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Abstract

In this work, we study the interior transmission eigenvalues for elastic scattering in an
inhomogeneous medium containing an obstacle. This problem is related to the
reconstruction of the support of the inhomogeneity without the knowledge of the
embedded obstacle by the far-field data or the invisibility cloaking of an obstacle. Our
goal is to provide an efficient numerical algorithm to compute as many positive interior
transmission eigenvalues as possible. We consider two cases of medium jumps: Case 1,
where C0 = C1, ρ0 �= ρ1, and Case 2, where C0 �= C1, ρ0 = ρ1 with either Dirichlet or
Neumann boundary conditions on the boundary of the embedded obstacle. The
partial differential equation problem is reduced to a generalized eigenvalue problem
(GEP) for matrices by the finite element method. We will apply the Jacobi–Davidson
(JD) algorithm to solve the GEP. Case 1 requires special attention because of the large
number of zero eigenvalues, which depends on the discretization size. To compute the
positive eigenvalues effectively, it is necessary to deflate the zeros to infinity at the
beginning of the algorithm.

Keywords: Interior transmission eigenvalues, Elastic waves, Jacobi–Davidson method,
Nonequivalence deflation

1 Introduction
In this paper, we study the interior transmission eigenvalue problem (ITEP) for elastic
waves propagating outside of an obstacle. Our aim is to design an efficient numerical
algorithm to compute as many transmission eigenvalues as possible for time-harmonic
elastic waves. Let D and � be open bounded domains in R

2 with smooth boundaries ∂D
and ∂�, respectively.Assume thatD ⊂ �. Letu(x) = [u1(x), u2(x)]� be a two-dimensional
vector representing the displacement vector, and let its infinitesimal strain tensor be given
by ε(u) = ((∇u)T +∇u)/2.We consider the linear elasticity; that is, the stress tensor σC(u)
is defined by ε(u) via Hook’s law:

σC(u) = Cε(u),
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where C is the elasticity tensor. The elasticity tensor C = (Cijkl), 1 ≤ i, j, k, l ≤ 2, is a
fourth-rank tensor satisfying two symmetry properties:

Cijkl = Cklij (major symmetry),

Cijkl = Cjikl (minor symmetry).
(1)

We require that C satisfies the strong convexity condition: there exists a κ > 0 such that
for any symmetric matrix A

CA : A ≥ κ|A|2, ∀ x ∈ �. (2)

In the following, for any two matrices A, B, we denote A : B = ∑
ij aijbij and |A|2 = A : A.

The elastic body is called isotropic if

Cijkl = λδijδkl + μ(δikδjl + δilδjk ),

where μ and λ are called Lamé coefficients. In other words, for an isotropic elastic body,
the stress–strain relation is given by

σC(u) = 2με(u) + λtr(ε(u))I = 2με(u) + λdivuI,

where I stands for the identity matrix. It is not difficult to check that the convexity
condition (2) is equivalent to

μ(x) > 0, λ(x) + μ(x) > 0. (3)

The core of the ITEP is to find ω2 ∈ C such that there exists a nontrivial solution
(u, v) ∈ [H1(�)]2 × [H1(�\D)]2 of

∇ · σC0 (u) + ρ0ω
2u = 0 in �, (4a)

∇ · σC1 (v) + ρ1ω
2v = 0 in �\D, (4b)

Bv = 0 on ∂D, (4c)

u = v on ∂�, (4d)

σC0 (u)ν = σC1 (v)ν on ∂�, (4e)

where C0, C1 are elasticity tensors, ρ0, ρ1 are density functions, and ν is the outer normal
of ∂�. Here, we define the boundary operator B on ∂D

Bv = v|∂D or Bv = σC1 (v)ν|∂D, (5)

where, to abuse the notation, ν denotes the unit normal on ∂D pointing into the interior
of D. Recall that σC1 (v)ν represents the traction acting on ∂D or ∂�.
The investigation of the ITEP (4) is motivated by the following practical problem. Let us

assume that ρ0 is a positive constant and supp(C0 − C1) ⊂ �\D, supp(ρ1 − ρ0) ⊂ �\D.
We can regard (C1−C0, ρ1−ρ0) as a “coated”material near ∂D.We now take any solution
û of

∇ · σC0 (û) + ρ0ω
2û = 0 in R

2,

as an incident field and consider the incident field û scattered by the object D and the
inhomogeneity of the material, that is, (C1, ρ1). In particular, when ρ0 = 1 and C0 is
isotropic with constant Lamé coefficients λ and μ, the typical incident field û =: ûine (x)
with e = p or s is given by

ûinp (x) = ξeikpx·ξ or ûins (x) = ξ⊥eiksx·ξ



W.-C. Chang et al. Res Math Sci (2021) 8:49 Page 3 of 23 49

where ξ ∈ � := {‖ξ‖2 = 1} and kp := ω/
√

λ + 2μ and ks := ω/
√

μ represent the
compressional and shear wave numbers, respectively. Let v be the total field satisfy

∇ · σC1 (v) + ρ1ω
2v = 0 in R

2\D.
Then, if ω2 is an interior transmission eigenvalue of (4) and u|� = û|�, then the obstacle
and the inhomogeneity (C1 − C0, ρ1 − ρ0) would be nonscattered objects at ω2 when
the incident field is û. Consequently, if our aim is to detect D and the inhomogeneity
(C1−C0, ρ1−ρ0) by the scattering information, we have to avoid the interior transmission
eigenvalues.
On the other hand, a more interesting implication of this investigation is to “cloak”

the domain D from the elastic waves with suitable coated materials. Now, we regard the
incident field û as a source of seismic waves, i.e., p-waves or s-waves. If ω2 is an interior
transmission eigenvalue of (4), then D with coated material C1, ρ1 will be “invisible” from
the seismic waves propagating at frequency ω.
The study of the ITEP originates from the validity of some qualitative approaches to the

