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Abstract

Recent work linking deep neural networks and dynamical systems opened up new
avenues to analyze deep learning. In particular, it is observed that new insights can be
obtained by recasting deep learning as an optimal control problem on difference or
differential equations. However, the mathematical aspects of such a formulation have
not been systematically explored. This paper introduces the mathematical formulation
of the population risk minimization problem in deep learning as a mean-field optimal
control problem. Mirroring the development of classical optimal control, we state and
prove optimality conditions of both the Hamilton–Jacobi–Bellman type and the
Pontryagin type. These mean-field results reflect the probabilistic nature of the learning
problem. In addition, by appealing to the mean-field Pontryagin’s maximum principle,
we establish some quantitative relationships between population and empirical
learning problems. This serves to establish a mathematical foundation for investigating
the algorithmic and theoretical connections between optimal control and deep
learning.

1 Introduction
Deep learning [5,29,41] has become a primary tool in many modern machine learning
tasks, such as image classification and segmentation. Consequently, there is a pressing
need to provide a solid mathematical framework to analyze various aspects of deep neural
networks. The recent line of work on linking dynamical systems, optimal control and
deep learning has suggested such a candidate [15–17,31,43–45,48,55,60]. In this view,
ResNet [32] can be regarded as a time discretization of a continuous-time dynamical
system. Learning (usually in the empirical risk minimization form) is then recast as an
optimal control problem, fromwhichnovel algorithms [43,44] andnetwork structures [15,
16,31,48] can be designed. An attractive feature of this approach is that the compositional
structure, which is widely considered the essence of deep neural networks, is explicitly
taken into account in the time evolution of the dynamical systems.
While most prior works on the dynamical systems viewpoint of deep learning have

focused on algorithms and network structures, this paper aims to study the fundamental
mathematical aspects of the formulation. Indeed, we show that the most general formula-
tion of the population risk minimization problem can be regarded as amean-field optimal
control problem, in the sense that the optimal control parameters (or equivalently, the
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trainable weights) depend on the population distribution of input–target pairs. Our task
is then to analyze the mathematical properties of this mean-field control problem. Mir-
roring the development of classical optimal control, we will proceed in two parallel, but
interconnected ways, namely the dynamic programming formalism and the maximum
principle formalism.
The paper is organized as follows. We discuss related work in Sect. 2 and introduce

the basic mean-field optimal control formulation of deep learning in Sect. 3. In Sect. 4,
following the classical dynamic programming approach [4], we introduce and study the
properties of a value function for the mean-field control problem whose state space is
an appropriate Wasserstein space of probability measures. By defining an appropriate
notion of derivative with respect to probability measures, we show that the value function
is related to solutions of an infinite-dimensional Hamilton–Jacobi–Bellman (HJB) partial
differential equation. With the concept of viscosity solutions [19], we show in Sect. 5 that
the HJB equation admits a unique viscosity solution and completely characterize the opti-
mal loss function and the optimal control policy of the mean-field control problem. This
establishes a concrete link between the learning problem viewed as a variational problem
and the Hamilton–Jacobi–Bellman equation that is associated with the variational prob-
lem. It should be noted the essential ideas in the proof of Sects. 4 and 5 are not new, but
we present our simplified treatment for this particular setting.
Next, in Sect. 6, we develop the more local theory based on the Pontryagin’s maximum

principle (PMP) [54]. We state and prove a mean-field version of the classical PMP that
provides necessary conditions for optimal controls. Further, we study situations when the
mean-field PMP admits a unique solution, which then imply that it is also sufficient for
optimality, provided that an optimal solution exists. We will see in Sect. 7 that compared
with the HJB approach, this further requires the fact that the time horizon of the learn-
ing problem is small enough. Finally, in Sect. 8 we study the relationship between the
population risk minimization problem (cast as a mean-field control problem and charac-
terized by a mean-field PMP) and its empirical risk minimization counterpart (cast as a
classical control problem and characterized by a classical, sampled PMP). We prove that
under appropriate conditions for every stable solution of the mean-field PMP, with high
probability there exist close-by solutions of the sampled PMP, and the latter converge in
probability to the former, with explicit error estimates on both the distance between the
solutions and the distance between their loss function values. This provides a type of a
priori error estimate that has implications on the generalization ability of neural networks,
which is an important and active area of machine learning research.
Note that it is not the purpose of this paper to prove the sharpest estimates under

the most general conditions; thus, we have taken the most convenient but reasonable
assumptions and the results presented could be sharpened with more technical details.
In each section from Sects. 4 to 8, we first present the mathematical results and then
discuss the related implications in deep learning. Furthermore, in this work we shall focus
our analysis on the continuous idealization of deep residual networks, but we believe that
much of the analysis presented also carry over to the discrete domain (i.e., discrete layers).
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2 Related work
The connection between back-propagation and optimal control of dynamical systems
is known since the earlier works on control and deep learning [3,10,40]. Recently, the
dynamical systems approach to deep learning was proposed in [60] and explored in the
direction of training algorithms based on the PMP and the method of successive approx-
imations [43,44]. In another vein, there are also studies on the continuum limit of neural
networks [45,55] and on designing network architectures for deep learning [15,16,31,48]
based on dynamical systems and differential equations. Instead of analysis of algorithms or
architectures, the present paper focuses on themathematical aspects of the control formu-
lation itself and develops a mean-field theory that characterizes the optimality conditions
and value functions using both PDE (HJB) and ODE (PMP) approaches. The overarching
goal is to develop the mathematical foundations of the optimal control formulation of
deep learning.
In the control theory literature, mean-field optimal control is an active area of research.

Many works on mean-field games [6,30,33,38], the control of McKean–Vlasov sys-
tems [39,51,52] and the control of Cucker–Smale systems [8,12,25] focus on deriving the
limiting partial differential equations that characterize the optimal control as the num-
ber of agents goes to infinity. This is akin to the theory of the propagation of chaos [58].
Meanwhile, there are alsoworks discussing the stochasticmaximumprinciple for stochas-
tic differential equations of mean-field type [1,11,14]. The present paper differs from all
previous works in two aspects. First, in the context of continuous-time deep learning, the
problem differs from these previous control formulations as the source of randomness is
coupled input–target pairs (the latter determines the terminal loss function, which can
now be regarded as a random function). On the other hand, a simplifying feature in our
case is that the dynamics, given the input–target pair, are otherwise deterministic. Sec-
ond, the dynamics of each random realization are independent of the distribution law of
the population and are coupled only through the shared control parameters. This is to be
contrasted with optimal control of McKean–Vlasov dynamics [14,51,52] or mean-field
games [6,30,33,38], where the population law directly enters the dynamical equations
(and not just through the shared control). Thus, in this sense our dynamical equations are
much simpler to analyze. Consequently, although some of our results can be deduced from
more general mean-field analysis in the control literature, here we will present simplified
derivations tailored to our setting. Note also that there are neural network structures
(e.g., batch normalization) that can be considered to have explicit mean-field dynamics,
and we defer this discussion to Sect. 9.

3 From ResNets tomean-field optimal control
Let us now present the optimal control formulation of deep learning as introduced in [43,
44,60]. In the simplest form, the feed-forward propagation in a T -layer residual network
can be represented by the difference equations:

xt+1 = xt + f (xt , θt ), t = 0, . . . , T − 1, (1)

where x0 is the input (image, time series, etc.), xT is the final output, and f is the transition
dynamics between different layers. For instance, in the case of simple feed-forward-type
skip connection, f takes the form of σ (θtxt ), where θt is the weight matrix, σ is the
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activation function, and the bias vector is neglected. The final output is then compared
with some target y0 corresponding to x0 via some loss function. The goal of learning is
to tune the trainable parameters θ0, . . . , θT−1 such that xT is close to y0. The only change
in the continuous-time idealization of deep residual learning, which we will subsequently
focus on, is that instead of the difference equation (1), the forward dynamics are now a
differential equation. In fact, there is empirical evidence showing that the contribution
of the residual part is small in ResNets, which heuristically justifies our approximation in
terms of the differential equations. Jastrzebski et al. [35] report that the ratio of l2 norm
of output of residual block to the norm of input of residual block is small in the original
ResNet with 50 layers. Veit et al. [59] show that removing paths from residual networks
by deleting some layers or corrupting some paths by reordering layers only has a modest
and smooth impact on performance, which also implies the contribution of some residual
parts is marginal. In this sense, our continuous dynamical system becomes a reasonable
idealization of deep residual learning.
Now, we introduce our formulation more precisely. Let (�,F ,P) be a fixed and suf-

ficiently rich probability space so that all subsequently required random variables can
be constructed. Suppose x0 ∈ R

d and y0 ∈ R
l are random variables jointly distributed

according to μ0 := P(x0 ,y0) (hereafter, for each random variable X we denote its distribu-
tion or law by PX ). This represents the distribution of the input–target pairs, which we
assume can be embedded in Euclidean spaces. Consider a set of admissible controls or
training weights � ⊆ R

m. In typical deep learning, � is taken as the whole space Rm, but
here we consider the more general case where � can be constrained. Fix T > 0 (network
“depth”) and let f (feed-forward dynamics), � (terminal loss function) and L (regularizer)
be functions

f : Rd × � → R
d, � : Rd × R

l → R, L : Rd × � → R.

We define the state dynamics as the ordinary differential equation (ODE)

ẋt = f (xt , θt ) (2)

with initial condition equals to the random variable x0. Thus, this is a stochastic ODE,
whose only source of randomness is on the initial condition. Consider the set of essentially
bounded measurable controls L∞([0, T ],�). To improve clarity, we will reserve bold-
faced letters for path-space quantities. For example, θ ≡ {θt : 0 ≤ t ≤ T }. In contrast,
variables/functions taking values in finite-dimensional Euclidean spaces are not bold-
faced.
The population risk minimization problem in deep learning can hence be posed as the

following mean-field optimal control problem

inf
θ∈L∞([0,T ],�)

J (θ) := Eμ0

[
�(xT , y0) +

∫ T

0
L(xt , θt )dt

]
,

Subject to (2).

(3)

The term “mean-field” highlights the fact that θ is shared by a whole population of input–
target pairs, and the optimal control must depend on the law of the input–target random
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variables. Strictly speaking, the law of x does not enter the forward equations explic-
itly (unlike e.g.,McKean–Vlasov control [14]), and hence our forward dynamics are not
explicitly inmean-field form.Nevertheless, wewill use the term “mean-field” to emphasize
the dependence of the control on the population distribution.
In contrast, if we were to perform empirical risk minimization, as is often the case in

practice (and is the case analyzed by previous work on algorithms [43,44]), we would first
draw i.i.d. samples {xi0, yi0}Ni=1 ∼ μ0 and pose the sampled optimal control problem

inf
θ∈L∞([0,T ],�)

JN (θ) := 1
N

N∑
i=1

[
�

(
xiT , y

i
0

)
+

∫ T

0
L
(
xit , θt

)
dt

]
,

Subject to ẋit = f (xit , θt ), i = 1, . . . , N.

(4)

Thus, the solutions of sampled optimal control problems are typically random variables.
We will mostly focus our analysis on the mean-field problem (3) and only later in Sect. 8
relate it to the sampled problem (4).

Additional notation

Throughout this paper, we always use w to denote the concatenated (d + l)-dimensional
variable (x, y) where x ∈ R

d and y ∈ R
l . Correspondingly, f̄ (w, θ ) := (f (x, θ ), 0) is the

extended (d + l)-dimensional feed-forward function, L̄(w, θ ) := L(x, θ ) is the extended
(d + l)-dimensional regularization loss, and �̄(w) := �(x, y) still denotes the terminal
loss function. We denote by x · y the inner product of two Euclidean vectors x and y with
the same dimension. The Euclidean norm is denoted by ‖ · ‖ and the absolute value is
denoted by | · |. Gradient operators on Euclidean spaces are denoted by ∇ with subscripts
indicating the variable with which the derivative is taken with. In contrast, we use D to
represent the Fréchet derivative on Banach spaces. Namely, if x ∈ U and F : U → V is a
mapping between two Banach spaces (U, ‖ · ‖U ) and (V, ‖ · ‖V ), then DF (x) is defined by
the linear operator DF (x) : U → V s.t.

r(x, y) := ‖F (x + y) − F (x) − DF (x)y‖V
‖y‖U → 0, as ‖y‖U → 0. (5)

For a matrix A, we use the symbol A � 0 to mean that A is negative semi-definite.
Let the Banach space L∞([0, T ], E) be the set of essentially bounded measurable func-

tions from [0, T ] to E, where E is a subset of a Euclidean space with the usual Lebesgue
measure. The norm is ‖x‖L∞([0,T ],E) = ess supt∈[0,T ] ‖x(t)‖, and we shall write for brevity
‖·‖L∞ in place of ‖·‖L∞([0,T ],E). In this paper, E is often either� orRd , and the path-space
variables we consider in this paper, such as the controls θ, will mostly be defined in this
space.
As this paper introduces amean-field optimal control approach,we alsoneed somenota-

tion for the random variables and their distributions. We use the shorthand L2(�,Rd+l)
for L2((�,F ,P),Rd+l), the set of Rd+l-valued square-integrable random variables. We
equip this Hilbert space with the norm ‖X‖L2 := (E‖X‖2)1/2 for X ∈ L2(�,Rd+l). We
denote by P2(Rd+l) the set of square-integrable probability measures on the Euclidean
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space Rd+l . Note that X ∈ L2(�,Rd+l) if and only if PX ∈ P2(Rd+l). The space P2(Rd+l)
is regarded as a metric space equipped with the 2-Wasserstein distance

W2(μ, ν) := inf
{( ∫

Rd+l×Rd+l
‖w − z‖2π (dw, dz)

)1/2 ∣∣∣
π ∈ P2(Rd+l × R

d+l) with marginals μ and ν
}

:= inf
{
‖X − Y ‖L2

∣∣∣X, Y ∈ L2(�,Rd+l) with PX = μ, PY = ν
}
.

For μ ∈ P2(Rd+l), we also define ‖μ‖L2 := (
∫
Rd+l ‖w‖2μ(dw))1/2.

Given a measurable function ψ : Rd+l → R
q that is square integrable with respect to

μ, we use the notation

〈ψ(.), μ〉 :=
∫
Rd+l

ψ(w)μ(dw).

