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1 Introduction
The study of ferromagnetic systems is of great importance because of its huge application
in the development of modern technological devices. Ferromagnetic materials are used
in numerous technological devices, such as hard disks, recording heads, cellular phones,
magnetic sensors. In particular, ferromagnetic thin films are of great interest because of
their sensitive response to applied magnetic fields which makes them useful for the design
of many devices such as giant magnetoresistive sensors (GMR) and thin-film memories.
The detailed applications of thin film can be found in excellent book by Hubert and Schéfer
[20]. For the characteristics and a general description of ferromagnetic materials, we refer
the reader to [3,9,20,24].

The general setting in 3D model is the following. We consider an infinite homogeneous
ferromagnetic medium. The ferromagnetic materials are characterized by spontaneous
magnetization. We denote the magnetization vector field by u and is given by:

u:RT x R® > R,
The magnetic moment u links the magnetic induction B and the magnetic field H by the

relation B = u + H. In addition, we assume that the material is saturated so that the
magnitude of u is constant. After renormalization, we assume that

lu(t, X)| =1 for (tX) e R* x R? ae. (1.1)
The dynamics of u is described by the Landau-Lifschitz equation:

ou

at
© SpringerNature 2018.

= —u X Heg — u X (4 X Heg).
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The effective field Heg = —V & is derived from the micromagnetism energy & given by:

& = Eexch + Eanis + Edems
Hegr = he(u) + ha(u) + hy(u).
Next, we describe the various energy contributions and corresponding fields in the fol-

lowing way:

+ Exchange Energy (exch): The ferromagnetic behavior is essentially due to a quantistic
force which tends to align the magnetic dipole moment parallel to each other. The
most important contribution is due to the exchange energy:

A
Sexch = E/lvulz;
R3

with
he(u) = AAu,

where the exchange constant A depends on the material. For simplicity, we choose A
to be 1.
« Anisotropy Energy (&unis): The anisotropy energy reflects the existence of a preferen-

tial axis (easy axis) of magnetization:

1
Sanis = _Ef//(u : 3)2;
R3
where the unit vector e gives the direction of the easy axis (7 > 0) or the orientation
of the easy plane (7 < 0). we have
ha(u) = 7 (u - e)e.

+ Demagnetizing (Stray Field) Energy (64em): This energy is connected with the mag-
netic field generated by the medium itself:

1
aom = [ IatwP
R3

The demagnetizing field /14(u) is characterized by the Maxwell’s equations:

curl ig(u) =0 in 2’ (RB),

(1.2)
div (ha(w) + u) = 0 in 7' (R3),

where 9’ (R?’) denotes the space of distributions on R3. Therefore, we obtain that
Heg = AAu+ p(u - e)e + hq(u).

This effective field offers a simple interpretation of the micromagnetic equations. In the
form u x Heg = O, it means that the effective field must at every point be directed along
the magnetization vector: The torque exerted on any magnetization vector must vanish
in static equilibrium.

Existence results for the Landau-Lifschitz equation can be found in [6,12,13,19,28]
and [18] for the weak solutions, and the strong solutions are considered in [14,15] and
known to exist locally in time. Numerical simulations of ferromagnetic materials can be
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found in [7,8,23] and the references therein. Stability and controllability results related
to one-dimensional model of ferromagnetic materials are studied by many authors under
different conditions [2,5,10,16,25]. Higher-dimensional models of these objects are very
complex, and there are very few mathematical description available [4,11,17].

The motivation of our work comes from the results presented by Gilles [11,16]. In
[16] he discussed the stability of static wave solutions for one-dimensional model and
extended this result in [10] by proving the controllability of traveling waves solution
in ferromagnetic nanowire, while in [11], he considered three-dimensional model and
established nice result of its stability. Stability properties of static wave solutions are very
helpful when we study the behavior of traveling wave solutions. Here, we are interested in
the study of static walls stability for two-dimensional model of Landau-Lifschitz equation
which is equally important and will help to fill the existing gap. 2D models mainly arise in
case of thin film. It is well known that a variety of patterns (uniformly magnetized regions)
of magnetization vectors appears on thin ferromagnetic films [3,20] which are separated
by a thin boundary layers called the domain wall. In the absence of external magnetic field,
a pattern arises on the ferromagnetic film called the Bloch wall (static wall or stationary
wave solutions). The study of stability properties of these static walls is very relevant
for practical purposes. For example, in many thin-film devices, switching or reversing
the magnetization of relevant configurations is of particular interest (for details see 6.5 in
[20]), and in order to switch the magnetization, we need to have stability property for such
relevant configurations. It is worth to mention that obtained results are mainly based on
the energy method and variational estimate technique.

1.1 Considered model

We consider a two-dimensional model of ferromagnetic material. We deal with the static
wall configuration calculated by Walker [29]. Walker executed the exact integration of the
equations of motion for a planar wall [27]. From the theory of ferromagnetism, it is well
known that static walls of infinite nanowires are Bloch walls, whose main characteristic is
to produce two almost linear regimes separated by a wall. We investigate the stability fea-
tures of these exact solutions for the Landau-Lifschitz equation with a simplified expres-
sion for the stray field. In case of flat domain wall, magnetic moment depends only on the
x variable which in turn gives the expression for demagnetizing field as hq(u) = —uje;
(where u(t, %, ) = (u1, uz, u3) and (e, ey, e3) represents the canonical basis of R3). With
this expression of the stray field, the static wave solution to Landau-Lifschitz equation is

given by:
1/ch x
Uo(x, y) = U(x) = 0 . (1.3)
th x

In our study, we simplify the model by taking /4(u) to —uje; even for the perturbations
of % and choose = 1. Also, we consider the energetically preferred direction of magne-
tization (easy axis) along the ey-direction, i.e., e = ey. Hence, we investigate the following

system:

_5 - - ( )

=—uxH u X (u X Heg),

¢ eff eff (1. )
Heff = Au + uszer — ujej.

Next, we establish the stability result of the static wave solution % for the system (1.4).
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1.2 Main result

Statement of our main result is as follows:

Theorem 1.1 Suppose u is the solution of the Landau—Lifschitz equation (1.4) with initial
condition u(0, x, y) = ug(x, y), where ug satisfies the saturation condition (1.1). Let ¢ > 0;
then there exist § > 0 such that if ug holds ||uo — %l 22y < 8, for all ug € H2([R%R3),
then u satisfies,

Vt=>0, ||M(t,) - %OHHZ(RZ) <e

This article is organized as follows:
In Sect. 2, we describe the perturbations u of the static wall profile % satisfying the
saturation constraint |#| = 1 in the mobile frame (% (x), % (x), %), where

—thx
Ui (x) = 0 and % =11
1/chx

writing

ult, x, y) = &1(6 %, y) 2% (%) + &2t % y) %
2 2\ /2
+(1- @65’ - ©6xN7) " %)

We transform the Landau-Lifschitz equation (1.4) in the new unknown &, where
£ = (£, &) takes its values in R?. We obtain that Eq. (1.4) is equivalent to a nonlinear equa-
tion on & and the stability feature of % is equivalent to the stability of O for the transformed
equation. In Sect. 3, we describe the properties of the linear operator of the nonlinear equa-
tion on . Since Landau-Lifschitz equation (1.4) is translation invariance in the x-variable,
the linear part of the perturbed equation admits 0 as a simple eigenvalue which prevents
establishing the stability result directly. In order to overcome this situation, we intro-
duced the new coordinate system in Sect. 4. We adapt the new coordinate system in such
away that the linear parts of the transformed equations in the new system behave indepen-
dently, and we can apply variational estimates technique. Kapitula in [21,22] developed the
techniques concerning the stability of traveling waves to semilinear parabolic equations
in which the linearization about the wave contains 0 as an eigenvalue. We decompose
the perturbations into a spatial translation component and a normal component. The
spatial component satisfies a quasilinear parabolic equation, and the normal component
exhibits a very dissipative quasilinear parabolic equation. The main difficulty here is that
the equations are quasilinear and methods discussed in [21] cannot be applied directly.

