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Abstract

In this article, we consider a two-dimensional model of ferromagnetic material. Our
prime goal is to analyze the stability of static domain wall configuration calculated by
Walker. The dynamics of magnetization inside the material is governed by the
Landau–Lifschitz equation which is nonlinear and parabolic in nature. We prove the
stability of the static waves solutions for the Landau–Lifschitz equation with a simplified
expression of the stray field which is not unique in general, because of the
non-convexity constraint |u| = 1.
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1 Introduction
The study of ferromagnetic systems is of great importance because of its huge application
in the development of modern technological devices. Ferromagnetic materials are used
in numerous technological devices, such as hard disks, recording heads, cellular phones,
magnetic sensors. In particular, ferromagnetic thin films are of great interest because of
their sensitive response to appliedmagnetic fields whichmakes them useful for the design
of many devices such as giant magnetoresistive sensors (GMR) and thin-film memories.
The detailed applications of thin filmcanbe found in excellent book byHubert and Schäfer
[20]. For the characteristics and a general description of ferromagnetic materials, we refer
the reader to [3,9,20,24].
The general setting in 3Dmodel is the following. We consider an infinite homogeneous

ferromagnetic medium. The ferromagnetic materials are characterized by spontaneous
magnetization. We denote the magnetization vector field by u and is given by:

u : R+ × R
3 → R

3.

The magnetic moment u links the magnetic induction B and the magnetic field H by the
relation B = u + H . In addition, we assume that the material is saturated so that the
magnitude of u is constant. After renormalization, we assume that

|u(t, X)| = 1 for (t, X) ∈ R
+ × R

3 a.e. (1.1)

The dynamics of u is described by the Landau–Lifschitz equation:
∂u
∂t

= −u × Heff − u × (u × Heff ).
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The effective field Heff = −∇E is derived from the micromagnetism energy E given by:
⎧
⎨

⎩

E = Eexch + Eanis + Edem,

Heff = he(u) + ha(u) + hd(u).

Next, we describe the various energy contributions and corresponding fields in the fol-
lowing way:

• Exchange Energy (Eexch): The ferromagnetic behavior is essentially due to a quantistic
force which tends to align the magnetic dipole moment parallel to each other. The
most important contribution is due to the exchange energy:

Eexch = A
2

∫

R3

|∇u|2,

with

he(u) = A�u,

where the exchange constant A depends on the material. For simplicity, we choose A
to be 1.

• Anisotropy Energy (Eanis): The anisotropy energy reflects the existence of a preferen-
tial axis (easy axis) of magnetization:

Eanis = −1
2
γ̃

∫

R3

(u · e)2,

where the unit vector e gives the direction of the easy axis (γ̃ > 0) or the orientation
of the easy plane (γ̃ < 0). we have

ha(u) = γ̃ (u · e)e.
• Demagnetizing (Stray Field) Energy (Edem): This energy is connected with the mag-

netic field generated by the medium itself:

Edem = 1
2

∫

R3

|hd(u)|2.

The demagnetizing field hd(u) is characterized by the Maxwell’s equations:
⎧
⎨

⎩

curl hd(u) = 0 in D ′ (
R
3) ,

div (hd(u) + u) = 0 in D ′ (
R
3) ,

(1.2)

whereD ′ (
R
3) denotes the space of distributions on R

3. Therefore, we obtain that

Heff = A�u + γ̃ (u · e)e + hd(u).

This effective field offers a simple interpretation of the micromagnetic equations. In the
form u × Heff = 0, it means that the effective field must at every point be directed along
the magnetization vector: The torque exerted on any magnetization vector must vanish
in static equilibrium.
Existence results for the Landau–Lifschitz equation can be found in [6,12,13,19,28]

and [18] for the weak solutions, and the strong solutions are considered in [14,15] and
known to exist locally in time. Numerical simulations of ferromagnetic materials can be
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found in [7,8,23] and the references therein. Stability and controllability results related
to one-dimensional model of ferromagnetic materials are studied by many authors under
different conditions [2,5,10,16,25]. Higher-dimensional models of these objects are very
complex, and there are very few mathematical description available [4,11,17].
The motivation of our work comes from the results presented by Gilles [11,16]. In

[16] he discussed the stability of static wave solutions for one-dimensional model and
extended this result in [10] by proving the controllability of traveling waves solution
in ferromagnetic nanowire, while in [11], he considered three-dimensional model and
established nice result of its stability. Stability properties of static wave solutions are very
helpful when we study the behavior of traveling wave solutions. Here, we are interested in
the study of static walls stability for two-dimensional model of Landau–Lifschitz equation
which is equally important and will help to fill the existing gap. 2D models mainly arise in
case of thin film. It is well known that a variety of patterns (uniformlymagnetized regions)
of magnetization vectors appears on thin ferromagnetic films [3,20] which are separated
by a thin boundary layers called the domain wall. In the absence of external magnetic field,
a pattern arises on the ferromagnetic film called the Bloch wall (static wall or stationary
wave solutions). The study of stability properties of these static walls is very relevant
for practical purposes. For example, in many thin-film devices, switching or reversing
the magnetization of relevant configurations is of particular interest (for details see 6.5 in
[20]), and in order to switch themagnetization, we need to have stability property for such
relevant configurations. It is worth to mention that obtained results are mainly based on
the energy method and variational estimate technique.

1.1 Considered model

We consider a two-dimensional model of ferromagnetic material. We deal with the static
wall configuration calculated byWalker [29].Walker executed the exact integration of the
equations of motion for a planar wall [27]. From the theory of ferromagnetism, it is well
known that static walls of infinite nanowires are Bloch walls, whose main characteristic is
to produce two almost linear regimes separated by a wall. We investigate the stability fea-
tures of these exact solutions for the Landau–Lifschitz equation with a simplified expres-
sion for the stray field. In case of flat domain wall, magnetic moment depends only on the
x variable which in turn gives the expression for demagnetizing field as hd(u) = −u1e1
(where u(t, x, y) = (u1, u2, u3) and (e1, e2, e3) represents the canonical basis of R3). With
this expression of the stray field, the static wave solution to Landau–Lifschitz equation is
given by:

U0(x, y) = U0(x) =
⎛

⎜
⎝

1/ch x
0

th x

⎞

⎟
⎠ . (1.3)

In our study, we simplify the model by taking hd(u) to −u1e1 even for the perturbations
ofU0 and choose γ̃ = 1. Also, we consider the energetically preferred direction ofmagne-
tization (easy axis) along the e2-direction, i.e., e = e2. Hence, we investigate the following
system:

∂u
∂t

= −u × Heff − u × (u × Heff ),

Heff = �u + u2e2 − u1e1.
(1.4)

Next, we establish the stability result of the static wave solutionU0 for the system (1.4).
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1.2 Main result

Statement of our main result is as follows:

Theorem 1.1 Suppose u is the solution of the Landau–Lifschitz equation (1.4)with initial
condition u(0, x, y) = u0(x, y), where u0 satisfies the saturation condition (1.1). Let ε > 0;
then there exist δ > 0 such that if u0 holds ‖u0 − U0‖H2(R2) � δ, for all u0 ∈ H2(R2;R3),
then u satisfies,

∀ t ≥ 0, ‖u(t, .) − U0‖H2(R2) � ε.

This article is organized as follows:
In Sect. 2, we describe the perturbations u of the static wall profile U0 satisfying the

saturation constraint |u| = 1 in the mobile frame (U0(x),U1(x),U2), where

U1(x) =
⎛

⎜
⎝

− th x
0

1/ch x

⎞

⎟
⎠ and U2 =

⎛

⎜
⎝

0
1
0

⎞

⎟
⎠ .

writing

u(t, x, y) = ξ1(t, x, y)U1(x) + ξ2(t, x, y)U2

+
(
1 − (ξ1(t, x, y))2 − (ξ2(t, x, y))2

)1/2
U0(x).

We transform the Landau–Lifschitz equation (1.4) in the new unknown ξ , where
ξ = (ξ1, ξ2) takes its values inR2.Weobtain that Eq. (1.4) is equivalent to a nonlinear equa-
tion on ξ and the stability feature ofU0 is equivalent to the stability of 0 for the transformed
equation. In Sect. 3, we describe the properties of the linear operator of the nonlinear equa-
tion on ξ . Since Landau–Lifschitz equation (1.4) is translation invariance in the x-variable,
the linear part of the perturbed equation admits 0 as a simple eigenvalue which prevents
establishing the stability result directly. In order to overcome this situation, we intro-
duced the new coordinate system in Sect. 4. We adapt the new coordinate system in such
away that the linear parts of the transformed equations in the new systembehave indepen-
dently, andwe can apply variational estimates technique. Kapitula in [21,22] developed the
techniques concerning the stability of traveling waves to semilinear parabolic equations
in which the linearization about the wave contains 0 as an eigenvalue. We decompose
the perturbations into a spatial translation component and a normal component. The
spatial component satisfies a quasilinear parabolic equation, and the normal component
exhibits a very dissipative quasilinear parabolic equation. The main difficulty here is that
the equations are quasilinear and methods discussed in [21] cannot be applied directly.
In Sect. 5, we established some preliminary estimates to derive themain result. In Sect. 6,

we prove the stability result using the variational estimates. In the last section, we conclude
this article with some remarks and suggest further work in the same research lines.

Remark 1.1 The static wall profile U0 for the Landau–Lifschitz equation (1.4) is not
unique, because of the non-convexity of the constraint |u| = 1. We have the following
static solution Ũ0 which also satisfies the Landau–Lifschitz equation (1.4) and is given by
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Ũ0(x) =
⎛

⎜
⎝

0
th x

1/ch x

⎞

⎟
⎠ .

In this paper, we use the following notations. Throughout the article, ch, sh, and th
represent the hyperbolic cosine, sine, and tangent functions, respectively. The canonical
basis of R3 is (e1, e2, e3) and the letter C denotes generic constant.

2 Transformation to new coordinates
WetransformLandau–Lifschitz equation (1.4) innewcoordinates system(U0(x),U1(x),U2)
with

∀ x ∈ R, U0(x) =
⎛

⎜
⎝

1/ch x
0

th x

⎞

⎟
⎠ , U1(x) =

⎛

⎜
⎝

− th x
0

1/ch x

⎞

⎟
⎠ and U2 =

⎛

⎜
⎝

0
1
0

⎞

⎟
⎠ .

