by a test function φ and integrate by part to obtain

(A∇w,∇φ) − k2(nw,φ) −
〈

∂w
∂νA

,φ
〉

= 0, (14)

where 〈·, ·〉 is the boundary integral on ∂D. Similarly, for (2b), we have that

(∇v,∇φ) − k2(v,φ) −
〈
∂v
∂ν

,φ
〉

= 0. (15)

Subtracting (15) from (14) and using (2d), it holds that

(A∇w − ∇v,∇φ) − k2((nw − v),φ) = 0. (16)

Let Th be a regular triangular mesh for D. Let Vh be the space of the linear Lagrange
finite element, V 0

h be the subspace of functions in Vh with vanishing degrees of freedom
on ∂D, and VB

h be the subspace of functions in Vh with vanishing degrees of freedom in
D. The boundary condition (2c) is enforced by setting

wh = w0,h + wB,h where w0,h ∈ V 0
h and wB,h ∈ VB

h ,

vh = v0,h + wB,h where v0,h ∈ V 0
h .

For ξh ∈ V 0
h in (14), the weak formulation for wh is

(A∇(w0,h + wB,h),∇ξh) − k2(n(w0,h + wB,h), ξh) = 0 for all ξh ∈ V 0
h . (17)

Similarly, the weak formulation for vh is

(∇(v0,h + wB,h),∇ηh) − k2((v0,h + wB,h), ηh) = 0 for all ηh ∈ V 0
h . (18)

Setting φh ∈ VB
h in (16), we have that

(A∇(w0,h + wB,h),∇φh) − (∇(v0,h + wB,h),∇φh )

−k2
(
n(w0,h + wB,h) − (v0,h + wB,h),φh

) = 0. (19)

LetNh,N 0
h , andN

B
h be the dimensions ofVh,V 0

h andVB
h , respectively. Let {ξ1, . . . , ξNh}be

the finite element basis forVh such that {ξ1, . . . , ξN 0
h
} is a basis forV 0

h . Let SA be the stiffness
matrix with (SA)j,� = (A∇ξj ,∇ξ�), S be the stiffness matrix with (S)j,� = (∇ξj ,∇ξ�),Mn be
the mass matrix with (Mn)j,� = (nξj , ξ�) and M be the mass matrix with (M)j,� = (ξj , ξ�).
The matrix form for (17), (18) and (19) is the generalized eigenvalue problem

A�x = k2B�x, (20)

where

A =

⎛
⎜⎜⎝

SN
0
h×N 0

h
A 0 SN

0
h×NB

h
A

0 SN
0
h×N 0

h SN
0
h×NB

h

(SN
0
h×NB

h
A )T (−SN

0
h×NB

h )T SN
B
h ×NB

h
A − SN

B
h ×NB

h

⎞
⎟⎟⎠ ,
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and

B =

⎛
⎜⎜⎝

MN 0
h×N 0

hn 0 MN 0
h×NB

hn

0 MN 0
h×N 0

h MN 0
h×NB

h

(MN 0
h×NB

hn )T −(MN 0
h×NB

h )T MNB
h ×NB

hn − MNB
h ×NB

h

⎞
⎟⎟⎠ .

In all the numerical examples, we use MATLAB ”eigs” to compute several eigenvalues
of (20). Note that if the transmission eigenvalues k are reconstructed using the scattering
data, they are usually not large in magnitude and are only approximations of the exact
ones [24]. Furthermore, the multiplicities of the eigenvalues are not known in general.
Hence, given an eigenvalue k , in the Bayesian inversion stage, one only needs to know if
there exists an eigenvalue k1 of (20), which is close enough to k . In the rest of the paper,
the covariance of the noise is set to be 	noise = 1

100 I .

Example 1 LetD be a circlewith radius 1/2.We consider the isotropicmedium, i.e.,A = I
and the constant index of refraction n(x) = nc. The unknown to be reconstructed is nc.
Four transmission eigenvalues are given k = (2.01, 2.61, 3.23, 3.80). These eigenvalues are
computed from scattering data (see Fig. 2 in [24]). Note that the exact index of refraction
is nc = 16.
We first obtain some qualitative information of nc using a deterministicmethod. In [11],

the following Faber–Krahn type inequality is proved:

k21 (D) >
λ0(D)

supD n(x)
, (21)

where λ0(D) is the smallest Dirichlet eigenvalue. Using the Lagrange finite element
method, we find that λ0(D) ≈ 23.21 (see Chp. 3 of [26]). Consequently, the lower bound
for supD n(x) given by (21) is roughly 5.8.

