Brown Res Math Sci (2018) 5:34 H
https://doi.org/‘l0.1007/540687—018—0151—3 @ ResearCh In . .
the Mathematical Sciences

RESEARCH

A class of non-holomorphic modular forms @
lll: real analytic cusp forms for SLy(Z)

Francis Brown*

“Correspondence:
brown@ihes fr Abstract

University of Oxford All Souls

We define canonical real analytic versions of modular forms of integral weight for the
College, Oxford, UK

full modular group, generalising real analytic Eisenstein series. They are harmonic Maass
waveforms with poles at the cusp, whose Fourier coefficients involve periods and
quasi-periods of cusp forms, which are conjecturally transcendental. In particular, we
settle the question of finding explicit ‘weak harmonic lifts’ for every eigenform of
integral weight k and level one. We show that mock modular forms of integral weight
are algebro-geometric and have Fourier coefficients proportional to rﬂ_k(a’n + pap) for
n # 0, where p is the normalised permanent of the period matrix of the corresponding
motive, and ay, a/, are the Fourier coefficients of a Hecke eigenform and a weakly
holomorphic Hecke eigenform, respectively. More generally, this framework provides a
conceptual explanation for the algebraicity of the coefficients of mock modular forms
in the CM case.

1 Introduction

Let $) denote the upper-half plane with the usual left action by I' = SLy(Z). This paper
is the third in a series [2,3] studying subspaces of the vector space M' of real analytic
functions f : $§ — C which are modular of weights (r, s) for r, s € Z, i.e.

_ b
flyz) =(cz+d) (cz+d)’f(z) forall y = <a d) el,ze 9, (1.1)
c
which furthermore admit an expansion of the form
f= Z }Lk< Z a(,ﬁ,)nqmﬁ") whereaﬁﬁl)n eC, (1.2)
[k|<M mn>—N
for M,N € Z, where ¢ = exp(2miz) and L = log|q| = —2mIm(z). The space M’ is

equipped with differential operators 9, d closely related to Maass’ raising and lowering
operators [17], and a Laplacian A. In [2], we defined a subspace MZ' c M' of modu-
lar iterated integrals, generated from weakly holomorphic modular forms by repeatedly
taking primitives with respect to 8 and d. In this instalment, we describe the subspace
MTY € MT' of modular iterated integrals of length one. These correspond to a modular
incarnation of the abelian quotient of the relative completion of the fundamental group
[4,15] of the moduli stack of elliptic curves M ;1. They span the first level in an infinite
tower of non-abelian or ‘mixed’ modular functions whose general definition was given in
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[4, Sect. 18.5]. In [3] we worked out the Eisenstein part of this construction; here we spell
out the length one subspace of the general case.

Examples of functions in the class MZ’ are given by real analytic Eisenstein series,
which are well known. Let r, s > 0 such that w = r + s > 2 is even, and define

w! 1 L
grs 9 Z ~ :
’ w2 r+1 s+1
(27i) 2 (mn) T\ (00) (mz + n)" 1 (mz + n)

These functions are real analytic and modular of weights (7, s) and admit an expansion of
the form (1.2) (with N = 0). Following the presentation given in [2, Sect. 4], they are the
unique solutions to the following system of differential equations:

0&s = (r+1)&41,5—1 fors>1,

&g = (s +1)&_1541 forr>1,
where the definition of 9, 9 is given in Sect. 3.1 and

000 =LGyia 0&0w = LGyio

where Gy are the Hecke normalised holomorphic Eisenstein series:

bak
G = _4_2k + ZUZk—l(”)qn , k=1 (1.3)

n>1
Since dL"1&,,0 = G2, the functions L.™1E,,¢ are modular primitives (with respect to
) of holomorphic Eisenstein series, and are annihilated by the Laplacian.

In this paper, we shall construct real analytic cusp forms H(f),s which are canonically
associated with any Hecke cusp form, and satisfy an analogous system of differential
equations. Itis clear from their construction that they are ‘motivic’, in that their coefficients
only involve the periods of pure motives associated with cusp forms [21]. The functions
H(f),,s generate MZ}, and furthermore, they generate the subspace of HM' C M of
eigenfunctions of the Laplacian. In other words, the overlap between the space M' and
the set of Maass waveforms is exactly described by the functions studied in this paper.

1.1 Real Frobenius
The essential ingredient in our construction is the real Frobenius, also known as complex
conjugation. For all # € Z let M, denote the space of weakly holomorphic modular forms

of weight #.
They admit a Fourier expansion
f= Y anlf)g", where au(f)eC (1.4)
m>—N

for N € Z. Although the differential operator D = q% does not preserve modularity, a
well-known result due to Bol implies that its powers define linear maps

DM, — Mi,+2
for all # > 0. The quotient M; 12 /DM can be interpreted as a space of modular
forms of the second kind [6,11,23]. Indeed, it is canonically isomorphic to the algebraic
de Rham cohomology of the moduli stack of elliptic curves with certain coefficients, and in
particular, admits an action by Hecke operators. Furthermore, one shows [14] that every
elementf € MiH_Z/D”HM!_n has a unique representative f € Miz+2 such that f has a pole
at the cusp of order at most dim S, 9:

ordeof > —dim S,45 .
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This provides a splitting Miz+2 =DM @ M;+2/D”+1M!_n which is possibly unnat-
ural, but is canonical. We shall use this splitting to provide canonical constructions and
uniqueness statements in the theorems below. A purist may prefer to avoid using this
splitting at the expense of working modulo D"*1M" .

