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Abstract

D’Arcais-type polynomials encode growth and non-vanishing properties of the
coefficients of powers of the Dedekind eta function. They also include associated
Laguerre polynomials. We prove growth conditions and apply them to the
representation theory of complex simple Lie algebras and to the theory of partitions, in
the direction of the Nekrasov–Okounkov hook length formula. We generalize and
extend results of Kostant and Han.
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1 Introduction
Since the times of Euler, Gauss, and Jacobi properties and formulas of the coefficients
an (r) of integral powers of Euler products, now known as powers of the Dedekind eta
function ηr , have been studied [1,2,18,23]. These involve pentagonal numbers, partition
numbers, and the Ramanujan tau-function [19] as the most prominent examples. Non-
vanishing properties are of particular interest, e. g. the Lehmer conjecture [17] addressing
r = 24. A still outstanding result was given by Serre [23] in 1985 for r positive and even.
The sequence an (r) is lacunary if and only if r ∈ {2, 4, 6, 8, 10, 14, 26}.
In this paper, we significantly improve results of Kostant [16] and Han [9] on the non-

vanishing of the coefficients. Kostant proved that an
(
m2 − 1

) �= 0 form ≥ max {4, n} by
using Macdonald’s fundamental theory on affine root systems [18] and the identification
of

∣∣an
(
m2 − 1

)∣∣ with the dimension of some special Lie algebras. In 2010, Han extended
Kostant’s result to r ∈ R applying the Nekrasov–Okounkov [20] hook length formula.
The starting point is the Dedekind eta function. Its powers ηr (r ∈ Z) are one of the

most well-known and most studied functions in mathematics [2,3,6,14,18,22].

η (τ )r := q
r
24

∞∏

m=1
(1 − qm)r = q

r
24

∞∑

n=0
an (r) qn, (1)

where q := e2π iτ , Im (τ ) > 0. The coefficients are special values of the D’Arcais polyno-
mials Pn(x) [4,5,13,21,23,24]. Let z ∈ C. Let

∞∑

n=0
Pn(z) qn := q

z
24 η(τ )−z. (2)
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These polynomials are special cases of recursively defined polynomials Pg
n(x) associated

with a normalized, i. e. g (1) = 1, arithmetic function g : N −→ N. In this paper, we are
mainly interested in the cases g(n) = σ (n) and g(n) = nl , where l ∈ N0. Let P

g
0 (x) := 1

and

Pg
n(x) := x

n

n∑

k=1
g(k)Pg

n−k (x) (3)

for n ≥ 1. Let g(n) = σ (n) := ∑
d|n d, then Pn(x) = Pσ

n (x) and an(r) = Pσ
n (−r). Let

g(n) = n, then it can be shown that Pg
n(x) is proportional to an associated Laguerre

polynomial, see [10]. As a special case of Theorem 6 and Corollary 3, we obtain our main
results with respect to the Dedekind eta function. We prove in this paper, see Sect. 4:

Theorem Let κ = 15. For all z ∈ C and n ∈ N with |z| > κ(n − 1), we obtain the growth
condition

|Pn(z)| >
|z|
2n

|Pn−1(z)|. (4)

Corollary Let |z| > κ(n − 1), then Pn(z) �= 0.

Let for example z = −(106 − 1). Then, the result of Kostant [16, Theorem 4.28] implies
that Pn(z) �= 0 for all n ≤ 103. Our Theorem implies that this is already true for n ≤ 6 ·104.
TheworkofKostant andNekrasov–Okounkov led tonewnon-vanishing results towards

coefficients of the powers of the Dedekind eta function. In this work, we utilize properties
of the D’Arcais polynomials to obtain new results beyond their results. Actually, we even
get an unexpected new type of result in the context of Kostant’s study of complex simple
Lie algebras g. We denote by � 	 the Gauss bracket.

