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Abstract

We study the photonic band structure of a metal–dielectric periodic structure. The
metallic component is described by the Drude model; therefore, the electric
permittivity is frequency dependent, i.e., dispersive. Rather than solving a nonlinear
eigenvalue problem for the band structure of the material, we follow a time-dependent
formulation described in Raman and Fan (Phys Rev Lett 104:087401, 2010) which leads
to a linear eigenvalue problem. At issue is the question of completeness of the
eigenfunctions, which is claimed but not proven in Raman and Fan (2010). We establish
completeness in one dimension. We further describe the existence of accumulation
points in the spectrum that lead to an infinite family of ‘zero group velocity’ waves.
Numerical calculations illustrate some of the main ideas of this work.
Keywords: Photonic band gaps, Spectral theory, Metallic optical material, Bloch
waves, Eigenfunction expansions

1 Introduction
The possibility of creating a periodic structure using a combination of metals (e.g., gold)
and dielectric (e.g., air) has open novel possibilities for manipulating light. In Scalora et al.
[7], the authors studied the possibility of tunable transparent structures using such com-
posites. Investigation of the absorption properties of simple three-dimensional metallic
periodic structures with different metals was carried out in El Kady et al. [2]. An approach
for creating a wide band gap in a metal–dielectric photonic crystal is discussed in Wu et
al. [9].
In [5], Raman and Fan proposed an attractive way of computing the band structure

or dispersion curves associated with a metal–dielectric periodic structure. In the work,
they used the Drude model in the metal portion of the medium, which means that the
time-harmonic electromagnetic (EM) field, which satisfies Maxwell’s equation, has an
electric permittivity which is frequency dependent. Therefore, solving for the dispersion
relation, i.e., the dependence of frequency on quasi-momentum, leads to a nonlinear
eigenvalue problem. Since methods for solving nonlinear eigenvalue problems are not
as well developed as those for linear eigenvalue problems, this presents a computational
challenge.
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It is possible to write the equations governing the EM field in metal in the time domain
as pointed out in [5]. This leads to a system involving two additional dependent variables—
the polarization and the polarization velocity. We describe this in the next section. The
advantage of considering this enlarged system is that the eigenvalue problem associated
with computing dispersion relation is linear.
While it is clear how one can now proceed to use an eigenvalue problem solver to

calculate the dispersion curves numerically, the problem formulation introduces a math-
ematical issue which is not fully addressed in [5]. The issue arises because the part of
the operator corresponding to the polarization fields is a multiplication operator whose
inverse is not compact. The coupling of this operator with the differential operators opens
the possibility of a continuous spectrum, see, e.g., Hislop and Sigal [4].
Our work resolves the aforementioned issue with regard to the operators involved.

Standard techniques for showing completeness of the eigenfunctions for elliptic operators
do not apply. For the case of one-dimensional periodic structure, it is possible to derive
an expression for the eigenvalues associated with the operator. Using theWeyl’s criterion
argument, we can establish completeness.
The paper is organized in the following way: We first re-introduce the time domain

formulation described in [5] in Sect. 2. In Sect. 3, we specialize the one-dimensional
problem and investigate the problem in detail. We first study the eigenvalue problem
associated with the periodic structure. Since it is somewhat simple, we are able to give a
precise characterization of all the eigenvalues for a givenmomentum. This is followed by a
spectral analysis of the associated operator and a proof of completeness of eigenfunctions.
We further discretize the system and produced numerical examples. The properties of
the dispersion curves as well as the eigenfunctions are examined. Section 4 is a discussion
which summarizes the work and describes possible research directions.
We finally note that an alternate computational strategy for computing band gaps in

general frequency-dependent material has been proposed in Toader and John [8]. The
method involves ‘lifting’ the problem to a higher dimension wherein the associated eigen-
value problem is easy to solve. The desired dispersion relation is then extracted by inter-
section with appropriately chosen cutting surfaces.