inverse scattering problems in an inhomogeneous medium, such as the linear sampling
method [12] and the factorization method [18]. In recent years, the ITEP has attracted
much attention in the study of direct/inverse scattering problems for acoustic and electro-
magnetic waves in inhomogeneous media [3–6,13–15,19,23]. For the investigation of the
ITEP for elastic waves in the case of D = ∅, there are a few theoretical results [1,2,9–11].
Recently, theoretical results on the discreteness and the existence of interior transmission
eigenvalues of (4) were proven in [7].
The purpose of this paper is to develop a numerical method to compute the transmis-

sion eigenvalues of elastic waves (4). To put this work in perspective, we mention only
some results related to the ITEP for elastic waves. As far as we know, two works have
studied the computation of the ITEP for elastic waves in the case of D = ∅, see [8] and
[16]. In [16], a numerical method was presented to compute a few smallest positive trans-
mission eigenvalues of (4). The ITEP was reformulated as locating the roots of a nonlinear
function whose values are generalized eigenvalues of a series of self-adjoint fourth-order
problems. After discretizing the fourth-order eigenvalue problems using H2-conforming
finite elements, a secant-type method was employed to compute the roots of the nonlin-
ear function. In [8], a numerical method based on the ideas in [21,22] was proposed to
compute many interior transmission eigenvalues for the elastic waves. In this paper, not
only was the case of different densities considered but also the case of different elasticity
tensors. The strategy used in [8,21,22] is as follows. One first discretizes (4) by the finite
element method (FEM). Then, the ITEP is transformed into a generalized eigenvalue
problem (GEP). By some ingenious observations, this GEP can be reduced to a quadratic
eigenvalue problem (QEP) and, at the same time, unwanted eigenvalues (0 or ∞ eigen-
values) can be removed. One then applies a quadratic Jacobi–Davidson (JD) method with
nonequivalence deflation to compute the eigenvalues of the resulting QEP. Contrary to
the results obtained in [16], themethod implemented in [8] is able to locate a large number
of positive transmission eigenvalues of (4).
The paper is organized as follows. In Sect. 2, we describe the discretization of the ITEP

using the FEM. The discretization reduces the PDE problem to a GEP. We will apply
the JD method to locate positive eigenvalues of the GEP. However, the existence of zero
eigenvalues of the GEP will hinder our task. Thus, in Sect. 3, we discuss a nonequivalence
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deflation technique to remove the zero eigenvalues. In Sect. 4, we describe our numerical
algorithm based on the JD method in detail. Section 5 contains all numerical simulations
and remarks. We conclude the paper with a summary in Sect. 6.

2 Discretization and the GEP
We first review the discretization of the ITEP (4) based on the standard piecewise linear
FEM (see [14] for details). Let

Sh = The space of continuous piecewise linear functions on �;
SDh = The subspace of functions in Sh that have vanishing DOF on �\D;
SIh = The subspace of functions in Sh that have vanishing DOF on D̄ ∪ ∂�;
S

h = The subspace of functions in Sh that have vanishing DOF in D ∪ (�\D̄) ∪ ∂�;
SBh = The subspace of functions in Sh that have vanishing DOF in �,

where DOF is the degrees of freedom. Let {ψi}nDi=1, {φi}nIi=1, {θi}m


i=1, and {ξi}mB
i=1, denote

standard nodal bases for the finite element spaces of SDh , S
I
h, S



h , and SBh , respectively. We

then set

[
�1,�2, . . . ,�2nD

]
=

[
ψ1 ψ2 . . . ψnD

ψ1 ψ2 . . . ψnD

]

,

[
�1,�2, . . . ,�2nI

]
=

[
φ1 φ2 . . . φnI

φ1 φ2 . . . φnI

]

,

[
�1,�2, . . . ,�2mB

]
=

[
ξ1 ξ2 . . . ξmB

ξ1 ξ2 . . . ξmB

]

,

[
�1,�2, . . . ,�2m


]
=

[
θ1 θ2 . . . θm


θ1 θ2 . . . θm


]

,

and

u = uDh + uIh + uBh + u

h =

2nD∑

j=1
uDj �j +

2nI∑

j=1
uIj�j +

2mB∑

j=1
wj�j +

2m
∑

j=1
u

j �j

v = vIh + vBh + v

h =

2nI∑

j=1
vIj �j +

2mB∑

j=1
wj�j +

2m
∑

j=1
v

j �j

Here we take into account the boundary condition u = v on ∂� and set uBh = vBh .
Expressed by the nodal bases, u and v have different dimensions. We will discuss FEM for
the Dirichlet and Neumann data separately.

2.1 Dirichlet condition: v = 0 on ∂D

For the zero Dirichlet condition, we take v

j = 0. Applying the standard piecewise linear

FEM and using the integration by parts, we obtain

2nI∑

j=1
uIj

(
σC0 (�j),∇�i

)
�

+
2mB∑

j=1
wj

(
σC0 (�j),∇�i

)
�

+
2m
∑

j=1
u

j

(
σC0 (�j),∇�i

)
�

= λ

⎛

⎝
2nI∑

j=1
uIj

(
ρ0�j ,�i

)
�

+
2mB∑

j=1
wj

(
ρ0�j ,�i

)
�

+
2m
∑

j=1
u

j

(
ρ0�j ,�i

)
�

⎞

⎠ ,
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i = 1, . . . , 2nI ,
2nD∑