Application Let g be a complex simple Lie algebra (to simplify we exclude the types
A1, A2, G2). Let h∨ be the dual Coxeter number and

n0 := min
{
h∨,

⌊
dim g

κ
+ 1

⌋}
.

Let Cn ⊂ ∧ng be the span of all 1-dimensional subspaces of the form ∧na, where a ⊂ g is
any n-dimensional abelian subalgebra of g (see also Sect. 2). Then, dim Cn �= 0 if and only
if 1 ≤ n ≤ h∨. Further dimCn = an(dim g) (result of Kostant [16]). Our Theorem implies:

dim Cn
dim Cn−1

>
dim g

2n
(n ≤ n0). (5)

2 Kostant’s formula
We recall a result of Kostant [16] involving alternating sums of dim Vλ, where Vλ is the
irreducible module with the highest weight λ of a complex simple Lie algebra. The highest
weight uniquely determines the representation πλ up to equivalence and also the Casimir
operator. We obtain growth results and significantly improve the non-vanishing results
obtained by Kostant.
Let g be a complex simple Lie algebra. We choose a simply connected compact group

K , such that k = Lie K is a compact form of g. Let T ⊂ K be a maximal torus and
h := i Lie T . We identify h with its dual with respect to the Killing form such that � ⊂ h

for the set of roots for the pair (hC, g). Here, �+ denotes a set of positive roots and h+ the
corresponding Weyl chamber.
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Let D ⊂ h+ be the set of dominant integral forms of h. Then, every λ ∈ D corresponds
to an irreducible representation

πλ : K −→ Aut Vλ

with the highest weight λ. For the following (including notation), we refer to Theorem 3.1
in [15] and Theorem 0.1 in [16]. Let ρ be the Weyl element and aP := exp(2π i 2 ρ).

Theorem 1 (Kostant [15]) For any λ ∈ D, the value of the character χλ of πλ evaluated at
aP is an element of {−1, 0, 1}. Let Cas(λ) be the scalar value taken by the Casimir element
of Vλ. Then,

∞∏

n=1
(1 − Xn)dim K =

∑

λ∈D
χλ(aP) dim Vλ XCas(λ). (6)

We are interested in the vanishing properties of the coefficients an = an(dim K ) defined
by

∞∑

n=0
an(dimK ) Xn =

∞∏

n=1
(1 − Xn)dim K . (7)

LetWf denote the affine Weyl group acting on h. Let ψ ∈ �+ be the highest root. Then,

A1 := {x ∈ h+ |ψ(x) ≤ 1} (8)

is a fundamental domain. Let σ ∈ Wf , then Aσ := σ (A1) is called an alcove. An alcove is
dominant if Aσ ⊂ h+. We put

W+
f := {σ ∈ Wf |Aσ ⊂ h+}. (9)

Let ρ be the Weyl element and σ ∈ W+
f then

λσ := σ (2ρ)
2

− ρ. (10)

Theorem 2 (Kostant [16]) Let λ ∈ D. Then, χλ(aP) ∈ {−1, 1} if and only if

λ ∈ Dalcove = {λσ | σ ∈ W+
f }.

In this case,χλ(aP) = (−1)l(σ ), where l(σ ) is the length ofσ . The coefficients an = an(dimK )
are given by

an =
∑

σ∈W+
f ,

Cas(λσ )=n

(−1)l(σ ) dim Vλσ . (11)

As Kostant already indicated [16, Sect. 4.6]: one major difficulty in using formula (11) to
determine an is the cancellation in the sums due to the alternation of signs. He discovered
that if n ≤ h∨ (dual Coxeter number), then this alternation does not occur, and (−1)nan
can be identified with the dimension of certain algebras, see Kostant [16], Theorem 4.23.
Here, we recall one of these identifications and an application towards non-vanishing of
the coefficients an.
Let n ∈ N0. Then, we denote by Cn ⊂ ∧ng the span of all 1-dimensional subspaces of

the form∧na, where a ⊂ g is any n-dimensional abelian subalgebra of g. Then, Cn �= 0 ⇔
n ≤ M, where M is the maximal dimension of a commutative subalgebra of g. Malcev
computed M for each simple Lie algebra g. We give a complete list. The cases Am−1 and
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G2 had been worked out in [16]. Note that M < h∨ ⇔ g is of type A1, A2 and G2 and
M = h∨ otherwise.