2 Time domain formulation
Consider a metal–dielectric periodic structure. Let Ω ∈ R

3 be a periodic cell made up of
disjoint sets Ωm and Ωd. In Ωm, the metal, EM fields satisfy

μḢ = −∇ × E, (1)

εĖ = ∇ × H − V, (2)

Ṗ = V, (3)

V̇ = ω2
PεE − ω2

0P. (4)

Here, E and H are the electric and magnetic fields, while P and V are the polarization
and polarization velocity fields. The electric permittivity and magnetic permeability of air
are ε and μ. The dots over the variables denote time derivative. The parameter ωP is the
plasma frequency, and ω0 is the characteristic frequency of the polarization field. When
P and V are eliminated from the equations, we would arrive at an EM field satisfying an
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apparent electric permittivity given by

ε(ω) = ε

(
1 + ω2

P
ω2
0 − ω2

)
. (5)

Wenote here that unlike in [5], we are considering the undamped system. In the dielectric,
Ωd, we have Maxwell’s equation, obtained by setting P and V to zero in (1)–(2).
Consider a periodic structure consisting of cubes of size p. Let Ωm be a ball of diameter

less than p, and it is centered in the cube; Ωd is the surrounding dielectric. In the metal,
(1)–(4) apply, whereas in the dielectric, there are no P or V fields. We require that the
tangential components ofH and E be continuous across the metal–dielectric interface

�H × n� = �V × n� = 0, (6)

where n is the normal to Ωm and �u� is the jump of u across the boundary of Ωm.
Now, we seek time-harmonic solution of the form Heiωt , etc. We continue to use H,

etc., to describe the frequency-dependent fields in a slight abuse of notation. Therefore in
Ωm, we have

ω

⎡
⎢⎢⎢⎣
H
E
P
V

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 i
μ
∇× 0 0

− i
ε
∇× 0 0 i

ε

0 0 0 −i
0 −iω2

Pε iω2
0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
H
E
P
V

⎤
⎥⎥⎥⎦ . (7)

In Ωd, we have

ω

[
H
E

]
=

[
0 i

μ
∇×

− i
ε
∇× 0

] [
H
E

]
. (8)

The quasi-periodic boundary conditions forH and E are

H(x + pej) = H(x)eik·ejp,
E(x + pej) = E(x)eik·ejp, j = 1, 2, 3, (9)

where ej is the unit vector in the xj direction, and k is the quasi-momentum. Equations
(7), (8), and (9), together with the continuity conditions on the tangential components of
H and E in (20), represent the eigenvalue problem that wemust solve for every k. We note
that this is a linear eigenvalue problem.
Following [5], we define a diagonal matrix

A = diag
(

μ, ε,
ω2
0

ω2
Pε

,
1

ω2
Pε

)
,

and operator matrix

B =

⎡
⎢⎢⎢⎢⎢⎣

0 i∇× 0 0
−i∇× 0 0 i

0 0 0 −i ω2
0

ω2
Pε

0 −i i ω2
0

ω2
Pε

0

⎤
⎥⎥⎥⎥⎥⎦ .
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It should be noted that viewing B as a matrix, it is Hermitian in the sense that its elements
satisfy bkl = bkl , where overline indicates complex conjugation. Letting z = [H,E,P,V]T

and y = A 1
2 z, the system (7) can be rewritten as

ωy = Cy, (10)

where

C = A− 1
2BA− 1

2 =

⎡
⎢⎢⎢⎢⎣

0 i 1√
εμ

∇× 0 0
−i 1√

εμ
∇× 0 0 iωP

0 0 0 −iω0
0 −iωP iω0 0

⎤
⎥⎥⎥⎥⎦

is Hermitian when viewed as a matrix.
As pointed out in [5], it is possible tomodel the fields in the dielectric by settingω0 → ∞

and ωP → 0 in the Drude model. This fact allows them to focus on the operator C for
the metal–dielectric structure. In this work, we continue to use different equations in the
two media. The operator C as in (10) is valid only in the metal. In the dielectric, with

z′ = [H,E], andA′ = diag(μ, ε), so y′ = A′ 12 z′. We have

ωy′ = C′y′, (11)

where

C′ = A′− 1
2

[
0 i∇×

−i∇× 0

]
A′− 1

2 .