Now, we introduce some notation for the dynamical evolution of probabilities. Given
ξ ∈ L2(�,Rd+l) and a control process θ ∈ L∞([0, T ],�), we consider the following
dynamical system for t ≤ s ≤ T :

Wt,ξ ,θ
s = ξ +

∫ s

t
f̄
(
Wt,ξ ,θ

s , θt
)
ds.

Note that Wt,ξ ,θ
s is always square integrable given f̄ (w, θ ) is Lipschitz continuous with

respect to w. Let μ = Pξ ∈ P2(Rd+l), we denote the law ofWt,ξ ,θ
s for simplicity by

P
t,μ,θ
s := PWt,ξ ,θ

s
.

This is valid since the law of Wt,ξ ,θ
s should only depend on the law of ξ and not on the

random variable itself. This notation also allow us to write down the flow or semigroup
property of the dynamical system as

P
t,μ,θ
s = P

t̂ ,Pt,μ,θt̂ ,θ
s , (6)

for all 0 ≤ t ≤ t̂ ≤ s ≤ T, μ ∈ P2(Rd+l), θ ∈ L∞([0, T ],�).
Finally, throughout the results and proofs, we will use K or C with subscripts as names

for generic constants, whose values may change from line to line when there is no need
for them to be distinct. In general, these constants may implicitly depend on T and the
ambient dimensions d,m, but for brevity we omit them in the rest of the paper.

4 Mean-field dynamic programming principle and HJB equation
We begin our analysis of (3) by formulating the dynamic programming principle and the
Hamilton–Jacobi–Bellman equation. In this approach, the key idea is to define a value
function that corresponds to the optimal loss of the control problem (3), but under a
general starting time and starting state. One can then derive a partial differential equation
(Hamilton–Jacobi–Bellman equation, or HJB equation) to be satisfied by such a value
function, which characterizes both the optimal loss function value and the optimal control
policy of the original control problem. Compared to the classical optimal control case
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corresponding to empirical risk minimization in learning, here the value function’s state
argument is no longer a finite-dimensional vector, but an infinite-dimensional object
corresponding to the joint distribution of the input–target pair. We shall interpret it as
an element of a suitable Wasserstein space. The detailed mathematical definition of this
value function and its basic properties are discussed in Sect. 4.1.
In thefinite-dimensional case, theHJBequation is a classical partial differential equation.

In contrast, since the state variables we are dealing with are probability measures rather
than Euclidean vectors, we need a concept of derivative with respect to a probability
measure, as introduced by Lions in his course at Collège de France [47]. We give a brief
introduction of this concept in Sect. 4.2 and refer readers to the lecture notes [13] formore
details. We then present the resulting infinite-dimensional HJB equation in Sect. 4.3.
Throughout this section and next section (Sect. 5), we assume

(A1) f, L,� are bounded; f, L,� are Lipschitz continuous with respect to x, and the Lips-
chitz constants of f and L are independent of θ .

(A2) μ0 ∈ P2(Rd+l).

4.1 Value function and its properties

Adopting the viewpoint of taking probability measures μ ∈ P2(Rd+l) as state variables,
we can define a time-dependent objective functional

J (t,μ, θ) := E(xt ,y0)∼μ

[
�(xT , y0) +

∫ T

t
L(xt , θt )dt

]
(subject to (2))

= 〈�̄(.), Pt,μ,θ
T 〉 +

∫ T

t

〈
L̄(., θs), Pt,μ,θ

s

〉
ds. (7)

The second line in the above is just a rewriting of the first line based on the notation
introduced earlier. Here, we abuse the notation J in (3) for the new objective functional,
which now has additional arguments t,μ. Of course, J (θ) in (3) corresponds to J (0,μ0, θ)
in (7).
The value function v∗(t,μ) is defined as a real-valued function on [0, T ] × P2(Rd+l)

through

v∗(t,μ) = inf
θ∈L∞([0,T ],�)

J (t,μ, θ). (8)

If we assume θ∗ attains the infimum in (3), then by definition

J (θ∗) = v∗(0,μ0).

The following proposition shows the continuity of the value function.

Proposition 1 The function (t,μ) �→ J (t,μ, θ) is Lipschitz continuous on [0, T ] ×
P2(Rd+l), uniformly with respect to θ ∈ L∞([0, T ],�), and the value function v∗(t,μ)
is Lipschitz continuous on [0, T ] × P2(Rd+l).

Proof We first establish some elementary estimates based on the assumptions. We sup-
pose

〈L̄(., θ ), μ〉 ≤ C. (9)
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Let X, Y ∈ L2(�,Rd+l) such that PX = μ,PY = μ̂, the Lipschitz continuity of L̄ gives us

|〈L̄(., θ ), μ〉 − 〈L̄(., θ ), μ̂〉| = |E[L̄(X, θ ) − L̄(Y, θ )]| ≤ KL‖X − Y ‖L2 .

Note that in the proceeding inequality the left side does not depend on the choice of X, Y ,
while the right side does. Hence, we can take the infimum over all the joint choices ofX, Y
to get

|〈L̄(., θ ), μ〉 − 〈L̄(., θ ), μ̂〉| ≤ KL × inf
{
‖X − Y ‖L2

∣∣∣∣X, Y ∈ L2(�,Rd+l) with PX = μ, PY = ν

}
≤ KLW2(μ, μ̂). (10)

The same argument applied to �̄ gives us

|〈�̄(.), μ〉 − 〈�̄(.), μ̂〉| ≤ KLW2(μ, μ̂). (11)

For the deterministic ODE

dwθ
t

dt
= f̄

(
wθ
t , θt

)
, wθ

0 = w0,

define the induced flow map as

h(t, w0, θ) := wθ
t .

Using Gronwall’s inequality with the boundedness and Lipschitz continuity of f̄ , we know

|h(t, w, θ) − h(t, ŵ, θ)| ≤ KL‖w − ŵ‖,
|h(t, w, θ) − h(t̂ , w, θ)| ≤ KL|t − t̂|.

Therefore, we use the definition of Wasserstein distance to obtain

W2
(
P
t,μ,θ
s ,Pt,μ̂,θ

s

)
= inf

{
‖X − Y ‖L2

∣∣∣∣X, Y ∈ L2(�,Rd+l) with PX = P
t,μ,θ
s , PY = P

t,μ̂,θ
s

}

= inf
{
‖h(s − t, X, θ) − h(s − t, Y, θ)‖L2

∣∣∣∣X, Y ∈ L2(�,Rd+l) with PX = μ, PY = μ̂

}

≤ inf
{
KL‖X − Y ‖L2

∣∣∣∣X, Y ∈ L2(�,Rd+l) with PX = μ, PY = μ̂

}
= KLW2(μ, μ̂) (12)

and similarly

W2
(
P
t,μ,θ
s ,μ

)
≤ KL|s − t|. (13)

The flow property (6) and estimates (12), (13) together give us

W2
(
P
t,μ,θ
s ,Pt̂ ,μ̂,θ

s

)
= W2

(
P
t̂ ,Pt,μ,θt̂ ,θ
s ,Pt̂ ,μ̂,θ

s

)
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≤ KLW2
(
P
t,μ,θ
t̂ , μ̂

)
≤ KL

(|t − t̂| + W2(μ, μ̂)
)
. (14)

Now, for all 0 ≤ t ≤ t̂ ≤ T , μ, μ̂ ∈ P2(Rd+l), θ ∈ L∞([0, T ],�), we employ (9), (10), (11)
and (14) to obtain

|J (t,μ, θ) − J (t̂ , μ̂, θ)| ≤
∫ t̂

t

∣∣∣〈L̄(., θs), Pt,μ,θ
s

〉∣∣∣ ds +
∫ T

t̂

∣∣∣〈L̄(., θs), Pt,μ,θ
s

〉
−

〈
L̄(., θs), Pt̂ ,μ̂,θ

s

〉∣∣∣ ds
+

∣∣∣〈�̄(.), Pt,μ,θ
T

〉
−

〈
�̄(.), Pt̂ ,μ̂,θ

T

〉∣∣∣
≤ C|t̂ − t| + KL sup

t̂≤s≤T
W2

(
P
t,μ,θ
s ,Pt̂ ,μ̂,θ

s

)
≤ KL(|t − t̂| + W2(μ, μ̂)),

which gives us the desired Lipschitz continuity property.
Finally, combining the fact that

|v∗(t,μ) − v∗(t̂ , μ̂)| ≤ supθ∈L∞([0,T ],�) |J (t,μ, θ) − J (t̂ , μ̂, θ)|,
∀ t, t̂ ∈ [0, T ], μ, μ̂ ∈ P2(Rd+l),

and J (t,μ, θ) is Lipschitz continuous at (t,μ) ∈ [0, T ] × P2(Rd+l), uniformly with respect
to θ ∈ L∞([0, T ],�), we deduce that the value function v∗(t,μ) is Lipschitz continuous on
[0, T ] × P2(Rd+l). ��

The important observation we now make is that the value function satisfies a recursive
relation. This is known as the dynamic programming principle, which forms the basis of
deriving the Hamilton–Jacobi–Bellman equation. Intuitively, the dynamic programming
principle states that for any optimal trajectory, starting from any intermediate state in the
trajectory, the remaining trajectory must again be optimal, starting from that time and
state. We now state and prove this intuitive statement precisely.

Proposition 2 (Dynamic programming principle) For all 0 ≤ t ≤ t̂ ≤ T, μ ∈ P2(Rd+l),
we have

v∗(t,μ) = inf
θ∈L∞([0,T ],�)

[∫ t̂

t

〈
L̄(., θs), Pt,μ,θ

s

〉
ds + v∗ (

t̂ ,Pt,μ,θ
t̂

)]
. (15)

Proof The proof is elementary as in the context of deterministic control problem. We
provide it as follows for completeness.
(1) Given fixed t, t̂ ,μ and any θ1 ∈ L∞([0, T ],�), we consider the probability measure

P
t,μ,θ1
t̂ . Fix ε > 0 and by definition of value function (8) we can pick θ2 ∈ L∞([0, T ],�)

satisfying

v∗ (
t̂ ,Pt,μ,θ1

t̂

)
+ ε ≥

〈
�̄(.), P

t̂ ,Pt,μ,θ
1

t̂ ,θ2

T

〉
+

∫ T

t̂

〈
L̄(., θ2s ), P

t̂ ,Pt,μ,θ
1

t̂ ,θ2
s

〉
ds. (16)

Now, consider the control process θ̂ defined as

θ̂s = 1{s<t̂}θ1s + 1{s≥t̂}θ2s .
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Thus, we can use (16) and flow property (6) to deduce

v∗(t,μ) ≤
∫ T

t

〈
L̄(., θ̂s), Pt,μ,θ̂

s

〉
ds +

〈
�̄(.), Pt,μ,θ̂

T

〉

=
∫ t̂

t

〈
L̄(., θ̂s), Pt,μ,θ̂

s

〉
ds +

∫ T

t̂

〈
L̄(., θ̂s), Pt,μ,θ̂

s

〉
ds +

〈
�̄(.), Pt,μ,θ̂

T

〉

=
∫ t̂

t

〈
L̄(., θ̂s), Pt,μ,θ̂

s

〉
ds +

∫ T

t̂

〈
L̄(., θ2s ), P

t̂ ,Pt,μ,θ
1

t̂ ,θ2
s

〉
ds +

〈
�̄(.), P

t̂ ,Pt,μ,θ
1

t̂ ,θ2

T

〉

≤
∫ t̂

t

〈
L̄(., θ̂s), Pt,μ,θ̂

s

〉
ds + v∗(t̂ ,Pt,μ,θ1

t̂ ) + ε

=
∫ t̂

t

〈
L̄(., θ1s ), Pt,μ,θ1

s

〉
ds + v∗(t̂ ,Pt,μ,θ1

t̂ ) + ε.

As θ1 and ε are both arbitrary, we have

v∗(t,μ) ≤ inf
θ∈L∞([0,T ],�)

[ ∫ t̂

t

〈
L̄(., θs), Pt,μ,θ

s

〉
ds + v∗ (

t̂ ,Pt,μ,θ
t̂

) ]
.

(2) Fix ε > 0 again and we choose by definition θ3 ∈ L∞([0, T ],�) such that

v∗(t,μ) + ε ≥
∫ T

t

〈
L̄(., θs), Pt,μ,θ3

s

〉
ds +

〈
�̄(.), Pt,μ,θ3

T

〉
.

Using the flow property (6) and the definition of the value function again gives us the
estimate

v∗(t,μ) + ε ≥
∫ T

t

〈
L̄(., θ3s ), Pt,μ,θ3

s

〉
ds +

〈
�̄(.), Pt,μ,θ3

T

〉

=
∫ t̂

t

〈
L̄(., θ3s ), Pt,μ,θ3

s

〉
ds +

∫ T

t̂

〈
L̄(., θ3s ), P

t̂ ,Pt,μ,θ
3

t̂ ,θ3
s

〉
ds +

〈
�̄(.), P

t̂ ,Pt,μ,θ
3

t̂ ,θ3

T

〉

≥
∫ t̂

t

〈
L̄(., θ3s ), Pt,μ,θ3

s

〉
ds + v∗ (

t̂ ,Pt,μ,θ3
t̂

)

≥ inf
θ∈L∞([0,T ],�)

[ ∫ t̂

t

〈
L̄(., θs), Pt,μ,θ

s

〉
ds + v∗ (

t̂ ,Pt,μ,θ
t̂

) ]
.

Hence, we deduce

v∗(t,μ) ≥ inf
θ∈L∞([0,T ],�)

[ ∫ t̂

t

〈
L̄(., θs), Pt,μ,θ

s

〉
ds + v∗ (

t̂ ,Pt,μ,θ
t̂

) ]
.