j=1
uDj

(
σC0 (�j),∇�i

)
�

+
2m
∑

j=1
u

j

(
σC0 (�j),∇�i

)
�

= λ

⎛

⎝
2nD∑

j=1
uDj

(
ρ0�j ,�i

)
�

+
2m
∑

j=1
u

j

(
ρ0�j ,�i

)
�

⎞

⎠ , i = 1, . . . , 2nD,

2nI∑

j=1
uIj

(
σC0 (�j),∇�i

)
�

+
2mB∑

j=1
wj

(
σC0 (�j),∇�i

)
�

− (
σC0 (u)ν,�i

)
∂�

= λ

⎛

⎝
2nI∑

j=1
uIj

(
ρ0�j ,�i

)
�

+
2mB∑

j=1
wj

(
ρ0�j ,�i

)
�

⎞

⎠ , i = 1, . . . , 2mB,

and
2nI∑

j=1
uIj

(
σC0 (�j),∇�i

)
�

+
2nD∑

j=1
uDj

(
σC0 (�j),∇�i

)
�

+
2m
∑

j=1
u

j

(
σC0 (�j),∇�i

)
�

= λ

⎛

⎝
2nI∑

j=1
uIj

(
ρ0�j ,�i

)
�

+
2nD∑

j=1
uDj

(
ρ0�j ,�i

)
�

+
2m
∑

j=1
u

j

(
ρ0�j ,�i

)
�

⎞

⎠ , i = 1, . . . , 2m
 ,

(6)

where λ = ω2. Likewise for v but with v

j = 0, we have

2nI∑

j=1
vIj

(
σC1 (�j),∇�i

)
Dc +

2mB∑

j=1
wj

(
σC1 (�j),∇�i

)
Dc

= λ

⎛

⎝
2nI∑

j=1
vIj

(
ρ1�j ,�i

)
Dc +

2mB∑

j=1
wj

(
ρ1�j ,�i

)
Dc

⎞

⎠ ,

i = 1, . . . , 2nI , (7)

and

2nI∑

j=1
vIj

(
σC1 (�j),∇�i

)
�

+
2mB∑

j=1
wj

(
σC1 (�j),∇�i

)
�

− (
σC1 (v)ν,�i

)
∂�

= λ

⎛

⎝
2nI∑

j=1
vIj

(
ρ1�j ,�i

)
�

+
2mB∑

j=1
wj

(
ρ1�j ,�i

)
�

⎞

⎠ , i = 1, . . . , 2mB, (8)

where ν is the unit outer normal of ∂� and Dc = �\D̄. Finally, taking into account
boundary conditions (4d), (4e), applying the linear FEMto thedifference equationbetween
u and v in Dc, and performing the integration by parts again, using (6)–(8), we can derive
for i = 1, . . . , mB,

2nI∑

j=1

(
uIj

(
σC0 (�j),∇�i

)
�

− vIj
(
σC1 (�j),∇�i

)
�

)

+
2mB∑

j=1
wj

((
σC0 (�j),∇�i

)
�

− (
σC1 (�j),∇�i

)
�

)
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Table 1 Stiffness and mass matrices with � = 0, 1

Matrix Dimension Definition

Stiffness matrix

K I� � 0 2nI × 2nI (K I�)ij = (
σC�

(�j ),∇�i
)
�

KD� � 0 2nD × 2nD (KD� )ij = (
σC�

(�j ),∇�i
)
�

KB� � 0 2mB × 2mB (KB� )ij = (
σC�

(�j ),∇�i
)
�

K

� � 0 2m
 × 2m
 (K


� )ij = (
σC�

(�j ),∇�i
)
�

K IB� 2nI × 2mB (K IB� )ij = (
σC�

(�j ),∇�i
)
�

K I
� 2nI × 2m
 (K I
� )ij = (
σC�

(�j ),∇�i
)
�

KD

0 2nD × 2m
 (KD


0 )ij = (
σC0 (�j ),∇�i

)
�

K̃

� 2m
 × 2m
 (̃K


� )ij = (
σC�

(�j ),∇�i
)
Dc

Mass matrix

MI
� � 0 2nI × 2nI (MI

�)ij = (
ρ��j ,�i

)
�

MD
� � 0 2nD × 2nD (MD

� )ij = (
ρ��j ,�i

)
�

MB
� � 0 2mB × 2mB (MB

� )ij = (
ρ��j ,�i

)
�

M

� � 0 2m
 × 2m
 (M


� )ij = (
ρ��j ,�i

)
�

MIB
� 2nI × 2mB (MIB

� )ij = (
ρ��j ,�i

)
�

MI

� 2nI × 2m
 (MI


� )ij = (
ρ��j ,�i

)
�

MD

0 2nD × 2m
 (MD


0 )ij = (
ρ0�j ,�i

)
�

M̃

� 2m
 × 2m
 (M̃


� )ij = (
ρ��j ,�i

)
Dc

= λ

⎛

⎝
2nI∑

j=1

(
uIj

(
ρ0�j ,�i

)
�

− vIj
(
ρ1�j ,�i

)
�

)

+
2mB∑

j=1
wj

((
ρ0�j ,�i

)
�

− (
ρ1�j ,�i

)
�

)
⎞

⎠ , i = 1, . . . , 2mB. (9)

For clarity, we define the stiffness matrices and mass matrices as in Table 1.

Additionally,we setuI =
[
uI1, . . . , u

I
2nI

]�
,uD =

[
uD1 , . . . , u

D
2nD

]�
,w =

[
w1, . . . , w2mB

]�
,

u
 =
[
u

1 , . . . , u



2m


]�
, and vI =

[
vI1, . . . , v

I
2nI

]�
. Then, the discretization gives rise to a

generalized eigenvalue problem (GEP)

Kz = λMz, (10)

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

KI
0 0 0 KI


0 KIB
0

0 −KI
1 0 0 KIB

1
0 0 KD

0 KD

0 0

(KI

0 )� 0 (KD


0 )� K

0 0

(KIB
0 )� (KIB

1 )� 0 0 KB
0 − KB

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

MI
0 0 0 MI


0 MIB
0

0 −MI
1 0 0 MIB

1
0 0 MD

0 MD

0 0

(MI

0 )� 0 (MD


0 )� M

0 0

(MIB
0 )� (MIB

1 )� 0 0 MB
0 − MB

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

uI

−vI

uD

u


w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (11)