In Sect. 5, we established some preliminary estimates to derive the main result. In Sect. 6,
we prove the stability result using the variational estimates. In the last section, we conclude
this article with some remarks and suggest further work in the same research lines.

Remark 1.1 The static wall profile 24 for the Landau-Lifschitz equation (1.4) is not
unique, because of the non-convexity of the constraint || = 1. We have the following
static solution % which also satisfies the Landau—Lifschitz equation (1.4) and is given by
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0
o (x) = thx
1/chx
In this paper, we use the following notations. Throughout the article, ch, sh, and th

represent the hyperbolic cosine, sine, and tangent functions, respectively. The canonical
basis of R? is (e1, e, e3) and the letter C denotes generic constant.

2 Transformation to new coordinates
We transform Landau-Lifschitz equation (1.4) in new coordinates system (% (x), %1 (x), %)

with
1/chx —thx 0
Vx eR, Uo(x) = 0 , Ux) = 0 and % =| 1
thx 1/chx 0
We consider u as a small perturbation of %4 and write it as:
u(t, x,y) = U (x) + &1t %, )% (x) + &8 %, y) U + ME (6 %, ¥) U (%), (2.1)
so that it satisfies the saturation constraint || = 1. Here A : B(0, 1) — R is a smooth map
defined as

A =1 - ) -1
where ¢ = (¢1, £2) and B(0, 1) = {(¢1, £2), (€1)* + (¢2)* < 1} is the unit ball of R?.
We notice that &1 (¢, %, y) = u(t, x, y)- 21 (x) and & (¢, x, y) = u(t, x, y) - 2, with the unknown

t) ¢l
Etxy) = 516%) using the perturbations (2.1) of %. Furthermore,
EZ(tJ X, y)
Hegt (1) = po%o + 11 % + o,
with
1+4+2) 0x&1 sh x
=N(E)AE+ 1 0,)? 32—2( —2= 26—,
po = MOAE +16) {060 + @)} — 273 — 25 287
a
w1 = A& +2)'(§) S &1
chx
p2 = A&y + &
We transform Eq. (1.4) by using (2.1) and obtain that

oA 0 0
0+ %% + %% = (Bt — B W — (Eapio — (1 + Mua) 74

— (A + M1 — E1pno) %

— (1 +M)E2m0 — (1 + M u2)?%

+ @+ M)A+ M1 — E10) %4

+&1(E1 12 — Sop01) %

=&+ M1 — E1p0) %

— &1 — Eau1) % + E2(8ap0 — (L + M pu2)%.  (2.2)
Taking the projection of Eq. (2.2) in the directions of %) and %4, we obtain that if « is the
solution of (1.4), then

B o+ (L4 Ms 4+ (L4 2)((L + Dt — Erpro) — ExErpta — Eapan)
ot (2.3)

0
% = (L4 Wt — E1p0) — (L4 W) Epto — (L4 M) + E1(Eaes — Eapr).

2
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Replacing the u’s by their values in Eq. (2.3), We obtain that Landau-Lifschitz equation
is equivalent for the small perturbations of % to the following system:

Bl a8~ 61© (048 + 08))

1 1
+ 2851+ K(E))E + 252(3x§1)m
h
- 2&&% + (14 AENAE + (14 AE)E + (1 + A(E)2A%

121+ AE)PH (E)0:8) —— — (1 + (81 — E1(L + AE)N (€) AL

hr
— 51+ AV E) {06 + (3,8} + 261+ 1(6)—

ch*x

h
+2E(L+ Ms))(axsl)ﬁ 261+ M)

1
— 28182 — £162AEy + EFAEL + 2A’(§)522(3x§)d1—x,

%

52 (14 2EDAE — 201+ MW E)0:8) 1 + (L M + 812 €A
chx

+E11(8) {(0:6)* + (8,6)*}
1 1 5 Shx
—2501+ K(%‘))m - 251(3x‘§1)m + 287 Tx

— & (1 + MENNV (E)AE — & (1 + AE)A(E) {(0:6)* + (3,€)*}

2851+ M) + 262(1 + 1)) (k1) ——
chx chx
h
— 26151+ AE) o + (1 + 1(5)A8>
chx
FUH A8 +E20E + 2606 — 100G ~ 210V OO~ (.9
Writing Eq. (2.4) in an operator form, we obtain that if u satisfies (1.4) then & verifies:
0§ = 95 + g(x: &, V§, A%—)» (2~5)

where

7 — -1-1 T&
N1 -1\ T -28)

with T = —A + 1, n(x) = 2th%x — 1.
The nonlinear term . : R x B(0, 1) x R* x R? — R? is defined by

2
L& VE NE) = PE)NE + Y D)0k, 9:8) + R, §)(0:8) + .7 (%, §),

i=1
with the following notations:

o 0(E) = 0k = 55, 00(6) = 0y = %
o P e C®(B(0,1); #5(R)) (A>(R)) is the set of the real 2 x 2 matrices):

—&2 AME) — & —& —&14+21E)) .,
PE) = A(E).
© ()»(S) —&a& & ) i ( &1 — &1+ A(8)) ) ©
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e 9 e C®(B(0,1); £ (R2)) (%(R2;R?) is the set of the bilinear functions defined on
R? x R? with values in R2):

& —&E—-&AME) )\ .,
2 , ) = A, ).
)¢, ¢) ( £ £y — ED(E) ) (€, 2)
o Z € C®°MR x B0, 1); A (R)):

_ 2 [ Bt+al+aE)
Hx&)(¢) = (—51 + &1+ /\(S))) 1

chx

2 (-8 ),
S (_1 e _&&> KEQ).

o 7 eC®R x B0, 1);R?).F(x &) = (;1),with
2

S = (=28 + En + 2810 + 2ENAE)AE) — 26167
h
22 s + &+ 800,
ch*x

S = (E11 = 2621 — E21A(§) + 462 + 2620(6))A(6) + 26762
sh x
+2—-&1(51 — & — §24(8)).
ch™x
In the form of following proposition, we prove that Landau-Lifschitz equation (1.4) and

the perturbed equation (2.5) are equivalent.

Proposition 2.1 Assumethatu € C1(0, T; H*(R?; R3)) with saturation constraint |u| = 1
and satisfying:

Vie[0,T), Yy eR: |ultxy) — %x) <2
We introduce & = (€1, &) € C1(0, T; H*(R%; R?)) defined by
u(t, x, y) = %O(x) + -‘El(t; ) y)%l(x) + gZ(t» % y)%Z + K(E(t, ) }’))%o(x)

Then u is solution to the Landau—Lifschitz equation (1.4) if and only if € is solution to (2.5)
and %, is stable for (1.4) if and only if 0 is stable for (2.5).

Proof We derive the result using the similar arguments which have been used in [11,16].
By projection on both %4 and %5, it is clear that if u satisfies (1.4), then & satisfies (2.5).
Conversely, we write (1.4) on the form

ou
E = /(u)l

ou
since u satisfies the physical constraint |u| = 1, renders u- Vi 0.Moreover, u-_# (1) = 0.
We remark that u satisfies:

9
(a—;‘ - (u)) U =0, Vke{l2)
yields

(3—;‘— (u)>.(1+x)%=o

since A # —1, implies that u satisfies (1.4). This completes the proof of Proposition 2.1. O

Page70f29 2
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3 Properties of the linear operator

The linear operator T acting on H%(RR?) is defined by:
T=—-A+n

with n(x) = 2th’x — 1 and A = 3y, + yy-

We denote by T the reduced operator acting on H2(R) given by
Ty = —0ux + 1.