In [5], the authors argued that since C is Hermitian (presumably for any nonzero ω0
and ωP), eigenvalue problem (10) with the quasi-periodic boundary conditions (9) should
lead to eigenfunctions ym which are orthogonal for every k. This can be shown using an
integrations-by-parts argument. What they claim next is that the eigenfunctions form a
complete set. While the authors were not specific in their meaning of completeness, we
can surmise that they mean given a k, the set of eigenfunctions satisfying (11), {y1, y2, . . .},
spans L2(Ω). This statement is not proven in the paper. Instead, the authors cited a
result in Courant and Hilbert [1]. In fact, the result in [1] covers the classical case of
eigenvalue problems for a differential operator whose inverse is compact. The present
case is not covered by the classical theorem cited. The operator C actually couples a
differential operator, whose inverse is compact, with a multiplication operator, whose
inverse is unbounded. Consequently, the inverse of C is not a compact operator inH1(Ω).
We take a step back and observe that in fact there are two fields—y in the metal and y′

in the dielectric. They satisfy (10) and (11), respectively. They are coupled at the metal–
dielectric interface where the tangential components of the first two entries of y match
with the tangential components of y′. Moreover, on the boundaries of the periodic cell,
quasi-periodic boundary conditions apply to the first two components of y (as in (9)). Let
(ym, y′

m) and (yn, y′
n) be eigenfunctions of (10) and (11) for eigenvalues Ωm �= ωn. Then

by integration-by-parts, we have
∫

Ωm
ym · yn dx +

∫
Ωd

y′
m · y′

n dx = δmn. (12)
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On the other hand, completeness is not as obvious. However, in the subsequent we will
show that in one dimension, completeness is a consequence of the fact that the continuous
spectrum is empty.

3 One-dimensional problem
We start with the full system in [5] which is in the Hermitian form

C =

⎡
⎢⎢⎢⎢⎣

0 i 1√
εμ

∇× 0 0
−i 1√

εμ
∇× 0 0 iωP

0 0 0 −iω0
0 −iωP iω0 0

⎤
⎥⎥⎥⎥⎦

For the one-dimensional model we consider, we have

E = (0, E, 0), H = (0, 0, H ), P = (0, P, 0), V = (0, V, 0),

where the scalar functions E,H, P, V depend only on the variable x1. To simplify our
presentation, we shall henceforth drop the subscript from x1. We set the period of the
structure to be unity and focus on reference cell [0, 1]. We also set ε = μ = 1. The metal
extends over the interval [0, θ ], with 0 < θ < 1. The parameter θ is the volume fraction
of metal. The eigenvalue problem reduces to

ω

⎡
⎢⎢⎢⎣
H
E
P
V

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 iDx 0 0
iDx 0 0 iωp
0 0 0 −iω0
0 −iωp iω0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
H
E
P
V

⎤
⎥⎥⎥⎦ , 0 < x < θ , (13)

and

ω

[
H
E

]
=

[
0 iDx
iDx 0

][
H
E

]
, θ < x < 1, (14)

with quasi-periodic boundary conditions

H (x + 1) = H (x)eik , E(x + 1) = E(x)eik , (15)

and continuity conditions

[H ]x=θ = 0, [E]x=θ = 0. (16)

Equations (13)–(14), along with the boundary conditions, should yield, for each k , eigen-
values ωn(k). Associated with an eigenvalue is the solution (Hn, En, Pn, Vn). We view the
solutions as eigenvectors. These eigenvectors are orthogonal under the following inner
product

∫ θ

0

1
2
(EmEn + HmHn) + 1

2ω2
P
(VmVn + ω2

EPmPn)dx

+
∫ 1

θ

1
2
(EmEn + HmHn)dx = δmn.

This orthogonality condition follows from (12) but is given in terms of the native variables
(H, E, P, V ).
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3.1 Eigenvalue problem

We proceed by solving the eigenvalue problem in (13)–(16). To do this, we eliminate P
and V in (13) and deal only with the variable E. It is shown to satisfy

E′′ + σ 2ω2E = 0, 0 < x < θ . (17)

Here, σ is the square root of the frequency-dependent permittivity described by Drude’s
model

σ 2 = 1 + ω2
P

ω2
0 − ω2 .

Equation (14) reduces to

E′′ + ω2E = 0, θ < x < 1. (18)

The quasi-periodic conditions now apply to E and its derivative:

E(1) = E(0)eik , E′(1) = E′(0)eik . (19)

Continuity conditions now read

[E]x=θ = 0, [E′]x=θ = 0. (20)

It is important to point out the sign change in σ 2:

σ 2 ≥ 0, 0 ≤ ω < ω0 and ω ≥
√

ω2
0 + ω2

P,

σ 2 < 0, ω0 < ω <

√
ω2
0 + ω2

P.