2.2 Neumann condition: σC1 (v)ν = 0 on ∂D

We now consider the homogeneous Neumann condition. The equations for u remain the
same. For v, using the integration by parts and the boundary condition σC1 (v)ν = 0 on
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∂D, we have

2nI∑

j=1
vIj

(
σC1 (�j),∇�i

)
�

+
2mB∑

j=1
wj

(
σC1 (�j),∇�i

)
�

+
2m
∑

j=1
v

j

(
σC1 (�j),∇�i

)
Dc

= λ

⎛

⎝
2nI∑

j=1
vIj

(
ρ1�j ,�i

)
�

+
2mB∑

j=1
wj

(
ρ1�j ,�i

)
�

+
2m
∑

j=1
v

j

(
ρ1�j ,�i

)
Dc

⎞

⎠ ,

i = 1, . . . , 2nI , (12)

to replace Eq. (7) and additionally we have

2nI∑

j=1
vIj

(
σC1 (�j),∇�i

)
�

+
2m
∑

j=1
v

j

(
σC1 (�j),∇�i

)
Dc

= λ

⎛

⎝
2nI∑

j=1
vIj

(
ρ1�j ,�i

)
�

+
2m
∑

j=1
v

j

(
ρ1�j ,�i

)
Dc

⎞

⎠ , i = 1, . . . , 2m
 .

Similarly, taking into account the boundary conditions on ∂�, applying the linear FEM
to the difference equation between u and v, and performing the integration by parts, we

obtain Eq. (9). With v
 =
[
v

1 , . . . , v



2m


]�
, expressing the system in the matrix form

gives the following GEP

Kz = λMz, (13)

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

KI
0 0 0 KI


0 KIB
0 0

0 −KI
1 0 0 KIB

1 KI

1

0 0 KD
0 KD


0 0 0
(KI


0 )� 0 (KD

0 )� K


0 0 0
(KIB

0 )� (KIB
1 )� 0 0 KB

0 − KB
1 0

0 (KI

1 )� 0 0 0 K̃


1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

MI
0 0 0 MI


0 MIB
0 0

0 −MI
1 0 0 MIB

1 MI

1

0 0 MD
0 MD


0 0 0
(MI


0 )� 0 (MD

0 )� M


0 0 0
(MIB

0 )� (MIB
1 )� 0 0 MB

0 − MB
1 0

0 (MIB
1 )� 0 0 0 M̃


1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uI

−vI

uD

u


w
v


⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)

3 Solving GEPs
In this section, we will attempt to solve GEPs (10) and (13). In each case of the boundary
condition on ∂D, we consider two situations where (i) C0 = C1 and ρ0 �= ρ1 (Case 1) and
where (ii) C0 �= C1 and ρ0 = ρ1 (Case 2). We discuss the two cases separately.

3.1 Case 1 with Dirichlet condition

In this case, KB
0 = KB

1 , K
I
0 = KI

1 , K
IB
0 = KIB

1 , and the stiffness matrix K of (10) becomes
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K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

KI
0 0 0 KI


0 KIB
0

0 −KI
0 0 0 KIB

0
0 0 KD

0 KD

0 0

(KI

0 )� 0 (KD


0 )� K

0 0

(KIB
0 )� (KIB

0 )� 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We would like to implement the Jacobi–Davidson (JD) method to solve (10). To make
the numerical method effective, it is important to remove the null space of K as much
as possible, which corresponds to zero eigenvalue (unphysical) of (10). To this end, we
consider the linear system:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

KI
0 0 0 KI


0 KIB
0

0 −KI
0 0 0 KIB

0
0 0 KD

0 KD

0 0

(KI

0 )� 0 (KD


0 )� K

0 0

(KIB
0 )� (KIB

0 )� 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1
−u1
u3
u4
u5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)

The second equation of (15) reads

KI
0u1 + KIB

0 u5 = 0. (16)

By (16) and the first equation of (15), we have

KI

0 u4 = 0.

Since, in general, nI � m
 , it is reasonable to assume that KI

0 is of full rank and thus

u4 = 0. Using the third and fourth equations of (15), we immediately obtain

u3 = 0 and (KI

0 )�u1 = 0.

Combining this and (16) gives

A
[
u1
u5

]

:=
[

KI
0 KIB

0
(KI


0 )� 0

] [
u1
u5

]

= 0. (17)

Note that the dimension of A is (2nI + 2m
) × (2nI + 2mB). So the nullity of A is at
most 2(mB − m
). Let [u�

1 ,u
�
5 ] �= 0 satisfy (17), then

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1
−u1
0
0
u5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)

is a null vector of K, i.e., a solution of (15).
Next, we need an important deflation technique to deflate eigenvalues (including zero

eigenvalues) that have been computed to ∞. Suppose that we have computed

KX0 = MX0�0, X0 ∈ R
s×r , �0 ∈ R

r×r , and s = 2(2nI + nD + m
 + mB),

that is, (X0,�0) is an eigenpair of (K,M). Let Y0 be chosen so that Y�
0 MX0 = Ir . We

then define
K̃ = K − αMX0Y�

0 M,

M̃ = M − MX0Y�
0 M,

where α /∈ Spec(�0). Then we can show that
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Theorem 1

Spec(K̃,M̃) = ( Spec(K,M)\ Spec(�0)) ∪ {∞}rk=1,

where Spec(K̃,M̃) denotes the set of eigenvalues of the linear pencil K̃ − λM̃.

Proof It suffices to compute

det(K̃ − λM̃) = det(K − λM − (α − λ)MX0Y�
0 M)

= det(K − λM)det(Is − (α − λ)(K − λM)−1MX0Y�
0 M).

(19)

Recall that KX0 = MX0�0. We obtain (K − λM)X0 = MX0(�0 − λIr) and thus

(K − λM)−1MX0 = X0(�0 − λIr)−1.