We remark that 77 is a self-adjoint operator on H2(R). Furthermore, T} is positive operator
since we can write 77 = t* o T where t = 9, + th x, and 0 is the simple eigenvalue
associated with the eigenvector ﬁ, Hence Ker 77 is the one-dimensional space spanned
by ﬁ The self-adjoint operator 77 is a compact perturbations of —d,, + 1, and thus
its essential spectrum is [1, +00) (using Weyl Theorem, see in [1,26]). The spectrum of
Ty is {0} U [1, +00), where 0 is the unique eigenvalue. We denote % = (Ker T1)*. The
restriction of 77 on ¥ is a symmetric definite positive operator. We define ¢; by:

G =KerT)) " =4ac H%R),fa(x)idx =0
chx

R
Then, for all u € %, the H>-norm is equivalent to || T7u| 2(r) and the H 3_norm is equiv-
alent to || Tf/2u||Lz(R). (For details, see [16].)

Proposition 3.1 The operator T = —A + 1 is a positive self-adjoint operator defined on
H%(R?). We introduce 9 and defined it as

1
Y =3ac Hz(RZ),Vy eR, / alxy)—dx =0
chx
xeR
There exists a constant C such that
Vo €Y, |lellpe@ey < ClTall 2wy
Vo e HHR)NY, |l < CIT ] 22,
Proof We have that, forall u € 4, the H?-norm is equivalent to || T} || 12(r) Which implies
126117y + 10xtall oy < ClI 14l
Now for o € ¢4, we have for almost every y € R:
[ () + et P dr < € [ Tiat e

xeR xeR

On integrating y € R, we obtain
122 g2y + 185t 12 g2y < CUIT1 7250y
Moreover,

ITal ) = [ 1Tl = [ 1TiaP+ [ 100 =2 [ Tiatye

R2 R2 R2 R2

The last term is positive:

—2/ Tradyya = —2/ ot - Oy = 2/ |8yrot|2.
RR2 RR2 R2
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So,
[ irar > [ 1ap + [ 1apat
R2 R2 R2

which implies
122 g2y + 1Al oy < ClT el 7o gy

We establish an estimate on H3-norm in a similar lines using the equivalence of H3-norm
3/2
to || 75 ull 12 (ry- =

4 Change of coordinates

A one-parameter family of static solutions to Landau-Lifschitz equation (1.4) is being
constructed using the translational invariance for solutions depending only on the x-
variable. Furthermore, for 0 € R, x — %(x — o) satisfies (1.4). We introduce the

one-parameter family (8(0)), <R of static wave solutions to (2.5) obtained from %(x — o)
in the mobile frame (7 (x), %> (x)):

Up(x— ) - %(x)) _ (p(a)(x))

P = (%(x ~0)- %) 0

_ h (x—
where p(0)(x) = 5 (;h_f,) + c(ﬁxa)'

Using the techniques from [21], we write small perturbations of £ in a neighborhood of 0
in the new coordinate system given by (¢, ¥, .#') as

£(6%3) = B 7)) + (i) Y(by) + N (62) (.1)

chx

where both coordinates of ./ take their values in ¢. In order to prove that this system is
relevant to our analysis, we start with the following notations.
We denote by IT the following space:

M:=H*R) x H*R) x ¥ x 9. (4.2)
We define the norm on IT as
1@, ¥ A 2 = 1@l 2wy + 1V 2wy + 1T A 2R2) + 1 T A2l 2 @2
Using Proposition 3.1, we have the following equivalence of norms on IT:
1, ¥, M) ez ~ 1P 2wy + 1V 2wy + 1M 2@®2) + 2] 2 R2)-
Similarly, on IT N H3, we define
1@, ¥ Mz 1= 1Dy + 1V sy + 1T 2 M 2w2) + 1T M2 2z
and this norm is equivalent to the following norm on IT N H>:
1, ¥, M) es ~ 1Py + 1 3wy + 1M 3@®2) + 421 13 R2)-

In the following proposition, we prove the relevance of such perturbations of £ in a
neighborhood of 0.

Proposition 4.1 There exists § > 0, such that if § € H*(R%; R?) verifies |1£[|2@2) < 6,
there exists
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(¢, ¥, A) € I such that

E(5) = PO + (i) Y0) + N ()

chx

Moreover, there exists C such that for & € H*(R?;R?) in a neighborhood of zero

1
cle v Az < NEll2e) < ClH@ ¥, A)r2,

and for H*(R?;R?) in a neighborhood of zero,

1

SN ¥ Ml < Wiy < CUG v Ao (43)
Proof We introduce the linear mappings f and g defined for &€ = (£, &) € H*(R%; R?) by

1 1
SO0 =+ / 106 9) = —ds

xeR

1 1
SO0 =5 / 6l )

xeR

The operators f and g are bounded linear transformations from HZ(R%R?) (resp.
H3(R%;R?)) into H2(R) (resp. H3(R)). For a fixed £ in a neighborhood of 0, (¢, ¥, .A)
can be obtained in the following way:

We operate g on (4.1) and obtain

gE)y) = v o)
By operating f on (4.1), we get

1 1
fO0) = / P60 () o —dx

xeR

We define ¥ € C*°(R;R) given by

1 1
"4 = - —dux.
@ =3 [ rorg
xeR
Since ¥ (0) = 0 and ¥'(0) = 1, there exists § > 0 such that ¥ is a C*°-diffeomorphism
from (—4, &) to neighborhood of zero. We get

FE) =¥ (0)

Also ¢ is given by
¢0) =¥ (FEO).
We set A as
N (xy) =§xy) = BlOY)x) — (i) V) (44)
chx

and by construction f(A4) = g(#) = 0,ie., A € G2

As we remark that 42 = {,/1/ € H*R%R2), f(AN) =g(N) = 0}.

Using p(0)(x) = 0,9, 0(0)(x) = —ﬁ and |B(0)(x)] < C%,we obtain thatfor ¢ € H2(R)
sufficiently small,

1B 2r2) < Clolm2w) (4.5)
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so £ € H%(R%*R?) we have

1€ 122y < C (101l m2@) + 1V r2R) + 14 I H2@2) < ClD ¥ A 2.

Now using the boundedness of the linear operators f and g for the H?-norm, since ¥ ~!
is smooth in a neighborhood of 0 and satisfies ¥ ~!(0) = o + O(0'2), we get the following

relation:

1612 + 1 N2y < ClIE Nprzae).
Using (4.4) and (4.5), we get

1A 2@y < ClIE Ny
which yields

1@ s )2 < CUEN gy

We prove (4.3) in a similar fashion. This concludes the proof of Proposition 4.1. O

In a neighborhood of zero, we define & in the new coordinates system (¢, ¥, .4) given
by (4.1). We transform (2.5) in these coordinates. We choose § to be sufficiently small
so that [|&||z~ < 1. We notice that in the one-dimensional case, for a fixed o, the map
x — B(o)(x) is a static wave solution to (2.5). We denote .77 the reduced operator given

by:
Ty — -1-1 Tiyr
IV ) \mm -2 )

with
AB(D) + P (B(9)) 0xxB(@)+2 (B()) (3xB(), 0xB(6))