We consider u as a small perturbation ofU0 and write it as:

u(t, x, y) = U0(x) + ξ1(t, x, y)U1(x) + ξ2(t, x, y)U2 + λ(ξ (t, x, y))U0(x), (2.1)

so that it satisfies the saturation constraint |u| = 1.Here λ : B(0, 1) → R is a smooth map
defined as

λ(ζ ) =
√

1 − (ζ 2
1 ) − (ζ 2

2 ) − 1,

where ζ = (ζ1, ζ2) and B(0, 1) = {(ζ1, ζ2) , (ζ1)2 + (ζ2)2 < 1
}
is the unit ball of R2.

We notice that ξ1(t, x, y) = u(t, x, y)·U1(x) and ξ2(t, x, y) = u(t, x, y)·U2, with the unknown

ξ (t, x, y) =
(

ξ1(t, x, y)
ξ2(t, x, y)

)

using the perturbations (2.1) ofU0. Furthermore,

Heff (u) = μ0U0 + μ1U1 + μ2U2,

with

μ0 = λ′(ξ )�ξ + λ′′(ξ )
{
(∂xξ )2 + (∂yξ )2

}− 2
(1 + λ)
ch2x

− 2
∂xξ1
ch x

+ 2ξ1
sh x
ch2x

,

μ1 = �ξ1 + 2λ′(ξ ) ∂xξ

ch x
− ξ1,

μ2 = �ξ2 + ξ2.

We transform Eq. (1.4) by using (2.1) and obtain that
∂λ

∂t
U0 + ∂ξ1

∂t
U1 + ∂ξ2

∂t
U2 = −(ξ1μ2 − ξ2μ1)U0 − (ξ2μ0 − (1 + λ)μ2)U1

− ((1 + λ)μ1 − ξ1μ0)U2

− (1 + λ)(ξ2μ0 − (1 + λ)μ2)U2

+ (1 + λ)((1 + λ)μ1 − ξ1μ0)U1

+ ξ1(ξ1μ2 − ξ2μ1)U2

− ξ1((1 + λ)μ1 − ξ1μ0)U0

− ξ2(ξ1μ2 − ξ2μ1)U1 + ξ2(ξ2μ0 − (1 + λ)μ2)U0. (2.2)

Taking the projection of Eq. (2.2) in the directions ofU1 andU2, we obtain that if u is the
solution of (1.4), then

∂ξ1
∂t

= −ξ2μ0 + (1 + λ)μ2 + (1 + λ)((1 + λ)μ1 − ξ1μ0) − ξ2(ξ1μ2 − ξ2μ1),

∂ξ2
∂t

= −((1 + λ)μ1 − ξ1μ0) − (1 + λ)(ξ2μ0 − (1 + λ)μ2) + ξ1(ξ1μ2 − ξ2μ1).
(2.3)
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Replacing the μ′
is by their values in Eq. (2.3), We obtain that Landau–Lifschitz equation

is equivalent for the small perturbations ofU0 to the following system:

∂ξ1
∂t

= −ξ2λ
′(ξ )�ξ − ξ2λ

′′(ξ )
{
(∂xξ )2 + (∂yξ )2

}

+ 2ξ2(1 + λ(ξ ))
1

ch2x
+ 2ξ2(∂xξ1)

1
ch x

− 2ξ1ξ2
sh x
ch2x

+ (1 + λ(ξ ))�ξ2 + (1 + λ(ξ ))ξ2 + (1 + λ(ξ ))2�ξ1

+ 2(1 + λ(ξ ))2λ′(ξ )(∂xξ )
1

ch x
− (1 + λ(ξ ))2ξ1 − ξ1(1 + λ(ξ ))λ′(ξ )�ξ

− ξ1(1 + λ(ξ ))λ′′(ξ )
{
(∂xξ )2 + (∂yξ )2

}+ 2ξ1(1 + λ(ξ ))2
1

ch2x

+ 2ξ1(1 + λ(ξ ))(∂xξ1)
1

ch x
− 2ξ21 (1 + λ(ξ ))

sh x
ch2x

− 2ξ1ξ22 − ξ1ξ2�ξ2 + ξ22�ξ1 + 2λ′(ξ )ξ22 (∂xξ )
1

ch x
,

∂ξ2
∂t

= −(1 + λ(ξ ))�ξ1 − 2(1 + λ(ξ ))λ′(ξ )(∂xξ )
1

ch x
+ (1 + λ(ξ ))ξ1 + ξ1λ

′(ξ )�ξ

+ξ1λ
′′(ξ )
{
(∂xξ )2 + (∂yξ )2

}

− 2ξ1(1 + λ(ξ ))
1

ch2x
− 2ξ1(∂xξ1)

1
ch x

+ 2ξ21
sh x
ch2x

− ξ2(1 + λ(ξ ))λ′(ξ )�ξ − ξ2(1 + λ(ξ ))λ′′(ξ )
{
(∂xξ )2 + (∂yξ )2

}

+ 2ξ2(1 + λ(ξ ))2
1

ch2x
+ 2ξ2(1 + λ(ξ ))(∂xξ1)

1
ch x

− 2ξ1ξ2(1 + λ(ξ ))
sh x
ch2x

+ (1 + λ(ξ ))2�ξ2

+ (1 + λ(ξ ))2ξ2 + ξ21�ξ2 + 2ξ21 ξ2 − ξ1ξ2�ξ1 − 2ξ1ξ2λ′(ξ )(∂xξ )
1

ch x
. (2.4)

Writing Eq. (2.4) in an operator form, we obtain that if u satisfies (1.4) then ξ verifies:

∂tξ = T ξ + L (x, ξ ,∇ξ ,�ξ ), (2.5)

where

T ξ =
(

−1 −1
1 −1

)(
Tξ1

Tξ2 − 2ξ2

)

,

with T = −� + η, η(x) = 2th2x − 1.
The nonlinear termL : R × B(0, 1) × R

4 × R
2 → R

2 is defined by

L (x, ξ ,∇ξ ,�ξ ) = P(ξ )�ξ +
2∑

i=1
Q(ξ )(∂iξ , ∂iξ ) + R(x, ξ )(∂xξ ) + S (x, ξ ),

with the following notations:

• ∂1(ξ ) = ∂xξ = ∂ξ
∂x , ∂2(ξ ) = ∂yξ = ∂ξ

∂y .
• P ∈ C∞(B(0, 1);M2(R)) (M2(R)) is the set of the real 2 × 2 matrices):

P(ξ ) =
(

−ξ21 λ(ξ ) − ξ1ξ2
λ(ξ ) − ξ1ξ2 −ξ22

)

+
(

−ξ2 − ξ1(1 + λ(ξ ))
ξ1 − ξ2(1 + λ(ξ ))

)

λ′(ξ ).
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• Q ∈ C∞(B(0, 1);L2(R2)) (L2(R2;R2) is the set of the bilinear functions defined on
R
2 × R

2 with values in R
2):

Q(ξ )(ζ , ζ ) =
(

−ξ2 − ξ1 − ξ1λ(ξ )
ξ1 − ξ2 − ξ2λ(ξ )

)

λ′′(ζ , ζ ).

• R ∈ C∞(R × B(0, 1);M2(R)):

R(x, ξ )(ζ ) = 2
ch x

(
ξ2 + ξ1(1 + λ(ξ ))

−ξ1 + ξ2(1 + λ(ξ ))

)

ζ1

+ 2
ch x

(
1 − ξ21

−1 − λ(ξ ) − ξ1ξ2

)

λ′(ξ )(ζ ).

• S ∈ C∞(R × B(0, 1);R2)S (x, ξ ) =
(
S1
S2

)

, with

S1 = −(−2ξ2 + ξ2η + 2ξ1η + 2ξ1ηλ(ξ ))λ(ξ ) − 2ξ1ξ22

− 2
sh x
ch2x

ξ1(ξ2 + ξ1 + ξ1λ(ξ )),

S2 = (ξ1η − 2ξ2η − ξ2ηλ(ξ ) + 4ξ2 + 2ξ2λ(ξ ))λ(ξ ) + 2ξ21 ξ2

+ 2
sh x
ch2x

ξ1(ξ1 − ξ2 − ξ2λ(ξ )).

In the form of following proposition, we prove that Landau–Lifschitz equation (1.4) and
the perturbed equation (2.5) are equivalent.

Proposition 2.1 Assume thatu ∈ C1(0, T ;H2(R2;R3))with saturation constraint |u| = 1
and satisfying:

∀ t ∈ [0, T ), ∀ (x, y) ∈ R
2, |u(t, x, y) − U0(x)| <

√
2

We introduce ξ = (ξ1, ξ2) ∈ C1(0, T ;H2(R2;R2)) defined by

u(t, x, y) = U0(x) + ξ1(t, x, y)U1(x) + ξ2(t, x, y)U2 + λ(ξ (t, x, y))U0(x).

Then u is solution to the Landau–Lifschitz equation (1.4) if and only if ξ is solution to (2.5)
andU0 is stable for (1.4) if and only if 0 is stable for (2.5).

Proof We derive the result using the similar arguments which have been used in [11,16].
By projection on both U1 and U2, it is clear that if u satisfies (1.4), then ξ satisfies (2.5).
Conversely, we write (1.4) on the form

∂u
∂t

= J (u),

sinceu satisfies thephysical constraint |u| = 1, rendersu· ∂u
∂t

= 0.Moreover,u·J (u) = 0.
We remark that u satisfies:
(

∂u
∂t

− J (u)
)

· Uk = 0, ∀k ∈ {1, 2}
yields
(

∂u
∂t

− J (u)
)

· (1 + λ)U0 = 0

since λ �= −1, implies that u satisfies (1.4). This completes the proof of Proposition 2.1. �



2 Page 8 of 29 Dwivedi and Dubey ResMath Sci (2019) 6:2

3 Properties of the linear operator
The linear operator T acting on H2(R2) is defined by:

T = −� + η

with η(x) = 2th2x − 1 and � = ∂xx + ∂yy.
We denote by T1 the reduced operator acting on H2(R) given by

T1 = −∂xx + η.