The ‘single-valued involution’ is a canonical Hecke-equivariant map

s: M, /DM, > M, ,/D"IM .

It exists in much greater generality [5, Sect. 4.1] and is induced, via the comparison
isomorphism, by complex conjugation on Betti cohomology. By the previous remarks, it
lifts to an involution on M, > which acts by zero on D"*1M" . In fact, it can be written
down explicitly on each cuspidal Hecke eigenspace in terms of a period matrix

+ +

1)

P = (.”f_ | f_> € GLy(C), (L5)
ing iy

where a)f+, ia)jf are the periods and nf+, i r]; the quasi-periods with respect to a basis f, f* of

a cuspidal Hecke eigenspace. More precisely, we show that

+ - -+ + -

Ny w, +1n, 2w

s(f) = (%)Jc + (%)f/- (1.6)
Ty @p = r @ Iy @p My @

It does not depend on the choice of basis £, f’. The quantity a);ra)f_ isrelated to the Petersson

norm of f. The determinant of the period matrix det(Py) is proportional to a power of

2mi. The quantity i(nfa); + nfw;r) is the permanent of the period matrix, hence:

__pem(p) ey
= ~"geey) T demy?

1.2 Summary of results
Theorem 1.1 Letn > 0. Let f be a cuspidal Hecke eigenform of weight n + 2 for SLy(7Z).
There exists a unique family of real analytic modular functions

H(f)s € M.
forallr +s=nandr,s > 0, satisfying the system of differential equations
OH(f)rs = (r + DVH( )11 ifs > 1,
TH( s = (s + D HE)r—1s41 ifr > 1
and
OH( o =Lf  TH(on = Ls(f).

The H(f),s are eigenfunctions of the Laplace operator with eigenvalue —n. Equivalently,
the functions L=YH(f),.s are harmonic: AL™YH(f),,s = O.

The theorem holds also for weak cusp forms, defining a canonical map
Hys : Shyo/D" M, — M.

forall » + s = n, with r, s > 0. Since s(G,,12) = —Gy,42, the real analytic Eisenstein series
satisfy identical equations except with a difference of sign (for 9&,,,, which satisfies 3,

= —L s(Gy+2)). This justifies calling the H(f),,s real analytic cusp forms.

34
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The theorem can be rephrased as follows. Consider the real analytic vector-valued
function H(f) : $ — C[X, Y] defined by

H) = > rismn H)rs(X — 2Y) (X — ZY)° . It is equivariant for the standard right
action of I' on C[X, Y] and satisfies

dH(f) = mif (2)(X — zY)"dz + mis(f)(X —zY)"dz.

The functions H(f),s are given by the following explicit formula. First, for any weakly
holomorphic modular form (1.4), write for all k > 0

=3 a”(f)qn' w7

k
neZ\0 (2n) (

It is an iterated primitive of f for q%. Forallr,s > O with r + s = n define

"\ — r « k!
_(_1\ _ B r(k+1)
Rt = 17 () 3 (7 e, 19)
Theorem 1.2 The functions H(f) have the following form:
ao(f)

H(f)r,s = IL + Olf(_l)r (j)L_n + Rr,s(f) + Rs,r(s(f))

n—+

Jfor some uniquely determined oy € C.

The constant term oy can be computed (Sect. 6.6) from the Fourier coefficients of f and
s(f) in the case when f is cuspidal, and is given by an odd zeta value in the case when f
is an Eisenstein series. It is a pure period in the cuspidal case; and a mixed period in the
Eisenstein case. This dichotomy is due to the fact that the Tate twists of the Tate motive
have non-trivial extensions, but the Tate twists of the motive of a cusp form do not (in the
relevant range). When f is holomorphic, the constant oy is proportional to the Petersson
norm of f.

When f is a Hecke cuspidal eigenform with coefficients in a number field Ky, the coef-
ficients in the expansion of H(f), lie in a K¢-vector space of dimension at most 3 which
is spanned by periods. We show furthermore:

(1) Iff isaHecke eigenfunction with eigenvalues A,,, then the functions H(f),,s satisfy an
inhomogeneous Hecke eigenvalue equation with eigenvalues m~11,,. See Sect. 6.5
for precise statements.

(2) The action of Gal(Q/Q) on Hecke eigenfunctions extends to an action on the func-
tions H(f)s, for every r,s. In fact, this action extends to an action of a ‘motivic’
Galois group on a larger class of modular forms which acts on the coefficients in the
expansion (1.2). This will be discussed elsewhere.

The main ingredient in this paper is the single-valued involution s, which is derived from
the real Frobenius. It would be interesting to replace it with a p-adic crystalline Frobenius
to define p-adic versions of real analytic cusp forms (see [12]).

1.3 Weak harmonic lifts and mock modular forms of integral weight
Consider the special case r = n, s = 0. For the sole purposes of this introduction set

F=L""H(f)no.
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Corollary 1.3 For every (weakly holomorphic) cusp form f of weight n + 2, the ﬁmction]7
is a canonical weak harmonic lift of f. More precisely, using the notation (3.3),

8]7:f and A,,+1,1f:0,

In particular,f is a weak Maass waveform. It is given explicitly by

n
it (k)(—l) el sy
k=0

7=

The problem of constructing weak harmonic lifts has a long history, but an explicit con-
struction has remained elusive. The existence of weak harmonic lifts in a much more
general setting was proved in [9]. Having established existence, the general shape of the
Fourier expansion is easily deduced—the only issue is to determine the unknown Fourier
coefficients. On the other hand a direct, but highly transcendental, construction using
Poincaré series was given in [8,20], involving complicated special functions. This pro-
cedure is potentially ill-defined: when the space of cusp forms has dimension greater
than one, it involves choices, since there are relations between Poincaré series. The ques-
tion of whether weak harmonic lifts have irrational coefficients or not has been raised
in [10,11,20]. Our results imply that these functions, despite appearances, are in fact of
geometric, and indeed, motivic, origin.