(4.6)
+Z (%, B(9)) (3:B(#)) + 7 (x, B(9)) = 0.
Furthermore,
3 (B(@(5 y))(x)) = 05 R ($(t 9)) 0:p(8 ¥),
and
AR (D(6Y) (%)) = dxxR (@(59)) + R (Dt ) dyyd + doo R (Bt ) 13y
We also have
TB(9) = TiB(9) + (‘11 j) (=0 B@)yd — 300 B ,12).
Substituting (4.1) in (2.5) and using (4.6), we obtain
0 B()0rd + (i) oY + 0N = (aap(¢)ayy¢ + aaap(¢)|ay¢|2) (_11>
ch x
(4.7)

1 1
+ m(ayylwrzw) (1) + TN + A

The nonlinear term A is defined as

5
A= Z A, (4.8)
i=1
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where

A1 = P(B(D)dyB(@#) + P(B@), V)(¥) (0xxB(@))
+P2(B@), V)(¥)DyyB@) + P(E)Ay.
Az =22(B(9))(0:B(@), 0x¥) + 2(B(9))(3xy, 0xv) + 2(B(@), ¥)(¥)(0xE, &),
Az = 2()(3,B(0), 3,B(¢)) +22(E)ByB(@), dyy) + 2(£)(Byy, dyy).
Ay = A% B(9))(0xy) + Z(x B@), v)()(0:).
As = (% B(#), Y)(¥).

with the following notations:
0
e Y y) =¥ ( 1 ) + A (xy) and &(x,y) = B(o(¥)(x) + ¥ (% ¥),
chx
o« P e C®(B(0,1/2) x (B(0,1/2); Z(R%; #(R))) (L(R%; #5(R)) is the set of linear
transformations defined on R? with values in .#5(R)):

1
@mm=/@w+mm
0
o 9 e C™®(B(0,1/2) x (B0, 1/2); Z(R?; £ (R%R2))):
1
Du,v) = | 2(u+ sv)ds.
(1,7) 0/ (1 + 5v)
o« X € C®(B(0,1/2) x (B(0,1/2); L (R%; #(R))):
1
R(x, u,v) = / 3 % (%, u + sv)ds.
0

o .7 € C®(B0,1/2) x (B(0,1/2); Z(R?;R2)):
1
L (% U, v) = / 0L (% u + sv)ds.
0

(the tilde terms come from the Taylor expansion for &, 2, % and .¥ applied between
B(¢) and () + ).

We obtain the transformed system in new coordinates (¢, ¥, .#") with the help of operators
fandg.
1
We multiply (4.7) by ( 2 C(l)”‘ ), and we integrate in the x variable. We get

o ($)3,(p) = A (§)dyyp + B(D)3yd|* + (Byy ¥ + 20) +f(A),

where

o) =3 f 0 p(0)(x) <~

R

1 sh(x — o) thx 1 1
=75 2 T3 I
2R ch*(x — o) ch*(x — o) chx ] chx




Dwivedi and Dubey Res Math Sci (2019) 6:2 Page 13 of 29

and

1 1
#0) = / o (o)) v

R
We notice that .7 and 4 are in C*°(RR, R) and that </ (0) = 1 and %(0) = 0.
In a neighborhood of zero, we write ﬁ =1+ v(o) where v(o) = O (Jo|) and H(o) =
O (o). We obtain that
9 = dyyd + (dy¥ +29) + F1(d, ¥, A), (4.9)

where the nonlinear term % is given by

ch(x — o) ch®(x — o) ch®(x — o) chx

R
th x sh’(x — o) thx sh(x — o) 1
chx

~ B(¢) 1
F1(, ¥, ) = () (dyy ¥ +2¢) + mwﬁ + W)f(‘\)‘ (4.10)

0
We multiply (4.7) by ( 1 ) and integrate in the x variable. We are left with:

2chx
Wy = =3y + (0¥ +2v) + Fa(d ¥, A) (4.11)
with
T, ¥, N) = (1 — A (9)) dyyp — B(9)3yp|* + g(A). (4.12)

0
In order to get the equation for .4, we multiply (4.8) by 9, 8(¢), (4.11) by ( 1 ) and
chx

subtracting from (4.7) which gives
N = TN + F3x ¢, 0, N), (4.13)
where
T3¢, 9, N) = A
N <|ay¢|2awp(¢) + @OV +20) (5 — 000 (@) = % p($)F1(, Y, m), @14
—10y81* 050 p($) + dyyd (G5 — o () — 5 F2( ¥, A)

and with this, we complete the details of the following proposition:

Proposition 4.2 Assume that (¢, ¥, /) € CY(0, T; 1) is given by proposition (4.1). Con-
sider € € C1(0, T; H*(R?, R?)) such that for all t > 0, (& 2wy < 8. Then & satisfies
(2.5) ifand only if (¢, ¥, N) satisfies the system (4.9)—(4.11)—(4.13), and 0 is stable for (2.5)
if and only if (0,0,0) is stable for (4.9)—(4.11)—(4.13).

5 Preliminary estimates
We recall that from Proposition 4.1, for £ € H?(R%; R?) in a neighborhood of 0, we have
the following representation,

0
with (¢, ¥, A4") € I, and there exists C such that for k = 2 or 3,

1
Ell(db Vs M)k < NENgrrey < ClHs ¥ Ak

We introduce « > 0 such that if ||(¢, ¥, 4| ,p2 < k, then [|£] 1 < 8, so that we are in
the framework of Proposition 4.2. We state the following proposition:

chx
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Proposition 5.1 There exists C such that for all (¢, ¥, ") € IL if (¢, ¥, N )2 < &,
then

I F @) + 172l @y + 11731 1 w2y
< C (g, ¥, M)l 2 (||3y¢||H2(R) + 1V 3wy + ||€/V”H3(R2))'
Moreover, we can write Fy — Fy on the form: F| — Fy = Fy + Fy, where F, and

j;, satisfy the following estimates: There exists C such that for all (¢, ¥, A) € 11, if
(@, ¥, M)l 2 < K, then

(5.1)

1 el 1) < CUBHBl 2w + 1V @) + 1 Ir3@2) (5.2)
IIjbllL%(R) < C10y@ 2y + 1V 3@y + 1A 1 3R 1Dl 2 (R)- (5.3)

First we establish some preliminary estimates before going to the proof of this proposi-
tion. We establish a Sobolev-type inequality in the following lemma:

Lemma 5.1 There exists a constant C such that for all u € H 2(R) and fork =1,2,4,
Byl 2 gy < Clall ooy 1y ael ey
Proof For k = 1, 2,4, we obtain
I3yl 25y = / (Byu)** = / du(@,u)* 1 = —(2k - 1) f udyyu(dyu)* 2
R

R R

< CIIMIILOO(R)||3yy”||Lk(R)||3y”||i§k?I%R)’

which completes the proof. O

To get a estimate for the nonlinear term A defined in (4.8), we establish preliminary
estimates.

Lemma 5.2 There exists C such that for all (¢, ¥, ) € IL if [($, ¥, N )l 2 < &, then

IB@)llroe) + IVB@®) I 13@2) + V0 B@)llraz) < Cl@ ¥ A )l 2
and
195y B@)ll2r2) + 103y B@) | 132y +1IV 0y B(B) ] 2(m2)
SCU10ybll 2wy + 1V 3@y + 14 113 (R2))-
Proof We recall that there exists C such that for o € B(0,1/2), we obtain
1B(@)@)] + 18:B(0) )] + [8::B(0) )| < CL2L,
|96 B(0) @) + 10505 B(0)(%)] < =
956 B(0)@)] + 105050 B(0) ()] < 0
9500 B(0)®)] < 555

From Sobolev embedding, H?(R?) < L>°(R?) and using (4.5), we obtain
1B@) w2 < Cllollm2mw)

using previous remarks, and we have

C
IVB(#)I < m(lqﬁl + [0y)),
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From Sobolev embedding, H?(R?) < W1 *(R?), we get

IVB@)aw2) < Cllollm2w)

and

IVOxB(@)lLaw2) < Cllol2w).