Combining the inequalities in the two parts completes the proof. ��

4.2 Derivative and chain rule in Wasserstein space

In classical finite-dimensional optimal control, the HJB equation can be formally derived
from the dynamic programming principle by a Taylor expansion of the value function
with respect to the state vector. However, in the current formulation, the state is now
a probability measure. To derive the corresponding HJB equation in this setting, it is
essential to define a notion of derivative of the value function with respect to a probability
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measure. The basic idea to achieve this is to take probability measures on R
d+l as laws

of Rd+l-valued random variables on the probability space (�,F ,P) and then use the
corresponding Banach space of random variables to define derivatives. This approach is
more extensively outlined in [13].
Concretely, let us take any functionu : P2(Rd+l) → R.Wenow lift it into its “extension”

U , a function defined on L2(�,Rd+l) by

U (X) = u(PX ), ∀X ∈ L2(�,Rd+l). (17)

We say u isC1(P2(Rd+l)) if the lifted functionU is Fréchet differentiable with continuous
derivatives. Since we can identify L2(�,Rd+l) with its dual space, if the Fréchet derivative
DU (X) exists, by Riesz’ theorem one can view it as an element of L2(�,Rd+l):

DU (X)(Y ) = E[DU (X) · Y ], ∀Y ∈ L2(�,Rd+l).

The important result one can prove is that the law of DU (X) does not depend on X but
only on the law of X . Accordingly, we have the representation

DU (X) = ∂μu(PX )(X),

for some function ∂μu(PX ) : Rd+l → R
d+l , which is called derivative of u at μ = PX .

Moreover, we know ∂μu(μ) is square integrable with respect to μ.
We next need a chain rule defined on P2(Rd+l). Consider the dynamical system

Wt = ξ +
∫ t

0
f̄ (Ws) ds, ξ ∈ L2(�,Rd+l),

and u ∈ C1(P2(Rd+l)). Then, for all t ∈ [0, T ], we have

u(PWt ) = u(PW0 ) +
∫ t

0
〈∂μu(PWs )(.) · f̄ (.), PWs 〉 ds, (18)

or equivalently its lifted version

U (Wt ) = U (W0) +
∫ t

0
E[DU (Ws) · f̄ (Ws)] ds. (19)

4.3 HJB equation in Wasserstein space

Guided by the dynamic programming principle (15) and formula (18), we are ready to
formally derive the associated HJB equation as follows. Let t̂ = t + δt with δt being small.
By performing a formal Taylor series expansion of (15), we have

0 = inf
θ∈L∞([0,T ],�)

[
v∗ (

t + δt,Pt,μ,θ
t+δt

)
− v∗(t,μ) +

∫ t+δt

t

〈
L̄(., θs), Pt,μ,θ

s

〉
ds

]

≈ inf
θ∈L∞([0,T ],�)

[
∂tv(t,μ)δt +

∫ t+δt

t
〈∂μv(t,μ)(.) · f̄ (., θ ) + L̄(., θs), μ〉 ds

]
≈ δt inf

θ∈L∞([0,T ],�)

[
∂tv(t,μ) + 〈∂μv(t,μ)(.) · f̄ (., θ ) + L̄(., θs), μ〉

]
.
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Passing to the limit δt → 0, we obtain the following HJB equation

⎧⎨
⎩

∂v
∂t

+ inf
θ∈�

〈
∂μv(t,μ)(.) · f̄ (., θ ) + L̄(., θ ), μ

〉 = 0, on [0, T ) × P2(Rd+l),

v(T,μ) = 〈�̄(.),μ〉, on P2(Rd+l),
(20)

which the value function should satisfy. Note that a similar infinite-dimensional PDE like
(20), namedmaster equation, can also be derived heuristically as themean-field limit from
the Nash equilibria of feedback games involving many players. We refer to [13,27,47] for
more related introductions and results.
The rest of this and the next section is to establish the precise link between equation (20)

and the value function (8). We now prove a verification result, which essentially says that
if we have a smooth enough solution of the HJB equation (20), then this solution must be
the value function. Moreover, the HJB allows us to identify the optimal control policy.

Proposition 3 Let v be a function in C1,1([0, T ]×P2(Rd+l)). If v is a solution to (20) and
there exists θ†(t,μ), which is a mapping (t,μ) �→ � attaining the infimum in (20), then
v(t,μ) = v∗(t,μ), and θ† is an optimal feedback control policy, i.e., θ = θ∗ is a solution
of (3), where θ∗

t := θ†(t,Pw∗
t
) with Pw∗

0
= μ0 and dw∗

t /dt = f̄ (w∗
t , θ∗

t ).

Proof Given any control process θ, one can apply formula (18) between s = t and s = T
with explicit t dependence and obtain

v
(
T,Pt,μ,θ

T

)
= v(t,μ) +

∫ T

t

∂v
∂t

(
s,Pt,μ,θ

s

)
+

〈
∂μv

(
s,Pt,μ,θ

s

)
(.) · f̄ (.; θs), Pt,μ,θ

s

〉
ds.

Equivalently, we have

v(t,μ) = v
(
T,Pt,μ,θ

T

)
−

∫ T

t

∂v
∂t

(
s,Pt,μ,θ

s

)
+

〈
∂μv

(
s,Pt,μ,θ

s

)
(.) · f̄ (.; θs), Pt,μ,θ

s

〉
ds

≤ v
(
T,Pt,μ,θ

T

)
+

∫ T

t

〈
L̄(., θs), Pt,μ,θ

s

〉
ds

=
〈
�̄(.), PT,μ,θ

t

〉
+

∫ T

t

〈
L̄(., θs), Pt,μ,θ

s

〉
ds

= J (t,μ, θ),

where the first inequality comes from the infimum condition in (20). Since the control
process is arbitrary, we have

v(t,μ) ≤ v∗(t,μ). (21)

Replacing the arbitrary control process with θ∗ where θ∗
t = θ†(t,Pt,μ,θ∗

s ) is given by the
optimal feedback control and repeating the above argument, noting that the inequality
becomes equality since the infimum is attained, we have

v(t,μ) = J (t,μ, θ∗) ≥ v∗(t,μ). (22)

Therefore, we obtain v(t,μ) = v∗(t,μ) and θ† defines an optimal feedback control
policy. ��
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Proposition 3 is an important statement that links smooth solutions of theHJB equation
with solutions of the mean-field optimal control problem, and hence the population min-
imization problem in deep learning. Furthermore, by taking the infimum in (20), it allows
us to identify an optimal control policy θ† : [0, T ] × P2(Rd+l) → �. This is in general
a stronger characterization of the solution of the learning problem. In particular, it is of
feedback, or closed-loop form. On the other hand, an open-loop solution can be obtained
from the closed-loop control policy by sequentially setting θ∗

t = θ†(t,Pw∗
t
), where w∗

t
is the solution of the feed-forward ODE with θ = θ∗ up to time t. Note that, however,
in the common practice of deep learning, one usually finds the open-loop-type solution
directly during training (as an optimization problem rather than a control problem) and
uses it in inference. In other words, during inference the trained weights are fixed and
are not dependent on the distribution of the inputs encountered. On the other hand,
controls obtained from closed-loop control policies are actively adjusted according to the
distribution encountered. In this sense, the ability to generate an optimal control policy
in the form of state-based feedback is an important feature of the dynamic programming
approach. However, we should note there is a price to pay for obtaining such a feedback
control: The HJB equation is generally difficult to solve numerically. We shall return to
this point at the end of Sect. 5.
The limitation of Proposition 3 is that it assumes the value function v∗(t,μ) is con-

tinuously differentiable, which is often not the case. In order to formulate a complete
characterization, we would also like to deduce the statement in the other direction: A
solution to (3) should also solve the PDE (20) in an appropriate sense. In the next section,
we achieve this by giving a more flexible characterization of the value function as the
viscosity solution of the HJB equation.

5 Viscosity solution of HJB equation
5.1 The concept of viscosity solutions

In general, one cannot expect to have smooth solutions to the HJB equation (20). There-
fore, we need to extend the classical concept of PDE solutions to a type of weak solutions.
As in the analysis of classical Hamilton–Jacobi equations, we shall introduce a notion of
viscosity solution for the HJB equation in the Wasserstein space of probability measures.
The key idea is again the lifting identification between measures and random variables,
working in the Hilbert space L2(�,Rd+l), instead of the Wasserstein space P2(Rd+l).
Then, we can use the tools developed for viscosity solutions in Hilbert spaces. The tech-
niques presented below have been employed in the study of well-posedness for general
Hamilton–Jacobi equations in Banach spaces, see e.g., [20–22].
For convenience, we define the HamiltonianH(ξ , P) : L2(�,Rd+l) × L2(�,Rd+l) → R

as

H(ξ , P) := inf
θ∈�

E[P · f̄ (ξ , θ ) + L̄(ξ , θ )]. (23)

Then, the “lifted” Bellman equation of (20) with V (t, ξ ) = v(t,Pξ ) can be written down as
follows, except that the state space is enlarged to L2(�,Rd+l):

⎧⎨
⎩

∂V
∂t

+ H(ξ , DV (t, ξ )) = 0, on [0, T ) × L2(�,Rd+l),

V (T, ξ ) = E[�̄(ξ )], on L2(�,Rd+l).
(24)
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Definition 1 We say that a bounded, uniformly continuous function u : [0, T ] ×
P2(Rd+l) → R is a viscosity (sub, super) solution to (20) if the lifted function U :
[0, T ] × L2(�,Rd+l) → R defined by

U (t, ξ ) = u(t,Pξ )

is a viscosity (sub, super) solution to the lifted Bellman equation (24), that is:
(i) U (T, ξ ) ≤ E[�̄(ξ )], and for any test function ψ ∈ C1,1([0, T ] × L2(�,Rd+l)) such

that the map U − ψ has a local maximum at (t0, ξ0) ∈ [0, T ) × L2(�,Rd+l), one has

∂tψ(t0, ξ0) + H(ξ0, Dψ(t0, ξ0)) ≥ 0. (25)

(ii) U (T, ξ ) ≥ E[�̄(ξ )], and for any test function ψ ∈ C1,1([0, T ]× L2(�,Rd+l)) such that
the map U − ψ has a local minimum at (t0, ξ0) ∈ [0, T ) × L2(�,Rd+l), one has

∂tψ(t0, ξ0) + H(ξ0, Dψ(t0, ξ0)) ≤ 0. (26)

Remark 1 Readers familiarwith the concept of viscosity solution in the finite-dimensional
case will readily find the above definition a natural extension in the infinite-dimensional
case. Informally speaking, the HJB equation (20) defines a sort of “monotonicity” for the
value function: If a generic function is less than the value function everywhere, then its
image under the Bellman operator [right-hand side of (15) acting on v∗] is still less than
the value function everywhere. This kind of monotonicity can help us specify the property
of possible non-differentiable solutions, as indicated in Definition 1. We refer [18,24] for
more introductions of viscosity solution.

5.2 Existence and uniqueness of viscosity solution

The main goal of introducing the concept of viscosity solutions is that in the viscosity
sense, the HJB equation is well posed and the value function is the unique solution of the
HJB equation. We show this in Theorems 1 and 2.

Theorem 1 The value function v∗(t,μ) defined in (8) is a viscosity solution to the HJB
equation (20).

Before proving Theorem 1, we first introduce a useful lemma regarding the continuity
ofH(ξ , P).

Lemma 1 The HamiltonianH(ξ , P) defined in (23) satisfies the following continuity con-
ditions:

|H(ξ , P) − H(ξ , Q)| ≤ KL‖P − Q‖L2 , (27)

|H(ξ , P) − H(ζ , P)| ≤ KL(1 + ‖P‖L2 )‖ξ − ζ‖L2 . (28)

Proof For simplicity, we define

Ĥ(ξ , P; θ ) := E[P · f̄ (ξ , θ ) + L̄(ξ , θ )].

The boundedness of f̄ and L̄ gives us

|Ĥ(ξ , P; θ ) − Ĥ(ξ , Q; θ )| ≤ KL‖P − Q‖L2 , (29)
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|Ĥ(ξ , P; θ ) − Ĥ(ζ , P; θ )| ≤ KL(1 + ‖P‖L2 )‖ξ − ζ‖L2 . (30)

By definition, we know

H(ξ , P) := inf
θ∈�

Ĥ(ξ , P; θ ).

Let θn satisfy

Ĥ(ξ , P; θn) − H(ξ , Q) ≤ 1/n.

Then,

H(ξ , P) − H(ξ , Q) = (H(ξ , P) − Ĥ(ξ , P; θn)) + (Ĥ(ξ , P; θn) − Ĥ(ξ , Q; θn)) + (Ĥ(ξ , Q; θn) − H(ξ , Q))

≤ |Ĥ(ξ , P; θn) − Ĥ(ξ , Q; θn)| + 1/n
≤ KL‖P − Q‖L2 + 1/n.

Taking n → ∞, we haveH(ξ , P)−H(ξ , Q) ≤ KL‖P−Q‖L2 . A similar computation shows
H(ξ , Q) − H(ξ , P) ≤ KL‖P − Q‖L2 , and we prove (27). Equation (28) can be proved in a
similar way, based on the condition (30). ��

Proof of Theorem 1 We lift the value function v∗(t,μ) to [0, T ] × L2(�,Rd+l) and denote
it by V ∗(t, ξ ). Note that the convergence ξn → ξ in L2(�,Rd+l) implies the convergence
Pξn → Pξ in P2(Rd+l); thus, Proposition 1 guarantees that V ∗(t, ξ ) is continuous on
[0, T ]× L2(�,Rd+l). By definition, we know V ∗(t, ξ ) is bounded and V ∗(T, ξ ) = E(�̄(ξ )).
It remains to show the viscosity sub- and supersolution properties of V ∗(t, ξ ). To pro-
ceed, we note that V ∗(t, ξ ) also inherits the dynamic programming principle from v∗(t,μ)
(c.f. Proposition 2), which can be represented as

V ∗(t, ξ ) = inf
θ∈L∞([0,T ],�)

[∫ t̂

t
E

[
L̄
(
Wt,ξ ,θ

s , θs
)]

ds + V ∗ (
t̂ ,W t,ξ ,θ

t̂

)]
. (31)

1. Subsolution property Suppose ψ is a test function in C1,1([0, T ] × L2(�,Rd+l)) and
V ∗ − ψ has a local maximum at (t0, ξ0) ∈ [0, T ) × L2(�,Rd+l), which means

(V ∗ − ψ)(t, ξ ) ≤ (V ∗ − ψ)(t0, ξ0) for all (t, ξ ) satisfying |t − t0| + ‖ξ − ξ0‖L2 < δ.