We solve the eigenvalue problem by assuming a solution of the form

E(x) =
{
A cos(σωx) + B sin(σωx), 0 < x < θ

C cos(ω(1 − x)) + D sin(ω(1 − x)), θ < x < 1
. (21)

From the quasi-periodicity condition (19), we get

C = Aeik , D = −σBeik .

Continuity conditions (20) lead to

A cos(σωθ ) + B sin(σωθ ) = C cos(ω(1 − θ )) + D sin(ω(1 − θ )),

σ [−A sin(σωθ ) + B cos(σωθ )] = C sin(ω(1 − θ )) − D cos(ω(1 − θ )).

Substituting C and D in the two equations, we get

A(cos(σωθ ) − eik cos(ω(1 − θ ))) + B(sin(σωθ ) + eikσ sin(ω(1 − θ ))) = 0,

−A(σ sin(σωθ ) + eik sin(ω(1 − θ ))) + Bσ (cos(σωθ ) − eik cos(ω(1 − θ ))) = 0.
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The dispersion relation is obtained by requiring that the determinant associated with the
linear system be zero, which after some simplification yields

2 cos k = 2 cos(σωθ ) cos(ω(1 − θ )) − 1 + σ 2

σ
sin(σωθ ) sin(ω(1 − θ )). (22)

Equation (22) is the nonlinear eigenvalue problemassociatedwith the system.Wedonot
use it for computational purposes. However, the equation does reveal certain properties
of the roots {ωn(k)}:
– There are an infinitely many roots for each k .
– There are two sets of roots separated by whether ωn(k) are less than or greater than

ω0.
– The roots ωn(k) < ω0 have accumulation points at ω0.
– The roots ωn(k) > ω0 approach ∞.

These observations can be explained by examining σ as a function of ω. Notice that

σ → 1 as ω → ∞.

Therefore for large ω, (22) simplifies to

2 cos k ≈ 2 cos(ω).

This means ωn(k) → k + 2nπ for large n.
For (ω0 − ω) small and positive, σ is large; therefore, (22) is approximately

2 cos k = 2 cos(σωθ ) cos(ω0(1 − θ )) − σ sin(σω(1 − θ )) sin(ω0(1 − θ )).

Both terms on the right-hand side oscillate faster and faster and grow in amplitude as ω

approaches ω0, equating with the value on the left-hand side more and more often. This
accounts for the accumulation phenomenon at ω0.
We note that the accumulation point ω0 exists for any k and for any volume fraction θ .

As we shall see in Sect. 3.3, this leads to an interesting feature in the dispersion curves.
We summarize the above observations into the following proposition.

Proposition 1 For each k, the eigenvalue problem (13)–(16) has an essential spectrum ω0
as the accumulation point of its eigenvalues [3].

So far, we have shown that all the eigenvalues of the eigenvalue problem (13)–(16) satisfy
Eq. (22) and that there are infinitelymanyof them.Their corresponding eigenfunctions can
be calculated accordingly. A natural question to ask is: For each k , do these eigenfunctions
form a complete bases? This is not obvious from our calculation. We shall show that the
answer is yes in the next section by using Weyl’s criterion.

3.2 Weyl’s criterion argument

In the section, we aim to prove the completeness of eigenfunctions for the eigenvalue
problem (13)–(16) . The idea is to analyze the spectrum of the associated unbounded
operator. A key step is to use theWeyl’s criterion to determine its essential spectrum and
show that the essential spectrum consists of only one point. We refer reader to chapter
VIII in Reed and Simon [6] for an excellent treatment of spectral theory of unbounded
self-adjoint operators that are used in our arguments.
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To start with, we define the Hilbert space

X = L2(0, 1) × L2(0, 1) × L2(0, θ ) × L2(0, θ ).

Then, the operator C reduces to the following unbounded operator C in X:

C

⎡
⎢⎢⎢⎣
H
E
P
V

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 iDx 0 0
iDx 0 0 iωp
0 0 0 −iω0
0 −iωp iω0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
H
E
P
V

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

iE′

iH ′ + iV
−iω0V

−iE + iω0P

⎤
⎥⎥⎥⎦ .

For each k ∈ [0, 2π ), we define

Xk = {(H, E, P, V )T ∈ X :H, E ∈ H1(0, 1),

H (x + 1) = H (x)eik , E(x + 1) = E(x)eik}.

It is clear that the boundary conditions (15)–(16) are encoded in the definition of the
space Xk and the eigenvalues of the eigenvalue problem (13)–(16) are equivalent to the
point spectrum of the operator C with domain D(C) = Xk .