Weremark thatT1 is a self-adjoint operatoronH2(R). Furthermore,T1 is positiveoperator
since we can write T1 = τ ∗ ◦ τ where τ = ∂x + th x, and 0 is the simple eigenvalue
associated with the eigenvector 1

ch x , Hence Ker T1 is the one-dimensional space spanned
by 1

ch x . The self-adjoint operator T1 is a compact perturbations of −∂xx + 1, and thus
its essential spectrum is [1,+∞) (using Weyl Theorem, see in [1,26]). The spectrum of
T1 is {0} ∪ [1,+∞), where 0 is the unique eigenvalue. We denote G1 = (Ker T1)⊥. The
restriction of T1 on G1 is a symmetric definite positive operator. We define G1 by:

G1 = (Ker T1)⊥ =
⎧
⎨

⎩
α ∈ H2(R),

∫

R

α(x)
1

ch x
dx = 0

⎫
⎬

⎭
.

Then, for all u ∈ G1, the H2-norm is equivalent to ‖T1u‖L2(R) and the H3-norm is equiv-
alent to ‖T 3/2

1 u‖L2(R). (For details, see [16].)
Proposition 3.1 The operator T = −� + η is a positive self-adjoint operator defined on
H2(R2). We introduce G and defined it as

G =
⎧
⎨

⎩
α ∈ H2(R2),∀ y ∈ R,

∫

x∈R
α(x, y)

1
ch x

dx = 0

⎫
⎬

⎭
.

There exists a constant C such that

∀α ∈ G , ‖α‖H2(R2) � C‖Tα‖L2(R2),

∀α ∈ H3(R2) ∩ G , ‖α‖H3(R2) � C‖T 3/2α‖L2(R2).

Proof Wehave that, for allu ∈ G1, theH2-norm is equivalent to ‖T1u‖L2(R) which implies

‖u‖2L2(R) + ‖∂xxu‖2L2(R) � C‖T1u‖2L2(R).
Now for α ∈ G , we have for almost every y ∈ R:

∫

x∈R

(|α(x, y)|2 + |∂xxα(x, y)|2
)
dx � C

∫

x∈R
|T1α(x, y)|2dx

On integrating y ∈ R, we obtain

‖α‖2L2(R2) + ‖∂xxα‖2L2(R2) � C‖T1α‖2L2(R2).

Moreover,

‖Tα‖2L2(R2) =
∫

R2

|Tα|2 =
∫

R2

|T1α|2 +
∫

R2

|∂yyα|2 − 2
∫

R2

T1α∂yyα.

The last term is positive:

∵ −2
∫

R2

T1α∂yyα = −2
∫

R2

τ ∗ ◦ τα · ∂yyα = 2
∫

R2

|∂yτα|2.
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So,
∫

R2

|Tα|2 �
∫

R2

|T1α|2 +
∫

R2

|∂yyα|2,

which implies

‖α‖2L2(R2) + ‖�α‖2L2(R2) � C‖Tα‖2L2(R2).

We establish an estimate onH3-norm in a similar lines using the equivalence ofH3-norm
to ‖T 3/2

1 u‖L2(R). �

4 Change of coordinates
A one-parameter family of static solutions to Landau–Lifschitz equation (1.4) is being
constructed using the translational invariance for solutions depending only on the x-
variable. Furthermore, for σ ∈ R, x �→ U0(x − σ ) satisfies (1.4). We introduce the
one-parameter family (β(σ ))σ∈R of static wave solutions to (2.5) obtained fromU0(x−σ )
in the mobile frame (U1(x),U2(x)):

β(σ )(x) =
(
U0(x − σ ) · U1(x)
U0(x − σ ) · U2(x)

)

=
(

ρ(σ )(x)
0

)

,

where ρ(σ )(x) = − th x
ch (x−σ ) + th (x−σ )

ch x .
Using the techniques from [21], we write small perturbations of ξ in a neighborhood of 0
in the new coordinate system given by (φ,ψ ,N ) as

ξ (t, x, y) = β(φ(t, y))(x) +
(

0
1

ch x

)

ψ(t, y) + N (t, x, y), (4.1)

where both coordinates ofN take their values in G . In order to prove that this system is
relevant to our analysis, we start with the following notations.
We denote by � the following space:

� := H2(R) × H2(R) × G × G . (4.2)

We define the norm on � as

‖(φ,ψ ,N )‖H 2 := ‖φ‖H2(R) + ‖ψ‖H2(R) + ‖TN1‖L2(R2) + ‖TN2‖L2(R2).

Using Proposition 3.1, we have the following equivalence of norms on �:

‖(φ,ψ ,N )‖H 2 ∼ ‖φ‖H2(R) + ‖ψ‖H2(R) + ‖N1‖H2(R2) + ‖N2‖H2(R2).

Similarly, on � ∩ H3, we define

‖(φ,ψ ,N )‖H 3 := ‖φ‖H3(R) + ‖ψ‖H3(R) + ‖T 3/2N1‖L2(R2) + ‖T 3/2N2‖L2(R2),

and this norm is equivalent to the following norm on � ∩ H3:

‖(φ,ψ ,N )‖H 3 ∼ ‖φ‖H3(R) + ‖ψ‖H3(R) + ‖N1‖H3(R2) + ‖N2‖H3(R2).

In the following proposition, we prove the relevance of such perturbations of ξ in a
neighborhood of 0.

Proposition 4.1 There exists δ > 0, such that if ξ ∈ H2(R2;R2) verifies ‖ξ‖H2(R2) � δ,
there exists
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(φ,ψ ,N ) ∈ � such that

ξ (x, y) = β(φ(y))(x) +
(

0
1

ch x

)

ψ(y) + N (x, y).

Moreover, there exists C such that for ξ ∈ H2(R2;R2) in a neighborhood of zero

1
C

‖(φ,ψ ,N )‖H 2 � ‖ξ‖H2(R2) � C‖(φ,ψ ,N )‖H 2 ,

and for H3(R2;R2) in a neighborhood of zero,

1
C

‖(φ,ψ ,N )‖H 3 � ‖ξ‖H3(R2) � C‖(φ,ψ ,N )‖H 3 . (4.3)

Proof We introduce the linear mappings f and g defined for ξ = (ξ1, ξ2) ∈ H2(R2;R2) by

f (ξ )(y) = 1
2

∫

x∈R
ξ1(x, y)

1
ch x

dx,

g(ξ )(y) = 1
2

∫

x∈R
ξ2(x, y)

1
ch x

dx.

The operators f and g are bounded linear transformations from H2(R2;R2) (resp.
H3(R2;R2)) into H2(R) (resp. H3(R)). For a fixed ξ in a neighborhood of 0, (φ,ψ ,N )
can be obtained in the following way:
We operate g on (4.1) and obtain

g(ξ )(y) = ψ(y),

By operating f on (4.1), we get

f (ξ )(y) = 1
2

∫

x∈R
ρ (φ (y)) (x)

1
ch x

dx.

We define Ψ ∈ C∞(R;R) given by

Ψ (σ ) = 1
2

∫

x∈R
ρ(σ )(x)

1
ch x

dx.

Since Ψ (0) = 0 and Ψ ′(0) = 1, there exists δ > 0 such that Ψ is a C∞-diffeomorphism
from (−δ, δ) to neighborhood of zero. We get

f (ξ )(y) = Ψ (φ(y)),

Also φ is given by

φ(y) = Ψ −1(f (ξ )(y)).

We setN as

N (x, y) = ξ (x, y) − β(φ(y))(x) −
(

0
1

ch x

)

ψ(y), (4.4)

and by construction f (N ) = g(N ) = 0, i.e.,N ∈ G 2.
As we remark that G 2 = {N ∈ H2(R2;R2), f (N ) = g(N ) = 0

}
.

Usingρ(0)(x) = 0, ∂σ ρ(0)(x) = − 1
ch x and |β(σ )(x)| � C |σ |

ch x , weobtain that forφ ∈ H2(R)
sufficiently small,

‖β(φ(y))(x)‖H2(R2) � C‖φ‖H2(R), (4.5)
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so ξ ∈ H2(R2;R2) we have

‖ξ‖H2(R2) � C
(‖φ‖H2(R) + ‖ψ‖H2(R) + ‖N ‖H2(R2)

)
� C‖(φ,ψ ,N )‖H 2 .

Now using the boundedness of the linear operators f and g for the H2-norm, since Ψ −1

is smooth in a neighborhood of 0 and satisfies Ψ −1(σ ) = σ +O(σ 2), we get the following
relation:

‖φ‖H2(R) + ‖ψ‖H2(R) � C‖ξ‖H2(R2).

Using (4.4) and (4.5), we get

‖N ‖H2(R2) � C‖ξ‖H2(R2),

which yields

‖(φ,ψ ,N )‖H 2 � C‖ξ‖H2(R2).

We prove (4.3) in a similar fashion. This concludes the proof of Proposition 4.1. �

In a neighborhood of zero, we define ξ in the new coordinates system (φ,ψ ,N ) given
by (4.1). We transform (2.5) in these coordinates. We choose δ to be sufficiently small
so that ‖ξ‖L∞ < 1. We notice that in the one-dimensional case, for a fixed σ , the map
x �→ β(σ )(x) is a static wave solution to (2.5). We denote T1 the reduced operator given
by:

T1γ =
(

−1 −1
1 −1

)(
T1γ1

T1γ2 − 2γ2

)

,

with

T1β(φ) + P (β(φ)) ∂xxβ(φ)+Q (β(φ)) (∂xβ(φ), ∂xβ(φ))

+R (x,β(φ)) (∂xβ(φ)) + S (x,β(φ)) = 0.
(4.6)

Furthermore,

∂t (β(φ(t, y))(x)) = ∂σR (φ(t, y)) ∂tφ(t, y),

and

� (R (φ(t, y)) (x)) = ∂xxR (φ(t, y)) + ∂σR (φ(t, y)) ∂yyφ + ∂σσR (φ(t, y)) |∂yφ|2.
We also have

T β(φ) = T1β(φ) +
(

−1 −1
1 −1

)
(−∂σ β(φ)∂yyφ − ∂σσ β(φ)|∂yφ|2) .