Let θ0 be an arbitrary element in � and define a control process θ0 ∈ L∞([0, T ],�) such
that θ0s ≡ θ0, s ∈ [t0, T ]. Let h ∈ (0, T−t0) be small enough such that |s−t0|+‖Wt0 ,ξ0 ,θ0

s −
ξ0‖L2 < δ for all s ∈ [t0, t0 + h]. This is possible from an argument similar in the proof of
Proposition 1. From the dynamic programming principle (31), we have

V ∗(t0, ξ0) ≤
∫ t0+h

t0
E

[
L̄
(
Wt0 ,ξ0 ,θ0

s , θ0s
)]

ds + V ∗ (
t0 + h,W t0 ,ξ0 ,θ0

t0+h

)
.
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Using the condition of local maximality and chain rule (19), we have the inequality

0 ≤ V ∗ (
t0 + h,W t0 ,ξ0 ,θ0

t0+h

)
− V ∗(t0, ξ0) +

∫ t0+h

t0
E

[
L̄
(
Wt0 ,ξ0 ,θ0

s , θ0s
)]

ds

≤ ψ
(
t0 + h,W t0 ,ξ0 ,θ0

t0+h

)
− ψ(t0, ξ0) +

∫ t0+h

t0
E

[
L̄
(
Wt0 ,ξ0 ,θ0

s , θ0s
)]

ds

=
∫ t0+h

t0
∂tψ

(
s,W t0 ,ξ0 ,θ0

s

)
+ E

[
Dψ(s,W t0 ,ξ0 ,θ0

s ) · f̄
(
Wt0 ,ξ0 ,θ0

s , θ0s
)]

ds

+
∫ t0+h

t0
E

[
L̄
(
Wt0 ,ξ0 ,θ0

s , θ0s
)]

ds. (32)

Since we knowWt0 ,ξ0 ,θ0
s is continuous in time, in the sense of L2-metric of L2(�,Rd+l),

∂tψ
(
s,W t0 ,ξ0 ,θ0

s

)
+ E

[
Dψ

(
s,W t0 ,ξ0 ,θ0

s

)
· f̄

(
Wt0 ,ξ0 ,θ0

s , θ0s
)

+ L̄
(
Wt0 ,ξ0 ,θ0

s , θ0s
)]

is also continuous in time. Dividing the inequality (32) by h and taking the limit h → 0,
we obtain

0 ≤
[
∂tψ

(
s,W t0 ,ξ0 ,θ0

s

)
+ E

[
Dψ

(
s,W t0 ,ξ0 ,θ0

s

)
· f̄

(
Wt0 ,ξ0 ,θ0

s , θ0s
)

+ L̄
(
Wt0 ,ξ0 ,θ0

s , θ0s
)] ]∣∣∣∣

s=t0

= ∂tψ(t0, ξ0) + E
[
Dψ(t0, ξ0) · f̄ (ξ0, θ0) + L̄(ξ0, θ0)

]
.

Since θ0 is arbitrary in �, we obtain the desired subsolution property (25).
2. Supersolution property Suppose ψ is a test function in C1,1([0, T ]× L2(�,Rd+l)) and

V ∗ − ψ has a local minimum at (t0, ξ0) ∈ [0, T ) × L2(�,Rd+l), which means

(V ∗ − ψ)(t, ξ ) ≥ (V ∗ − ψ)(t0, ξ0) for all (t, ξ ) satisfying |t − t0| + ‖ξ − ξ0‖L2 < δ1.

Given an arbitrary ε > 0, since Lemma 1 tells usH is continuous, there exits δ2 > 0 such
that

|∂tψ(t, ξ ) + H(t, ξ ) − ∂tψ(t0, ξ0) − H(t0, ξ0)| < ε,

for all (t, ξ ) satisfying |t−t0|+‖ξ −ξ0‖L2 < δ2. Again as argued in the proof of Proposition
1, we can choose h ∈ (0, T − t0) to be small enough such that |s− t0|+‖Wt0 ,ξ0 ,θ

s − ξ0‖L2 <

min{δ1, δ2} for all s ∈ [t0, t0 + h], θ ∈ L∞([0, T ],�).
From the dynamic programming principle (31), there exists θh such that

V ∗(t0, ξ0) + εh ≥
∫ t0+h

t0
E

[
L̄
(
Wt0 ,ξ0 ,θh

s , θhs
)]

ds + V ∗ (
t0 + h,W t0 ,ξ0 ,θh

t0+h

)
.

Again using the condition of local minimality, chain rule (19) and definition ofH, we have
the inequality

εh ≥ V ∗ (
t0 + h,W t0 ,ξ0 ,θh

t0+h

)
− V ∗(t0, ξ0) +

∫ t0+h

t0
E

[
L̄
(
Wt0 ,ξ0 ,θh

s , θhs
)]

ds

≥ ψ
(
t0 + h,W t0 ,ξ0 ,θh

t0+h

)
− ψ(t0, ξ0) +

∫ t0+h

t0
E

[
L̄
(
Wt0 ,ξ0 ,θh

s , θhs
)]

ds
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=
∫ t0+h

t0
∂tψ

(
s,W t0 ,ξ0 ,θh

s

)
+ E

[
Dψ

(
s,W t0 ,ξ0 ,θh

s

)
· f̄

(
Wt0 ,ξ0 ,θh

s , θhs
)]

ds

+
∫ t0+h

t0
E

[
L̄
(
Wt0 ,ξ0 ,θh

s , θhs
)]

ds

≥
∫ t0+h

t0
∂tψ

(
s,W t0 ,ξ0 ,θh

s

)
+ H

(
Wt0 ,ξ0 ,θh

s , Dψ
(
s,W t0 ,ξ0 ,θh

s

))
ds

≥ h(∂tψ(t0, ξ0) + H(t0, ξ0) − ε). (33)

Dividing the inequality (33) by h and taking the limit ε → 0, we obtain the desired
supersolution property (26). ��

Theorem 1 incidentally establishes the existence of viscosity solutions to the HJB, which
we can identify as the value function of the mean-field control problem. We show below
that this solution is in fact unique.

Theorem 2 Let u1 and u2 be two functions defined on [0, T ] × P2(Rd+l) such that u1
and u2 are viscosity subsolution and supersolution to (20), respectively. Then, u1 ≤ u2.
Consequently, the value function v∗(t,μ) defined in (8) is the unique viscosity solution to
the HJB equation (20).

Proof The final assertion of the theorem follows immediately from Theorem 1. As
before, we consider the lifted version U1(t, ξ ) = u1(t,Pξ ), U2(t, ξ ) = u2(t,Pξ ) on
[0, T ]×L2(�,Rd+l). By definition, we knowU1 andU2 are subsolution and supersolution
to (24), respectively. By definition of viscosity solution, U1 and U2 are both bounded and
uniformly continuous. We denote their moduli of continuity by ω1 and ω2, which satisfy

|Ui(t, ξ ) − Ui(s, ζ )| ≤ ωi(|t − s| + ‖ξ − ζ‖L2 ), i = 1, 2

for all 0 ≤ t ≤ s ≤ T, ξ , ζ ∈ L2(�,Rd+l), and ωi(r) → 0 as r → 0+. To prove U1 ≤ U2,
we assume

δ := sup
[0,T ]×L2(�,Rd+l )

U1(t, ξ ) − U2(t, ξ ) > 0, (34)

and proceed in five steps below to derive a contradiction.
(1) Let σ , ε ∈ (0, 1) and construct the auxiliary function

G(t, s, ξ , ζ ) = U1(t, ξ ) − U2(s, ζ ) + σ (t + s) − ε
(‖ξ‖22 + ‖ζ‖22

) − 1
ε2

(
(t − s)2 + ‖ξ − ζ‖2L2

)
, (35)

for t, s ∈ [0, T ], ξ , ζ ∈ L2(�,Rd+l). From Stegall Theorem [56], there exist ηt , ηs ∈ R,
ηξ , ηζ ∈ L2(�,Rd+l) such that |ηt |, |ηs|, ‖ηξ‖L2 , ‖ηζ ‖L2 ≤ ε and the function with linear
perturbation
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G̃(t, s, ξ , ζ ) := G(t, s, ξ , ζ ) − ηt t − ηss − E[ηξ · ξ ] − E[ηζ · ζ ] (36)

has a maximum over [0, T ] × [0, T ] × L2(�,Rd+l) × L2(�,Rd+l) at (t0, s0, ξ0, ζ0).
(2) Since G̃(0, 0, 0, 0) ≤ G̃(t0, s0, ξ0, ζ0) andU1, U2 are bounded, after an arrangement of

terms, we have

ε
(‖ξ0‖2L2 + ‖ζ0‖2L2

) ≤ C + σ (t0 + s0) − 1
ε2

(
(t0 − s0)2 + ‖ξ0 − ζ0‖2L2

) − ηt t0 − ηss0

− E[ηξ · ξ0] − E[ηζ · ζ0]

≤ C − E[ηξ · ξ0] − E[ηζ · ζ0]

≤ C + √
2 ε

(‖ξ0‖2L2 + ‖ζ0‖2L2
)1/2 . (37)

Here and in the following, C denotes generic positive constant, whose value may change
from line to line but is always independent of ε and σ . Solving the quadratic inequality
above, we get

(‖ξ0‖2L2 + ‖ζ0‖2L2
)1/2 ≤ C(1 + ε−1/2). (38)

Now, arguing in the same way as (37) and further combining (37), we have

1
ε2

(
(t0 − s0)2 + ‖ξ0 − ζ0‖2L2

) ≤ C − E[ηξ · ξ0] − E[ηζ · ζ0]

≤ C + √
2 ε

(‖ξ0‖2L2 + ‖ζ0‖2L2
)1/2

≤ C,

or equivalently

|t0 − s0| + ‖ξ0 − ζ0‖L2 ≤ Cε. (39)

(3) Equation (39) allows us to further sharpen the estimate of (t − s)2 + ‖ξ − ζ‖2L2 .
Specifically, since G̃(t0, t0, ξ0, ξ0) ≤ G̃(t0, s0, ξ0, ζ0), we have

E[ηs · (s0 − t0)] + E[ηζ · (ζ0 − ξ0)] ≤ U2(t0, ξ0) − U2(s0, ζ0) + σ (s0 − t0) + ε
(‖ξ0‖2L2 − ‖ζ0‖2L2

)
− 1

ε2
(
(t0 − s0)2 + ‖ξ0 − ζ0‖2L2

)
.

Rearranging the above inequality and using estimates (38), (39), and uniform continuity
of U2, we obtain

1
ε2

(
(t0 − s0)2 + ‖ξ0 − ζ0‖2L2

) ≤ ω2(|t0 − s0| + ‖ξ0 − ζ0‖L2 ) + C(|t0 − s0| + ‖ξ0 − ζ0‖L2 )
+ ε‖ξ0 + ζ0‖L2‖ξ0 − ζ0‖L2

≤ ω2(|t0 − s0| + ‖ξ0 − ζ0‖L2 ) + C(|t0 − s0| + ‖ξ0 − ζ0‖L2 )
≤ ω2(Cε) + Cε.

By the property of modulus, we conclude

|t0 − s0| + ‖ξ0 − ζ0‖L2 = o(ε). (40)
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(4) From the definition of G̃ and δ, we can choose ε so small that

sup
[0,T ]×L2(�,Rd+l )

G̃(t, t, ξ , ξ ) ≥ δ

2
.

Using estimate (38), (40), we can furthermore choose σ , ε small enough such that

U1(t0, ξ0) − U2(s0, ζ0) ≥ G̃(t0, s0, ξ0, ζ0) − Cσ − Cε

≥ sup
[0,T ]×L2(�,Rd+l )

G̃(t, t, ξ , ξ ) − δ

4

≥ δ

4
.

Noting the terminal condition U1(T, ξ ) ≤ U2(T, ξ ), we are ready to estimate |T − t0|
through

δ

4
≤U1(t0, ξ0) − U2(s0, ζ0)

≤U1(t0, ξ0) − U1(T, ξ0) + U1(T, ξ0) − U2(T, ξ0)

+ U2(T, ξ0) − U2(t0, ξ0) + U2(t0, ξ0) − U2(s0, ζ0)

≤ ω1(|T − t0|) + ω2(|T − t0|) + ω2(|t0 − s0| + ‖ξ0 − ζ0‖L2 )
= ω1(|T − t0|) + ω2(|T − t0|) + ω2(o(ε)).

Therefore, when ε is small enough, we have

ω1(|T − t0|) + ω2(|T − t0|) ≥ δ

8
,

which implies

|T − t0| ≥ λ > 0,

for some positive constant λ, provided σ , ε are small enough. The same argument as above
can also give |T − s0| ≥ λ > 0.
(5) The finite differences between t0, s0 and T finally allow us to employ the viscosity

property. Consider the map (t, ξ ) �→ G̃(t, s0, ξ , ζ0) has a maximum at (t0, ξ0), i.e., U1 − ψ

has a maximum at (t0, ξ0) for

ψ(t, ξ ) :=U2(s0, ζ0) − σ (t + s0) + ε
(‖ξ‖2L2 + ‖ζ0‖2L2

) + 1
ε2

(
(t − s0)2 + ‖ξ − ζ0‖2L2

)
+ ηt t + ηss0 + E[ηξ · ξ ] + E[ηζ · ζ0].

Since U1 is a viscosity subsolution, using the subsolution property (25), we have

−σ + 2(t − s0)
ε2

+ ηt + H
(

ξ0, 2εξ0 + 2(ξ0 − ζ0)
ε2

+ ηξ

)
≥ 0. (41)

In the same way, consider the map (s, ζ ) �→ −G̃(t0, s, ξ0, ζ ) has a minimum at (s0, ζ0), i.e.,
U2 − ψ has a minimum at (s0, ζ0) for
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ψ(t, ξ ) :=U1(s0, ζ0) + σ (t0 + s) − ε(‖ξ0‖2L2 + ‖ζ‖2L2 ) − 1
ε2

((t0 − s)2 + ‖ξ0 − ζ‖2L2 )
− ηt t0 − ηss − E[ηξ · ξ0] − E[ηζ · ζ ].