We consider the following cases:

1.1 use the first transmission eigenvalue to reconstruct n;
1.2 use the first two transmission eigenvalues to reconstruct n;
1.3 use all the four transmission eigenvalues to reconstruct n.

For all the cases, we choose a Gamma prior n ∼ Gamma(3, 4) + 5.8 incorporating the
information obtained by the Faber–Krahn type inequality (21). A total of 2000 samples
are generated in theMCMC-ISP.
The results are shown in Fig. 1. For cases 1.1 and 1.2 (Fig. 1a, b), the samples aggregate

in two regions (around 16 and 27), which indicates the non-unique solutions. We use the
local conditional means (LCM) to characterize the posterior density function. In Table 1,
for case 1.1, two local conditional means are shown: n1LCM = 15.90 and n2LCM = 27.04.
We also compute the associated transmission eigenvalue, which is close to the given one.
In other words, both indices of refraction have an eigenvalue close to 2.01, which reveals
the non-unique nature of the inverse problem. The scenario is the same for case 1.2.
When four transmission eigenvalues are used, the non-uniqueness disappears on the

interval [8, 30]. As shown in Fig. 1c, all the samples accumulate around 16. The conditional
mean nCM = 16.23 and the corresponding transmission eigenvalues are shown in Table 1.
It canbe seen that there exit four eigenvalues (1.98, 2.61, 3.24, 3.78) fornCM = 16.23,which
are close to the given eigenvalues k = (2.01, 2.61, 3.23, 3.80).
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Table 1 Local conditional means/conditional mean and the
transmission eigenvalues

n(x) Transmission eigenvalues

16 2.01 2.61 3. 23 3. 80

Case 1.1 15.90 2.01 – – –

27.04 2.01 – – –

Case 1.2 16.05 2.00 2.63 – –

25.62 2.07 2.57 – –

Case 1.3 16.23 1.98 2.61 3.24 3.78

Table 2 Local conditional means/conditional mean and the
transmission eigenvalues

n0 n1 n2 Transmission eigenvalues

8 1 -1 2.82 3.54 4. 13

Case 2.1 8.11 – – 2.81 3.54 4.13

12.21 – – 2.83 3.65 4.05

Case 2.2 8.10 −0.01 −0.00 2.82 3.54 4.13

Case 2.3 8.01 0.50 0.49 2.75 3.54 3.93

Example 2 Let D be the unit square. Again, the medium is isotropic, i.e., A = I . The
exact index of refraction is n(x) = 8 + x1 − x2 for this example. Given the transmission
eigenvalues k = (2.82, 3.54, 4.13), we consider three cases:

2.1 assuming n = n0, reconstruct n0 (D = (−0.5, 0.5) × (−0.5, 0.5));
2.2 assuming n = n0+n1x1+n2x2, reconstruct n0, n1, n2 (D = (−0.5, 0.5)× (−0.5, 0.5));
2.3 assuming n = n0 + n1x1 + n2x2, reconstruct n0, n1, n2 (D = (4.5, 5.5) × (4.5, 5.5)).

Applying (21) again, we obtain supD n(x) > 2.48. 6000 samples are drawn in theMCMC
stage. We first consider case 2.1 using three transmission eigenvalues. A uniform prior
distribution n0 ∼ U [2.5, 14] is used. A large part of the samples concentrates around 8.1
(see Fig. 2a, b). We also notice that some samples are around 12.3. Similar to Example 1,
we compute the local conditional means as shown in Table 2. The exact transmission
eigenvalues close to k for the two LCMs are also shown in Table 2. The differences
between the transmission eigenvalues and the given k are small.
We move on to case 2.2 by coding the reconstruction of n0 in case 2.1 into the prior.

n(x) is approximated by the linear function n = n0 +n1x1 +n2x2 with π (n0) = U [7.5, 8.5]
and π (n1) = π (n2) = U [−1.5, 1.5]. The reconstruction is n(x) = 8.10− 0.01x1 − 0x2. The
recovery of the constant term n0 is satisfactory. Figure 2c shows samples of n1, n2. The
errors of the coefficient n1, n2 are large. The same experiment is carried out for case 2.3.
Again, the constant n0 is reconstructed well. But n1 and n2 are away from the exact values
(see Table 2 and Fig. 2d). The inverse problem related to cases 2.2 and 2.3 seems to be
severely ill-posed. Nonetheless, as seen in Table 2, the exact transmission eigenvalues for
the reconstructed n(x) are close to the given k . We did some examples using a few more
eigenvalues for cases 2.2 and 2.3, which do not seem to improve the reconstruction, and
thus are not shown here.