The ‘mock’ modular form associated with]7 is the complex conjugate of the antiholo-
morphic part off times "1, It is harmonic and given by

Mf =of + n! S(f)(n+1).

Whenf is a Hecke eigenform, s(f) is given by (1.6), which leads to a very simple and explicit
construction of mock modular forms of integral weights for SLy(7Z). In the literature, it is
customary to rescale the mock modular forms by the Petersson norm. This gives

a. +pan
;7 _ m m
M = af + (n—1)! > el (1.9)
meZ\{0}
where a,,,, a,,, are the Fourier coefficients of £, f’, respectively, and
Lent  n”

==t o)

The quantity aj’, is in the field of definition of the ay,, a),,.
In Sect. 8, we compute this explicitly in the case of Ramanujan’s A function. Let

A=gq—24q>+252q¢° — 14724 +4830¢° + - - -,
A = g7 447709536 ¢> + 39862705122 4° + - - -,

where A’ € M}, is the unique normalised weakly holomorphic modular form which has
a pole of order 1 at the cusp, and whose Fourier coefficients ag, 4; vanish. In this case
an a,, € Z, and a, is the Ramanujan t-function. The functions A, A’ are a basis for the
de Rham realisation of the motive [21] of A. If p is irrational (as expected), then the nth
Fourier coefficient of M ]’, is irrational if and only if a,, # 0.

Since the space of cusp forms of weight 12 is one-dimensional, the method of Poincaré
series [8] also yields in this case an explicit expression for this mock modular form in
terms of special functions. Comparing the Fourier coefficients of the two gives:



34 Page60f36 Brown Res Math Sci (2018) 5:34

Corollary 1.4 Foralln > 0,

o0
u K(=1,nc) 47 \/n
2T Nz I ( ):a’—i— A
E p u{—; w+ pan

c=1

where K denotes a Kloosterman sum and I a Bessel function [20].

Since modular forms of level one do not have complex multiplication, Grothendieck’s
period conjecture, applied to the motives of cusp forms, would imply that its Fourier
coefficients are transcendental. The reader will easily be able to generalise the results of
this paper to the case of a general congruence subgroup using the results of [23].! In an
“Appendix”, we explain how the existence of a complex multiplication on the motive of a
cusp form implies an algebraicity constraint on the single-valued involution. This explains
the phenomena studied in the recent paper [10] which observed algebraicity of the Fourier
coefficients of suitably normalised Maass waveforms associated with modular forms with
complex multiplication.

1.4 Contents

In Sect. 2 we review the theory of weakly holomorphic modular forms. Much of this
material is standard, but many aspects are not widely known and may be of independent
interest. In Sect. 3 we review some properties of the space M' of real analytic modular
forms from [2], and its subspaces HM" (Sect. 4) of Laplace eigenfunctions and MT
(Sect. 5) of modular integrals. In Sect. 6 we describe the action of Hecke operators on
HM'. Much of this material is well known. In Sect. 7 we prove the existence of weak
modular lifts, and in Sect. 8 we discuss Ramanujan’s function A.

2 Background on weakly holomorphic modular forms
2.1 Weakly holomorphic modular forms
The vector space M., of weakly holomorphic modular forms of weight 1 € Z is the vector
space of holomorphic functions f : $§ — C with possible poles at the cusp, which are
modular of weight n. They admit a Fourier expansion of the form

f= Z anq”, where a, € C. (2.1)

n>—N

The space S}, C M, of weakly holomorphic cusp forms are those with ag = 0. The
subspace of functions with Fourier coefficients 4, in a subring R C C will be denoted by

M. (R).
Consider the following operator, which does not in general preserve modularity:
D= qi . (2.2)
dq

An identity due to Bol [1] (see also Lemma 3.3) implies, however, that
1. !
D"t M, — Mn+2 :
Its image is contained in the space of cusp forms S!n 4o Elements in the cokernel of this
map can be viewed as modular forms ‘of the second kind’, and can be interpreted as

! After we had written this paper, K. Ono and N. Diamantis kindly pointed out the recent work of Candelori [11], which
is closely related to our construction and applies for modular forms of level > 5. His formula (48) for the Fourier
coefficients in the case n # 0 is very similar to (1.9). The case n = 0 requires an additional argument, which we provide
in this paper using Hecke operators.
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algebraic de Rham cohomology. Surprisingly this fact is not well known. It appeared for
the first time implicitly in the work of Coleman [13] on p-adic modular forms, and later
in [11,21-23]. A direct proof in the case of level one was given in [6].

Theorem 2.1 Let M, denote the moduli stack of elliptic curves over Q, and V the alge-
braic vector bundle defined by the de Rham cohomology H{}R(é’ JMa,1) of the universal
elliptic curve € over M1, equipped with the Gauss—Manin connection. Set V,, = Sym" V.
For all n > 0, there is a canonical isomorphism of Q vector spaces

M, 2 (Q/D" ML (Q —> Hijp(Mi1; V). (23)
The right-hand side vanishes if n is zero or odd.