Substituting this relation into (19) leads to

det(K̃ − λM̃) = det(K − λM)det(Is − (α − λ)X0(�0 − λIr)−1Y�
0 M)

= det(K − λM)det(�0 − λIr)−1det(�0 − λIr − (α − λ)Ir)

= det(K − λM)det(�0 − λIr)−1det(�0 − αIr),

(20)

where we have used the identity det(Is + AB) = det(Ir + BA), where A ∈ R
s×r , B ∈ R

r×s,
in the second equality above. The theorem follows easily from (20). ��
In our numerical algorithm, we first use Theorem 1 to deflate the zero eigenvalues to

∞ and compute a number of positive eigenvalues (from the smallest) of the associated
matrix pair (K̃,M̃). Since the zero eigenvalues have been deflated, it will be quite effective
to compute those small positive eigenvalues. We could continue deflating the computed
eigenvalues to ∞. However, we will not do so due to the sparsity of matrices K,M. Note
that the deflation process will destroy the sparsity ofK,M. To keep the deflated matrices
K̃,M̃ as sparse as possible, after computing a number of positive eigenvalues, we first
restore those eigenvalues that have been deflated to∞ back to the matrix pair and deflate
the positive eigenvalues that were just computed.

3.2 Case 1 with Neumann condition

Here, the stiffness matrix K of (13) becomes

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

KI
0 0 0 KI


0 KIB
0 0

0 −KI
0 0 0 KIB

0 KI

0

0 0 KD
0 KD


0 0 0
(KI


0 )� 0 (KD

0 )� K


0 0 0
(KIB

0 )� (KIB
0 )� 0 0 0 0

0 (KI

0 )� 0 0 0 K̃


0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (21)

We want to point out that K̃

1 here is evaluated in terms of the elasticity tensor C0 since

we have C1 = C0. Similarly, we want to find the null space of K as much as possible. For
this purpose, we want to consider the linear system

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

KI
0 0 0 KI


0 KIB
0 0

0 −KI
0 0 0 KIB

0 KI

0

0 0 KD
0 KD


0 0 0
(KI


0 )� 0 (KD

0 )� K


0 0 0
(KIB

0 )� (KIB
0 )� 0 0 0 0

0 (KI

0 )� 0 0 0 K̃


0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1
−u1
u3
u4
u5
u6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (22)
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By the first and second equations of (22), we have

KI

0 (u4 − u6) = 0.

Reasoning as above, we can assume that KI

0 is of full rank and hence u4 − u6 = 0, i.e.,

u4 = u6. It follows from the last equation of (22) that

(KI

0 )�u1 = K̃


0 u4 . (23)

Substituting (23) into the fourth equation of (22) and combining its third equation gives

[
KD
0 KD


0
(KD


0 )� (K

0 + K̃


0 )

] [
u3
u4

]

=
[
0
0

]

. (24)

Since the matrix in (24) is symmetric and its diagonal matrices are positive-definite, its
rank is most likely small if it is singular. Therefore, we can take u3 = u4 = 0 and (23) leads
to (KI


0 )�u1 = 0. Using the first or the second equation again, we thus conclude that

A
[
u1
u5

]

:=
[

KI
0 KIB

0
(KI


0 )� 0

] [
u1
u5

]

= 0. (25)

Hence if [u�
1 ,u

�
5 ] �= 0 satisfies (25), then

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1
−u1
0
0
u5
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is a null vector of K in (21). Having discovered most of null vectors of K, we then solve
the GEP (13) by the JD method with the deflation technique described as before.

3.3 Case 2 with Dirichlet condition

In this case, we haveMI
1 = MI

0,M
IB
1 = MIB

0 ,MB
1 = MB

0 and themassmatrixM is reduced
to

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

MI
0 0 0 MI


0 MIB
0

0 −MI
0 0 0 MIB

0
0 0 MD

0 MD

0 0

(MI

0 )� 0 (MD


0 )� M

0 0

(MIB
0 )� (MIB

0 )� 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This reducedmassmatrix has exactly the same formasK in (11). Arguing as above, we find
the null space ofM, which corresponds to ∞ eigenvalues of (10). Since we are interested
in locating first 500 positive eigenvalues, we do not need to carry out this step in the JD
method.
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3.4 Case 2 with Neumann condition

Similar to the case above, we have MI
1 = MI

0, M
IB
1 = MIB

0 , MB
1 = MB

0 , M
I

1 = MI


0 , and
M̃


1 = M̃

0 . Thus, the mass matrix becomes

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

MI
0 0 0 MI


0 MIB
0 0

0 −MI
0 0 0 MIB

0 MI

0

0 0 MD
0 MD


0 0 0
(MI


0 )� 0 (MD

0 )� M


0 0 0
(MIB

0 )� (MIB
0 )� 0 0 0 0

0 (MIB
0 )� 0 0 0 M̃


0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

while the stiffnessmatrixK is given by (14). This case can be treated similarly as in Sect. 3.3.

4 Numerical strategies
We want to apply the JD method and the deflation technique to solve the GEP: L(λ)z :=
(K − λM)z = 0. Roughly speaking, we will apply the JD method to the deflated pencil
L̃(λ) := K̃ − λM̃. In Case 1, we first deflate the zero eigenvalues to infinity and then
apply the JD method to the deflated system to locate a small group of positive eigenvalues
(15–20 positive eigenvalues). In Case 2, we begin with the direct implementation of the
JD method to L(λ) and locate a small group of positive eigenvalues. Before continuing
with the JD method, we first deflate these eigenvalues to infinity. However, we would not
keep deflating found eigenvalues to infinity, because that will destroy the sparsity of the
system. It is important to restore the previously deflated eigenvalues (including the zero
eigenvalues in Case 1) before further deflation. In doing so, we always perturb L(λ) by
matrices of lower ranks.
To make the paper self-contained, we outline the JD method here (also see [24]). Let