g type h h∨ dim k

Am−1 m m m2 − 1
B(m+1)/2 m + 1 m (m + 1) (m + 2) /2
Cm−1 2m − 2 m m2 − 1
D(m+2)/2 m m (m + 1) (m + 2) /2
E6 12 12 78
E7 18 18 133
E8 30 30 248
F4 12 9 52
G2 6 4 14

Theorem 3 (Kostant [16]) Let g be a complex simple Lie algebra. Let n ≤ h∨. Then,

(−1)nan(dimK ) = dim Cn. (12)

These coefficients are zero if and only if M ≤ n ≤ h∨. Hence, an = 0 if and only if the g
type is A1 and n = 2, or A2 and n = 3, or G2 and n = 4.

The direct application of our theorem given in the introduction (see also Theorem 6)
leads to new insights and improvement of the results of Kostant (we also refer to [16]
Theorem 4.28 and [9] Theorem 1.6).

Theorem 4 Let g be a complex simple Lie algebra. Let λσ = σ (2ρ)
2 − ρ, where ρ is the

Weyl element and σ ∈ W+
f . Let πλσ : K −→ Aut(Vλσ ) be the corresponding irreducible

representation. We denote by l(σ ) the length of the Weyl group element. Let dim K >

κ (n − 1), where κ = 15. Then,

(−1)n
∑

σ∈W+
f ,

Cas(λσ )=n

(−1)l(σ ) dim Vλσ >
(−1)n−1 dim K

2n
∑

σ∈W+
f ,

Cas(λσ )=n−1

(−1)l(σ ) dim Vλσ .(13)

Corollary 1 Let dim K > κ (n − 1). Then,

(−1)n
∑

σ∈W+
f ,

Cas(λσ )=n

(−1)l(σ ) dim Vλσ > 0. (14)

Example Let g be of type Am−1. Let m = 103 then dim K = 106 − 1. Then, Kostant’s
result implies that (14) is true for n ≤ 103. Theorem 4 implies that (14) is already true for

n ≤ (106 − 1)/15 ≈ 6.7 · 104 .

3 The Nekrasov–Okounkov hook length formula
Almost at the same timeasKostant publishedhis paper,Nekrasov andOkounkov [9,20,24]
discovered a new type of hook length formula.
We follow the introduction given in [12]. Random partitions and the Seiberg–Witten

theory lead to an identity between a sum over products of partition hook lengths [7,8]
and the coefficients of complex powers of Euler products [11,21,23], which is essentially
a power of the Dedekind eta function.
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Let λ be a partition of n denoted by λ � n with weight |λ| = n. We denote by H(λ)
the multiset of hook lengths associated with λ and by P the set of all partitions. The
Nekrasov–Okounkov hook length formula [9, Theorem 1.2] is given by

∑

λ∈P
q|λ| ∏

h∈H(λ)

(
1 − z

h2
)

=
∞∏

m=1
(1 − qm)z−1 . (15)

The identity (15) is valid for all z ∈ C. Our result in this context is the following.

Theorem 5 Let n ∈ N and κ = 15. Let z ∈ C and |z| > κ (n − 1). Then,
∣
∣∣∣
∣∣

∑

λ�n

∏

h∈H(λ)

(
1 − 1 − z

h2

)
∣
∣∣∣
∣∣
>

|z|
2n

∣
∣∣∣
∣∣

∑

λ�n−1

∏

h∈H(λ)

(
1 − 1 − z

h2

)
∣
∣∣∣
∣∣
. (16)

This is a new type of growth condition related to the Nekrasov–Okounkov hook length
formula.