This concludes the claimed estimate of the first part.

For the second part, we have
Oy (B(®)) = 85 B(@®)dyyd + 000 B()13y81

C
13y (B@) | < (0@l + 13,012).

Using Lemma 5.1,

105y (B(@)) llz2(r2) < Clldyy@llz2(r)

we have

13y (B@)) 2 @) < CUBy@ Ny + 1381175 5))

<C
< C(||ayy¢||L4(R) by Lemma 5.1,
< CUIy@ll 2 (ry by Sobolev embedding.

To conclude, we have

3x(3yyB(@)) = 3505 B(d)dyyd + 35900 B(D)3,0%
yields

10x(3yy BN r2(r2) < ClIdyyd |l r2(w)
also,
By 0y BO) = D00 B@)y8) D) + s BNy + oz BD) 3y’
+ 2050 B6)(3y0) 038,
which implies

18y (Byy BNl 22y < CllByll ) 19y Pl R) + Clldyyyll2(r)

+Cl3yp 136 ) + C I3yl o) Byl ey

1/2 1/2
< CUy bl gy 19yl oy + 103yl 2¢2)

1/2
11381l oz 150 75 )
< Clloyd Nl 2wy by Lemma 5.1
This concludes the proof of Lemma 5.2. O

In the following lemma, we derive estimates for the term y defined as

V(t:x»}’)zlﬂ(t,y)( (1) )+f/V(t,x:y),

chx

Lemma 5.3 There exists a constant C such that

1Y o2y + 1Y lm2r2y + 1Y a2y + 1VY lawey < Cl @, Y5 A2
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and

1Y l2®2) + 1AV lIza@e) + IVAY lI2®2)
< C19ypll 2wy + 1V 3wy + 1A 13 @2))-

Proof We have

1
V| < —— ¥l +|A4]
chux
yields
¥ lz2R2) U 2wy + 14 1 2R2))s

<C
VY@ < CUWY 2@y + 1Y l2@) + IVA l2R2))
1AV 2@y < CUV @) + 19V 2@y + 1A | 2®2))-

which implies
17 12 ®2y < Cl(s ¥ A 2

From the Sobolev embeddings of H?(R?) into L°°(R?) and W *(R?), we obtain the claimed
estimate of the first part. Also, we have

lAY a2y < CUVY | m2®2y
IVAY @2y < CUIY 3@y + VAN || 2R2))-

This completes the proof of Lemma 5.3. O

Proof of Proposition 5.1 In order to obtain the claimed estimate (5.1), we need to establish
an estimate for the nonlinear functions appearing in Eq. (2.5) and the nonlinear term A
defined in (4.8). We provide these estimates in the following Propositions. O

Proposition 5.2 There exists a constant C such that for & € B(0, 1) and for x € R,

|2(&)| < Cl§| and |2'(§)] < C
|2(8)| < Cl§| and |2/(8)| < C,

|%(x, €) < 55 |&| and 10:2(x,€)| < 75,

|7 (% &) < CIEPP + 5 1€1* and |0:.7(x,&)| < CIEI* + 5 €]

chx

<
<

Proposition 5.3 There exists C such that for all (¢, ¥, ) € IL if (¢, ¥, N )2 < &,
then

IA 1 R2) < CH@ Vs A2 (1058l m2ry + ¥ 3 R) + 14 113 (R2)-
Proof We get the desired estimate for the term A in the following way.

+ The term A; is given by

AL =2(B()3yyB(9) + P(B@), ¥)() (3xxB(@))
+ PBB), V)W) 0yyB#) + P(B($) + y)Ay

and from Proposition (5.2), there exists C such that for || < %,
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|2) < Clgl, 12'(0) < G

| 2w, v)] < C(lul+ |v]) and 13,2, v)| + |3, P (u,v)| < C
this implies
|A1] < CIB(@)]13yyB(9)]
+Cly 113xxB@)| + Cly 113y, B@)] + C (1B(@)] + I¥]) |AY]

and

A1l 2@y < CUB@) o2yl dyyB@)I 22y + Clloxx B oo @2y IV I 12R2)
+ ClIY e ®2) 19y B(@) I 2m2) + ClIB@) o) 1AY [l 2R2)
+ Clly lIizeo@2) 1AV 2 (r2)
< Cll(e, v M 2 (10y@ll 2wy + 1 3y + 14 113 R2))

from Lemmas 5.2 and 5.3.

Concerning the gradient term

IVALl < CIVB(9)10yyB()] + CIB(D)IVIyyB(@) + CIVB(D) + VY DIy 103 B()]
+ CIVy 10k B(@)] + Cly [IV0xx B(d) + CVB(@)] + [Vy DIy 1105y B()]
+ CIVy 1oy B(@)] + Cly IV, (@) + C(IVA(P) + VY IAY]
+C(B@) + Iy DIVAY]

yields

IVALl2®2) < CIVB@) 2@ 10yyB(D)1l am2) + ClIB@) I Loo@2) IV 3yy BBl 12(w2)
+ Clloxx B(@) I zoo®2) IVB@) I a2y + IVY I a@2) Y 24 w2)
+ Clloxx B@)lLoo®2) IVY I 2@2) + CllY oo @2) IV 0xx B(@) Il 12(m2)
+ ClIy e @2y (IVB@) w2y + VY a2 19yy B(D)ll 4 w2
+ ClIVy a2 10y B(@) I 4w2) + CUIVB(@) Il 12w2)
HIVY la@ I Ay [l ar2)
+ ClIY oo @2y IV yy B 22y + CUIB@) oo m2)
Hy o@D IIVAY [l 12Rr2)
< Cll@ ¥ M 210yl 2wy + 1V 3wy + 14 3 R2)

by Lemmas 5.2 and 5.3.

+ We recall the term A3 is given by

Ay = 22(B(9))(0xB(d), dxy) + 2(B(9))(0xV; 0x¥)
+2(B(@), ¥)(¥)(3:B(9), 3:8(9))
+22(8(9), v)(7)@0:B(9), 3xy) + 2(B(), Y)(¥)(3xy, dx).

In addition, from Proposition (5.2), there exists C such that for |¢| < %,

1201 < Clel 1201 < G

Page170f29 2
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and for |u| < 1/2and |v| < 1/2,

|9, v)| + 8,2, v)| + 18,2, v)| < C.

We have

A2l < CIB@)I19:B(@)]13x¥ | + CIB(@)I13xy
+Cly [13:B@) + Cly[13:B@)[8xy | + Cly [1xy

using Lemmas 5.2 and 5.3, we obtain

also,

gives

[A2ll2@2) < CllxB(A)I a2 105y Il w2y + C||/3(¢)||L°°(R2)||3xV||i4(Rz)
+ Cly Il o) 19:B(@) 1 o o)
+ Clly oo ey 105y [l 23 (2) 10 B(D) 12 r2)
+Clly ll o) 185y 1 agay
< Cl@, ¥ N2 185Dl 2y + 19 3@y + 18 11 3(@2)-

VA2 < CIVB(D)10xy [10:B(@)] 4 CIB@)I(IVOxB(D)10xy | + 0:B(D)IV Iy [)
+CIVB@xy > + CIB@19:y (Vv |
+C(VB@)I + IVyDlyllaxB@)?
+CIVY13:B(@)1* + Cly 110:B(#)] IV (9)]
+CUVB@D) + VY DIy [10:B()l|0xy |
+ CIVy110:B(D)|0xy | + Cly [(IVoxB(@)10xy | + [0xB(D)IVIxy )
+CUVB@) + VY DIy 1xy > + CIVy 13y 1> + Cly 1105y Vory |