Since U2 is a viscosity supersolution, using the supersolution property (26), we have

σ + 2(t0 − s)
ε2

− ηs + H
(

ζ0,−2εζ0 + 2(ξ0 − ζ0)
ε2

− ηζ

)
≥ 0. (42)

Computing the difference in the two inequalities (41), (42) gives

−2σ +ηt +ηs +H
(

ξ0, 2εξ0 + 2(ξ0 − ζ0)
ε2

+ ηξ

)
−H

(
ζ0,−2εζ0 + 2(ξ0 − ζ0)

ε2
− ηζ

)
≥ 0.

Using estimates (38), (40) and Lemma 1, we have

2σ ≤ ηt + ηs + H
(

ζ0,−2εζ0 + 2(ξ0 − ζ0)
ε2

− ηζ

)
−H

(
ξ0, 2εξ0 + 2(ξ0 − ζ0)

ε2
+ ηξ

)

≤ 2ε +
∣∣∣∣H

(
ζ0,−2εζ0 + 2(ξ0 − ζ0)

ε2
− ηζ

)
− H

(
ζ0, 2εξ0 + 2(ξ0 − ζ0)

ε2
+ ηξ

)∣∣∣∣
+

∣∣∣∣H
(

ζ0, 2εξ0 + 2(ξ0 − ζ0)
ε2

+ ηξ

)
− H

(
ξ0, 2εξ0 + 2(ξ0 − ζ0)

ε2
+ ηξ

)∣∣∣∣
≤ 2ε + KL‖2εξ0 + 2εζ0 + ηξ + ηζ ‖L2

+ KL

(
1 + ‖2εξ0 + 2(ξ0 − ζ0)

ε2
+ ηξ‖L2

)
‖ξ0 − ζ0‖L2

≤ o(1) (ε → 0+).

Therefore, taking the limit gives us a contradiction 0 < σ ≤ 0, which completes
the proof. ��

Theorems 1 and 2 establish the well-posedness, in the viscosity sense, of the HJB equa-
tion and identifies the value function for the mean-field optimal control problem as the
unique solution of the HJB equation. Moreover, it provides us (through solving the infi-
mum in (20) after solving for the value function) an optimal control policy, fromwhich we
can synthesize an optimal control as the solution of our learning problem. In this sense,
the HJB equation gives us a necessary and sufficient condition for optimality of the learn-
ing problem (3). This demonstrates an essential observation from the mean-field optimal
control viewpoint of deep learning: The population risk minimization problem of deep
learning can be viewed as a variational problem, whose solution can be characterized by
a suitably defined Hamilton–Jacobi–Bellman equation. This very much parallels classical
calculus of variations.
It is worth noting that theHJB equation is a global characterization of the value function,

in the sense that it must in principle be solved over the entire space P2(Rd+l) of input–
target distributions. Of course, we would not expect this to be the case in practice for any
non-trivial machine learning problem. However, if we can solve it locally around some
trajectories generated by the initial condition μ0 ∈ P2(Rd+l), then we would expect the
obtained feedback control policy to apply to nearby input-label distributions as well. This
may be able to give a principled way to perform transfer or one-shot learning [28,42,50].
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Finally, observe that if theHamiltonian defined in (23) is attained by a uniqueminimizer
θ∗ ∈ � given any ξ ∈ L2(�,Rd+l) and P ∈ L2(�,Rd+l), then the uniqueness of value
function immediately implies the uniqueness of the open-loop optimal control, which is
sometimes a desired property of the population riskminimization problem. The following
example gives such an instance.

Example 1 Consider a specific type of residual networks, where f (x, θ ) = θσ (x) and
L(x, θ ) ∝ ‖θ‖2. Here, θ ∈ R

d×d is a matrix and σ is a smooth and bounded nonlinearity,
e.g., tanh or sigmoid. This is similar to conventional residual neural networks except that
the order of the affine transformation and the nonlinearity are swapped. In this case, the
Hamiltonian defined in (23) admits a unique minimizer θ∗ given any ξ ∈ L2(�,Rd+l) and
P ∈ L2(�,Rd+l).

6 Mean-field Pontryagin’s maximum principle
As discussed in the earlier sections, the HJB equation provides us with a complete charac-
terization of the optimality conditions for the population risk minimization problem (3).
However, it has the disadvantage that it is global in P(Rd+l) (or its lifted version, in
L2(�,Rd+l)) and hence difficult to handle in practice. The natural question is whether we
can have a local characterization of optimality, and by local we mean having no need for
the optimality condition to depend on the whole space of input-label distributions. In this
section, we provide such a characterization by proving a mean-field version of the cele-
brated Pontryagin’s maximum principle (PMP) [7]. Although seemingly disparate at first,
we will discuss in Sect. 6.1 that the maximum principle approach is intimately connected
with the dynamic programming approach introduced earlier.
In classical optimal control, such a local characterization is given in the form of the

Pontryagin’s maximum principle, where forward and backward Hamiltonian dynamics
are coupled through a maximization condition. In the present formulation, a common
control parameter is shared by all input–target pair values (x0, y0) that can take under
the distribution μ0. Thus, one expects that a maximum principle should exist in the
average sense. Let us state and prove such a maximum principle below. We modify the
assumptions (A1), (A2) to

(A1′) The function f is bounded; f, L are continuous in θ ; and f, L,� are continuously
differentiable with respect to x.

(A2′) The distribution μ0 has bounded support in R
d × R

l , i.e., there existsM > 0 such
that μ({(x, y) ∈ R

d × R
l : ‖x‖ + ‖y‖ ≤ M}) = 1.

Theorem 3 (Mean-field PMP) Let (A1′), (A2′) be satisfied and θ∗ ∈ L∞([0, T ],�) be a
solution of (3) in the sense that J (θ∗) attains the infimum. Then, there exists absolutely
continuous stochastic processes x∗,p∗ such that

ẋ∗
t = f (x∗

t , θ
∗
t ), x∗

t = x0, (43)

ṗ∗
t = −∇xH (x∗

t , p
∗
t , θ

∗
t ), p∗

T = −∇x�(x∗
T , y0), (44)

Eμ0H (x∗
t , p

∗
t , θ

∗
t ) ≥ Eμ0H (x∗

t , p
∗
t , θ ), ∀ θ ∈ �, a.e. t ∈ [0, T ], (45)

where the Hamiltonian function H : Rd × R
d × � → R is given by

H (x, p, θ ) = p · f (x, θ ) − L(x, θ ). (46)
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Proof To simplify the proof, we first make a substitution by introducing a new coordinate
x0 satisfying the dynamics ẋ0t = L(xt , θt ) with x00 = 0. Then, it is clear that the PMP above
can be transformed into one without running loss by redefining

x → (x0, x), f → (L, f ), �(xT , y0) → �(xT , y0) + x0T .

Check that (A1′), (A2′) are preserved, but now we can consider without loss of generality
the case L ≡ 0.
Let some τ ∈ (0, T ] be a Lebesgue point of f̂ (t) := f (x∗

t , θ∗
t ). By assumptions (A1′) and

(A2′), these points are dense in [0, T ]. Now, for ε ∈ (0, τ ), define the family of perturbed
controls

θ
τ ,ε
t =

⎧⎨
⎩ω t ∈ [τ − ε, τ ],

θ∗
t otherwise.

where ω ∈ �. This is a “needle” perturbation. Accordingly, define xτ ,ε
t by

xτ ,ε
t = x0 +

∫ t

0
f (xτ ,ε

s , θτ ,ε
s )ds.

i.e., solution of the forward propagation equation with the perturbed control θτ ,ε . It is
clear that x∗

t = xτ ,ε
t for every t < τ − ε and every x0, since the perturbation is not present.

At t = τ , we have

1
ε
(xτ ,ε

τ − x∗
τ ) = 1

ε

∫ τ

τ−ε

f (xτ ,ε
s ,ω) − f (x∗

s , θ
∗
s )ds.

Since τ is Lebesgue point of F , we have

vτ := lim
ε↓0

1
ε
(xτ ,ε

τ − x∗
τ ) = f (x∗

τ ,ω) − f (x∗
τ , θ∗

τ ).

Here, vτ represents the leading order perturbation on the state due to the “needle” pertur-
bation introduced in the infinitesimal interval [τ − ε, τ ]. For the rest of the time interval
(τ , T ], the dynamics remain the same since the controls are the same. It remains to
compute how the perturbation vτ propagates. Define for t ≥ τ , vε

t := 1
ε
(xτ ,ε

t − x∗
t ) and

vt := limε↓0 vε
t . By Theorem 2.3.1 of [9], we know that vt is well defined for almost every

t (all the Lebesgue points of the map t �→ x∗(t)) and satisfies the following linearized
equation:

v̇t = ∇xf (x∗
t , θ∗

t )T vt , t ∈ (τ , T ],

vτ = f (x∗
τ ,ω) − f (x∗

τ , θ∗
τ ).

(47)

In particular, v(T ) represents the perturbation of the final state introduced by this control.
By the optimality assumption of θ∗, we must have

Eμ0�
(
xτ ,ε
T , y0

) ≥ Eμ0�
(
x∗
T , y0

)
.
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Assumptions (A1′) and (A2′) imply ∇x� is bounded, so by dominated convergence
theorem,

0 ≤ lim
ε↓0

1
ε
Eμ0

[
�

(
xτ ,ε
T , y0

) − �
(
x∗
T , y0

)]
= Eμ0

d
dε

�
(
xε,τ
T , y0

) ∣∣∣
ε=0+

= Eμ0∇x�(x∗
T , y0) · vT .

(48)

Now, let us define p∗ to be the solution of the adjoint of Eq (47),

ṗ∗
t = −∇xf (x∗

s , θ∗
s )p∗

t , p∗
T = −∇x�(x∗

T , y0).

Then, (48) implies Eμ0p∗
T · vT ≤ 0. Moreover, we have

d
dt

(p∗
t · vt ) = ṗ∗

t · vt + v̇t · p∗
t = 0

for all t ∈ [τ , T ]. Thus, we must have Eμ0p∗
t · vt = Eμ0p∗

T · vT ≤ 0 for all t ∈ [τ , T ] and
so for t = τ [with initial condition in (47)],

Eμ0p∗
τ · f (x∗

τ , θ
∗
τ ) ≥ Eμ0p∗

τ · f (x∗
τ ,ω).

Since ω ∈ � is arbitrary, this completes the proof by recalling that H (x, p, θ ) = p · f (x, θ ).
��

Remark 2 In fact, one can show, under slightly stronger conditions (bounded first partial
derivatives), that Eμ0H (x∗

t , p∗
t , θ∗

t ) is constant in time, using standard techniques (see e.g.,
Sec. 4.2.9 of [46]).

Let us now discuss the mean-field PMP. First, notice that it is a necessary condition and
hence is much weaker than the HJB characterization. Also, the PMP refers only to the
open-loop control process θ with no explicit reference to an optimal control policy. Now,
since the PMP is a necessary condition, we should discuss its relationship with classical
necessary conditions in optimization. Equation (43) is simply the feed-forward ODE (2)
under the optimal parameters θ∗. On the other hand, Eq. (44) defines the evolution of the
co-state p∗

s . To draw analogy with constrained optimization, the co-state can be regarded
as Lagrangemultipliers which enforce the ODE constraint (2). However, as in the proof of
Theorem 3, it may bemore general to interpret it as the evolution of an adjoint variational
condition backwards in time. The Hamiltonian maximization condition (45) is a unique
feature of PMP-type statements, in that it does not characterize optimality in terms of
vanishing of first-order partial derivatives, as is the case in usual first-order optimality
conditions. Instead, optimal solutions must globally maximize the Hamiltonian function.
This feature allows greater applicability since we can also deal with the case where the
dynamics are not differentiable with respect to the controls/training weights, or when the
optimal controls/training weights lie on the boundary of the set �. Moreover, the usual
first-order optimality conditions and the celebrated back-propagation algorithm can be
readily derived from the PMP, see [43]. We note that compared to classical statements of
the PMP [54], themain difference in our result is the presence of the expectation overμ0 in
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the Hamiltonian maximization condition (45). This is to be expected since the mean-field
optimal control must depend on the distribution of input–target pairs.
We conclude the discussion by noting that the PMP above can be written more com-

pactly as follows. For each control process θ ∈ L∞([0, T ],�), denote by xθ := {xθ
t : 0 ≤

t ≤ T } and pθ := {pθ
t : 0 ≤ t ≤ T } the solution of the Hamilton’s equations (43) and (44)

using this control with the random variables (x0, y0) ∼ μ0, i.e.,

ẋθ
t = f (xθ

t , θt ), xθ
0 = x0,

ṗθ
t = −∇xH (xθ

t , pθ
t , θt ), pθ

T = −∇x�(xθ
T , y0).

(49)

Then, θ∗ satisfies the PMP if and only if

Eμ0H (xθ∗
t , pθ∗

t , θ∗
t ) ≥ Eμ0H (xθ∗

t , pθ∗
t , θ ), ∀ θ ∈ �. (50)

Furthermore, observe that the mean-field PMP derived above includes, as a special case,
the necessary conditions for optimality for the sampled optimal control problem (4). To
see this, simply define the empirical measure μN

0 := 1
N

∑N
i=1 δ(xi0 ,y

i
0)
and apply the mean-

field PMP (Theorem 3) with μN
0 in place of μ0 to give

1
N

N∑
i=1

H
(
xθ∗ ,i
t , pθ∗ ,i

t , θ∗
t

)
≥ 1

N

N∑
i=1

H
(
xθ∗ ,i
t , pθ∗ ,i

t , θ
)
, ∀ θ ∈ �, (51)

where each xθ,i and pθ,i are defined as in (49), but with the input–target pair (xi0, y
i
0). Of

course, sinceμN
0 is a randommeasure, this is a randomequationwhose solution is random

variables.