This theorem has a number of consequences that we shall spell out below. Many of these
have been known for some time, others apparently not.
There is a canonical decomposition into Eisenstein series and cusp forms

Hjp(My,13 V) = Hclusp)dR(Ml,l; Vi) © Hg jo(Mi,1: V).

Via the isomorphism (2.3), the latter is generated by Eisenstein series (1.3)
Helis’dR(Ml,l; Vi) = QG2

for all #n > 2, and the former is isomorphic to the space of cusp forms
Hclusp,dR(erl; V’l) = S;!4+2(Q)/Dn+1MLn(Q) .

Serre duality induces a pairing on the latter space. Explicitly, if g € S, 4o are weakly
holomorphic cusp forms of weight n+2 with Fourier coefficients ay (f), ax (g), respectively,
it is given by [6,14, Sect. 5]

fg) = Z “k(f)afk(g) ' 2.4)

Jen+1
keZ

It vanishes if f or g is in the image of the Bol operator D"*1. We have
dimg H g ap(M11; V) = 2 dime Ssa -

One shows [14] that every equivalence class
[f1 € M;,,,/D"H ML,

has a unique representative f € M}, 4o such that the order of the zero satisfies
ordeof > —dim Sy49 .

Thus, we have a canonical isomorphism

M, ., =D""'M' @& Hlp(My1; V).
2.1.1 Hecke operators
The isomorphism (2.3) is equivariant with respect to the action of Hecke operators Ty,
for m > 1, which act via the formula (6.2) (which we shall re-derive, in a more general
context, in Sect. 6). If a formal power series (2.1) has a pole of order p at the cusp, then
Tyf has a pole of order mp at the cusp.

The Hecke operators commute with the Bol operator:

[T, D"l =0 foralln,
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which implies that there is an action of the Hecke algebra for all #
Tp: M, ,/D"'M, — M, /D" M.

The action of Hecke operators respects the decomposition into Eisenstein series and cusp
forms. In particular, the Eisenstein series Gy are normalised Hecke eigenfunctions: for
allm>2and m > 1,

TGuto = 0np1(m)Gypo. (2.5)

The pairing (2.4) is orthogonal with respect to the action of T}, [14]

{(Twf gl ={f Tmg} forallfge S;Iq+2'

The space of cusp forms decomposes over Q into Hecke eigenspaces

H\,axMu1: V) @0 Q = D H® @1, T,
A

where L = (A,)m>1 and HfR is a two-dimensional K, vector space, where K; C R is the
number field generated by the A,,. H' )‘fR is generated by a normalised Hecke eigenform

fl € M}’l+2 (I(L ))
which satisfies T,f = Afy for all m, and a weak Hecke eigenform

fi € M, (K,
which satisfies for all m > 1:

Tof{ = hmf, (mod DM (K;)). (2.6)
We can assume as a consequence of [6, Proposition 5.6], that f;, fi satisfy:

{fi’fi} =1,

and furthermore, that f; has poles at the cusp of order at most dim S,,4». With these
conventions, H' fR has a basis

HR = fK;, & /Ky, (2.7)

which is well defined up to transformations f; — f; + afj, for a € K;..

Remark 2.2 One could fix a ‘canonical’ basis of H)‘fR either by assuming that the Fourier
coefficient a1 of f' is equal to 1, or by demanding that {f,f} = 0 (note that {f,, i} = 0
holds automatically). This will not be required in this p;;pe;. The latter condition holds
for the basis chosen in Sect. 8.

2.1.2 Group cohomology and cocycles
Let I' = SLy(Z). Let V,, denote the local system Sym”R'7,Q on M11(C) where v : £ —
M1 is the universal elliptic curve and Q is the constant sheaf on £(C). Its fibre at the
tangent vector d/dq on the g-disc ([4], Sect. 4.1) is the vector space

Va= P Qx'y/

i+j=n

of homogeneous polynomials in variables X, Y, corresponding to the standard homology
basis of the fibre of the universal elliptic curve. It admits a right action by I

X V)|, = (@X +bY, cX +dY)
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for y of the form (1.1). Recall that the space of cocycles Z!(I'; V,,) is the Q-vector space
generated by functions y — C, : I' — V), satisfying the cocycle equation

Cop=Cql|,+Cy forall ghel.

Such a cocycle is uniquely determined by Cs, C7, where

S = (0 _1>, T = (1 1) ) (2.8)
10 01

The polynomials Cs, C7 satisfy a system of equations called the cocycle equations. A
cocycle is called cuspidal if C7 = 0. The subspace of coboundaries B'(T'; V},) is the Q-
vector space generated by cocycles of the form

Cy =P, —P
for some P € V,,. The cohomology group is defined by
HYT; V) = ZY(T; V,,) /BN V).

There is a natural action of Hecke operators on H'(T'; V,,). In fact, this action lifts (via the
Eichler—Shimura isomorphism [25,26], see below) to an action on the space of cocycles
ZYT'; V;,) which preserves BY(T"; V;,) [19].

Complex conjugation on M7 1(C) induces an involution called the real Frobenius F
upon HY(I'; V;;) (and in fact Z!(I'; V,,)). It acts on I" by conjugation by

(%)

and on V}, by right action by €, i.e. (X, Y) — (X, —Y) (see [4] Sect. 5.4). In particular, there
is a canonical decomposition

HY(; V) = HY(T; Vi)t @ HY(T; V)™ (2.9)

into Fx-eigenspaces. The first is spanned by classes of cocycles C such that Cs is e-
invariant (even), the second by cocycles which are anti-invariant (odd).
Finally, there is an inner product on Hclusp(l"; V1) induced by a pairing between cocycles

and compactly supported cocycles [4, Sect. 8.3]:
[} ZND5 V) x ZLo (T3 V) — Q,

cusp

a formula for which was given by Haberland, e.g. [4, 2.11].