Lemma 1 The operator C is unbounded and is self-adjoint in the Hilbert space X with
domain D(C) = Xk .

Proof It is straightforward to check that C is symmetric in the sense that

(Cf, g) = (f, Cg), for all f, g ∈ D(C).

To show the self-adjointness, we need only to show that Ran(C ± iI) = Xk (see Chapter
VIII in [6]). Let S = (S1, S2, S3, S4)T ∈ Xk , we will try to solve (C − λI)(H, E, P, V )T = S,
with λ = i. More precisely, consider

iE′ − λH = S1, (23)

iH ′ + iV − λE = S2, (24)

−iω0V − λP = S3, (25)

−iE + iω0P − λV = S4 . (26)

We use (25)–(26) to solve for P and V in terms of E, S3, and S4. After inverting a 2-by-2
linear system, we get

V = iω0S3 + iλE + λS4
ω2
0 − λ2

. (27)

Next, we take the derivative of (23) and solve for E′′

E′′ = −iS′
1 − iλH ′.

Substituting this in H ′ from (24) in the above, we get

E′′ − λ2E + iλVχθ = −iS′
1 − λS2,
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where χθ is the characteristic function of the interval [0, θ ]. Finally, we substitute V in
(27) to get

E′′ + λ2
(
1 + χθ

ω2
0 − λ2

)
E = −iS′

1 − λS2 + iλ
ω2
0 − λ2

(iω0S3 + λS4)χθ . (28)

With the given quasi-periodic boundary condition, we can show that Eq. (28) for E is
uniquely solvable for λ = i. After we get E, we can derive P, V , and H subsequently. This
shows that Ran(C − iI) = Xk . Similarly, one can show that Ran(C + i) = Xk . Therefore,
C is self-adjoint. �
Wenow use theWeyl’s criterion (see Sigal andHislop [4], Chapter 7) to argue that there

is only one essential spectrum of C . We first recall the definition of Weyl’s sequence.

Definition 1 A sequence {un} is called aWeyl sequence forC and λ if there exists {un} ⊂
D(C) such that ‖un‖ = 1, un

w→ 0 and (C − λ)un
s→ 0.

Here, by s→ and w→ we mean strong and weak convergences of sequences.

Theorem 1 (Weyl’s criterion) Let C be self-adjoint. Then, λ ∈ σess(C) if and only if there
exists a Weyl sequence for C and λ.

Theorem 2 The essential spectrum of the operator C consists of only one point which is
ω0.

Proof We have shown that ω0 is an essential spectrum of C (see Proposition 1). We need
to only show that it is the only one. We prove this by contradiction. Assume that λ �= ω0
is an essential spectrum of C . We first consider the following system of equations:

(C − λI)U = S,

where U = (H, E, P, V )T , S = (S1, S2, S3, S4) and all the variables depend on x only.
The equations are already given in (23)–(26). From (28), we can conclude that if Sj for
j = 1, 2, 3, 4 and E are bounded in L2(0, 1), then E is bounded in H1(0, 1).
Now, if λ is an essential spectrum, by the Weyl criterion, there exists a Weyl sequence

Un = (Hn, En, Vn, Pn) ∈ X such that‖Un‖X = 1 andUn
w→ 0 inX.Moreover, (C−λI)Un =

S(n) with ‖S(n)‖X s→ 0.
By (28), we can derive that ‖En‖H1(0,1) is uniformly bounded. As a result, we can extract

a subsequence, still denoted by En such that En → E∗ weakly inH1(0, 1) for some function
E∗ in H1(0, 1). But En → 0 weakly in L2(0, 1). By the uniqueness of weak limit, we can
conclude that E∗ = 0 and therefore En → 0weakly inH1(0, 1). Using the fact thatH1(0, 1)
is compactly embedded in L2(0, 1), we see that one can further extract a subsequence of
En, say Enj such that Enj → 0 in L2(0, 1). From (27), we conclude that Vnj → 0 in L2 also.
The same conclusion can be drawn about Pnj from (25). Finally, consider (24) which we
rewrite as

H ′
nj = −iSnj − Vnj − iλEnj .