Substituting (4.1) in (2.5) and using (4.6), we obtain

∂σ β(φ)∂tφ +
(

0
1

ch x

)

∂tψ + ∂tN = (∂σ ρ(φ)∂yyφ + ∂σσ ρ(φ)|∂yφ|2)
(

1
−1

)

+ 1
ch x
(
∂yyψ + 2ψ

)
(
1
1

)

+ T N + �.
(4.7)

The nonlinear term � is defined as

� =
5∑

i=1
�i, (4.8)
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where

�1 = P(β(φ))∂yyβ(φ) + P̃(β(φ), γ )(γ ) (∂xxβ(φ))

+P̃(β(φ), γ )(γ )(∂yyβ(φ)) + P(ξ )�γ .

�2 = 2Q(β(φ))(∂xβ(φ), ∂xγ ) + Q(β(φ))(∂xγ , ∂xγ ) + Q̃(β(φ), γ )(γ )(∂xξ , ∂xξ ).

�3 = Q(ξ )(∂yβ(φ), ∂yβ(φ)) + 2Q(ξ )(∂yβ(φ), ∂yγ ) + Q(ξ )(∂yγ , ∂yγ ).

�4 = R(x,β(φ))(∂xγ ) + R̃(x,β(φ), γ )(γ )(∂xξ ).

�5 = S̃ (x,β(φ), γ )(γ ).

with the following notations:

• γ (x, y) = ψ(y)
(

0
1

ch x

)

+ N (x, y) and ξ (x, y) = β(φ(y))(x) + γ (x, y),

• P̃ ∈ C∞(B(0, 1/2) × (B(0, 1/2);L (R2;M2(R))) (L (R2;M2(R)) is the set of linear
transformations defined on R

2 with values inM2(R)):

P̃(u, v) =
1∫

0

P ′(u + sv)ds.

• Q̃ ∈ C∞(B(0, 1/2) × (B(0, 1/2);L (R2;L2(R2;R2))):

Q̃(u, v) =
1∫

0

Q′(u + sv)ds.

• R̃ ∈ C∞(B(0, 1/2) × (B(0, 1/2);L (R2;M2(R))):

R̃(x, u, v) =
1∫

0

∂ζR(x, u + sv)ds.

• S̃ ∈ C∞(B(0, 1/2) × (B(0, 1/2);L (R2;R2)):

S̃ (x, u, v) =
1∫

0

∂ζS (x, u + sv)ds.

(the tilde terms come from the Taylor expansion for P ,Q,R and S applied between
β(φ) and β(φ) + γ ).
Weobtain the transformed system innewcoordinates (φ,ψ ,N )with thehelpof operators
f and g .

We multiply (4.7) by
(

1
2 ch x
0

)

, and we integrate in the x variable. We get

A (φ)∂t (φ) = A (φ)∂yyφ + B(φ)|∂yφ|2 + (∂yyψ + 2ψ) + f (�),

where

A (σ ) = 1
2

∫

R

∂σ ρ(σ )(x)
1

ch x
dx

= −1
2

∫

R

[
sh(x − σ ) th x
ch2(x − σ )

+ 1
ch2(x − σ ) ch x

]
1

ch x
dx,
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and

B(σ ) = 1
2

∫

R

∂σσ ρ(σ )(x)
1

ch x
dx

=
∫

R

[
th x

ch(x − σ )
− 2

sh2(x − σ ) th x
ch3(x − σ )

− 2
sh(x − σ )

ch3(x − σ ) ch x

]
1

ch x
dx.

We notice thatA andB are in C∞(R,R) and thatA (0) = 1 andB(0) = 0.
In a neighborhood of zero, we write 1

A (σ ) = 1 + υ(σ ) where υ(σ ) = O (|σ |) andB(σ ) =
O (σ ). We obtain that

∂tφ = ∂yyφ + (∂yyψ + 2ψ
)+ F1(φ,ψ ,N ), (4.9)

where the nonlinear termF1 is given by

F1(φ,ψ ,N ) = υ(φ)
(
∂yyψ + 2ψ

)+ B(φ)
A (φ)

|∂yφ|2 + 1
A (φ)

f (�). (4.10)

We multiply (4.7) by
(

0
1

2 ch x

)

and integrate in the x variable. We are left with:

∂tψ = −∂yyφ + (∂yyψ + 2ψ
)+ F2(φ,ψ ,N ) (4.11)

with

F2(φ,ψ ,N ) = (1 − A (φ)) ∂yyφ − B(φ)|∂yφ|2 + g(�). (4.12)

In order to get the equation for N , we multiply (4.8) by ∂σ β(φ), (4.11) by
(

0
1

ch x

)

and

subtracting from (4.7) which gives

∂tN = T N + F3(x,φ,ψ ,N ), (4.13)

where

F3(x,φ,ψ ,N ) = �

+
(

|∂yφ|2∂σσ ρ(φ) + (∂yyψ + 2ψ)( 1
ch x − ∂σ ρ(φ)) − ∂σ ρ(φ)F1(φ,ψ ,N )

−|∂yφ|2∂σσ ρ(φ) + ∂yyφ( 1
ch x − ∂σ ρ(φ)) − 1

ch xF2(φ,ψ ,N )

)

, (4.14)

and with this, we complete the details of the following proposition:

Proposition 4.2 Assume that (φ,ψ ,N ) ∈ C1(0, T ;�) is given by proposition (4.1). Con-
sider ξ ∈ C1(0, T ;H2(R2,R2)) such that for all t � 0, ‖ξ (t, .)‖H2(R2) � δ. Then ξ satisfies
(2.5) if and only if (φ,ψ ,N ) satisfies the system (4.9)–(4.11)–(4.13), and 0 is stable for (2.5)
if and only if (0,0,0) is stable for (4.9)–(4.11)–(4.13).

5 Preliminary estimates
We recall that from Proposition 4.1, for ξ ∈ H2(R2;R2) in a neighborhood of 0, we have
the following representation,

ξ (x, y) = β(φ(y))(x) +
(

0
1

ch x

)

ψ(y) + N (x, y),

with (φ,ψ ,N ) ∈ �, and there exists C such that for k = 2 or 3,
1
C

‖(φ,ψ ,N )‖H k � ‖ξ‖Hk (R2) � C‖(φ,ψ ,N )‖H k .

We introduce κ > 0 such that if ‖(φ,ψ ,N )‖H 2 � κ , then ‖ξ‖L∞ � δ, so that we are in
the framework of Proposition 4.2. We state the following proposition:
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Proposition 5.1 There exists C such that for all (φ,ψ ,N ) ∈ �, if ‖(φ,ψ ,N )‖H 2 � κ ,
then

‖F1‖H1(R) + ‖F2‖H1(R) + ‖F3‖H1(R2)

� C ‖(φ,ψ ,N )‖H 2
(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)

)
.

(5.1)

Moreover, we can write F1 − F2 on the form: F1 − F2 = F̃a + F̃b, where F̃a and
F̃b satisfy the following estimates: There exists C such that for all (φ,ψ ,N ) ∈ �, if
‖(φ,ψ ,N )‖H 2 � κ , then

‖F̃a‖L1(R) � C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))2, (5.2)

‖F̃b‖L 4
3 (R)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))‖φ‖L4(R). (5.3)

First we establish some preliminary estimates before going to the proof of this proposi-
tion. We establish a Sobolev-type inequality in the following lemma:

Lemma 5.1 There exists a constant C such that for all u ∈ H2(R) and for k = 1, 2, 4,

‖∂yu‖2L2k (R) � C‖u‖L∞(R)‖∂yyu‖Lk (R).

Proof For k = 1, 2, 4, we obtain

‖∂yu‖2kL2k (R) =
∫

R

(∂yu)2k =
∫

R

∂yu(∂yu)2k−1 = −(2k − 1)
∫

R

u∂yyu(∂yu)2k−2

� C‖u‖L∞(R)‖∂yyu‖Lk (R)‖∂yu‖2k−2
L2k (R),

which completes the proof. �
To get a estimate for the nonlinear term � defined in (4.8), we establish preliminary

estimates.

Lemma 5.2 There exists C such that for all (φ,ψ ,N ) ∈ �, if ‖(φ,ψ ,N )‖H 2 � κ , then

‖β(φ)‖L∞(R2) + ‖∇β(φ)‖L4(R2) + ‖∇∂xβ(φ)‖L4(R2) � C‖(φ,ψ ,N )‖H 2

and

‖∂yyβ(φ)‖L2(R2) + ‖∂yyβ(φ)‖L4(R2)+‖∇∂yyβ(φ)‖L2(R2)

�C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)).

Proof We recall that there exists C such that for σ ∈ B(0,1/2), we obtain
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|β(σ )(x)| + |∂xβ(σ )(x)| + |∂xxβ(σ )(x)| � C |σ |
ch x ,

|∂σ β(σ )(x)| + |∂x∂σ β(σ )(x)| � C
ch x ,

|∂σσ β(σ )(x)| + |∂x∂σσ β(σ )(x)| � C
ch x ,

|∂σσσ β(σ )(x)| � C
ch x .

From Sobolev embedding, H2(R2) ↪→ L∞(R2) and using (4.5), we obtain

‖β(φ)‖L∞(R2) � C‖φ‖H2(R)

using previous remarks, and we have

|∇β(φ)| � C
ch x

(|φ| + |∂yφ|),
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From Sobolev embedding, H2(R2) ↪→ W 1,4(R2), we get

‖∇β(φ)‖L4(R2) � C‖φ‖H2(R)

and

‖∇∂xβ(φ)‖L4(R2) � C‖φ‖H2(R).

This concludes the claimed estimate of the first part.
For the second part, we have

∂yy (β(φ)) = ∂σ β(φ)∂yyφ + ∂σσ β(φ)|∂yφ|2,
|∂yy (β(φ)) | � C

ch x
(|∂yyφ| + |∂yφ|2).