2.1.3 Eichler-Shimura isomorphism
The following corollary is a consequence of a mild extension [6] of Grothendieck’s alge-
braic de Rham theorem.

Corollary 2.3 There is a canonical isomorphism
compg gp : Hip(Mi,1; V) ®g C — HY(T;V,) ®g C. (2.10)

1t respects the action of Hecke operators on both sides.

In particular, the comparison isomorphism respects the decomposition into Eisenstein
and cuspidal parts. It can be computed as follows. Fix a point zg € .
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Definition 2.4 For every f € M’

Y where n > 0, let us write

Fy(z) = / ? Q@i f ()X — Y)"dr. (2.11)
z
The integral converges since zy is finite. It defines a 1-cocycle
X Y) =Fy2)|, - F2) € Z\T;V, ® 0). (2.12)
which is independent of z.

Changing zp modifies this cocycle by a coboundary. We deduce a linear map

M, ., — HYT;V, ®C)
f = 10]
which is well defined, i.e. independent of the choice of point 79, and Hecke equivariant.

One easily shows (see [7] or version 1 of [2]) that f € D"*IM'  if and only if [f] €
BY(T"; V,;) ® C, and hence the previous map descends to an isomorphism

n

M, ,/D" M, — HY(T;V,) ®C,

which corresponds via Theorem 2.1 to the comparison isomorphism compyg ;z-

2.1.4 Period matrix
Since the comparison isomorphism is Hecke equivariant, it respects the decomposition
into Hecke eigenspaces.

Let Hf denote the Hecke eigenspace of H!(T'; V;,) corresponding to the eigenvalues A.
Itisa K;—vector space of dimension 2 and admits a decomposition

Hf = H}" @ H~

into + eigenspaces with respect to the real Frobenius Foo.

The comparison isomorphism induces a canonical isomorphism
compg ;p :HZR ®qC — Hf ®gC.

Definition 2.5 Let us choose generators P;t of Hf’i, respectively, and a basis (2.7) for
HZR . A period matrix is the comparison isomorphism compg ;z written with respect to
these bases:

+ +
w
po= (" P (2.13)
= i, iw;

It is well defined up to multiplication on the left by a diagonal matrix with entries in K.,
which reflects the ambiguity in the choices of P;t up to scalar, and multiplication on the
right by a lower triangular matrix with 1’s on the diagonal.

From the compatibility of the period isomorphism with complex conjugation and real
Frobenius (Sect. 2.1.6), the numbers wit, nit are real. The wr, iw; are the usual periods

of fi, the numbers nr, in, could be called its ‘quasi-periods’ and seem not to have been
considered in the literature. It was proved in [6, Theorem 1.7] that

det(P,) € (mi)" K.
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2.1.5 Hodge theory
The de Rham cohomology group Hj,(M,1; V,,) admits an increasing weight filtration W/
and a decreasing Hodge filtration F by Q-vector spaces. The basis (2.7) is compatible with
the Hodge filtration.

Similarly, H(T'; V) is equipped with an increasing filtration W compatible with the
weight filtration on de Rham cohomology via the comparison isomorphism.

Thus, H!(I'; V,,) defines a mixed Hodge structure and is in fact the Betti realisation of a

motive [21]. The latter admits a decomposition (as motives)
HY (M35 V,) = Hclusp(Ml,l; Vi) @ HE(My,15 Vi)
where Héis’dR(M 11 Vi) EQ(—n—1)and Hclusp(./\/l 11; V) decomposes, over @, as a direct

sum of motives V), of rank 2 of type (1 + 1, 0) and (0, # + 1).

2.1.6 Real Frobenius and single-valued map
The constructions in this paper are simply a consequence of complex conjugation. The
comparison isomorphism fits in the following commuting diagram

compg 4p : HéR(MI,l;Vy[) ®qC = HYT;V,) ®gC

| \

compg 4 :H;R(Mm;vn) ®qC = HYT; V) ®gC
where the vertical map on the left is the C-anti-linear isomorphism ¢z which is the
identity on H ;R(M 1,1; Vi) and complex conjugation on C; and the vertical map on the
right is Foo @ cp where cp is complex conjugation on the coefficients.

It follows that the real Frobenius Fy induces an isomorphism which we have had
occasion to call the ‘single-valued map’ [5, Sect. 4.1]:
s: Hipo(My1; V) ®g C —> Hip(My1; V) ®g C.
It is none other than the composition
s = compE)ZR 0 (Foo ®id) o compp 4p -
It induces an isomorphism on every Hecke eigenspace
s:HR@C = H® @ C.
Weritten in the basis (2.7), it is given explicitly by the ‘single-valued’ period matrix
—1 i n;rw; + wj{ n, Zw;w;
Py P=—— AT R R
T detly ( —any ey - wM)
On the Hecke eigenspace corresponding to Eisenstein series, which is a pure Tate motive
Q(—n — 1), s is multiplication by —1 and s(Goy,42) = —Ga,42. For cusp forms,
ey e 2070 N,
s(f) = (T) + (ﬁ)f .
I @ =My @ Tr @ =~y O
From this formula for s(f) and the equation {f, '} = 1 we find that
2ia)rw;

{Fsi = Fe®)” (2.14)
which by Proposition 5.6 of [6] is proportional (depending on one’s choice of normalisa-
tion) to the Petersson norm of f. One could define the Petersson norm of f” to be {f”, s(f')},
which, in the case when f” is normalised by {f, f'} = 0, gives
2

s = det(Py)’
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The diagonal entries of the single-valued period matrix are proportional to the permanent
perm (P) = i(nZwi + wini) ,
and the coefficient of f in s(f) is the quantity

perm (P;) 772/’7; +CUZ/0)£

_ X L (2.15)
det (P;,) nZ/nL - wZ/wL

The constructions above clearly work for the motives [21] of any cuspidal eigenforms
of integral weight for congruence subgroups of SLy(Z). The preceding formula has impli-
cations in the case when the motive admits complex multiplication (see “Appendix”).