Wehave shown that the right-hand side tends to 0 in L2(0, 1). Therefore,Hnj → 0 strongly
inL2.However,Hnj is uniformly bounded inL2(0, 1).We see thatHnj is uniformly bounded
in H1(0, 1). Similar to the argument for En, we can further extract a subsequence, still
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denoted by Hnj , such that Hnj → 0 strongly in L2(0, 1). Combining all these results, we
see that

Unj → 0, strongly in X,

which contradicts to the fact that ‖Un‖X = 1. This contradiction shows that λ �= ω0 is
not an essential spectrum of C . This completes the proof of the theorem. �
As a consequence, we obtain the following main result on the spectrum of the

unbounded self-adjoint operator C . In particular, the result establishes completeness of
the eigenfunctions for each quasi-momentum k .

Theorem 3 For each quasi-momentum k ∈ [0, 2π ), the following statements hold for the
operator C in X with D(C) = Xk :

1. The continuous spectrum σcont(C) is empty;
2. The spectrum σ (C) equals to σpp(C), where σpp(C) is the set of point spectrum of C.

Moreover, σpp(C) has only one accumulation point which is ω0;
3. The set of normalized eigenfunctions of C form a complete orthonormal basis for Xk .

3.3 Numerics

In this section, we discretize (13)–(14) and solve for the dispersion curves ωn(k) and the
associated eigenfunctions. In the metal, the state variable is y = [H, E, ω0

ωP
P, 1

ωP
V ]T and

the equation is

ωy = Cy, (29)

where

C =

⎡
⎢⎢⎢⎣

0 iDx 0 0
iDx 0 0 iωP
0 0 0 −iω0
0 −iωP iω0 0

⎤
⎥⎥⎥⎦ .

In the dielectric, the state variable is y′ = [H, E]T and the equation is

ωy′ = C ′y, (30)

where

C ′ =
[

0 iDx
iDx 0

]
.

Continuity conditions are

[H ]θ = [E]θ .

We also have the quasi-periodicity condition

H (1) = H (0)eik , E(1) = E(0)eik .

After rewriting the solution to take the form, we get

y = weikx, y′ = w′eikx,

where now both w and w′ are unit periodic.
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Fig. 1 The spectrum of the Bloch solution for volume fraction θ = 0.3 and wave number k = 0.5. There are
two accumulation points, at ω0 and at infinity. This figure highlights the accumulation at ω0 from the left

We use a staggered grid discretization (Yee scheme [10]) on the periodic functions. The
interval [0, 1] is divided into n segments of width h = 1/n, with whole grid points

x1 = 0, x2 = h, x3 = 2h, . . . , xn+1 = nh,

and half grid points

x1/2 = −h/2, x3/2 = h/2, x5/2 = 3h/2, . . . , xn+1/2 = (n − 1/2)h.

The variablew1,j is defined on xj , for j = 1, . . . , nwithw1,1 = w1,n+1. The variablew2,j+1/2
is defined on xj+1/2, for j = 0, . . . , n, withw2,1/2 = w2,n+1/2. Choose θ = (m−1)h for some
m < n, and we have w3,j+1/2 and w4,j+1/2 defined only for j = 1, . . . , m− 1. Continuity of
H and E across the metal–dielectric interface implies that

w2,m−1/2 = w2,m+1/2,

while the discretization forces w1 are continuous. Now, it is just a matter of writing a
matrix eigenvalue problem for the vector

w = [w1,1, . . .w1,n, w2,3/2, . . . , w2,n+1/2, w3,3/2, . . . , w3,m−1/2, w4/2, . . . , w4,m−1/2]T ,

to represent the discrete version of (29)–(30), details of which we omit.
We note here that our discretization correctly couples the metal to the dielectric by

eliminating the P and V fields in the dielectric. In [5], the coupling is approximated by
setting ω0 = 0 in the metal and setting ω0 to a large number and ωP to a small number.
In the numerical calculations that follow, we set n = 200,ω0 = 2, andωP = 2.4.Wewill

vary θ (more preciselym) to understand the effect of the volume fraction on the dispersion
curves. The Bloch momentum wave number k is in the interval [0,π ]. We will consider
only positive ωi(k).
The first calculation illustrates the nature of the spectrum. With θ = 0.3 and k = 0.5,

we look at the eigenvalues ωi(k) lying in the interval [0, 10]. This is shown in Fig. 1 where
we show the spectrum laid out on the horizontal interval and provide a blowup near ω0
where there is an accumulation of eigenvalues to the left.
Next, we look at theBloch spectrum for the same volume fraction. This is shown in Fig. 2.