6.1 Connection between the HJB equation and the PMP

Wenow discuss some concrete connections between the HJB equation and the PMP, thus
justifying our claim that the PMP can be understood as a local result compared to the
global characterization of the HJB equation.
It should be noted that theHamiltonian defined in Pontryagin’smaximumprinciple (46)

is different from (23) in the HJB equation, due to different sign conventions in these two
approaches of classical optimal control. We choose to keep this difference such that
readers familiar with classical control theory can draw an analogy easily. Nevertheless, if
one replaces p, L, f in (46) by−P,−L̄, f̄ , respectively, and takes the infimumover� instead
of the maximum condition in (45), one formally obtains the negative of (23).
Now, our goal is to show that the HJB and PMP are more intimately connected than it

appears in the definition of Hamiltonian. The deeper connections originate from the link
between Hamilton’s canonical equations (ODEs) and Hamilton–Jacobi equations (PDEs),
of which we give an informal description as follows.
First, note that although the Hamiltonian dynamics (43) and (44) describe the trajectory

of particular random variables (completely determined by (x0, y0)), the optimality condi-
tions are not dependent on the particular representation of the probability measures by
these random variables. In other words, we could also formulate a maximum principle
whoseHamiltonian flow is that onmeasures in aWasserstein space, fromwhich the above
PMP can be seen as a “lifting.” This approach would parallel the developments in the pre-
vious sections on theHJB equations. However, here we choose to establish and analyze the
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PMP in the lifted space due to the simplicity of having well-defined evolution equations.
The corresponding evolution of measures would require more technical analysis while
not being particularly more elucidating. Instead, we shall establish the connections by
also lifting the HJB equation into L2(�,Rd+l).
Consider the lifted HJB equation (24) in L2(�,Rd+l). The key observation is that we

can apply the method of characteristics (see e.g., Ch. 3.2 of [24] or [57]) by defining
Pt = DV (t, ξt ) and write down the characteristic evolution equations:

⎧⎨
⎩ξ̇t = DPH(ξt , Pt ),

Ṗt = −DξH(ξt , Pt ).
(52)

Suppose this system has a solution satisfying boundary conditions Pξ0 = μ0, PT =
∇w�̄(ξT ), where the second condition comes from the terminal condition of (24). To
avoid technicalities, we further assume that the infimum in (23) is attained at θ†(ξ , P),
which is always an interior point of �. Hence, (23) can be explicitly written down as

H = E[P · f̄ (ξ , θ†(ξ , P)) + L̄(ξ , θ†(ξ , P))],

and by first-order condition we have

E

[
∇θ f̄ (ξ , θ†(ξ , P))P + ∇θ L̄(ξ , θ†(ξ , P))

]
= 0.

Plugging the above two equalities into (52) gives us

⎧⎨
⎩ξ̇t = f̄ (ξt , θ†(ξt , Pt )),

Ṗt = −∇wf̄ (ξt , θ†(ξt , Pt ))Pt − ∇wL̄(ξt , θ†(ξt , Pt )).

Let θ∗
t = θ†(ξt , Pt ). Note that w = (x, y) is the concatenated variable and the last l

components of f̄ are zero. If we only consider the first d components, then we can deduce
the d-dimensional dynamical system in L2(�,Rd):

⎧⎨
⎩ẋt = f (ξt , θ∗

t ),

ṗt = −∇xf (xt , θ∗
t )pt − ∇xL(xt , θ∗

t ).
(53)

If we make the transformation p → −p in Theorem 3, it is straightforward to see that
the deduced dynamical system by Theorem 3 satisfies (53) in L2(�,Rd) and the boundary
conditions are matched.
In summary, the Hamilton’s equations (53) in the PMP can be viewed as the character-

istic equations for the HJB equation (24). Consequently, the PMP pinpoints the necessary
condition a characteristic of the HJB equation originating from (a random variable with
law) μ0 must satisfy. This justifies the preceding claim that the PMP constitutes a local
optimality condition as compared to the HJB equation.
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7 Small-time uniqueness
As discussed, the PMP constitutes necessary conditions for optimality. A natural question
is when are the PMP solutions also sufficient for optimality (See [9], Ch. 8 for some
discussions on sufficiency). One simple case where it is sufficient, assuming an optimal
solution exists, is when the PMP equations admit a unique solution. In this section, we
investigate the uniqueness properties of the PMP system.
Note that even if there exists a unique solution θ†(ν) of the Hamiltonian maximization

arg maxθ E(x,p)∼νH (x, p, θ ) for any P(x,p), Eq. (49) reduces to a highly nonlinear two-point
boundary value problem for x∗,p∗, further coupled with their laws. Even without the
coupling to laws, such two-point boundary value problems are known to not have unique
solutions in general (see e.g., Ch. 7 of [37]). In the following, we shall show that if T
is sufficiently small and H is strongly concave, then the PMP admits a unique solution.
Hereafter, we retain assumption (A2′) and replace (A1′) with a stronger assumption,which
greatly simplifies our arguments:

(A1′′) f is bounded; f, L,� are twice continuously differentiable with respect to both x, θ ,
with bounded and Lipschitz partial derivatives.

With an estimate of the difference in flow maps due to two different controls, we can
prove a small-time uniqueness result for the PMP.

Theorem 4 Suppose that H (x, p, θ ) is strongly concave in θ , uniformly in x, p ∈ R
d,

i.e.,∇2
xxH (x, p, θ ) + λ0I � 0 for some λ0 > 0. Then, for sufficiently small T , if θ1 and

θ2 are solutions of the PMP (50) then θ1 = θ2.

Note that since we are considering the effects of T , in the rest of the estimates in this
section, the dependence of constants on T are explicitly considered. We first estimate the
difference of flow maps driven by two different controls.

Lemma 2 Let θ1, θ2 ∈ L∞([0, T ],�). Then, there exists a constant T0 such that for all
T ∈ [0, T0), we have

‖xθ1 − xθ2‖L∞ + ‖pθ1 − pθ2‖L∞ ≤ C(T )‖θ1 − θ2‖L∞ ,

where C(T ) > 0 satisfies C(T ) → 0 as T → 0.

Proof Denote δθ := θ1 − θ2, δx := xθ1 − xθ2 and δp := pθ1 − pθ2 . Since xθ1
0 = xθ2

0 = x0,
integrating the respective ODEs and using (A1′′) we have

‖δxt‖ ≤
∫ t

0

∥∥∥f (xθ1
s , θ1s ) − f (xθ1

t , θ2s )
∥∥∥ ds ≤ KL

∫ T

0
‖δxs‖ds + KL

∫ T

0
‖δps‖ds,

and so

‖δx‖L∞ ≤ KLT‖δx‖∞ + KLT‖δθ‖∞.

Now, if T < T0 := 1/KL, we then have

‖δx‖L∞ ≤ KLT
1 − KLT

‖δθ‖L∞ . (54)
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Similarly,

‖δpt‖ ≤ KL‖δxT‖ + KL

∫ T

t
‖δxs‖ds + KL

∫ T

t
‖δps‖ds,

‖δp‖L∞ ≤ (KL + KLT )‖δx‖L∞ + KLT‖δp‖L∞ ,

and hence

‖δp‖L∞ ≤ KL(1 + T )
1 − KLT

‖δx‖L∞ . (55)

Combining (54) and (55) proves the claim. ��
With the above estimate, we can now prove Theorem 4.

Proof of Theorem 4 By uniform strong concavity, the function θ �→ Eμ0H (xθ1
t , xθ1

t , θ ) is
strongly concave. Thus, we have a λ0 > 0 such that

λ0
2

‖θ1t − θ2t ‖2 ≤
[
Eμ0∇H (xθ1

t , pθ1
t , θ2t ) − Eμ0∇H (xθ1

t , pθ1
t , θ1t )

]
· (θ1t − θ2t ).

A similar expression holds for θ �→ Eμ0H (xθ2
t , xθ2

t , θ ), and so combining them and using
assumptions (A1′′) we have

λ0‖θ1t − θ2t ‖2 ≤
[
Eμ0∇H (xθ1

t , pθ1
t , θ2t ) − Eμ0∇H (xθ1

t , pθ1
t , θ1t )

]
· (θ1t − θ2t )

+
[
Eμ0∇H (xθ2

t , pθ2
t , θ1t ) − Eμ0∇H (xθ2

t , pθ2
t , θ2t )

]
· (θ1t − θ2t )

≤ Eμ0‖∇H (xθ1
t , pθ1

t , θ1t ) − ∇H (xθ2
t , pθ2

t , θ1t )‖‖θ1t − θ2t ‖
+ Eμ0‖∇H (xθ1

t , pθ1
t , θ2t ) − ∇H (xθ2

t , pθ2
t , θ2t )‖‖θ1t − θ2t ‖

≤ KL‖δθ‖L∞ (‖δx‖L∞ + ‖δp‖L∞ ).

Combining the above and Lemma 2, we have

‖δθ‖2L∞ ≤ KL
λ0

C(T )‖δθ‖2L∞ .

ButC(T ) = o(1) and so wemay takeT sufficiently small so thatKLC(T ) < λ0 to conclude
that ‖δθ‖L∞ = 0. ��
In the context of machine learning, since f is bounded, small T roughly corresponds to

the regime where the reachable set of the forward dynamics is small. This can be loosely
interpreted as the case where the model has low capacity or expressive power. We note
that the number of parameters is still infinite, since we only require θ to be essentially
bounded and measurable in time. Hence, Theorem 4 can be interpreted as the statement
that when the model capacity is low, the optimal solution is unique, albeit with possibly
high loss function values.Note that the strong concavity of theHamiltoniandoes not imply
that the loss function J is strongly convex, or even convex, which is often an unrealistic
assumption in deep learning. In fact, in the case considered in Example 1, we observe
that H is strongly concave, but the loss function J can be highly non-convex due to the
nonlinear transformation σ . Compared with the characterization using HJB (Sect. 5), we
observe that the uniqueness of the solutions of the PMP requires the small T condition.
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8 Frommean-field PMP to sampled PMP
So far, we have focused our discussion on the mean-field control problem (3) and mean-
field PMP (50). However, the solution of the mean-field PMP requires maximizing an
expectation. Hence, in practice we must resort to solving a sampled version (51), which
constitutes necessary conditions for the sampled optimal control problem (4).
The goal of this section is to draw some precise connections between the solutions of

the mean-field PMP (50) and the sampled PMP (51). In particular, we show that under
appropriate conditions, near any stable (to be precisely defined later) solution of themean-
field PMP (50) we can find with high probability a solution of the sampled PMP (51). This
allows us to establish a concrete link, via the maximum principle, between solutions
of the population risk minimization problem (3) and the empirical risk minimization
problem (4). To proceed, the key observation is that the interior solutions to both the
mean-field and sampled PMPs can be written as the solutions to algebraic equations on
Banach spaces. Indeed, in view of the compact notation (50), let us suppose that θ∗ is a
solution of the PMP such that the maximization step attains a maximum in the interior
of � for a.e. t ∈ [0, T ]. Note that if � is sufficiently large, e.g., � = R

m, then this must be
the case. We shall hereafter assume this holds. Consequently, the PMP solution satisfies
(by dominated convergence theorem)

F (θ∗)t := Eμ0∇θH
(
xθ∗
t , pθ∗

t , θ∗
t

)
= 0, (56)

for a.e. t, where F : L∞([0, T ],�) → L∞([0, T ],Rm) is a Banach space mapping. Similarly,
from (51) we know that an interior solution θN of the finite-sample PMP is a random
variable which satisfies

FN (θN )t := 1
N

N∑
i=1

∇θH
(
xθN ,i
t , pθN ,i

t , θNt
)

= 0, (57)

for a.e. t. Now, FN is a random approximation of F and EFN (θ) = F (θ) for all θ. In fact,
FN → F almost surely by law of large numbers. Hence, the analysis of the approximation
properties of the mean-field PMP by its sampled counterpart amounts to the study of the
approximation of zeros of F by those of FN .
In view of this, we shall take a brief excursion to develop some theory on random

approximations of zeros of Banach space mappings at an abstract level and then use these
results to deduce properties of the PMP approximations. The techniques employed in
the next section are reminiscent of classical numerical analysis results on finite difference
approximation schemes [36], except that we work with random approximations.

8.1 Excursion: random approximations of zeros of Banach space mappings

Let (U, ‖ · ‖U ), (V, ‖ · ‖V ) be Banach spaces and F : U → V be a mapping. We first define
a notion of stability, which shall be a primary condition that ensures existence of close-by
zeros of approximations.

Definition 2 For ρ > 0 and x ∈ U , define Sρ(x) := {y ∈ U : ‖x − y‖U ≤ ρ}. We say
that the mapping F is stable on Sρ(x) if there exists a constant Kρ > 0 such that for all
y, z ∈ Sρ(x),

‖y − z‖U ≤ Kρ‖F (y) − F (z)‖V .
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Note that if F is stable on Sρ(x), then it is trivially true that it has at most one solution
to F = 0 on Sρ(x). If it does have a solution, say at x∗, then it is necessarily isolated, i.e.,
if DF (x∗) exists, then it is non-singular. The following proposition establishes a stronger
version of this: If DF (x) exists for any x ∈ Sρ(x∗), then it is necessarily non-singular.

Proposition 4 Let F on Sρ(x∗) be stable. Then, for any x ∈ Sρ(x∗), if DF (x) exists, then it
is non-singular, i.e., DF (x)y = 0 implies y = 0.

Proof Suppose for the sake of contradiction that DF (x)y = 0 and ‖y‖U �= 0. Define
z(α) := x + αy with α sufficiently small so that z(α) ∈ Sρ(x∗). Then,

α‖y‖U = ‖x − z(α)‖U
≤ Kρ‖F (x) − F (z(α))‖V
≤ Kρ(α‖DF (x)y‖V + ‖F (x + αy) − F (x) − DF (x)αy‖V ).

But DF (x)y = 0, and so α‖y‖U ≤ Kρr(x,αy)α‖y‖U . By definition of the Fréchet deriva-
tive (5), r(x,αy) → 0 as α → 0. Thus, if α is sufficiently small so that Kρr(x,αy) < 1, then
‖y‖U = 0 and hence we arrive at a contradiction. ��

As the previous proposition suggests, a converse statement that establishes stability will
requireDF (x) to be non-singular on some neighborhood of x∗. One in fact requires more,
i.e., thatDF needs to be Lipschitz. Note that for a linear operator A : U → V , we also use
‖A‖V to denote the usual induced norm, ‖A‖V = sup‖y‖U≤1 ‖Ay‖V .

Proposition 5 Suppose DF (x∗) is non-singular, DF (x) exists and ‖DF (x) − DF (y)‖V ≤
KL‖x − y‖U for all x, y ∈ Sρ(x∗). Then, F is stable on Sρ0 (x∗) for any 0 < ρ0 ≤
min(ρ, 12 (KL‖DF (x∗)−1‖U )−1) with stability constant

Kρ0 = 2‖DF (x∗)−1‖U .