Vk = [v1, . . . , vk ] be a given orthogonal matrix and let (θk ,uk ), θk �= 0, be a Ritz pair (an
approximate eigenpair) of L̃(λ), i.e., uk = Vksk and (θk , sk ) is an eigenpair of VT

k L̃(λ)Vk ,
namely,

VT
k L̃(θk )Vksk = 0 (26)

with ‖sk‖ = 1. Since VT
k L̃(θk )Vk is of lower rank, (26) can be solved by a usual eigenvalue

solver.
Starting from the Ritz pair (θk ,uk ), we aim to find a correction direction t⊥uk such that

L̃(λ)(uk + t) = 0. (27)

Let

rk = L̃(θk )uk (28)

be the residual vector of L̃(λ) corresponding to the Ritz pair (θk ,uk ). To solve t in (27), we
rewrite and expand (27)

L̃(λ)t = −L̃(λ)uk = −rk + (L̃(θk ) − L̃(λ))uk
= −rk + (λ − θk )M̃uk .

(29)

Using the fact that

u�
k rk = u�

k L̃(θk )uk = s�k V
�
k L̃(θk )Vksk = 0,
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we multiply
(

I − M̃uku�
k

u�
k M̃uk

)

on both sides of (29) to eliminate the term (λ − θk ) and get

(

I − M̃uku�
k

u�
k M̃uk

)

L̃(λ)t = −rk . (30)

Next, applying the orthogonal projection (I − uku�
k ) and approximating L̃(λ) by L̃(θk ),

we then have the following correction equation:
(

I − M̃uku�
k

u�
k M̃uk

)

L̃(θk )(I − uku�
k )t = −rk with t⊥uk . (31)

In designing a stopping criterion in the JDmethod, wewill check the residual ofL(θk )wk
because of the consideration of efficiency, where (θk ,wk ) is a Ritz pair of L(λ) related to
(θk ,uk ). Moreover, in the deflation process (see Theorem 1), we need to make use of the
eigenpairs of the original pencil L(λ). Therefore, it is required to transform the Ritz pair
(θk ,uk ) of L̃(λ) to a Ritz pair (θk ,wk ) of L(λ). Recall that L̃(λ) = K̃ − λM̃, where

K̃ = K − αMX0Y�
0 M,

M̃ = M − MX0Y�
0 M,

where

KX0 = MX0�0, X0 ∈ R
s×r , �0 ∈ R

r×r , s = 2(2nI + nD + m
 + mB),

Y0 satisfies Y�
0 MX0 = Ir , and α /∈ Spec(�0).

Theorem 2 Let (θ ,u), θ �= 0 and θ /∈ Spec(�0) ∪ {α}, be an eigenpair of L̃(λ), i.e.,
L̃(θ )u = 0. Then (θ ,w) is an eigenpair of L(λ), where

w = u − X0q (32)

and q = (α − θ )(�0 − θ Ir)−1Y�
0 Mu.

Proof Assume that (θ ,u) satisfy

L̃(θ )u = (K̃ − θM̃)u = 0. (33)

Consider w = u − X0q, where q ∈ R
r×1 will be determined later. We now write (33) as

(K − αMX0Y�
0 M)(w + X0q) = θ (M − MX0Y�

0 M)(w + X0q). (34)

In view of (34), Kw = θMw if and only if

KX0q − αMX0Y�
0 Mu = MX0�0q − αMX0Y�

0 Mu

= θMX0q − θMX0Y�
0 Mu,

i.e.,

MX0(�0 − θ Ir)q = (α − θ )MX0Y�
0 Mu. (35)

Multiplying Y�
0 on both sides of (35) and using Y�

0 MX0 = Ir , one obtains that

q = (α − θ )(�0 − θ Ir)−1Y�
0 Mu.

��
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Algorithm 1 Deflated stiffness and mass matrices
Input: Stiffness matrix K, Mass matrix M, eigenvectors X1 with associated eigenvalues �0,

and a α not in �0
Output: Deflated stiffness matrix K̃, deflated mass matrix M̃, and an additional matrix Y0
1: Compute Y0 = MX1;
2: Decompose Y0 = UDV� by svd;
3: Update Y0 = VD−1U�;
4: Compute K̃ = K − αMX0Y�

0 M and M̃ = M − MX1Y�
0 M;

Algorithm 2 Jacobi-Davidson with partial deflation
Input: Stiffness matrix K, mass matrixM, the initial projected matrix V , expected eigenvalue

number p, and deflated number l
Output: (λj , xj) satisfying L(λj)xj ≡ (K − λjM)xj = 0 for j = 1, · · · , p
1: if (Case 1) then
2: Use Algorithm 1 to deflate zero eigenvalues and obtain matrices K̃ and M̃;
3: Set X0 = X1 and � = �0;
4: else
5: Set K̃ = K and M̃ = M;
6: Set X0 = [ ] and � = [ ];
7: end if
8: for (j = 1, · · · , p) do
9: ComputeWK = K̃V ,WM = M̃V , HK = V ∗WK, and HM = V ∗WM;

10: while (the desired eigenpair does not converge) do
11: Compute (θ , s) with ‖s‖2 = 1 such that (HK − θHM)s = 0;
12: Compute u = V s, p = L̃′(θ )u, and r = L̃(θ )u;
13: Solve a correction vector t ⊥ u from the correction equation;
14: Orthogonalize t against V and set v = t/‖t‖2;
15: Compute wK = K̃v, wM = M̃v and expand

HK =
[

HK V ∗wK
v∗WK v∗wK

]

, HM =
[

HM V ∗wM
v∗WM v∗wM

]

;

16: Expand V = [
V v

]
,WK = [

WK wK
]
, andWM = [

WM wM
]
;

17: end while
18: Set λj = θ and zj = u;
19: Compute xj = zj − X0q where q = (α − λj)(� − λj Ir )−1Y�

0 Mzj ;
20: if (j ≤ l) then

21: Set X0 = [
X0 xj

]
and � =

[
� 0
0 λj

]

;