VA2l 2@y < ClloxxB(@) o)1V B@O) | 122y 10x I 14 (r2)
+ ClB@) oo 2y 10x ¥ Nl L4w2) IV x| 14w2)
+ ClIBD) N oo 2y 1V 3x B(D) | L2 (r2) 102V [l 4 (2
+ 10xB(D) I 4w2) IV Oy I 14 (R2))
+CIIVB@) @) 1957 I7sg2) + CIVY 132 13:B(D) 15 )
+ ClloxB@) Leom2) 1V I aw2) IV B@) | 122y + VY [l L4 w2))
+ CllY ll oo w2y 1 9xB (@)l 12 (m2) IV 0 B(D) | L4 m2)
+ CllY ooy 10x ¥ I 24wy I VOx ¥ Il a2y
+ ClIVY ) 1927 s oy
+ Clly oo 2y (VO B@) I 12(r2) 105 ¥ | L2 m2)
+ 108Dl L2 w2) IV Oy Il 13 (R2)
+CllY lloo @) 1327 1 s g2y 1 VB@) g2y + 1V 7 ll2g2)
+ ClloxB@O) I Lo ) VY Nl L4®2) 10 | 24w2)
+ Clly llzoo®2) 1 0xx B(D) | Lo m2) 105 ¥ Il 24®2) 1V B(D) L4 (2)
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+1IVY lar2)
< Cl@, ¥ M2 10yD Nl 2wy + 1 3Ry + 14 13 R2))-

We get the claimed estimate using Lemmas 5.1, 5.2, and 5.3.
+ To estimate Ag, we recall that:

Az = 2(6)36 B(9), 0 B@))|3yp 1> + 22(6) (36 B(9), 3yy)(3y9) + 2(E)(Byy, Byy)
we have for |¢| < 1/2,

12(0)I < Clgl and |2@)<C
Therefore,

[A3] < CUB@) + 1y (195 B@B) 10,81 + 105 B@)]10y¥ 118,81 + 19,71%)
so that

1A3 ] 2@2) < CUB@) @) + 1Y 00 @2) 13y 117a gy + 19524 1957l 4r2)

HI3yy 1 aga))
< Cl@ ¥ M2 (1@ 2wy + 1V 13wy + 14 13 2))-

and
VA3 < C(VB@)| + VY D35 B(9)1*10,¢1* + Clas B(@)II Vo B(@)]10y¢]°
+Cl35 B(9)1713,0110y8] + CIVB@)| + VY 0s B@)I13y |10,
+C(IVos B@)10y7 | + 105 B@)IVOyy Dy | + Cla,y [V, y|
+Cl35 B@)1,7 [13yy8] + CUVB@) + V¥ DIdyy |
yields

IVAsll 22y < CUIVB(@) a2y + ”VV||L4(R2))||ay¢||%8(R)
+C19y 1 Fa) + 135176 @)
+Cl10yP | L2yl Oyy® ll 4wy + CUIVB(D) I 12R2)

HIVY @20y y oo 2y 19yB 1l 14wy
+CUIVB@O 22y + VY l2@2) 19y Y | Loo(r2)
+Cl9y@| oo ) I VIyy l12(r2)
+ClI0yy Il oo w2y 10y Ml 2(w) + ||3y¢||%4(R) + 19y @Il r2(r)
+IVoyy Il 2m2))
< Cll@ ¥ M 210yl 2wy + 1V 3wy
A 1 13 (r2))-
Using the Sobolev embedding of H?(R) into L>°(R) and Lemmas 5.1, 5.2 and 5.3, we

obtain the required estimate.
+ We have

Ay = R(x B(@))(0xy) + Z(x B(9), Y)(¥)(B:B(@)) + Z(x B(@), ¥)(¥)(3xy)-

from Proposition (5.2), we have for || < 1/2,
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C
chx
and

[0 Z(%, §)| + 1050 Z(%, &) + [0 Z(x, £)| < e

for |u| < 1/2and |v| < 1/2,

. . . C
|Z (%, u, V)| + 10,2 (%, u, V)| + |0, % (%, u, v)| < ha

Thus

C
|A4] < m(|,3(¢)||8x7/| + 1y 110xB(P)] + 1y [0x¥ 1)
implies
[Aall2rey < Cl@lam) 102y a2y + 1V I2a@2) + Clly llzoom2) 105y l2w2)
< Cl ¥ M2 0yl 2wy + 1Y 3@y + 14 1 13 ®2))

and

o
VA4l < m(lﬁ((ﬁ)llfixyl + IVB@DIoxy |+ 1B(DIIVIryI)

C
+ m(ww)uyuam +IVB@IlyIloxyl
+IVyllyldxyl + IVyloxy | + 1y 1IVoxyl)

+ - (1B@IIY113:B@)]

chx
+IVB@IY10:8@)] + [Vy 11y 113:8(0)
IV I3:B@)] + 1Y [V08@))

gives

VA4l 22y < Clloxy la@e) (101 2Ry
HIVB@)lLaw)) + ClidllLoo®) IV xy Il 12w2)
HCIB@ L@@l a1y I 2aw2) + CIVB@) o) 17 124 w2)
+ClY @) 101 2w NV B@ I 12wy + VY 23 w2))
+ClY llzo@2) Il 4@ 10xy I 124®2) + CIVY l24®2) 1027 174 R2)
+CIY llzo@2)10xY a2y IV B@) 2wy + VY L2 w2)
+ClPlaw VY iawe) + CllY llzoo@2) I VoY ll 12 (r2)

< Cl@ ¥ M2 (1P 2wy + 1V 3@y + 14 13 2))-

Using Lemmas 5.2 and 5.3.
o The last term As is given by

There exists C such that for # and v in B(0, 1/2), we have

|2 (%, 1w, V)| 4 185 (% 1, v)| < C(lul + |v])
and 0, (% u, V)| + 8,7 (% u, v)| < C.



Dwivedi and Dubey Res Math Sci (2019) 6:2

Therefore,

|As| < CUB@) + 1y DIvI

yields

(18Dl oo 2y + ¥ lzoo @2 1Y l22(2)
1@ s A2 (19y@ 2y + W 3Ry + 14 1 13w2))

|Asll2r2)

NN
a Q

also

IVAs| < CUB@) + Iy Dy + VYD) + Cly [IVB@)] + [Vy ).

Using Lemma 5.2 and 5.3, we obtain

IVAsl2®ey < CUB@ o2y + 1V 1zo@2) Uy 22y + IVY I 12r2)
+ClY o) IV B L2r2) + VY I L2(R2))
< Cll@ ¥ M2 (10D 2wy + 1V 3wy + 14 13 (R2))-

This concludes the proof of Proposition 5.3.

[}

To fill up the proof of estimate (5.1), we use the boundedness of the linear transforma-
tions f and g and remark that for s € N, there exists C such that if u € H® (R%; R?) then
2i(u) € H5(R) (i = 1, 2), which leads to

1€ @)l prsy < Clloellpgs ).

This estimate together with Proposition 5.3 establish the desired estimates on .%; and
Z5. We obtain the claimed estimate on .%3 using (4.14).