Proof Let ρ0 ≤ ρ and take x, y ∈ Sρ0 (x∗). Using the mean value theorem, we can write
F (x) − F (y) = R(x, y)(x − y) where

R(x, y) :=
∫ 1

0
DF (sx + (1 − s)y)ds.

But, using the Lipschitz condition we have

‖R(x, y) − DF (x∗)‖V ≤
∫ 1

0
‖DF (sx + (1 − s)y) − DF (sx∗ + (1 − s)x∗)‖V ds

≤ KL

∫ 1

0
‖s(x − x∗) + (1 − s)(y − x∗)‖Uds

≤ ρ0KL.

We take ρ0 sufficiently small so that ρ0KL ≤ 1
2‖DF (x∗)−1‖−1

U . Then, by the Banach
lemma, R(x, y) is non-singular and ‖R(x, y)−1‖U ≤ 2‖DF (x∗)−1‖U . The result follows
since (x − y) = R(x, y)−1(F (x) − F (y)). ��
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Now, let us now introduce a family of random mappings FN that approximate F . Let
(�,F ,P) be a probability space and {FN (ω) : N ≥ 1,ω ∈ �} be a family of mappings from
U to V such that ω �→ FN (ω)(x) is F-measurable for each x (we equip the Banach spaces
U,V with the Borel σ -algebra). We make the following assumptions which will allow us
to relate the random solutions of FN = 0 to those of F = 0 in Theorem 5.

(B1) (Stability) There exists x∗ ∈ U such that F (x∗) = 0 and F is stable on Sρ(x∗) for
some ρ > 0.

(B2) (Uniform convergence in probability) For all N ≥ 1, DF (x) and DFN (x) exists for
all x ∈ Sρ(x∗), P-a.s. and

P [‖F (x) − FN (x)‖V ≥ s] ≤ r1(N, s),

P [‖DF (x) − DFN (x)‖V ≥ s] ≤ r2(N, s),

for some real-valued functions r1, r2 such that r1(N, s), r2(N, s) → 0 as N → ∞.
(B3) (Uniformly Lipschitz derivative) There exists KL > 0 such that for all x, y ∈ Sρ(x∗),

‖DFN (x) − DFN (y)‖V ≤ KL‖x − y‖U , P-a.s.

Theorem 5 Let (B1)–(B3) hold. Then, there exist positive constants s0, ρ1, C with ρ1 < ρ

and U-valued random variables xN ∈ Sρ1 (x∗) satisfying

P[‖xN − x∗‖U ≥ Cs] ≤ r1(N, s) + r2(N, s), s ∈ (0, s0],

P[FN (xN ) �= 0] ≤ r1(N, s0) + r2(N, s0).

In particular, xN → x∗ and FN (xN ) → 0 in probability.

To establish Theorem 5, we first prove that for large N , with high probability DFN (x∗)
is non-singular and ‖DFN (x∗)−1‖U is uniformly bounded.

Lemma 3 Let (B1)–(B3) hold. Then, there exists a constant s0 > 0 such that for each
s ∈ (0, s0] and N ≥ 1, there exists a measurable AN (s) ⊂ � such that P[AN (s)] ≥
1 − r1(N, s) − r2(N, s) and for each ω ∈ AN (s),

‖F (x∗) − FN (ω)(x∗)‖V < s.

Moreover, DFN (ω)(x∗) is non-singular with

‖DFN (ω)(x∗)−1‖U ≤ 2‖DF (x∗)−1‖U .

In particular, DFN (ω) is stable on Sρ0 (x∗) with ρ0 ≤ min(ρ, 14 (KL‖DF (x∗)−1‖U )−1) and
stability constant Kρ0 = 4‖DF (x∗)−1‖U .

Proof For s > 0, set

AN (s) := {ω ∈ � : ‖F (x∗) − FN (ω)(x∗)‖V ) < s

and ‖DF (x∗) − DFN (ω)(x∗)‖V < s}.



E et al. Res Math Sci (2019) 6:10 Page 31 of 41 10

Observe that AN (s) is measurable as DFN (ω)(x∗) is measurable and assumption (B2)
implies P[AN (s)] ≥ 1 − r1(N, s) − r2(N, s). Now, take s sufficiently small so that s ≤
s0 = 1

2‖DF (x∗)−1‖−1
U . Then, for each ω ∈ AN (s), the Banach lemma implies DFN (ω)(x∗)

is non-singular and

‖DFN (ω)(x∗)−1‖U ≤ ‖DF (x∗)−1‖U
1 − 1

2
= 2‖DF (x∗)−1‖U .

Finally, we use Proposition 5 to deduce stability of FN (ω). ��

Now, we are ready to prove Theorem 5 by constructing a uniform contraction mapping
whose fixed point is a solution of FN (x) = 0.

Proof of Theorem 5 Let s0,AN (s) and ρ0 be those defined in Lemma 3. For eachω ∈ AN (s)
with s ≤ s0, define the mapping

GN (ω)(x) := x − DFN (ω)(x∗)−1FN (ω)(x).

We now show that this is in fact a uniform contraction on Sρ1 (x∗) for sufficiently small
ρ1. Let x, y ∈ Sρ1 (x∗). By the mean value theorem, we have

GN (ω)(x) − GN (ω)(y) = DFN (ω)(x∗)−1[DFN (ω)(x∗)(x − y) − (FN (ω)(x) − FN (ω)(y))]

= DFN (ω)(x∗)−1[DFN (ω)(x∗) − RN (ω)(x, y)](x − y),

where RN (ω)(x, y) = ∫ 1
0 DFN (ω)(sx + (1 − s)y)ds. Lipschitz condition (B3) implies

‖DFN (ω)(x∗) − RN (ω)(x, y)‖V ≤ ρ1KL

and hence by Lemma 3,

‖GN (ω)(x) − GN (ω)(y)‖U ≤ α‖x − y‖U ,

where α = 2KLρ1‖DF (x∗)−1‖U . We now pick ρ1 < ρ0 sufficiently small so that α < 1. It
remains to show that the mapping GN (ω) maps Sρ1 (x∗) onto itself. Let x ∈ Sρ1 (x∗), then
by noting that F (x∗) = 0,

‖GN (ω)(x) − x∗‖U ≤ ‖GN (ω)(x) − GN (ω)(x∗)‖U + ‖GN (ω)(x∗) − x∗‖U
≤ αρ1 + 2‖DF (x∗)−1‖U‖FN (ω)(x∗) − F (x∗)‖V .

Using Lemma 3 again, we have

‖GN (ω)(x) − x∗‖U ≤ αρ1 + 2s‖DF (x∗)−1‖U .

We now take s0 > s small enough so that 2s0‖DF (x∗)−1‖U < (1 − α)ρ1. Then, for all
N ≥ 1,GN (ω) is a contraction, uniform inN , on Sρ1 (x∗) and hence by Banach fixed point
theorem, there exists a unique x̃N,s(ω) ∈ Sρ1 (x∗) such that GN (ω)(x̃N,s(ω)) = x̃N,s(ω), i.e.,
FN (ω)(x̃N,s(ω)) = 0 for all ω ∈ AN (s). Moreover, x̃N,s(ω) = limk→∞[GN (ω)](k)(y) for any
y ∈ Sρ0 (x∗). Define
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xN,s(ω) = 1AN (s)(ω)x̃N (ω) + 1AN (s)c (ω)x∗.

Now, xN,s is measurable since AN (s) is measurable and x̃N,s is the limit of measurable
random variables, and hence measurable. Moreover, AN (s) ⊂ {FN (xN ) = 0} and so
P[FN (xN,s) = 0] ≥ 1 − r1(N, s) − r2(N, s). Since xN,s ∈ Sρ1 (x∗) and ρ1 < ρ0, using the
stability of FN (ω) established in Lemma 3, and the fact that FN (xN,s) = F (x∗) = 0, we have
for any ω ∈ AN (s)

‖xN,s(ω) − x∗‖U ≤ Kρ0‖FN (ω)(xN,s) − FN (ω)(x∗)‖V
≤ 4‖DF (x∗)−1‖U‖F (x∗) − FN (ω)(x∗)‖V
< 4s‖DF (x∗)−1‖U ,

and so P[‖xN,s(ω) − x∗‖U ≥ Cs] ≤ r1(N, s) + r2(N, s) with C = 4‖DF (x∗)−1‖U . At this
point, it appears that xN,s depends on s. However, notice that for all s ≤ s0,AN (s) ⊂ AN (s0).
But, xN,s(ω) is the unique solution of FN (ω)(·) = 0 in Sρ1 (x∗) for eachω ∈ AN (s) ⊂ AN (s0).
Therefore, xN,s(ω) = xN,s0 (ω) for all s ≤ s0. We can thus write xN := xN,s0 ≡ xN,s.
Lastly, convergence in probability follows from the decay of the functions r1, r2 asN →

∞. ��

8.2 Error estimate for sampled PMP

Now, our goal is to apply the theory developed in Sect. 8.1 to the PMP. We shall assume
that θ∗, the solution of the mean-field PMP, is such that F (θ∗) = 0 (recall that this holds
for� = R

m). Suppose further that F is stable at θ∗ (see Definition 2), and later on we shall
give remarks on when this assumption is reasonably satisfied. We wish to show that for
sufficiently large N , with high probability FN must have a solution θN close to θ∗.
In view of Theorem 5, we only need to check that (B2)–(B3) are satisfied. This requires

a few elementary estimates and an application of the infinite-dimensional Hoeffding’s
inequality [53].

Lemma 4 There exist constants KB, KL > 0 such that for all θ,φ ∈ L∞([0, T ],�)

‖xθ‖L∞ + ‖pθ‖L∞ ≤ KB,

‖xθ − xφ‖L∞ + ‖pθ − pφ‖L∞ ≤ KL‖θ − φ‖L∞ .

Proof We have by Gronwall’s inequality for a.e. t,

‖xθ
t − xφ

t ‖ =
∥∥∥∥
∫ t

0
f (xθ

s , θs) − f (xθ
s , θs)ds

∥∥∥∥
≤ KL

∫ t

0
‖xθ

s − xφ
s ‖ds + KL

∫ t

0
‖θs − φs‖ds

≤ KLTeKLT‖θ − φ‖L∞ .
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Similarly,

‖pθ
t − pφ

t ‖ ≤ ‖∇x�(xθ
T , y0) − ∇x�(xφ

T , y0)‖

+
∥∥∥∥∥
∫ T

t
∇xH (xθ

s , pθ
s , θs) − ∇xH (xφ

s , pφ
s ,φs)ds

∥∥∥∥∥
≤ KL‖xθ

T − xφ
T‖ + KL

∫ T

t
‖xθ

s − xφ
s ‖ds + KL

∫ T

t
‖pθ

s − pφ
s ‖ds

≤ (KL + T )KLTe2KLT‖θ − φ‖L∞ .

��
Notice that we can view xθ ≡ x(θ) as a Banach space mapping from L∞([0, T ],�) to

L∞([0, T ],Rd), and similarly for pθ . Below, we establish some elementary estimates for
the derivatives of these mappings with respect to θ.

Lemma 5 There exist constants KB, KL > 0 such that for all θ,φ ∈ L∞([0, T ],�)

‖Dxθ‖L∞ + ‖Dpθ‖L∞ ≤ KB,

‖Dxθ − Dxφ‖L∞ + ‖Dpθ − Dpφ‖L∞ ≤ KL‖θ − φ‖L∞ .

Proof Let η ∈ L∞([0, T ],Rm) such that ‖η‖L∞ ≤ 1. For brevity, let us also denote f θ
t :=

f (xθ
t , θt ) and Hθ

t := H (xθ
t , pθ

t , θt ). Then, (Dxθ)η satisfy the linearized ODE

d
dt

[(Dxθ)η]t = ∇xf θ
t [(Dxθ)η]t + ∇θ f θ

t ηt , [(Dxθ)η]0 = 0.

Gronwall’s inequality and (A1′′) immediately implies that ‖[(Dxθ)η]t‖ ≤ KL‖η‖L∞ , and
so ‖Dxθ‖L∞ ≤ K ′. Next,

‖[(Dxθ)η]t − [(Dxφ)η]t‖ ≤
∫ t

0
‖∇xf θ

s ‖‖[(Dxθ)η]s − [(Dxφ)η]s‖ds

+
∫ t

0
‖∇xf θ

s − ∇xf φ
s ‖‖[(Dxφ)η]s‖ds

+
∫ t

0
‖∇θ f θ

s − ∇θ f φ
s ‖‖ηs‖ds.

But, using Lemma 4, assumption (A1′′), we have

‖∇xf θ
s − ∇xf φ

s ‖ ≤ KL‖xθ
s − xφ

s ‖ + KL‖θs − φs‖
≤ KL‖θ − φ‖L∞ .

A similar calculation shows ‖∇xf θ
s −∇xf φ

s ‖ ≤ KL‖θ −φ‖L∞ . Hence, Gronwall’s inequality
gives

‖[(Dxθ)η]t − [(Dxφ)η]t‖ ≤KL‖η‖L∞‖θ − φ‖L∞ .

Similarly, (Dpθ)η satisfies the ODE

d
dt

[(Dpθ)η]t = −∇2
xxH

θ
t [(Dxθ)η]t − ∇2

xpH
θ
t [(Dpθ)η]t − ∇2

xθH
θ
t ηt ,
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[(Dpθ)η]T = −∇2
xx�(xθ

T , y0)[(Dxθ)η]T .

A analogous calculation as above with (A1′′) shows that

‖[(Dpθ)η]t − [(Dpφ)η]t‖ ≤ KL‖η‖L∞‖θ − φ‖L∞ .

��

Lemma 6 Let h : Rd × R
d × � → R

m have bounded and Lipschitz derivatives in all
arguments and define the mapping θ �→ G(θ) where [G(θ)]t = h(xθ

t , pθ
t , θt ). Then, G is

differentiable and DG is bounded and Lipschitz μ0-a.s., i.e.,

‖DG(θ)‖L∞ ≤ KB,

‖DG(θ) − DG(φ)‖L∞ ≤ KL‖θ − φ‖L∞ .

for some KB, KL > 0 and all θ,φ ∈ L∞([0, T ],�).