22: else
23: Set X0 = [

X0(:, 2 : l) xj
]
and � =

[
�(2 : l, 2 : l) 0

0 λj

]

;

24: end if
25: Use Algorithm 1 to obtain new deflated matrices K̃ and M̃;
26: Update the initial matrix V ;
27: end for

By Theorem 2, if we have found a Ritz pair (θk ,uk ) of L̃(λ) in the JD algorithm, we then
transform uk into wk using (32) and check the stopping criterion to determine whether
(θk ,wk ) is a good approximation of the eigenpair for L(λ). We summarize our method
in the following two algorithms. In Algorithm 1, we perform the deflation. Algorithm 2
describes the JD method (with partial deflation).
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Table 2 Comparison of eigenvalues obtained in [7] and computed from the GEP for Case 1 with
Dirichlet boundary condition

ω Values obtained in [7] Values obtained from GEP

1 9.8599 9.8792

2 19.1916 19.3240

3 26.7594 27.1291

4 36.0246 36.8537

Fig. 1 Eigenfunctions u (left sub-figure) and v (right sub-figure) corresponding to the eigenvalue
ω = 9.8792. Here u and v are radially symmetric described by u = u(r)er and v = v(r)er , where er is the unit
vector directed at the radial direction

Before presenting our numerical results in the next section, we would like to validate
the GEP deduced from the FEM. In other words, the eigenvalues of the GEP are indeed
approximations of the interior transmission eigenvalues. To this end, we compare the
theoretical computation for the radially symmetric transmission eigenfunctions obtained
in [7] with the eigenvalues of the GEP. For simplicity, we only consider the result of Case 1
with the zeroDirichlet boundary condition. According to [7],� is a disk of radius 1 and the
embedded obstacle D is a disk of radius 0.5. The parameters are set to μ = λ = 1, ρ0 = 1
and ρ1 = 0.5. Note that the symmetry is in the sense of u = u21 + u22 and v = v21 + v22. The
comparison is given in Table 2. We also demonstrate that the eigenfunctions computed
from the GEP are indeed radially symmetric, as shown in Figs. 1 and 2.

5 Numerical results
In our numerical simulations, we consider an isotropic elasticity system. We test our
method for four different embedded obstacles inside the domain of the circle centered
at the origin with radius 6; i.e., � = {(x, y) : x2 + y2 < 62}. The dimensions of the four
obstacles are shown in Table 4. Standard triangular meshes with equal mesh lengths of
approximately 0.04 are generated in the FEM. The number of points for each part is
also shown in Table 3. Since we are dealing with an elasticity system in the plane, the
dimensions of the stiffness and mass matrices in Table 3 are doubled. The size of each
matrix is approximately 300,000 × 300,000. The parameters for Case 1 are μ0 = λ0 = 1,
μ1 = λ1 = 1, ρ0 = 5, and ρ1 = 1, while those for Case 2 are μ0 = λ0 = 2, μ1 = λ1 = 1,
and ρ0 = ρ1 = 1. All computations were carried out in MATLAB R2020a. Additionally,
the hardware configurations used were two serves equipped with Intel 32-Core Xeon E5-
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Fig. 2 Eigenfunctions u (left sub-figure) and v (right sub-figure) corresponding to the eigenvalue
ω = 19.3240

Table 3 Meshes for different obstacles (the mesh size h of
FEM is approximately 0.04)

Disc Ellipse Square Dumbbell

mB 948 948 948 948

nI 71593 76140 69114 69571

m
 315 315 400 434

nD 9068 4531 11442 11097

Total 81924 81934 81904 82050

GEP sizes 307034 316148 302036 303242

Table 4 Dimensions of embedded obstacles

Disc {(x, y) : x2 + y2 ≤ 22}
Ellipse {(x, y) : x2/4 + y2 ≤ 1}
Square {(x, y) : −2 ≤ x ≤ 2,−2 ≤ y ≤ 2}
Dumbbell {(x, y) : |x| ≤ 1, |y| ≤ 1} ∪ {(x, y) : (x ± 2)2 + y2 = 2}

2650 2.60 GHz CPUs with 125.72 GB and Intel Octa-Core Xeon E5520 2.27 GHz CPUs
with 70.79 GB.
The major step in our paper [8] is to transform the GEP to a QEP in which the zero

eigenvalues are deflated to infinity. Unfortunately, the same approach fails in the GEP
considered here, so we must solve the GEP directly. To explain the difficulty of finding
positive eigenvalues of the GEP by the JD method, we demonstrate the distribution of
eigenvalues for a toy model in Figs. 3 (Case 1) and 4 (Case 2), where the size of the matrix
is 1850×1850. In both cases, positive eigenvalues are surrounded by complex eigenvalues.
However, in Case 1 (Fig. 3), there exist a large number of zero eigenvalues (the larger the
matrix is, the larger the number of zeros). Therefore, to compute the positive eigenvalues,
wemust first deflate the zero eigenvalues to infinity (Algorithm1) and apply the JDmethod
to the deflated matrices. Moreover, in both cases, positive eigenvalues are surrounded by
complex eigenvalues, and we also need to deflate them to find our desired eigenvalues.
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Fig. 3 Left figure is the distribution eigenvalues of the GEP corresponding to the Case 1 with square obstacle
and Dirichlet boundary condition. Right figure is the distribution of real eigenvalues near zero
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Fig. 4 Left figure is the distribution of eigenvalues of the GEP corresponding to the Case 2 with square
obstacle and Dirichlet boundary condition. Right figure is the distribution of real eigenvalues near zero