5.1 Proof of estimate (5.2) and (5.3)
From (4.10) and (4.12), we recall that

F1(, Y, N) = v(P) (ayyl/f + ZW) 52/((:;;| y¢|2 + _f

T, ¥, N) = (1 — A ($)) dyyp — B($)13,0> + g(A),

where v(o) = O(c), @ (0) =1+ O(c) and %(c) = O(0).
Our aim is to split %] —.%, on the form: .#| — %y = %, +.%), where %, and .%,, satisfy
the estimates (5.2) and (5.3), respectively. We do this splitting in the following manner:
We define .%, and .%, as,

Fo=F1 1 P2 and Fy= T+ TR

a

We denote by:
Ty = (£+%(¢)>|8y¢|2 and .7} = v(@)Dy¥ +2¢) — (1 — () dyy,
a2 _ ay _ a by _ b
Ty = qu)f(z\) g(A%) and F7= Md))f(z\) g(A?),

where we split A on the form A = A% + A®,
Using &7 (0) = 1+ O(o) and #(c) = O(o), we obtain

Page 21 of 29
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12 < Clele@ sl g

CUyB i + 1V @) + 14 3@

VAN

we have

|Z 41 < Clglldyy ¥ + 29| + Clol1dyyel,
implies
1% 4wy < Clldllzagy (19 ¥ + 29 [l 2y + 1950l 2w))
< C10y8ll 2wy + 1 3wy + 1A | 3 @2) 1 14 R)-

In order to get the expected estimates of .#2 and .%, bz, we will split A on the form A =
A% + Ab. We recall the expression of A in (4.8) and describe this splitting for each term
Aii=1,.,5).

+ We recall that

A1 = P(B(0)dyB@) + P(B@), ¥)(¥) (3:xB(6))
+ PB(9), v)¥)3yB@)) + P(B(d) + v)Ay,

notice that

dyyB(@) = 35 B(B)dyyd + 356 B(P)3y91* and P(€) = P(B(¢) + v)
= P(B@) + 2B(9), v)(¥)

where
1
P(u,v) = / P (u + sv)ds.
0

We define the decomposition of Aj as A1 = A + A? with:

A} = P(B(#) (000 B@)10y01>) + P(B@), ¥)(¥)(0xxB(®))
+2(B@), v)(¥) (00 B()dyy)
+2(B@), V)(¥) 000 B@)3y01*) + P(B(@), ) (¥)(AY),
A = P(B(9)(0: B($)dyyd) + P(B(@)(AY).

We have

. , C c
[AT] < E|¢||3y¢| + m|y||¢| +m|7||3yy¢|

C
+——Iylldyp|* + ClyllAy],
chx

Using Lemma 5.1, we get

IATI w2y < CUIGl2m) + 1V 2@ 10591l 12(R)
+CIBl 2wy + 1AV I 2@2)IY I 12R2)
< CUdylmam) + 1 sy + 14 3 @)’

Furthermore,

C C
RS a2, Plonel + G ioliAy]
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and thus,

IAY I an@ey < CUBy 2wy + 1V 3@ + 14 I3 @2) 04 w)-

+ The decomposition of Aj is the following: Ay = A + AL, where

Ag = 2(B(9))(0xy, 3xy)
+22(B(#), ¥)(¥)(3:B(9), dxy) + 2(B@), ¥)(¥)(3x¥> dx¥),
AL =22(B(9))(3:B@), dxy) + 2(B(9), ) () (0:B(9), 3xB())

yields
C C
1A%l < ——Iolldxy > + ——Iollylldcy| + Clylldsy |
chx chx
and

1AS 12y < CU N2 + Iy 2@ 1057 1 a2,
+ClIy Nl oo @2y Dl 2wy 10y Nl 22y
< CUI0yp N2y + 1 3wy + 1A 1l g3 w2y)

On the other hand,
C
A5l < 191319 )
|A3] chx|¢|(| |+ 1v1)
implies

Cliy w1l Lam)
CUly@ 2wy + 1V 3@y + 14 3 @2) @1 L4 (R)-

1A 43 g2)

NN

« Concerning A3, we recall:

Az = 2() (05 B(9), 35 B#))13y8|* + 2.2(8) (35 B®), 3y )(3y9) + 2(£)(Byy, dyy).
Splitting of A3 is as follows:
A% = D(B(), ¥)(¥)BsB@), 3 B(@)|dy)> + 22(B(9), ¥)(¥)(3 B(@), 3y )(3y8),
+2(B(), ¥)(¥)(@yy, dyy),

AS = 2(B(@)) (36 B(@), 35 B($))]3y0 1> + 22(B(¢))(36 B(), y¥)(3y)
+2(B(@)) 0y, dyy),

we have
C 2 C 2
|A3] < Elyllawﬂ + mlyllaydﬂlay)/l + Clylldyy 15

and thus,

1A%l @2) < Clly @) 1317 g,
+Clly ooy 10yy 22y (1381 2r) + 1357 ll22r2)
< CUDy 2y + 1V I3y + 14 |3 g2)>

In addition,

C C C
ALl < ——19110,0|> + ——|d]]8,0]|0 — 19118,y
|Az] Chgxl¢|l | +Ch2x|¢ll yd|10yy | + chx|¢|| V|
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gives

IASl a2y < CUIIZa g + 19y lloo@) 10y ll2e2) + 157 Iage) Il L)
< CUloyBll 2wy + 1V 3y + 1A I 3 @2 1Bl 2 (R)-

We define the decomposition of A4 as

AG = B B@), v) () (dxy),
AL = %%, B(9))(0xy) + B B@), ) (1) (B:B(0)).

Therefore,

Cliy 2@yl 0xy Il 12(m2)
CUIdyBl 2y + 1V @) + 14 1l 13®2)?

AL L1 (2

NN

and

CUlloxy 22y + 1Y 2@l 2Ry
CUlydll 2wy + 1Y I3y + 14 T3 @2) 191 L4 (R)-

(AT

NN

The last term Aj is given by

As =S (x, B(), ¥)(¥)

Using the Taylor expansion, we obtain

T B@), 1)) = %L (5 BO)) + -7 @) V)¥> ),

where
1 1
S u,v) = 3 / (1 —5)3¢ 7 (% u + sv)ds.
0

Decomposition of As is the following:

Ag =S B@)y)(r,y) and AL =S (x B@)Y).
yields

1AS 12y < ClY 172y < CUBS ) + 1V 3@ + 14 11@2)°
and

Clly l2®2y @1l 2wy
CUIy Nl 2wy + 1V 3wy + 14 13 @2) 19 Ml L4 (R)-

IAZN a3 g2

NN

5 5
Denoting A% = 3~ A%and A? = 3~ A?, we have obtained that A = A% + A?, with

i=1 i=1
1A% Ry < CUBHBI 2wy + 1V I 3@) + 14 3 R2) (5.4)
1A Iz < CUIBY 2wy + 1V 3wy + 14 32101 4Ry (5.5)

We use the boundedness of the linear transformations f and g together with (5.4) and
(5.5), we obtain
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172 @) < CUBlm + 1Vl a@) + 14 Ts@2)>
IIJb lzan@) < CUIOYR 2wy + 1V I3 @) + 14 3R INP N L3 (R)

With this, we have obtained the expected decomposition. This concludes the proof of
Proposition 5.1. U

6 Proof of Theorem 1.1
We proof our main result using the variational estimates. We recall that in new coordi-
nates, we deal with the following system:

a0t = Oy + (dyy ¥ +29) + F1(d, ¥, A ), (6.1)
Wy = —0yd + (dyy ¥ +29) + Fal, ¥, A, 6.2)

s (—T%—(T—zw

Tt (T — 25 >+54‘3(x,¢, U, ). (63)

The unknown (¢, ¥, A1, A3) € II defined in (4.2). The nonlinear terms .%1, %, and %3
are defined in (4.10), (4.12) and (4.14), respectively.