Using Lemma 5.1,

‖∂yy (β(φ)) ‖L2(R2) � C‖∂yyφ‖L2(R),
we have

‖∂yy (β(φ)) ‖L4(R2) � C(‖∂yyφ‖L4(R) + ‖∂yφ‖2L8(R))
� C(‖∂yyφ‖L4(R) by Lemma 5.1,

� C(‖∂yφ‖H2(R) by Sobolev embedding.

To conclude, we have

∂x(∂yyβ(φ)) = ∂x∂σ β(φ)∂yyφ + ∂x∂σσ β(φ)|∂yφ|2,
yields

‖∂x(∂yyβ(φ))‖L2(R2) � C‖∂yyφ‖L2(R)
also,

∂y(∂yyβ(φ)) = ∂σσ β(φ)(∂yφ)(∂yyφ) + ∂σ β(φ)∂yyyφ + ∂σσσ β(φ)(∂yφ)3

+ 2∂σσ β(φ)(∂yφ)(∂yyφ),

which implies

‖∂y(∂yyβ(φ))‖L2(R2) � C‖∂yφ‖L4(R)‖∂yyφ‖L4(R) + C‖∂yyyφ‖L2(R)
+C‖∂yφ‖3L6(R) + C‖∂yφ‖L4(R)‖∂yyφ‖L4(R)

� C(‖∂yyφ‖1/2L2(R)‖∂yyyφ‖1/2L2(R) + ‖∂yyyφ‖L2(R)
+‖∂yyφ‖1/2L2(R)‖∂yφ‖2L8(R))

� C‖∂yφ‖H2(R). by Lemma 5.1

This concludes the proof of Lemma 5.2. �

In the following lemma, we derive estimates for the term γ defined as

γ (t, x, y) = ψ(t, y)
(

0
1

ch x

)

+ N (t, x, y).

Lemma 5.3 There exists a constant C such that

‖γ ‖L∞(R2) + ‖γ ‖H2(R2) + ‖γ ‖L4(R2) + ‖∇γ ‖L4(R2) � C‖(φ,ψ ,N )‖H 2 ,
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and

‖γ ‖H2(R2) + ‖�γ ‖L4(R2) + ‖∇�γ ‖L2(R2)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)).

Proof We have

|γ | � 1
ch x

|ψ | + |N |

yields

‖γ ‖L2(R2) � C(‖ψ‖L2(R) + ‖N ‖L2(R2)),

‖∇γ ‖L2(R2) � C(‖ψ‖L2(R) + ‖∂yψ‖L2(R) + ‖∇N ‖L2(R2)),

‖�γ ‖L2(R2) � C(‖ψ‖L2(R) + ‖∂yyψ‖L2(R) + ‖�N ‖L2(R2)).

which implies

‖γ ‖H2(R2) � C‖(φ,ψ ,N )‖H 2 .

FromtheSobolev embeddings ofH2(R2) intoL∞(R2) andW 1,4(R2),weobtain the claimed
estimate of the first part. Also, we have

‖�γ ‖L4(R2) � C‖∇γ ‖H2(R2),

‖∇�γ ‖L2(R2) � C(‖ψ‖H3(R) + ‖∇�N ‖L2(R2)).

This completes the proof of Lemma 5.3. �

Proof of Proposition 5.1 In order to obtain the claimed estimate (5.1), we need to establish
an estimate for the nonlinear functions appearing in Eq. (2.5) and the nonlinear term �

defined in (4.8). We provide these estimates in the following Propositions. �

Proposition 5.2 There exists a constant C such that for ξ ∈ B(0, 1) and for x ∈ R,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|P(ξ )| � C|ξ | and |P ′(ξ )| � C,

|Q(ξ )| � C|ξ | and |Q′(ξ )| � C,

|R(x, ξ )| � C
ch x |ξ | and |∂ξR(x, ξ )| � C

ch x ,

|S (x, ξ )| � C|ξ |3 + C
ch x |ξ |2 and |∂ξS (x, ξ )| � C|ξ |2 + C

ch x |ξ |.

Proposition 5.3 There exists C such that for all (φ,ψ ,N ) ∈ �, if ‖(φ,ψ ,N )‖H 2 � κ ,
then

‖�‖H1(R2) � C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)).

Proof We get the desired estimate for the term � in the following way.

• The term �1 is given by

�1 =P(β(φ))∂yyβ(φ) + P̃(β(φ), γ )(γ ) (∂xxβ(φ))

+ P̃(β(φ), γ )(γ )(∂yyβ(φ)) + P(β(φ) + γ )�γ

and from Proposition (5.2), there exists C such that for |ζ | � 1
2 ,
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|P(ζ )| � C|ζ |, |P ′(ζ )| � C,

|P̃(u, v)| � C(|u| + |v|) and |∂uP̃(u, v)| + |∂vP̃(u, v)| � C,

this implies

|�1| � C|β(φ)||∂yyβ(φ)|
+C|γ ||∂xxβ(φ)| + C|γ ||∂yyβ(φ)| + C (|β(φ)| + |γ |) |�γ |

and

‖�1‖L2(R2) � C‖β(φ)‖L∞(R2)‖∂yyβ(φ)‖L2(R2) + C‖∂xxβ(φ)‖L∞(R2)‖γ ‖L2(R2)

+C‖γ ‖L∞(R2)‖∂yyβ(φ)‖L2(R2) + C‖β(φ)‖L∞(R2)‖�γ ‖L2(R2)

+C‖γ ‖L∞(R2)‖�γ ‖L2(R2)

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))

from Lemmas 5.2 and 5.3.

Concerning the gradient term

|∇�1| � C|∇β(φ)||∂yyβ(φ)| + C|β(φ)||∇∂yyβ(φ)| + C(|∇β(φ)| + |∇γ |)|γ ||∂xxβ(φ)|
+C|∇γ ||∂xxβ(φ)| + C|γ ||∇∂xxβ(φ)| + C(|∇β(φ)| + |∇γ |)|γ ||∂yyβ(φ)|
+C|∇γ ||∂yyβ(φ)| + C|γ ||∇∂yyβ(φ)| + C(|∇β(φ)| + |∇γ |)|�γ |
+C(|β(φ)| + |γ |)|∇�γ |

yields

‖∇�1‖L2(R2) � C‖∇β(φ)‖L4(R2)‖∂yyβ(φ)‖L4(R2) + C‖β(φ)‖L∞(R2)‖∇∂yyβ(φ)‖L2(R2)

+C‖∂xxβ(φ)‖L∞(R2)(‖∇β(φ)‖L4(R2) + ‖∇γ ‖L4(R2))‖γ ‖L4(R2)

+C‖∂xxβ(φ)‖L∞(R2)‖∇γ ‖L2(R2) + C‖γ ‖L∞(R2)‖∇∂xxβ(φ)‖L2(R2)

+C‖γ ‖L∞(R2)(‖∇β(φ)‖L4(R2) + ‖∇γ ‖L4(R2))‖∂yyβ(φ)‖L4(R2)

+C‖∇γ ‖L4(R2)‖∂yyβ(φ)‖L4(R2) + C(‖∇β(φ)‖L4(R2)

+‖∇γ ‖L4(R2))‖�γ ‖L4(R2)

+C‖γ ‖L∞(R2)‖∇∂yyβ(φ)‖L2(R2) + C(‖β(φ)‖L∞(R2)

+‖γ ‖L∞(R2))‖∇�γ ‖L2(R2)

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))

by Lemmas 5.2 and 5.3.

• We recall the term �2 is given by

�2 = 2Q(β(φ))(∂xβ(φ), ∂xγ ) + Q(β(φ))(∂xγ , ∂xγ )

+Q̃(β(φ), γ )(γ )(∂xβ(φ), ∂xβ(φ))

+ 2Q̃(β(φ), γ )(γ )(∂xβ(φ), ∂xγ ) + Q̃(β(φ), γ )(γ )(∂xγ , ∂xγ ).

In addition, from Proposition (5.2), there exists C such that for |ζ | � 1
2 ,

|Q(ζ )| � C|ζ |, |Q′(ζ )| � C,
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and for |u| � 1/2 and |v| � 1/2,

|Q̃(u, v)| + |∂uQ̃(u, v)| + |∂vQ̃(u, v)| � C.

We have

|�2| � C|β(φ)||∂xβ(φ)||∂xγ | + C|β(φ)||∂xγ |2
+C|γ ||∂xβ(φ)|2 + C|γ ||∂xβ(φ)||∂xγ | + C|γ ||∂xγ |2,

using Lemmas 5.2 and 5.3, we obtain

‖�2‖L2(R2) � C‖∂xβ(φ)‖L4(R2)‖∂xγ ‖L4(R2) + C‖β(φ)‖L∞(R2)‖∂xγ ‖2L4(R2)

+C‖γ ‖L∞(R2)‖∂xβ(φ)‖2L4(R2)

+C‖γ ‖L∞(R2)‖∂xγ ‖L4(R2)‖∂xβ(φ)‖L4(R2)

+C‖γ ‖L∞(R2)‖∂xγ ‖2L4(R2)

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)).

also,

|∇�2| � C|∇β(φ)||∂xγ ||∂xβ(φ)| + C|β(φ)|(|∇∂xβ(φ)||∂xγ | + |∂xβ(φ)||∇∂xγ |)
+C|∇β(φ)||∂xγ |2 + C|β(φ)||∂xγ ||∇∂xγ |
+C(|∇β(φ)| + |∇γ |)|γ ||∂xβ(φ)|2
+C|∇γ ||∂xβ(φ)|2 + C|γ ||∂xβ(φ)||∇∂xβ(φ)|
+C(|∇β(φ)| + |∇γ |)|γ ||∂xβ(φ)||∂xγ |
+C|∇γ ||∂xβ(φ)||∂xγ | + C|γ |(|∇∂xβ(φ)||∂xγ | + |∂xβ(φ)||∇∂xγ |)
+C(|∇β(φ)| + |∇γ |)|γ ||∂xγ |2 + C|∇γ ||∂xγ |2 + C|γ ||∂xγ ||∇∂xγ |

gives

‖∇�2‖L2(R2) � C‖∂xxβ(φ)‖L∞(R2)‖∇β(φ)‖L4(R2)‖∂xγ ‖L4(R2)