Table 5 Values of first positive eigenvalue for four obstacles

Obstacle Case 1, Dirichlet Case 1, Neumann Case 2, Dirichlet Case 2, Neumann

Circle 0.15978 0.15963 0.40922 0.39211

Square 0.15593 0.15578 0.16898 0.16303

Ellipse 0.16367 0.16352 0.28138 0.28958

Dumbbell 0.15328 0.15311 0.03727 0.02973

5.1 Distribution of positive eigenvalues

The simulation results for the Dirichlet and the Neumann boundary conditions on ∂D
are described in more detail below. Recall that in Case 1, we choose μ0 = λ0 = 1,
μ1 = λ1 = 1, ρ0 = 5, ρ1 = 1, and in Case 2, we take μ0 = λ0 = 2, μ1 = λ1 = 1, and
ρ0 = ρ1 = 1. In Fig. 5, we plot the first 50 positive eigenvalues for Case 1 with either the
Dirichlet or the Neumann boundary condition on the obstacles. Figure 6 is the plot of the
first 50 positive eigenvalues for Case 2 with either the Dirichlet or the Neumann boundary
condition. We also compare the first positive eigenvalues for all the scenarios discussed
here; see Table 5.
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Fig. 5 The first 50 positive eigenvalues for Case 1 with the Dirichlet condition (left figure) and the Neumann
condition (right figure)
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Fig. 6 The first 50 positive eigenvalues for Case 2 with the Dirichlet condition (left figure) and the Neumann
condition (right figure)

5.2 Interior transmission eigenvalues and near invisibility

As we mentioned in the Introduction, the study of the interior transmission eigenvalues
is closely related to the development of some reconstruction methods. On the other
hand, the interior transmission eigenvalues are also connected to invisible cloaking. Such
connections were studied extensively for acoustic and electromagnetic waves in [17] and
[20]. Roughly speaking, one hopes to make the obstacle invisible (more precisely, the
obstacle does not perturb the field corresponding to the background equation) by applying
layer isotropic media outside of the obstacle. Similar results for elastic scattering have yet
to be investigated. Here, we present some numerical observations that, we hope, can
provide some insights into the problem for future study.
We plot the eigenfunctions corresponding to the first positive eigenvalues for all cases.

We first show the results for Case 1. The eigenfunctions (u, v) corresponding to the first
positive eigenvalue for four different obstacles with Dirichlet boundary conditions are
given in Fig. 7. Figure 8 shows the corresponding results for the Neumann condition.
Similar plots for Case 2 with either Dirichlet or Neumann conditions are given in Figs. 9

and 10 , respectively.
To interpret Figs. 7, 8, 9, and 10 , let u = [u1, u2]� be a solution of the elasticity system

without obstacle D in �. Ideally, to achieve invisibility, we expect that the existence of
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Fig. 7 The eigenfunctions associated with the first positive eigenvalues for four obstacles with Dirichlet
condition (Case 1). In each subfigure (grouped by 2 × 2 plots corresponding to different shape of obstacle),
the upper left, upper right, lower left, lower right plots correspond to the values of u1, u2, v1, and v2,
respectively

the obstacle does not perturb the field u outside of D. In the case of changing only the
density function outside ofD; i.e., C0 = C1, where ρ0 �= ρ1, the field v = [v1, v2]� in �\D̄
is clearly different from the background field u (Figs. 7, 8). Those numerical simulations
strongly suggest that changing only the density in �\D̄ is unlikely to make an obstacle
invisible.
The situation changes dramatically if we apply a different elasticity tensor outside of

D, which is Case 2. Figures 9 and 10 clearly indicate that the background field in �\D̄ is
not perturbed by the existence of an obstacle. We observe this phenomenon regardless
of the shape of the obstacle or the boundary condition on boundary ∂D. Even though we
show the numerical results for only the first positive eigenvalues, we believe that the same
phenomenon holds for other positive eigenvalues. In other words, if an incident field, e.g.,
planewaves orHerglotzwaves, canbe approximated arbitrarily closely by the linear spanof
the eigenfunctions corresponding to the positive eigenvalues for the background equation,
then the embedded obstacle will produce a small scattered field; that is, the obstacle will
be nearly invisible. Consequently, our simulation results provide strong evidence that
the invisibility of the obstacle D can most likely be achieved by applying an appropriate
elasticity tensor outside ofD. Of course, ideally, onewould like to find a universal elasticity
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Fig. 8 The eigenfunctions associated with the first positive eigenvalues for four obstacles with Neumann
condition (Case 1). In each subfigure (grouped by 2 × 2 plots corresponding to different shape of obstacle),
the upper left, upper right, lower left, lower right plots correspond to the values of u1, u2, v1, and v2,
respectively

tensor with such an obstacle that is invisible for all frequencies. However, this is still a
challenging open problem.

6 Conclusions
In this work, we study the computation of interior transmission eigenvalues for elastic
waves containing an obstacle. This problem is inspired by the inverse problem of deter-
mining the support of the inhomogeneity and the invisibility cloaking of an obstacle. Using
the FEM, we transform the continuous ITEP into a GEP for matrices. We then develop
numerical strategies based on the JD method to locate the first 50 positive eigenvalues
of the GEP. Notably, in the case of different density functions, we must first deflate zero
eigenvalues to infinity to find positive eigenvalues effectively.
The numerical results for Case 2 show some interesting phenomena about the trans-

mission eigenfunction (u, v). It can be observed from Figs. 9 and 10 that the existence of
an obstacle does not perturb the field u in �\D̄. We hope that this observation can pave
the way to the study of invisibility cloaking of an obstacle in elastic waves.
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Fig. 9 The eigenfunctions associated with the first positive eigenvalues for four obstacles with Dirichlet
condition (Case 2). In each subfigure (grouped by 2 × 2 plots corresponding to different shape of obstacle),
the upper left, upper right, lower left, lower right plots correspond to the values of u1, u2, v1, and v2,
respectively
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Fig. 10 The eigenfunctions associated with the first positive eigenvalues for four obstacles with Neumann
condition (Case 2). In each subfigure (grouped by 2 × 2 plots corresponding to different shape of obstacle),
the upper left, upper right, lower left, lower right plots correspond to the values of u1, u2, v1, and v2,
respectively
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