Remark a) Let z be a positive real number. Then, (15) implies:
∑

λ�n

∏

h∈H(λ)

(
1 − 1 − z

h2

)
> 0. (17)

b) Let z be a negative real number. Han observed [9, Theorem 1.6]: let z < 1 − n2, then

(−1)n
∑

λ�n

∏

h∈H(λ)

(
1 − 1 − z

h2

)
> 0. (18)

If −z ≥ 4, then (18) is already true for z ≤ 1 − n2.

Theorem 5 implies the following non-vanishing result.

Corollary 2 Let n ∈ N and κ = 15. Let z ∈ C and |z| > κ (n − 1). Then,
∣
∣∣∣
∣∣

∑

λ�n

∏

h∈H(λ)

(
1 − 1 − z

h2

)
∣
∣∣∣
∣∣
> 0. (19)

Let z be a negative real number. Then, z < κ (1 − n) implies

(−1)n
∑

λ�n

∏

h∈H(λ)

(
1 − 1 − z

h2

)
> 0. (20)

This is true, since the left hand side of (19) is a polynomial in z of degree n, which is
non-vanishing for real z smaller than κ (1 − n) and thus behaves like zn.

4 Growth conditions on D’Arcais-type polynomials Pg
n (x)

Recall the setting from the introduction. Let g : N → N with g (1) = 1 be a normalized
arithmetic function. We further associate with g(n) a family of polynomials Pg

n(x) and a
(shifted) generating functionG(T ) with positive radius R of convergence.We put Pg

0 (x) =
1 and

Pg
n(x) := x

n

n∑

k=1
g(k)Pg

n−k (x) (21)

for n ≥ 1. Let further

G (T ) :=
∞∑

k=1
g(k + 1)Tk. (22)
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Theorem 6 Let a normalized arithmetic function g be given. Let Pg
n(x) be the associated

polynomials and let G(T ) be the generating function with positive radius of convergence.
Then, for any constant κ > 0 with G( 2

κ
) ≤ 1

2 we have the following estimation.
∣∣
∣Pg

n (x)
∣∣
∣ >

|x|
2n

∣∣
∣Pg

n−1 (x)
∣∣
∣ (23)

if |x| > κ (n − 1), for all n ∈ N.

Proof The proof will be given by induction on n. We start with n = 1. Let |x| > 0. Then,
∣∣
∣Pg

1 (x)
∣∣
∣ = |x| >

|x|
2
.

Let us assume the theorem is true for 1 ≤ j ≤ n− 1. The induction step is based on the
following inverse triangle inequality, employing (21)

∣
∣∣Pg

n (x)
∣
∣∣ ≥ |x|

n

(∣
∣∣Pg

n−1 (x)
∣
∣∣ −

∣∣
∣∣∣

n∑

k=2
g (k)Pg

n−k (x)

∣∣
∣∣∣

)

. (24)

We are allowed to assume for 1 ≤ j ≤ n − 1:
∣∣
∣Pg

j−1 (x)
∣∣
∣ <

2j
|x|

∣∣
∣Pg

j (x)
∣∣
∣ for |x| > κ (j − 1) .

Iterating this inequality leads to
∣
∣∣Pg

n−k (x)
∣
∣∣ <

∣
∣∣Pg

n−1 (x)
∣
∣∣
(
2n − 2

|x|
)k−1

for |x| > κ (n − 1)

for all k = 2, . . . , n. Using this, we can now estimate the sum in (24), which is involved in
the lower bound of |Pg

n(x)|:
∣∣∣
∣∣

n∑

k=2
g (k)Pg

n−k (x)

∣∣∣
∣∣
≤

n∑

k=2
g (k)

∣∣
∣Pg

n−k (x)
∣∣
∣

<

∣∣
∣Pg

n−1 (x)
∣∣
∣

n∑

k=2
g (k)

(
2n − 2

|x|
)k−1

.