By variational estimates, we prove that if the initial data are small then the solution of
(6.1)—(6.2)—(6.3) remains small which is essentially the stability result for the transformed
equation. We use energy estimate technique to absorb the linear and nonlinear terms.
When we multiply the equation by the unknowns or their space derivatives, the linear part
shows good sign absorbing terms. To estimate the nonlinear terms, we have to control
them by the absorbing terms. Before moving to the variational estimates, we establish a
Sobolev-type inequality in the following lemma:

Lemma 6.1 There exist a constant C such that for all u € H*(R),

1/2
L2(R)

rl/2

1/2
1 1oty

1/2
LZ(R) ” ”

el sy < Cllull and ||ullag) < Cllu

Proof From Sobolev embedding, W 1(R) < L2(R) and there exists C such that

lull 2@y < Cled [l )

We replace u by u? in the previous inequality to get the first estimate. A straightforward
calculation yields the second estimate. This conclude the proof of Lemma 6.1. ]

6.1 H! and H? estimates

Taking the inner product of (6.1) with —d,,¢, we get

1d
33 (199122 + 105815y = = [ @y + 200850 — [ F106, 02 )00
R

R
Taking the inner product of (6.2) with —d,, % + 21, we have

o % (1 1y + 2002y + Iy

— 411 — [ (o + 200850

R

+ f Ty 1, N0y + 20).
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Adding the previous equations, we obtain

1d

5 35 (1012 + 10,9 oy + 200 12z ) + (1812 + 100 o))

:4||W||%2(R) _4/¢3yy¢_/§1(¢: W: </V)3yy¢ (64-)
R R '

+ / T, 1y N ) By + 20).
R

Taking the inner product of (6.1) with 3),(dyy¢) and the inner product of (6.2) with
dyy(dyy ¥ — 29), we obtain

1d
5 35 (1 @lagey + 1009 oy + 2000 Wy ) + (1890 W2y + 1y ey

=4||ay1ﬂ”%2(R) + 4/ 1ﬁayy(ayy(z’) - / ay (g\l(‘f’: I/f: JV)) 8yyy¢
R

J (6.5)

- / 3, (Falds 1, N)) BBy — 20,
R

Using Young’s inequality and estimating (5.1) in Proposition 5.1 together with (6.4) and
(6.5) yield that while ||(¢, ¥, A)|l 2 < k, then

1d
5 35 (10581 2e) + 18090 oy + 209 Iy + 310 1oy + 10y ¥ Iagey)
2 2 2 2
(1 Bl2ay + 191y 2a gy + 1y 2y + 10y ¥y ) 6o
<2 (2||w||§2(R) 310, 22z + 10,6 122z + 1091225 + 191225y
+ CIS v M2 (10612 + 191235y + 1 Wy )
T2 M
Taking the inner product of (6.3) with ! , we obtain
T(T —2).4
53 (IT A ) + 1T = 20a) 151 )
3/2 2 12 2
+ (172 M gy + I TYAT = 20d) M) ) 67

<ITY2 Z30 ey (1T Ml ey + 1 TVA(T = 20d) A5 2(g2))
<CU@ W M (1081 + 191y + 1 1 sa2,)

We remark that from Proposition (3.1), on ¢, we have the equivalence of norms:
1732 M@y ~ 1Ml and ITVXT = 20d) Mgz~ [A5]p3@2), while
(¢, ¥, A )l 2 < k and by Proposition (5.1), we obtain the previous estimate.

6.2 L2 estimates
Subtracting (6.1) to (6.2) yields

at(¢) - l/f) = 28yy¢ + 91(@ ¥, N) = yZ((ﬁt ¥, ). (6.8)

Taking the inner product of (6.8) with ¢ — v, we obtain



Dwivedi and Dubey Res Math Sci (2019) 6:2 Page270f29 2

1d
o 19 = Vliag) + 200613 = 2 / Bypoy Y + / (F1 — T
R R
- f(ﬁl — Py
R

By Young’s inequality and from Proposition 5.1, we get:

535 (16 = Vo)) + 210012 < 18,012, + 18,9 12

+ 1 Zal @)Dl o@) (6.9)
+ 1Pl 4@ 191 2w)
+ (1712 @) + 122l 2@) 1¥ 1| 2)-

Furthermore, using estimates (5.2) and (5.3), while ||(¢, ¥, A )|l 2 < &, yields:

53 (16 = Vi) + 1091,
< ||ay1/f||i2(]R) + Cllgllzom@) (19,9l 2ry + 1V 3wy + ||</V||H3(R2))2
+ C (199l + 1V 3@y + 14 I 13®2) ||¢||E4(R)
+ Cll@ ¥, M2 (108 2wy + 1¥ @) + 14 I 13@R2) 191 12R)-
From Lemma 6.1, we have
161715y < CllOll2 19501 2)-
Therefore, while ||(¢, ¥, A )| 2 < &,

1d 9 9
53 (10 = Vi) + 18,01
< N0y¥ Wy + CI s A2 (103012 + 19 Wy + 1Y ey ) -

Adding up (6.6), (6.7), and (6.10), we obtain:

(6.10)

1dA(t
LA2O L ) < Clig v Mo (N1 gy + 11y + 1 W3e, )

2 (6.11)
We define A and %" by
A) =19 = VlZag) + 1301 72wy + 10y @12z + 20V 172 + 310V I 2(e,
18y 1oy + N T A 2 ga) + (T — 20d) A3 325 )(2)
and
H () = =19y oy = 19yl 2y + 19y 1 Famy — 41V 12y — 715 172
— 10y ¥ 12y + 13y ¥ 72y + 1 T2 M1 7oy
HITVAT = 20d) N5 7o ) 1 (2).

We recall that from Proposition (3.1), on ¢, we have the equivalence of norms:
IT32 M2y ~ IMllps@ey and | TYV2(T — 21d) A3l 2@2) ~ A2l pse)- So there
exists a constant K7 such that

H =K (||ay¢||i,2(R) Y gy + 14 ||3,3(R2)).
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Moreover, [|¢|l2®) < Cllo—v | e ¥ilzm), by Proposition 3.1, there exists a constant
K5 such that

1 -
E”((p: ¥, f/V)”)i"z < A@R) < I<2||(¢: v, t/V)“%Z

Hence while ||[(¢, ¥, A)|| o2 < k, we obtain

1dA() 9 ) ) -
s T <||3y¢||H2(R) + 1Yl @) + IIJVIIHs(RZ)) (Ki = CIRA®) <0 (6.12)

We introduce K0=min{ KLZ’ CKTéz} If A(0) < ko, then with (6.12), A(t) remains smaller
than %, which in turn implies that A () decreases and remains smaller than ig, so that
l(@, ¥, A)l s> remains smaller that «. Therefore, from (6.11), we have

So we are always in the validity domain of our estimates. Hence we derived the stability
result of (0, 0, 0) for (4.9)—(4.11)—(4.13). This concludes the proof of our main Theorem 1.1
using Propositions 2.1 and 4.2. g

7 Conclusion

In this article, we have analyzed the stability of static domain wall profile for a two-
dimensional model of ferromagnetic material with a simplified expression of the demag-
netizing field. The linear part of the perturbed equation admits 0 as a simple eigenvalue
which prevented us to get the proof directly. The most crucial part is to separate the vari-
ables in the new coordinate system to get the transformed system of equations in which
the linear part are almost independent. The separation of variables taken place due to the
simplified expression of the demagnetizing field which helps us to perform the success-
ful variational estimates. However, the stability of the static walls with the generalized
demagnetizing field remains an open problem. Also, from the application point of view, it
is very essential to study the wall dynamics in presence of external magnetic source, i.e.,
basically the behavior of traveling wave solutions. In future work, we intend to analyze the
stability and controllability features of traveling wave solutions with the complete model.
These problems seem to be technically more complex and we need to have a different
approach to apply the variational estimate technique.
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