+C‖β(φ)‖L∞(R2)‖∂xγ ‖L4(R2)‖∇∂xγ ‖L4(R2)

+C‖β(φ)‖L∞(R2)(‖∇∂xβ(φ)‖L4(R2)‖∂xγ ‖L4(R2)

+‖∂xβ(φ)‖L4(R2)‖∇∂xγ ‖L4(R2))

+C‖∇β(φ)‖L4(R2)‖∂xγ ‖2L8(R2) + C‖∇γ ‖L4(R2)‖∂xβ(φ)‖2L8(R2)

+C‖∂xβ(φ)‖L∞(R2)‖γ ‖L4(R2)(‖∇β(φ)‖L4(R2) + ‖∇γ ‖L4(R2))

+C‖γ ‖L∞(R2)‖∂xβ(φ)‖L4(R2)‖∇∂xβ(φ)‖L4(R2)

+C‖γ ‖L∞(R2)‖∂xγ ‖L4(R2)‖∇∂xγ ‖L4(R2)

+C‖∇γ ‖L4(R2)‖∂xγ ‖2L8(R2)

+C‖γ ‖L∞(R2)(‖∇∂xβ(φ)‖L4(R2)‖∂xγ ‖L4(R2)

+‖∂xβ(φ)‖L4(R2)‖∇∂xγ ‖L4(R2))

+C‖γ ‖L∞(R2)‖∂xγ ‖2L8(R2)(‖∇β(φ)‖L4(R2) + ‖∇γ ‖L4(R2))

+C‖∂xβ(φ)‖L∞(R2)‖∇γ ‖L4(R2)‖∂xγ ‖L4(R2)

+C‖γ ‖L∞(R2)‖∂xxβ(φ)‖L∞(R2)‖∂xγ ‖L4(R2)(‖∇β(φ)‖L4(R2)
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+‖∇γ ‖L4(R2))

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)).

We get the claimed estimate using Lemmas 5.1, 5.2, and 5.3.
• To estimate �3, we recall that:

�3 = Q(ξ )(∂σ β(φ), ∂σ β(φ))|∂yφ|2 + 2Q(ξ )(∂σ β(φ), ∂yγ )(∂yφ) + Q(ξ )(∂yγ , ∂yγ )

we have for |ζ | � 1/2,

|Q(ζ )| � C|ζ | and |Q′(ζ )| � C.

Therefore,

|�3| � C(|β(φ)| + |γ |)(|∂σ β(φ)|2|∂yφ|2 + |∂σ β(φ)||∂yγ ||∂yφ| + |∂yγ |2)
so that

‖�3‖L2(R2) � C(‖β(φ)‖L∞(R2) + ‖γ ‖L∞(R2))(‖∂yφ‖2L4(R) + ‖∂yφ‖L4(R)‖∂yγ ‖L4(R2)

+‖∂yγ ‖2L4(R2))

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)).

and

|∇�3| � C(|∇β(φ)| + |∇γ |)|∂σ β(φ)|2|∂yφ|2 + C|∂σ β(φ)||∇∂σ β(φ)||∂yφ|2
+C|∂σ β(φ)|2|∂yφ||∂yyφ| + C(|∇β(φ)| + |∇γ |)|∂σ β(φ)||∂yγ ||∂yφ|
+C(|∇∂σ β(φ)||∂yγ | + |∂σ β(φ)||∇∂yγ |)|∂yγ | + C|∂yγ ||∇∂yγ |
+C|∂σ β(φ)||∂yγ ||∂yyφ| + C(|∇β(φ)| + |∇γ |)|∂yγ |2

yields

‖∇�3‖L2(R2) � C(‖∇β(φ)‖L4(R2) + ‖∇γ ‖L4(R2))‖∂yφ‖2L8(R)
+C(‖∂yφ‖2L4(R) + ‖∂yφ‖3L6(R))
+C‖∂yφ‖L4(R)‖∂yyφ‖L4(R) + C(‖∇β(φ)‖L4(R2)

+‖∇γ ‖L4(R2))‖∂yγ ‖L∞(R2)‖∂yφ‖L4(R)
+C(‖∇β(φ)‖L2(R2) + ‖∇γ ‖L2(R2))‖∂yγ ‖L∞(R2)

+C‖∂yφ|L∞(R)‖∇∂yγ ‖L2(R2)

+C‖∂yγ ‖L∞(R2)(‖∂yφ‖L2(R) + ‖∂yφ‖2L4(R) + ‖∂yyφ‖L2(R)
+‖∇∂yγ ‖L2(R2))

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R)

+‖N ‖H3(R2)).

Using the Sobolev embedding of H2(R) into L∞(R) and Lemmas 5.1, 5.2 and 5.3, we
obtain the required estimate.

• We have

�4 = R(x,β(φ))(∂xγ ) + R̃(x,β(φ), γ )(γ )(∂xβ(φ)) + R̃(x,β(φ), γ )(γ )(∂xγ ).

from Proposition (5.2), we have for |ζ | � 1/2,



2 Page 20 of 29 Dwivedi and Dubey ResMath Sci (2019) 6:2

|R(x, ζ )| + |∂xR(x, ζ )| � C
ch x

|ζ |,
and

|∂ζR(x, ζ )| + |∂x∂ζR(x, ζ )| + |∂ζζR(x, ζ )| � C
ch x

,

for |u| � 1/2 and |v| � 1/2,

|R̃(x, u, v)| + |∂uR̃(x, u, v)| + |∂vR̃(x, u, v)| � C
ch x

.

Thus

|�4| � C
ch x

(|β(φ)||∂xγ | + |γ ||∂xβ(φ)| + |γ ||∂xγ |)
implies

‖�4‖L2(R2) � C‖φ‖L4(R)(‖∂xγ ‖L4(R2) + ‖γ ‖L4(R2)) + C‖γ ‖L∞(R2)‖∂xγ ‖L2(R2)

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))

and

|∇�4| � C
ch x

(|β(φ)||∂xγ | + |∇β(φ)||∂xγ | + |β(φ)||∇∂xγ |)

+ C
ch x

(|β(φ)||γ ||∂xγ | + |∇β(φ)||γ ||∂xγ |
+ |∇γ ||γ ||∂xγ | + |∇γ ||∂xγ | + |γ ||∇∂xγ |)
+ C

ch x
(|β(φ)||γ ||∂xβ(φ)|

+ |∇β(φ)||γ ||∂xβ(φ)| + |∇γ ||γ ||∂xβ(φ)|
+ |∇γ ||∂xβ(φ)| + |γ ||∇∂xβ(φ)|)

gives

‖∇�4‖L2(R2) � C‖∂xγ ‖L4(R2)(‖φ‖L4(R)
+‖∇β(φ)‖L4(R)) + C‖φ‖L∞(R)‖∇∂xγ ‖L2(R2)

+C‖β(φ)‖L∞(R)‖φ‖L4(R)‖γ ‖L4(R2) + C‖∇∂xβ(φ)‖L4(R)‖γ ‖L4(R2)

+C‖γ ‖L∞(R2)‖φ‖L4(R)(‖∇β(φ)‖L4(R) + ‖∇γ ‖L4(R2))

+C‖γ ‖L∞(R2)‖φ‖L4(R)‖∂xγ ‖L4(R2) + C‖∇γ ‖L4(R2)‖∂xγ ‖L4(R2)

+C‖γ ‖L∞(R2)‖∂xγ ‖L4(R2)(‖∇β(φ)‖L4(R) + ‖∇γ ‖L4(R2))

+C‖φ‖L4(R)‖∇γ ‖L4(R2) + C‖γ ‖L∞(R2)‖∇∂xγ ‖L2(R2)

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)).

Using Lemmas 5.2 and 5.3.
• The last term �5 is given by

�5 = S̃ (x,β(φ), γ )(γ ).

There exists C such that for u and v in B(0, 1/2), we have

|S̃ (x, u, v)| + |∂xS̃ (x, u, v)| � C(|u| + |v|)
and |∂uS̃ (x, u, v)| + |∂vS̃ (x, u, v)| � C.
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Therefore,

|�5| � C(|β(φ)| + |γ |)|γ |
yields

‖�5‖L2(R2) � C(‖β(φ)‖L∞(R2) + ‖γ ‖L∞(R2))‖γ ‖L2(R2)

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))

also

|∇�5| � C(|β(φ)| + |γ |)(|γ | + |∇γ |) + C|γ |(|∇β(φ)| + |∇γ |).
Using Lemma 5.2 and 5.3, we obtain

‖∇�5‖L2(R2) � C(‖β(φ)‖L∞(R2) + ‖γ ‖L∞(R2))(‖γ ‖L2(R2) + ‖∇γ ‖L2(R2))

+C‖γ ‖L∞(R2)(‖∇β(φ)‖L2(R2) + ‖∇γ ‖L2(R2))

� C‖(φ,ψ ,N )‖H 2 (‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)).

This concludes the proof of Proposition 5.3.

�

To fill up the proof of estimate (5.1), we use the boundedness of the linear transforma-
tions f and g and remark that for s ∈ N, there exists C such that if u ∈ Hs(R2;R2) then
�i(u) ∈ Hs(R) (i = 1, 2), which leads to

‖�i(u)‖Hs(R) � C‖u‖Hs(R2).

This estimate together with Proposition 5.3 establish the desired estimates on F1 and
F2. We obtain the claimed estimate onF3 using (4.14).

5.1 Proof of estimate (5.2) and (5.3)

From (4.10) and (4.12), we recall that

F1(φ,ψ ,N ) = υ(φ)
(
∂yyψ + 2ψ

)+ B(φ)
A (φ)

|∂yφ|2 + 1
A (φ)

f (�),

F2(φ,ψ ,N ) = (1 − A (φ)) ∂yyφ − B(φ)|∂yφ|2 + g(�),

where υ(σ ) = O(σ ),A (σ ) = 1 + O(σ ) andB(σ ) = O(σ ).
Our aim is to splitF1−F2 on the form:F1−F2 = F̃a+F̃b, where F̃a and F̃b satisfy

the estimates (5.2) and (5.3), respectively. We do this splitting in the following manner:
We define F̃a and F̃b as,

F̃a = F̃ 1
a + F̃ 2

a and F̃b = F̃ 1
b + F̃ 2

b .