This leads to the crucial inequality

∣
∣∣Pg

n (x)
∣
∣∣ >

∣∣
∣x Pg

n−1(x)
∣∣
∣

n

(

1 −
n∑

k=2
g (k)

(
2n − 2

|x|
)k−1

)

.

Estimating the sum and using the assumption from the theorem, we obtain
n∑

k=2
g (k)

(
2n − 2

|x|
)k−1

≤ G
(
2n − 2

|x|
)

≤ G
(
2
κ

)
≤ 1

2
.

Note that 2n−2
|x| < 2

κ
. SinceG is increasing on [0, R) as g (k) > 0 for all k ∈ N, the theorem

is proven. ��

In particular, for the sum of divisors function we obtain:

Corollary 3 Let g = σ and |x| > 15 (n − 1) for n ≥ 1. Then,

|Pn (x)| >
|x|
2n

|Pn−1 (x)| .
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Proof We have to find an upper bound on G (q) = ∑∞
k=1 σ (k + 1) qk . Let h (k) = σ (k)

for 1 ≤ k ≤ 4 and h (k) = (k + 1) k for k ≥ 4 . Then, obviously σ (k) ≤ h (k) for all k ∈ N.
This implies G (q) ≤ ∑∞

k=1 h (k + 1) qn = F (q) for 0 ≤ q ≤ 1 ≤ R. The series F is now
almost (except for the first 4 terms) the second derivative of the geometric series of q:

G (q) ≤
∞∑

k=1
h (k + 1) qk =

∞∑

k=0
(k + 2) (k + 1) qk − 2 − 3q − 8q2 − 13q3

= 2
(1 − q)3

− 2 − 3q − 8q2 − 13q3.

For q = 2
15 , we obtain

G
(

2
15

)
≤ 3701502

7414875
<

1
2
.

The claim now follows from the previous theorem. ��

Takingmore values of h equal to σ does not seem to yield a significant improvement any
more. For example, taking h (k) = σ (k) for k ≤ 9 would only allow us to take κ = 14.76.
The previous estimate on the growth of the polynomials Pn (x) has important implica-

tions.

Corollary 4 Pn (x) �= 0 for |x| > 15 (n − 1), n ≥ 1.

Similarly, the theorem can be exploited to find uniform constants κ = κm only depend-
ing on a function h : N → N for all functions g : N → N that satisfy g (k) ≤ h (k) . One
example is the following:

Corollary 5 Let m ∈ N ∪ {0} be fixed. Suppose g : N → N satisfies

g (k) ≤ hm (k) =
(
k + m − 1

m

)

for all n ∈ N . Then, for all such g the constant c in Theorem 6 can be chosen as

κm = 2
1 − m+1√2/3

.

Proof By our assumption, the power series G (q) = ∑∞
k=1 g (k) qk satisfies for 0 ≤ q <

1 ≤ R:

G (q) ≤
∞∑

k=1
hm (k + 1) qk = 1

(1 − q)m+1 − 1

since the series is essentially the mth derivative of the geometric series in q. For κm =
2

1− m+1√2/3 , we obtain
1
2 for q = 2

κm
in the series. ��

In the following, we list the values of κm for m = 0, 1, 2 and integer bounds on them.
They are related to the interesting cases considered in [13]. Here,m = 0 leads to polyno-
mials which have Stirling numbers of the first kind as their coefficients. The case m = 1
leads to associated Laguerre polynomials. And m = 2 leads to polynomials which can be
considered as an upper bound of the D’Arcais polynomials Pσ

n (x).
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Corollary 6 For m = 0, 1, 2, we obtain κ0 = 2
1− 2

3
= 6, κ1 = 2

1−
√

2
3

< 11, and κ2 =
2

1− 3
√

2
3

< 16.
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