Example 3 Let D be an L-shape domain given by

(−0.5, 0.5) × (−0.5, 0.5) \ [0, 0.5] × [−0.5, 0].
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Table 3 Conditional means and the transmission eigenvalues

n(x) a0 a1 a2 Transmission eigenvalues

1 1/6 1/8 0 4. 31 4. 44 4. 95 5. 47

Case 3.1 1.34 0.14 0.14 – 4.53 4.53 5.00 5.56

Case 3.2 1.32 0.13 0.13 0.03 4.17 4.49 4.84 5.48
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Fig. 3 Scatter plots for case 3.1 (a) and case 3.2 (b)

The exact A and n are diag( 16 ,
1
8 ) and 1, respectively. Given k = (4.31, 4.44, 4.95, 5.47), we

consider the following cases:

3.1 assuming A = diag(a0, a1) and n = n0, reconstruct a0, a1 and n0;

3.2 assuming A =
(
a0 a2
a2 a1

)
and n = n0, reconstruct a0, a1, a2 and n0.

For case 3.1, we set a0, a1 ∼ U [0.05, 0.25] and n0 ∼ U [0.1, 1.6]. The results of theMCMC-
ISP with 6000 samples are displayed in Table 3. We can see that A is approximated by
diag(0.14, 0.14) and nCM is 1.34.
Next, we consider case 3.2 using the estimators from case 3.1. As shown in Fig. 3a,

the diagonal elements of A are small and oscillate between 0.1 and 0.2. Hence, we set
a0, a1 ∼ U [0.1, 0.2].Choosea2 fromU [−0.05, 0.1] andn ∼ U [0.8, 1.6].Using 6000 samples
to reconstruct A and n, we show the results in Table 3 and Fig. 3b. For both cases, the
reconstructions are acceptable and the eigenvalues are close to the given ones.

Example 4 In this example, we use the same L-shape domain D as Example 3 but A =(
1
2

1
7

1
7

1
3

)
and n = 2. With k = (5.32, 5.73, 6.04, 6.53), we consider the following cases:

4.1 assuming A = diag(a0, a1) and n = n0, reconstruct a0, a1 and n0;

4.2 assuming A =
(
a0 a2
a2 a1

)
and n = n0, reconstruct a0, a1, a2 and n0.

For case 4.1, we choose the priors a0, a1 ∼ U [0.05, 1.05] and n0 ∼ U [1.5, 3.5]. The
conditional means of a0, a1 and n are 0.23, 0.22, and 2.79, respectively. Based on the
results of case 4.1, we choose a0 ∼ U [0.2, 0.6], a1 ∼ U [0.2, 0.4], a2 ∼ U [−0.05, 0.2] and
n ∼ U [1.8, 3.5] for case 4.2. The results are shown inTable 4 and Fig. 4. The approximation
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Table 4 Conditional means and the transmission eigenvalues

n(x) a0 a1 a2 Transmission eigenvalues

2 1/2 1/3 1/7 5.32 5. 73 6. 04 6.53

Case 4.1 2.79 0.23 0.22 – 5.22 5.83 6.12 6.60

Case 4.2 2.99 0.32 0.26 0.09 5.31 5.61 6.13 6.64
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Fig. 4 Scatter plots for case 4.1 and 4.2

of n is greater than the exact value and approximations of the entries ofA are smaller than
the exact ones, indicating the severe ill-posed nature of the inverse problem. Nevertheless,
the computed transmission eigenvalues are close to the given k for both cases.

5 Conclusions and future work
The inverse spectral problemof transmission eigenvalues is studied. Given a few transmis-
sion eigenvalues, theBayesian approach is employed to reconstruct thematerial properties
of the inhomogeneousmedium.AnMCMCalgorithm is used to explore the posterior den-
sity functions of the unknowns. Due to the fact that only partial data are available (a few
eigenvalues), the inverse problem is severely ill-posed and can have non-unique solutions.
To characterize the density functions, we resort to the recently proposed local estimators.
Numerical examples indicate that the proposed Bayesian method is useful for the inverse
spectral problem considered in this paper.
For Examples 1 and 2, the Faber–Krahn type inequality is first used to obtain some

qualitative information of the index of refraction. Such information can be coded in the
priors to improve the performance of the Bayesian inversion. The results in [18,19] also
indicate that the combination of deterministic and statistical methods can successfully
treat challenging inverse problems with partial data.
The Bayesian inversion framework has the potential to provide useful information about

unknowns for inverse problems, especially when the measurement data are partial. The
current paper only provides a preliminary along this direction. We plan to apply the
method proposed here to study new inverse spectral problems arising recently in the
inverse scattering theory, e.g., the inverse modified transmission eigenvalue problem [7].
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