Proof Let η ∈ L∞([0, T ],Rm) such that ‖η‖L∞ ≤ 1. By assumptions on h and Lemmas 4
and 5, DG exists and by the chain rule,

[(DG(θ))η]t = ∇xhθ
t [(Dxθ)η]t + ∇phθ

t [(Dpθ)η]t + ∇θhθ
t ηt .

Thus, ‖[(DG(θ))η]t‖ ≤ KB‖η‖L∞ and

‖[(DG(θ))η]t − [(DG(φ))η]t‖ ≤ KB‖∇xhθ
t − ∇xhφ

t ‖
+ KL‖[(Dxθ)η]t − [(Dxφ)η]t‖
+ · · ·

The other terms are split similarly and we omit them for simplicity. Using Lipschitz
assumption of the derivatives of h and Lemmas 4 and 5, we obtain the result. ��
Applying Lemma 6 with h = H for each sample i and summing, we see that DFN is

bounded and Lipschitz μ0-a.s. and so (B3) is satisfied. It remains to check (B2). Using
Lemma (6) and (A1′′), ‖FN‖L∞ and ‖DFN‖L∞ are almost surely bounded; hence, they
satisfy standard concentration estimates. We have:

Lemma 7 There exist constants KB, KL > 0 such that for all θ,φ ∈ L∞([0, T ],�)

P[‖F (θ) − FN (θ)‖L∞ ≥ s] ≤ 2 exp
(

− Ns2

K1 + K2s

)
,

P[‖DF (θ) − DFN (θ)‖L∞ ≥ s] ≤ 2 exp
(

− Ns2

K1 + K2s

)
.

Proof Since ‖F (θ)‖ is uniformly bounded by KB, we can apply the infinite-dimensional
Hoeffding’s inequality ([53], Corollary 2) to obtain

P[‖F (θ) − FN (θ)‖L∞ ≥ s] ≤ 2 exp
(

− Ns2

2K 2
B + (2/3)KBs

)
.

and similarly for DFN . ��
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Given the above results, we can deduce Theorem 6 directly.

Theorem 6 Let θ∗ be a solution F = 0 (defined in (56)), which is stable on Sρ(θ∗) for some
ρ > 0. Then, there exists positive constants s0, C, K1, K2 and ρ1 < ρ and a random variable
θN ∈ Sρ1 (θ∗) ⊂ L∞([0, T ],�), such that

P[‖θ − θN‖L∞ ≥ Cs] ≤ 4 exp
(

− Ns2

K1 + K2s

)
, s ∈ (0, s0],

P[FN (θN ) �= 0] ≤ 4 exp
(

− Ns20
K1 + K2s0

)
.

In particular, θN → θ∗ and FN (θN ) → 0 in probability.

Proof Use Theorem 5 with estimates derived in Lemmas 6 and 7. ��

Theorem 6 describes the convergence of a solution of the first-order condition of the
PMP solution in the sampled situation to the population solution of the PMP. Together
with a condition of local strong concavity, we show further in Corollary 1 that this station-
ary solution is in fact a local/global maximum of the sampled PMP. The claim regarding
the convergence of loss function values is provided in Corollary 2.

Corollary 1 Let θ∗ be a solution of the mean-field PMP such that there exists λ0 > 0,
satisfying that for a.e. t ∈ [0, T ],E∇2

θθH (xθ∗
t , pθ∗

t , θ∗
t )+λ0I � 0. Then, the random variable

θN defined inTheorem6 satisfies, with probability at least 1−6 exp [−(Nλ20)/(K1 + K2λ0)],
that θNt is a strict local maximum of sampled Hamiltonian 1

N
∑N

i=1H (xθN ,i
t , pθN ,i

t , θ ). In
particular, if the finite-sampled Hamiltonian has a unique local maximizer, then θN is a
solution of the sampled PMP with the same high probability.

Proof Let

[I (θ)]t := Eμ0∇2
θθH

(
xθ
t , p

θ
t , θt

)
,

[IN (θ)]t := 1
N

N∑
i=1

∇2
θθH

(
xθ,i
t , pθ,i

t , θt
)
.

Given the assumption of negative definite Hessian matrix at θ∗
t :

[I (θ∗)]t + λ0I � 0,

what we need to prove is

P[‖IN (θN ) − I (θ∗)‖L∞ ≥ 2cλ0] ≤ o(1), N → ∞,

for sufficient small c > 0. Consider the following estimate

P[‖IN (θN ) − I (θ∗)‖L∞ ≥ 2cλ0] ≤ P[‖IN (θN ) − IN (θ∗)‖L∞ ≥ cλ0 and ‖IN (θ∗) − I(θ∗)‖L∞ ≥ cλ0]

≤ P[‖IN (θN ) − IN (θ∗)‖L∞ ≥ cλ0] + P[‖IN (θ∗) − I (θ∗)‖L∞ ≥ cλ0].
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To bound the first term, we can use similar steps as in the proof of Lemma 6, which gives

ess sup
t∈[0,T ]

∥∥∥∇2
θθH

(
xθ
t , pθ

t , θt
)

− ∇2
θθH

(
xφ
t , p

φ
t ,φt

)∥∥∥ ≤ KL‖θ − φ‖L∞ .

Hence, we have

P[‖IN (θN ) − IN (θ∗)‖L∞ ≥ cλ0] ≤ P[‖θN − θ∗‖L∞ ≥ cλ0/KL]

≤ 4 exp
(

− Nλ20
K1 + K2λ0

)
.

To bound the second term, note that ‖IN (θ)‖ is uniformly bounded, we can apply the
infinite-dimensional Hoeffding’s inequality ([53], Corollary 2) to obtain

P[‖IN (θ∗) − I (θ∗)‖L∞ ≥ cλ0] ≤ 2 exp
(

− Nλ20
K ′
1 + K ′

2λ0

)
.

Combining two estimates together, we complete the proof. ��

Corollary 2 Let θN be as defined in Theorem 6. Then, there exist constants K1, K2 such
that

P[|J (θN ) − J (θ∗)| ≥ s] ≤ 4 exp
(

− Ns2

K1 + K2s

)
, s ∈ (0, s0].

Proof Note that J (θ) = �(xθ
T , y0) + ∫ T

0 L(xθ
t , θt )dt. Using Lemma 4, we have

|J (θN ) − J (θ∗)| ≤ KL

∥∥∥xθ∗
T − xθN

T

∥∥∥ + KL

∫ T

0

∥∥∥xθ∗
t − xθN

t

∥∥∥ +
∥∥∥θ∗

t − θNt

∥∥∥ dt
≤ K ′

L

∥∥∥θN − θ∗
∥∥∥
L∞ .

Thus, using Theorem 6, we have

P[|J (θN ) − J (θ∗)| ≥ s] ≤ P

[∥∥∥θN − θ∗
∥∥∥
L∞ ≥ s/K ′

L

]

≤ 4 exp
(

− Ns2

K1 + K2s

)
.

��
Theorem 6 and Corollary 1 establish a rigorous connection between solutions of the

mean-field PMP and its sampled version: When a solution of the mean-field PMP θ∗ is
stable, then for large N , with high probability we can find in its neighborhood a random
variable θN that is a stationary solution of the sampled PMP (51). If further that the
maximization is non-degenerate (local concavity assumption in Theorem 1) and unique,
then θNt maximizes the sampleHamiltonianwith high probability.Note that this concavity
condition is local in the sense that it only has to be satisfied at the paths involving θ∗,
whereas the strong concavity condition required in Theorem 4 is stronger as it is global.
Of course, in the case where the Hamiltonian is quadratic in θ , i.e., when f (x, θ ) is linear
in θ and the regularization L(x, θ ) is quadratic in θ (this is still a nonlinear network, see
Example 1), then all concavity assumptions in the preceding results are satisfied.
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Thekey assumption for the results in this section is the stability condition (c.f. Definition2).
In general, this is different from the assumption that H (xθ∗

t , pθ∗
t , θ∗

t ) is strongly concave
point-wise in t. However, note that one can show using triangle inequality and estimates
in Lemma 5 that if H is strongly concave with sufficiently large concavity parameter (λ0),
then the solution must stable. Intuitively, the stability assumption ensures that we can
find a small region around θ∗ such that it is isolated from other solutions, and this then
allows us to find a nearby solution of the sampled problem that is close to this solution.
On the other hand, ifDF (θ∗) has a non-trivial kernel, then one cannot expect to construct
a θN that is close to θ∗ itself, or any specific point in the kernel. However, one may still
find θN that is close to the whole kernel.
We also remark that in both the mean-field problem (3) and the sampled problem (4),

the parameters at any time only affect the incremental change (like a residual connection)
and the dimension of the system always stays the same in the continuous-time setup.
Accordingly, although there is an infinite number of parameters, there is no permuta-
tional invariance among different rows of θt or different components of xt . This stands
in contrast to the common over-parameterized neural networks in which such permu-
tational invariance widely exists if a residual connection is not constructed. Hence, this
stability assumption can reasonably hold even if we are in an “over-parameterized” regime.
Corollary 2 is a simple consequence of the previous results and is effectively a state-

ment about generalization error of the learningmodel, because it quantifies the difference
between loss function values when evaluated on either the population or empirical risk
minimization solution.Wemention an interesting point of the optimal control framework
alluded to earlier in the context of generalization. Notice that since we have only assumed
that the controls or weights θ are measurable and essentially bounded (and thus can
be very discontinuous) in time, we are always dealing with the case where the number of
parameters is infinite. Even in this case, we can derive non-trivial generalization estimates.
This is to be contrasted with classical generalization bounds based on measures of com-
plexity [26], where the number of parameters adversely affects generalization. Note that
there aremany recent works which take on such issues from varying angles, e.g., [2,23,49].

9 Conclusion
In this paper, we introduce the mathematical formulation of the population risk mini-
mization problem of continuous-time deep learning in the context of mean-field optimal
control. In this framework, the compositional structure of deep neural networks is explic-
itly taken into account as the evolution of the dynamical system in time. To analyze
this mean-field optimal control problem, we proceed from two parallel but interrelated
perspectives, namely the dynamic programming approach and the maximum principle
approach. In the former, an infinite-dimensional Hamilton–Jacobi–Bellman (HJB) equa-
tion for the optimal loss function values is derived, with state variables being the joint
distribution of input–target pairs. The viscosity solution of the derived HJB equation pro-
vides us with a complete characterization of the original population risk minimization
problem, giving both the optimal loss function value and an optimal feedback control pol-
icy. In the latter approach, we prove a mean-field Pontryagin’s maximum principle that
constitutes necessary conditions for optimality. This can be viewed as a local characteri-
zation of optimal trajectories, and indeed we formally show that the PMP can be derived
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from the HJB equation using the method of characteristics. Using the PMP, we study a
sufficient condition for which the solution of the PMP is unique. Lastly, we prove an exis-
tence result of sampled PMP solutions near the stable solutions of the mean-field PMP.
We show how this result connects with generalization errors of deep learning and pro-
vide a new direction for obtaining generalization estimates in the case of infinite number
of parameters and finite number of sample points. Overall, this work establishes a con-
crete mathematical framework from which novel ways to attack the pertinent problems
in practical and theoretical deep learning may be further developed.
As a specific motivation for future work, notice that here, we have assumed that the

state dynamics f is independent of distribution law of xt and only depends on xt itself
and control θt . There are also more complex network structures used in practice which
are beyond this assumption. Let us take batch normalization as an example [34]. A batch
normalization step involves normalizing inputs using some distribution ν and then rescal-
ing (and re-centering) the output using trainable variables so that the matching space is
recovered. This has been found empirically to have a good regularization effect for train-
ing, but theoretical analysis of such effects is limited. In the present setting, we can write
a batch normalization operation as

BNγ ,β (x, ν) := γ � x − ∫
z dν(z)√

(z − ∫
z′ dν(z′))2dν(z) + ε

+ β .

Here, γ ,β ∈ R
d are trainable parameters, � denotes element-wise multiplication, and

ε is a small constant avoiding division by zero. Suppose we insert a batch normalization
operation immediately after the skip connection, the corresponding state dynamics f
becomes

f (x, θ ) → f (BNγ ,β (x, ν), θ ).

By incorporating γ ,β into the parameter vector θ and taking ν as the population distri-
bution of the state, the equation of state dynamics has the following abstract form

ẋt = f̃ (xt , θ ,Pxt ). (58)

This is a more general formulation typically considered in the mean-field optimal control
literature. The associated objective is very similar to (3) except the state dynamics:

inf
θ∈L∞([0,T ],�)

J (θ) := Eμ0

[
�(xT , y0) +

∫ T

0
L(xt , θt )dt

]
,

Subject to (58).

(59)

The dynamic programming principle and the maximum principle are still applicable in
this setting. For instance, the associated HJB equation can be derived as

⎧⎨
⎩

∂v
∂t

+ inf
θ∈�

〈
∂μv(t,μ)(.) · f̄ (., θ ,μ) + L̄(., θ ), μ

〉 = 0, on [0, T ) × P2(Rd+l),

v(T,μ) = 〈�̄(.),μ〉, on P2(Rd+l),



E et al. Res Math Sci (2019) 6:10 Page 39 of 41 10

where f̄ (w, θ ,μ) := (f̃ (x, θ ,μx), 0). Similarly, we expect the following mean-field PMP (in
the lifted space) to hold under suitable conditions:

ẋ∗
t = f̃ (x∗

t , θ∗
t ,Px∗

t
), x∗

t = x0,

ṗ∗
t = −∇xH (x∗

t , p∗
t , θ∗

t ,Px∗
t
), p∗

T = −∇x�(x∗
T , y0),

Eμ0H (x∗
t , p∗

t , θ∗
t ,Px∗

t
) ≥ Eμ0H (x∗

t , p∗
t , θ ,Px∗

t
), ∀ θ ∈ �, a.e. t ∈ [0, T ],

where the Hamiltonian function H : Rd × R
d × � × P2(Rd) → R is given by

H (x, p, θ ,μ) = p · f (x, θ ,μ) − L(x, θ ).

Thus, batch normalization can be viewed as a general form of mean-field dynamics and
can be treated in a principled way under the mean-field optimal control framework. We
leave the study of further implications of this connection on the theoretical understanding
of batch normalization to future work.
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