3 The space M’ of non-holomorphic modular forms
We recall some definitions from [2]. Let

L =loglq| = in(z —z) = —2my, (3.1)

which is modular of weights (—1, —1). Recall that M' is the complex vector space of real

analytic modular functions (1.1) admitting an expansion of the form (1.2). Let M ¢ M'

denote the subspace of functions for which N is zero, i.e. such that a%,),, vanishes if m or

n is negative. If ./\/l!,’s denotes the subspace of functions of modular weight (r, s), then
M =P M;,
s
is a bigraded algebra over C. The constant part of f is defined to be

0= LAaf) e LA
[k|<M

We say that f is a cusp form if f0 = 0. The subspace of cusp forms is denoted S' ¢ M,
and its component of weights (, ) is denoted S;...

3.1 Differential operators
There exist bigraded derivations
3,0: M — M
of bidegrees (1, —1) and (—1, 1), whose restrictions to a component er’s are
_ 0 _ 9
0,=(z—-2)—+r and s=(Zz—2)—+s
0z 0z
respectively. The following is a straightforward consequence:
3, L*g"g" = @mL + r + k)L*¢"7",
3, Lkqg"g" = @nl + s + k)L*g"g" . (3.2)
It is valid for any integers k, m, n, 1, s.

Lemma 3.1 For all 1, s, the kernels of 3, 3 are given by

1 ~ T —p)
(M, s Nkerd,) =L"M,_
-

(M, Nkerds) = LM, _,.

r

In particular, (ker 3) N (ker 9) = C[L*].
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Since there exist weakly holomorphic modular forms of negative weight, it follows that
primitives in M', .» unlike the space M., are never unique.
The bigraded Laplace operator is the linear map

A: M — M
of bidegree (0, 0), which acts on ./\/l!,)s by
Aps = —05 10, +r(s —1) = —8,_105 +s(r — 1). (3.3)
Define linear operators
hw: M — M
by h(f) = (r — s)f and w(f) = (r + s)f forallf € M',S
Lemma 3.2 These operators satisfy the equations
[3,0] =h, [h 3] =20, [hd]=—27,
i.e. 8, d generate a copy of sly. Furthermore,
[0,L]=[0,L] =[3,A] = [0,A] =0, and
[L, Al =wL, [I,w] = 2L, [I, h] = [A,w] =0,

The equations [, L] = [9, L] imply that L is constant for the differential operators 9, 3,
and justify calling f° the ‘constant’ part.

3.2 Bol’s operator
Recall the operator
d 1 0
D=¢q—=——.
dg 2mioz
Lemma 3.3 For all n > 0, the following identity of operators holds:

1 0 \»+1
n+1 —_—— =
L (m' az) 000—1...0—y. (3.4)

Proof Consider the Weyl ring Q[x, %] and write 6 = x%. Then the following identity is
easily verified for all n > 1:

00 —1)...(0 —n) = x"+1<§—x)n+1 , (3.5)

For example, it can be tested on x” for m > 0. Set d, = (wi)~18/3z and observe that
9, = Ld, + r. Since d, . = 1, there is an isomorphism Cl[x, 9/9x] S CIL, dy] sending x
to L and 9/9x to d,. The image of 0 + r is 9;, so (3.4) is equivalent to (3.5). O

Since 3 commutes with I, we can write

0 \nt+l1
D”“‘ = —) ‘ . 3.6
M (2]L M (36)

—n,e —n,e

This defines for all s € Z a linear map
1 ! !
D" Mfrz,s - Mn+2,s :

Its complex conjugate defines a map D' /\/llr,_n — M!”H_z for all .

Page 13 of 36
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3.3 Vector-valued modular forms
Call a real analytic function F : §§ — V,, ® C equivariant if for every y € SLy(Z) and all
z € 9 it satisfies (Sect. 2.1.2):
F(yz)|, = F(2).
There is a correspondence [2, Sect. 7.2], between sections of the trivial bundle V,, ® C on

9 and families of functions F,s : §§ — C for r + s = n with r,s > 0. It is given by writing

F@)= ) FpX —2Y) (X —zY)". (3.7)
r+s=n
Then F is equivariant if and only if each F,.s is modular of weights (r, s). Furthermore, F
admits an expansion in C[g~%, 77}, ¢, 7]][z Z] if and only if each F,s € /\/l',s
A special case of [2, Proposition 7.2 ] implies that

dF = wif(z)(X —zY)"dz + mig(z)(X —zY)"dz (3.8)
holds if and only if the following system of equations is true:
dF,s = (r + 1)Fy415—1 foralls > 1,
F.s = (s+ 1)F,_1541 forall r > 1,
dF,0 =1Lf , 9Fy, =1Lg. (3.9)

In the present paper, we only consider the case f; g € M, Y

3.4 Some useful lemmas
Lemma 3.4 Letf € Mi’,s’ and write h = r — s. Suppose that of = 0. Then

1

09 f = k(h—k+1)3" 'f
for all integers k > 0.