One can easily recognize the presence of band gaps. The shaded region corresponds to
frequencies ω for which the metallic segment has a negative permittivity. Notice the ‘pile
up’ of horizontal dispersion curves near ω = ω0. This is the result of the accumulation
phenomenon we described earlier (Fig. 3). The modes corresponding to these dispersion
curves have zero group velocity, much more akin to standing waves with energy concen-
trated in the metallic regions ( Fig. 5C).
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Fig. 2 The Bloch spectrum for θ = 0.3. The shaded region corresponds to values of ω for which the metallic
segment has a negative permittivity. Notice the ‘pile up’ of horizontal dispersion curves just under ω = ω0.
This is the result of the accumulation phenomenon

Fig. 3 Blowup of the spectrum in Fig. 2 near ω = 2 highlighting the pile up

We can learn more by examining the eigenfunctions associated with these dispersion
curves. We will fix k = 0.5 and look at the fields corresponding toH and P. For i = 1, that
is, the lowest of the branches ωi(k), the eigenfunctions have nearly constant amplitude.
This is shown in Fig. 4. Note that P(x) is defined only for the metallic section. While the
amplitude is nearly constant, the real and imaginary parts are oscillatory. Therefore, these
are propagating modes.
For i corresponding to an eigenvalue that is close to the accumulation point, in this case

ωi(0.5) = 1.9996, the eigenfunctions are concentrated in the metallic region as shown in
Fig. 5. The group velocity for thismode is nearly zero. These therefore are nonpropagating
and are similar to standing waves.
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Fig. 4 The amplitude of the eigenfunctions H and P for ω1(0.5). Note that the P field only exists in the metal.
While the amplitudes are nearly constant, the real and the imaginary parts are oscillatory, corresponding to
modes that propagate

Fig. 5 The amplitude of the eigenfunctions H and P for ωn(0.5) near the accumulation point ω = ω0. These
modes have energy concentrated in the metal regions and are nonpropagating since the group velocity is
nearly zero

Finally, when we pick i so that ωi(0.5) is in the shaded region (where permittivity in the
metal is negative), the eigenfunction for H peaks toward the boundaries between metal
and dielectric. A similar phenomenon could be seen in the P field. This is shown in Fig. 6.
It should be noted that again the slope of the dispersion curve is nearly zero; therefore,
these modes are also nonpropagating.
In the final study, we examine the dependence of the Bloch spectrum on the volume

fraction θ . Shown in Fig. 7 are the dispersion curves for θ = 0.3 (L), θ = 0.6 (C), and
θ = 0.8 (R). We see that gaps can expand and shrink depending on θ .
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Fig. 6 The amplitude of the eigenfunctions H and P for ωn(0.5) in the shaded region where the metal has
negative permittivity. Note the concentration of energy at the metal–dielectric interfaces. With group velocity
near zero, these are nonpropagating modes

Fig. 7 The dispersion curves for different values of volume fraction θ . Notice that the gaps can expand or
shrink as θ is varied

4 Discussion
In this paper, we investigated the spectral properties of dispersive metal–dielectric peri-
odic structure. Such a problem naturally leads to a nonlinear eigenvalue problem. Fol-
lowing [5], we reformulate the problem into a linear eigenvalue problem by introducing
additional variables. UsingWeyl’s criterion, we showed that in one dimension the associ-
ated self-adjoint operator has one, and only one, essential spectrum at the characteristic
frequency of the polarization field ω0 in the metal. We resolved the issue of the complete-
ness of the eigenfunctions for this particular case.Our study also explains thephenomenon
of pile up of the dispersion curves near the singular frequency ω = ω0 in the band struc-
ture. These results are also confirmed by numerical experiments. Our results are only
valid for the one-dimensional case. However, we expect some of the ideas may apply to
the higher-dimensional case. In higher dimensions, the full operator C needs to be consid-
ered with appropriate energy space for all the vector fields involved. Since the eigenvalues
cannot be calculated explicitly, other indirect method has to be used to show that ω0 is
an accumulation point of the eigenvalues and hence lies in the essential spectrum. On
the other hand, the Weyl’s criterion argument may still work to show that ω0 is the only
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essential spectrum. With these, one may establish the completeness of eigenfunctions
and explain the similar phenomenon of pile up of dispersion curves near the singular
frequency ω = ω0 in the band structure (indicated in the numerical example in [5]).
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