We denote by:

F̃ 1
a =
(
B(φ)
A (φ)

+ B(φ)
)

|∂yφ|2 and F̃ 1
b = υ(φ)(∂yyψ + 2ψ) − (1 − A (φ)) ∂yyφ,

F̃ 2
a = 1

A (φ)
f (�a) − g(�a) and F̃ 2

b = 1
A (φ)

f (�b) − g(�b),

where we split � on the form � = �a + �b.
UsingA (σ ) = 1 + O(σ ) andB(σ ) = O(σ ), we obtain
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‖F̃ 1
a ‖L1(R) � C‖φ‖L∞(R)‖∂yφ‖2L2(R)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))2,

we have

|F̃ 1
b | � C|φ||∂yyψ + 2ψ | + C|φ||∂yyφ|,

implies

‖F̃ 1
b ‖L4/3(R) � C‖φ‖L4(R)

(‖∂yyψ + 2ψ‖L2(R) + ‖∂yyφ‖L2(R)
)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))‖φ‖L4(R).
In order to get the expected estimates of F̃ 2

a and F̃ 2
b , we will split � on the form � =

�a + �b. We recall the expression of � in (4.8) and describe this splitting for each term
�i(i = 1, .., 5).

• We recall that

�1 = P(β(φ))∂yyβ(φ) + P̃(β(φ), γ )(γ ) (∂xxβ(φ))

+ P̃(β(φ), γ )(γ )(∂yyβ(φ)) + P(β(φ) + γ )�γ ,

notice that

∂yyβ(φ) = ∂σ β(φ)∂yyφ + ∂σσ β(φ)|∂yφ|2 and P(ξ ) = P(β(φ) + γ )

= P(β(φ)) + P̃(β(φ), γ )(γ ),

where

P̃(u, v) =
1∫

0

P ′(u + sv)ds.

We define the decomposition of �1 as �1 = �a
1 + �b

1 with:

�a
1 = P(β(φ))(∂σσ β(φ)|∂yφ|2) + P̃(β(φ), γ )(γ )(∂xxβ(φ))

+P̃(β(φ), γ )(γ )(∂σ β(φ)∂yyφ)

+P̃(β(φ), γ )(γ )(∂σσ β(φ)|∂yφ|2) + P̃(β(φ), γ )(γ )(�γ ),

�b
1 = P(β(φ))(∂σ β(φ)∂yyφ) + P(β(φ))(�γ ).

We have

|�a
1| � C

ch2x
|φ||∂yφ|2 + C

ch x
|γ ||φ| + C

ch x
|γ ||∂yyφ|

+ C
ch x

|γ ||∂yφ|2 + C|γ ||�γ |,
Using Lemma 5.1, we get

‖�a
1‖L1(R2) � C(‖φ‖L2(R) + ‖γ ‖L2(R2))‖∂yyφ‖L2(R)

+C(‖φ‖L2(R) + ‖�γ ‖L2(R2))‖γ ‖L2(R2)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))2.

Furthermore,

|�b
1| � C

ch2x
|φ||∂yyφ| + C

ch x
|φ||�γ |,
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and thus,

‖�b
1‖L4/3(R2) � C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))‖φ‖L4(R).

• The decomposition of �2 is the following: �2 = �a
2 + �b

2, where

�a
2 = Q(β(φ))(∂xγ , ∂xγ )

+2Q̃(β(φ), γ )(γ )(∂xβ(φ), ∂xγ ) + Q̃(β(φ), γ )(γ )(∂xγ , ∂xγ ),

�b
2 = 2Q(β(φ))(∂xβ(φ), ∂xγ ) + Q̃(β(φ), γ )(γ )(∂xβ(φ), ∂xβ(φ))

yields

|�a
2| � C

ch x
|φ||∂xγ |2 + C

ch x
|φ||γ ||∂xγ | + C|γ ||∂xγ |2,

and

‖�a
2‖L1(R2) � C(‖φ‖L2(R) + ‖γ ‖L2(R2))‖∂xγ ‖2L4(R2)

+C‖γ ‖L∞(R2)‖φ‖L2(R)‖∂xγ ‖L2(R2)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))2.

On the other hand,

|�b
2| � C

ch x
|φ|(|∂xγ | + |γ |),

implies

‖�b
2‖L4/3(R2) � C‖γ ‖H1(R2)‖φ‖L4(R)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))‖φ‖L4(R).
• Concerning �3, we recall:

�3 = Q(ξ )(∂σ β(φ), ∂σ β(φ))|∂yφ|2 + 2Q(ξ )(∂σ β(φ), ∂yγ )(∂yφ) + Q(ξ )(∂yγ , ∂yγ ).

Splitting of �3 is as follows:

�a
3 = Q̃(β(φ), γ )(γ )(∂σ β(φ), ∂σ β(φ))|∂yφ|2 + 2Q̃(β(φ), γ )(γ )(∂σ β(φ), ∂yγ )(∂yφ),

+Q̃(β(φ), γ )(γ )(∂yγ , ∂yγ ),

�b
3 = Q(β(φ))(∂σ β(φ), ∂σ β(φ))|∂yφ|2 + 2Q(β(φ))(∂σ β(φ), ∂yγ )(∂yφ)

+Q(β(φ)))(∂yγ , ∂yγ ),

we have

|�a
3| � C

ch2x
|γ ||∂yφ|2 + C

ch x
|γ ||∂yφ||∂yγ | + C|γ ||∂yγ |2,

and thus,

‖�a
3‖L1(R2) � C‖γ ‖L2(R2)‖∂yφ‖2L4(R)

+C‖γ ‖L∞(R2)‖∂yγ ‖L2(R2)(‖∂yφ‖L2(R) + ‖∂yγ ‖L2(R2))

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))2.

In addition,

|�b
3| � C

ch3x
|φ||∂yφ|2 + C

ch2x
|φ||∂yφ||∂yγ | + C

ch x
|φ||∂yγ |2
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gives

‖�b
3‖L4/3(R2) � C(‖∂yφ‖2L4(R) + ‖∂yφ‖L∞(R)‖∂yγ ‖L2(R2) + ‖∂yγ ‖2L4(R2))‖φ‖L4(R)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))‖φ‖L4(R).
• We define the decomposition of �4 as

�a
4 = R̃(x,β(φ), γ )(γ )(∂xγ ),

�b
4 = R(x,β(φ))(∂xγ ) + R̃(x,β(φ), γ )(γ )(∂xβ(φ)).

Therefore,

‖�a
4‖L1(R2) � C‖γ ‖L2(R2)‖∂xγ ‖L2(R2)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))2

and

‖�b
4‖L4/3(R2) � C(‖∂xγ ‖L2(R2) + ‖γ ‖L2(R2))‖φ‖L4(R)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))‖φ‖L4(R).
• The last term �5 is given by

�5 = S̃ (x,β(φ), γ )(γ ).

Using the Taylor expansion, we obtain

S̃ (x,β(φ), γ )(γ ) = ∂ζS (x,β(φ))(γ ) + ˜̃S (x,β(φ), γ )(γ , γ ),

where

S̃ (x, u, v) = 1
2

1∫

0

(1 − s)∂ζζS (x, u + sv)ds.

Decomposition of �5 is the following:

�a
5 = ˜̃S (x,β(φ), γ )(γ , γ ) and �b

5 = ∂ζS (x,β(φ))(γ ).

yields

‖�a
5‖L1(R2) � C‖γ ‖2L2(R2) � C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))2

and

‖�b
5‖L4/3(R2) � C‖γ ‖L2(R2)‖φ‖L4(R)

� C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))‖φ‖L4(R).

Denoting �a =
5∑

i=1
�a

i and �b =
5∑

i=1
�b

i , we have obtained that � = �a + �b, with

‖�a‖L1(R2) � C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))2, (5.4)

‖�b‖L4/3(R2) � C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))‖φ‖L4(R). (5.5)

We use the boundedness of the linear transformations f and g together with (5.4) and
(5.5), we obtain
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‖F̃ 2
a ‖L1(R) � C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))2,

‖F̃ 2
b ‖L4/3(R) � C(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2))‖φ‖L4(R).

With this, we have obtained the expected decomposition. This concludes the proof of
Proposition 5.1. �

6 Proof of Theorem 1.1
We proof our main result using the variational estimates. We recall that in new coordi-
nates, we deal with the following system:

∂tφ = ∂yyφ + (∂yyψ + 2ψ
)+ F1(φ,ψ ,N ), (6.1)

∂tψ = −∂yyφ + (∂yyψ + 2ψ
)+ F2(φ,ψ ,N ), (6.2)

∂tN =
(

−TN1 − (T − 2)N2
TN1 − (T − 2)N2

)

+ F3(x,φ,ψ ,N ). (6.3)

The unknown (φ,ψ ,N1,N2) ∈ � defined in (4.2). The nonlinear terms F1,F2 and F3
are defined in (4.10), (4.12) and (4.14), respectively.
By variational estimates, we prove that if the initial data are small then the solution of

(6.1)–(6.2)–(6.3) remains small which is essentially the stability result for the transformed
equation. We use energy estimate technique to absorb the linear and nonlinear terms.
Whenwemultiply the equation by the unknowns or their space derivatives, the linear part
shows good sign absorbing terms. To estimate the nonlinear terms, we have to control
them by the absorbing terms. Before moving to the variational estimates, we establish a
Sobolev-type inequality in the following lemma:

Lemma 6.1 There exist a constant C such that for all u ∈ H2(R),

‖u‖L4(R) � C‖u‖1/2L2(R)‖u′‖1/2L2(R), and ‖u‖L4(R) � C‖u‖1/2L2(R)‖u‖1/2H1(R).

Proof From Sobolev embedding,W 1,1(R) ↪→ L2(R) and there exists C such that

‖u‖L2(R) � C‖u′‖L1(R).
We replace u by u2 in the previous inequality to get the first estimate. A straightforward
calculation yields the second estimate. This conclude the proof of Lemma 6.1. �

6.1 H1 and H2 estimates

Taking the inner product of (6.1) with −∂yyφ, we get

1
2
d
dt

(
‖∂yφ‖2L2(R)

)
+ ‖∂yyφ‖2L2(R) = −

∫

R

(∂yyψ + 2ψ)∂yyφ −
∫

R

F1(φ,ψ ,N )∂yyφ.