Proof It follows from [9, 3] = h and induction that

07 —79= Y  7hd (3.10)
i+j=k—1,ij>0
Applying this to f gives the stated formula. ]

Corollary 3.5 Letf € M. withr >s. Leth=r —s > 0. Then if

f =0 and 3 Tf=o

thenf € CL™" ifr = s and f vanishes if h > 0.

Proof By Lemma 3.1, 9f = 0 implies that f € L™" M!S_r, In particular, the coefficients in
its expansion (1.2) satisfy ag,(,)n ) = 0 if m # 0. This property is stable under 3, so the
same holds for all 5nf . Again by Lemma 3.1, P f = 0implies that 5hf e L=°M', and its
coeflicients satisfy ag,i)n(ﬁhf ) = 0 if either m # 0 or n # 0. It follows that 5hf e C[L*].

If # = 0, then f € M, and we have shown that f € CL™". Now if # > 0, 5hf e M.

sr’
and it follows that 5hf = 0 since all powers of LL lie on the diagonal h = 0. Applying the

previous lemma to f, we find that

09 f = k(h —k +1)3°'f

and so by decreasing induction on k, for 1 < k < /&, we deduce that §k_l f vanishes for all
k > 1. This completes the proof. |
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4 The space HM' of harmonic functions
Definition 4.1 Let HM' C M’ (respectively, HM C M) denote the space of functions
which are eigenfunctions of the Laplacian. For any A € Clet

HMG) =Ker (A = 3: M —> M)
denote the eigenspace with eigenvalue X.
Lemma 4.2 The space HM'()) is stable under the action of sly:
9,0 : HM' (L) — HM'()
and furthermore, multiplication by L is an isomorphism
L:HMq (W) — HML (L —7 —5). (4.1)

Proof The first equation follows since [V, 3] = [V, 3] = 0 by Lemma 3.2. For the second,
[L, A] = wL implies that if AF = AF, then A(LF) = (. — w)LLF. O

The lemma remains true on replacing HM'(1) by HM(L) = HM'(X) N M.
Lemma 4.3 Every Laplace eigenvalue is an integer:

HM' = DHM ().

neZ
Every element F € HM'()) has a unique decomposition
F=F"+F +F", (4.2)
where F® € C[IL*] is the constant part of F, and
F* € Clg " qllIL*),
F* e Clz L, gL

are the (weakly) ‘holomorphic’ and ‘antiholomorphic’ parts of F and have no constant
terms. Furthermore, each piece is an eigenfunction: AF®* = LF* for e € {h,0, a}.

Proof This was proved for the space HM in [2, lemma 5.2]. The proof is more or less
identical for M'. o

One can be more precise ([2], Sect. 5.1). Let F € HM!,,S with eigenvalue A € Z. Let
w = r + s be the total weight. Then there exists a ko € Z such that

F® e CLkgCL", (4.3)

where kg < 1 — w — kg and A = ko(1 — w — ko), and furthermore:

" e Pcgtant, e @cig gt (4.4)
k=ko k=ko

5 The space ./\/tl"1 of weak modular primitives
The subspace MT' c M of modular iterated integrals was defined in [2].
Definition 5.1 Let MZ !71 = 0. For every k > 0, let

MI, c P M;,

r,5s>0

Page 15 of 36
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be the largest subspace which is concentrated in the positive quadrant of M’ (with modular
weights (r, s) with r, s > 0) with the property that

IMI, C MI; +M[L]® MT;_,,

dMI, € MT} + M'[L] ® MT}_, (5.1)

for all k > 0. We define MT' = Dk MI!k. It is closed under complex conjugation.

We call the increasing filtration MI;< C MT' the length. In this paper we shall focus only
on length < 1. We first dispense with the subspace of length 0.

Proposition 5.2 MIB =C[L™1].

Proof Firstly, the space C[IL!] satisfies the conditions of the definition since [9, L] =
[0,L] = 0,and so C[L™1] ¢ MI’O. Now let F € MI’O be of modular weights (7, 0), where
n > 0. Since dF has weights (# + 1, —1), which lies outside the positive quadrant, we must
by (5.1) and MI’_l = 0 have dF = 0. Similarly, the element F’ = 3"F has weights (0, n)
and so F' = 0 since it also lies outside the positive quadrant. By Corollary 3.5, F vanishes
ifn > 0and F € Cif n = 0. By complex conjugation, it follows that MIE) vanishes in
modular weights (0, #) and (#, 0) for all # > 1 and is contained in C in weights (0, 0). We
can now repeat the argument for any F € MIB of modular weights (#, 1) by replacing
F with LF and arguing as above. We deduce that MZ}, vanishes in all weights (s, 1) and
(1, n) for n > 2 and is contained in CLL ™! in weights (1, 1). Continuing in this manner, we
conclude that MI!O c C[L™1. O

5.1 Modular iterated integrals of length one
It follows from the previous proposition that MZ '1 is the largest subspace of M' which
satisfies

IMTI) ¢ MTY + M'[LE],

IMT, ¢ MT} + M'L*]. (5.2)
In particular, any element F € MZ} of weights (1, 0), with 1 > 0, satisfies

OF = Lf

for some f € M, 4o weakly holomorphic of weight # + 2. We call such an element a
modular primitive of Lf. It is necessarily a Laplace eigenfunction with eigenvalue —n
since (A + n)F = —9dF = 0 by (3.3).