Taking the inner product of (6.2) with −∂yyψ + 2ψ , we have

1
2
d
dt

(
‖∂yψ‖2L2(R) + 2‖ψ‖2L2(R)

)
+ ‖∂yyψ‖2L2(R)

= 4‖ψ‖2L2(R) −
∫

R

(−∂yyψ + 2ψ)∂yyφ

+
∫

R

F2(φ,ψ ,N )(−∂yyψ + 2ψ).
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Adding the previous equations, we obtain

1
2
d
dt

(
‖∂yφ‖2L2(R) + ‖∂yψ‖2L2(R) + 2‖ψ‖2L2(R)

)
+
(
‖∂yyφ‖2L2(R) + ‖∂yyψ‖2L2(R)

)

= 4‖ψ‖2L2(R) − 4
∫

R

ψ∂yyφ −
∫

R

F1(φ,ψ ,N )∂yyφ

+
∫

R

F2(φ,ψ ,N )(−∂yyψ + 2ψ).

(6.4)

Taking the inner product of (6.1) with ∂yy(∂yyφ) and the inner product of (6.2) with
∂yy(∂yyψ − 2ψ), we obtain

1
2
d
dt

(
‖∂yyφ‖2L2(R) + ‖∂yyψ‖2L2(R) + 2‖∂yψ‖2L2(R)

)
+
(
‖∂yyyφ‖2L2(R) + ‖∂yyyψ‖2L2(R)

)

=4‖∂yψ‖2L2(R) + 4
∫

R

ψ∂yy(∂yyφ) −
∫

R

∂y (F1(φ,ψ ,N )) ∂yyyφ

−
∫

R

∂y (F2(φ,ψ ,N )) ∂y(∂yyψ − 2ψ).

(6.5)

Using Young’s inequality and estimating (5.1) in Proposition 5.1 together with (6.4) and
(6.5) yield that while ‖(φ,ψ ,N )‖H 2 � κ , then

1
2
d
dt

(
‖∂yφ‖2L2(R) + ‖∂yyφ‖2L2(R) + 2‖ψ‖2L2(R) + 3‖∂yψ‖2L2(R) + ‖∂yyψ‖2L2(R)

)

+
(
‖∂yyφ‖2L2(R) + ‖∂yyyφ‖2L2(R) + ‖∂yyψ‖2L2(R) + ‖∂yyyψ‖2L2(R)

)

�2
(
2‖ψ‖2L2(R) + 3‖∂yψ‖2L2(R) + ‖∂yφ‖2L2(R) + ‖∂yyφ‖2L2(R) + ‖∂yyψ‖2L2(R)

)

+ C‖(φ,ψ ,N )‖H 2

(
‖∂yφ‖2H2(R) + ‖ψ‖2H3(R) + ‖N ‖2H3(R2)

)
.

(6.6)

Taking the inner product of (6.3) with
(

T 2N1
T (T − 2)N2

)

, we obtain

1
2
d
dt

(
‖TN1‖2L2(R2) + ‖(T − 2Id)N2‖2L2(R2)

)

+
(
‖T 3/2N1‖2L2(R2) + ‖T 1/2(T − 2Id)N2‖2L2(R2)

)

�‖T 1/2F3‖L2(R2)
(‖T 3/2N1‖L2(R2) + ‖T 1/2(T − 2Id)N2‖L2(R2)

)

�C‖(φ,ψ ,N )‖H 2

(
‖∂yφ‖2H2(R) + ‖ψ‖2H3(R) + ‖N ‖2H3(R2)

)
.

(6.7)

We remark that from Proposition (3.1), on G , we have the equivalence of norms:
‖T 3/2N1‖L2(R2) ∼ ‖N1‖H3(R2) and ‖T 1/2(T − 2Id)N2‖L2(R2) ∼ ‖N2‖H3(R2), while
‖(φ,ψ ,N )‖H 2 � κ and by Proposition (5.1), we obtain the previous estimate.

6.2 L2 estimates

Subtracting (6.1) to (6.2) yields

∂t (φ − ψ) = 2∂yyφ + F1(φ,ψ ,N ) − F2(φ,ψ ,N ). (6.8)

Taking the inner product of (6.8) with φ − ψ , we obtain
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1
2
d
dt

(
‖φ − ψ‖2L2(R)

)
+ 2‖∂yφ‖2L2(R) = 2

∫

R

∂yφ∂yψ +
∫

R

(F1 − F2)φ

−
∫

R

(F1 − F2)ψ .

By Young’s inequality and from Proposition 5.1, we get:

1
2
d
dt

(
‖φ − ψ‖2L2(R)

)
+ 2‖∂yφ‖2L2(R) � ‖∂yφ‖2L2(R) + ‖∂yψ‖2L2(R)

+ ‖F̃a‖L1(R)‖φ‖L∞(R)

+ ‖F̃b‖L4/3(R)‖φ‖L4(R)
+ (‖F1‖L2(R) + ‖F2‖L2(R)

) ‖ψ‖L2(R).

(6.9)

Furthermore, using estimates (5.2) and (5.3), while ‖(φ,ψ ,N )‖H 2 � κ , yields:

1
2
d
dt

(
‖φ − ψ‖2L2(R)

)
+ ‖∂yφ‖2L2(R)

� ‖∂yψ‖2L2(R) + C‖φ‖L∞(R)
(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)

)2

+ C
(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)

) ‖φ‖2L4(R)
+ C‖(φ,ψ ,N )‖H 2

(‖∂yφ‖H2(R) + ‖ψ‖H3(R) + ‖N ‖H3(R2)
) ‖ψ‖L2(R).

From Lemma 6.1, we have

‖φ‖2L4(R) � C‖φ‖L2(R)‖∂yφ‖L2(R).
Therefore, while ‖(φ,ψ ,N )‖H 2 � κ ,

1
2
d
dt

(
‖φ − ψ‖2L2(R)

)
+ ‖∂yφ‖2L2(R)

� ‖∂yψ‖2L2(R) + C‖(φ,ψ ,N )‖H 2

(
‖∂yφ‖2H2(R) + ‖ψ‖2H3(R) + ‖N ‖2H3(R2)

)
.
(6.10)

Adding up (6.6), (6.7), and (6.10), we obtain:

1
2
d�̃(t)
dt

+ K (t) � C‖(φ,ψ ,N )‖H 2

(
‖∂yφ‖2H2(R) + ‖ψ‖2H3(R) + ‖N ‖2H3(R2)

)
.

(6.11)

We define �̃ andK by

�̃(t) = [‖φ − ψ‖2L2(R) + ‖∂yφ‖2L2(R) + ‖∂yyφ‖2L2(R) + 2‖ψ‖2L2(R) + 3‖∂yψ‖2L2(R)
+‖∂yyψ‖2L2(R) + ‖TN1‖2L2(R2) + ‖(T − 2Id)N2‖2L2(R2)](t)

and

K (t) = [−‖∂yφ‖2L2(R) − ‖∂yyφ‖2L2(R) + ‖∂yyyφ‖2L2(R) − 4‖ψ‖2L2(R) − 7‖∂yψ‖2L2(R)
− ‖∂yyψ‖2L2(R) + ‖∂yyyψ‖2L2(R) + ‖T 3/2N1‖2L2(R2)

+ ‖T 1/2(T − 2Id)N2‖2L2(R2)](t).

We recall that from Proposition (3.1), on G , we have the equivalence of norms:
‖T 3/2N1‖L2(R2) ∼ ‖N1‖H3(R2) and ‖T 1/2(T − 2Id)N2‖L2(R2) ∼ ‖N2‖H3(R2). So there
exists a constant K1 such that

K � K1
(
‖∂yφ‖2H2(R) + ‖ψ‖2H3(R) + ‖N ‖2H3(R2)

)
.
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Moreover,‖φ‖L2(R) � C‖φ−ψ‖L2(R)+‖ψ‖L2(R), byProposition3.1, there exists a constant
K2 such that

1
K2

‖(φ,ψ ,N )‖H 2 � �̃(t) � K2‖(φ,ψ ,N )‖H 2 .

Hence while ‖(φ,ψ ,N )‖H 2 � κ , we obtain

1
2
d�̃(t)
dt

+
(
‖∂yφ‖2H2(R) + ‖ψ‖2H3(R) + ‖N ‖2H3(R2)

) (
K1 − CK2�̃(t)

)
� 0. (6.12)

We introduce κ0=min
{

κ
K2
, K1
CK2

}
. If �̃(0) � κ0, then with (6.12), �̃(t) remains smaller

than K1
CK2

, which in turn implies that �̃(t) decreases and remains smaller than κ0, so that
‖(φ,ψ ,N )‖H 2 remains smaller that κ . Therefore, from (6.11), we have

∀ t � 0, ‖(φ,ψ ,N )‖H 2 � K2�̃(t) � K2�̃(0) � κ .

So we are always in the validity domain of our estimates. Hence we derived the stability
result of (0, 0, 0) for (4.9)–(4.11)–(4.13). This concludes the proof of ourmainTheorem1.1
using Propositions 2.1 and 4.2. �

7 Conclusion
In this article, we have analyzed the stability of static domain wall profile for a two-
dimensional model of ferromagnetic material with a simplified expression of the demag-
netizing field. The linear part of the perturbed equation admits 0 as a simple eigenvalue
which prevented us to get the proof directly. The most crucial part is to separate the vari-
ables in the new coordinate system to get the transformed system of equations in which
the linear part are almost independent. The separation of variables taken place due to the
simplified expression of the demagnetizing field which helps us to perform the success-
ful variational estimates. However, the stability of the static walls with the generalized
demagnetizing field remains an open problem. Also, from the application point of view, it
is very essential to study the wall dynamics in presence of external magnetic source, i.e.,
basically the behavior of traveling wave solutions. In future work, we intend to analyze the
stability and controllability features of traveling wave solutions with the complete model.
These problems seem to be technically more complex and we need to have a different
approach to apply the variational estimate technique.
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