Remark 5.3 As a consequence, L~ F satisfies dL."'F = f and AL~'F = 0. It is therefore
what is known as a weak harmonic lift of f.

Proposition 5.4 Let n > 0. Let f be a weakly holomorphic modular form of weight n + 2,
and let X,,0 € M' be a primitive of Lf:

0X,0 =Lf.
Then there exist unique elements X, € M’,,S,for r,s > 0andr+s = nsuch that

0Xps = (r + DXyq15-1 fors>1,
ng,s =(+DX—1541 forr=>1 (5.3)
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and
Xon =1g
for some g € MLH a weakly holomorphic modular form of weight n + 2. It follows that

(A+nX,s =0forallr +s=mn,ie X5 € HM' (—n).

Proof Suppose that X, is a primitive of Lf. Define X,,; by the formula

55
X5 = —Xno (5.4)
S

forall r +s = n, r,s > 0. The second equation of (5.3) holds for all r, s. For the first
equation, apply identity (3.10) to X,, ¢ to obtain

851()(”,0 — 5k8X,,,0 =k(n—k+ 1)5k_1Xn,0 .
For k > 1 the second term is L. 5kf , which vanishes. Therefore, by (5.4),

K'0X, g =k(n —k +1)(k — )Xy 41,01
which is exactly the first equation of (5.3). Applying h = [, 3] to Xo,,, and using the
equations (5.3), one finds that 85X0,n = 0. Therefore,

X0y € MLLV:H N ker 9_1,

and by Lemma 3.1, it follows that 3Xo,,, = LLg for some g € M;l 4 as claimed. Finally, the
fact that the X, ; are Laplace eigenfunctions with eigenvalue —# follows easily from (3.3),
(5.3) and, when # = 0, the equations 3X,,0 = LLf, 3Xo,, = Lg. O

Remark 5.5 If we define X : § — V,, ® C by
X= ) Xps(X —zY) (X —zY)’
r+s=n
then X is modular equivariant, and equations (5.3) are equivalent to

dx = % (f(z)(X —2Y)'dz + g()(X — zy)"dz) .

The fact that the coefficients X,.; are eigenfunctions is equivalent to the identity

82
0z0z

We now turn to uniqueness.

X=0.

Lemma 5.6 Let Xy, (respectively, X; ) be modular primitives of Lf, and let X,s, g (resp.
X, &') be the functions in M defined in Proposition 5.4. Then there exists a weakly
holomorphic modular form & € M’_n such that forallr +s=nandr,s >0

=S

0 —
X/ _XVS =L*V1_S,

S 1 S!
and

1_
g —g=—0"L"g,

n!

In other words, g and g’ are equivalent modulo D"T'M' .

Proof ByLemma3.1,X] ,— Xy € L™"M'_,. Apply (5.4) and (3.6) to conclude. ]
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Corollary 5.7 If X, is a primitive of Lf, and X, s, g are as defined in Proposition 5.4, then
Y,.s = X, is a system of solutions to the equations (5.3) and satisfies

po=Lg and Yy, =Lf.

Therefore, complex conjugation reverses the roles of f and g.

5.2 Harmonic functions and structure of MT},
We show that the modular primitives of Proposition 5.4 generate MIII under multipli-
cation by ™1, This section can be skipped and is not required for the rest of the paper.

Proposition 5.8 Modular integrals of length one lie in the harmonic subspace of M':
MTIy c HM'.

More precisely, any element F € M} of modular weights (r, s) can be uniquely decomposed
as a linear combination of elements

F = Z Fy,
0<k<min{r,s}
where Fy € MT' also has modular weights (r, s) and satisfies:
AF,=(k—-1)r+s—k)F.
Specifically, if r > s, each Fy is of the form Fy = ]L_kgs_ka, for some Xi a modular

primitive of Lfy, where fi € M!r+s+2—2

In the case s < r, we can take Fr = L=K3"*X, with X; a modular primitive of Lgy,

« 18 weakly holomorphic.

where gi € M; +sra_ox is weakly holomorphic.

Proof Suppose that F is in MZ} of modular weights (r,s) with r > 5. We show by

induction on s that it is a linear combination:
—s—k

X € M (5.5)

—k
F = Z Fy where F =1L Y e

0<k<s
where 3X; € LM', and hence, Xy is a modular primitive of total weight r + s — 2k. By
Proposition 5.4, Xy is a Laplace eigenfunction with eigenvalue 2k — r — s, and it follows
from [A, 3] = 0 and (4.1) that Fy is also an eigenfunction with eigenvalue

Qk—w)+(w—2k)+(w—-2k+2)+--+(w—2)=(k—1)(w—k),

where we write w = r + s. Since these eigenvalues are distinct for distinct values of
0 < k < w/2, the Fy, are linearly independent and the decomposition is unique.

The statement (5.5) is true for F of modular weights (7, 0): in that case (5.2), together
with the fact that dF lies outside the positive quadrant, implies that

dF € M'[L*]

and hence oF = Lf, for some f € M}'q Y Therefore, F is a modular primitive of Lf, and
by Proposition 5.4, an eigenfunction of the Laplacian with eigenvalue —#n. Now suppose
that F € MI!I of modular weights (7, s) with r > s > 0 and suppose that (5.5) is true for
all smaller values of s. Then since

OF € MT} + M'[L*]
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has modular weights (» + 1, s — 1), the induction hypothesis implies that

53717/(

AF =1'° L=
Ay 51—k

0<k<s—1

Xk

—=s—1—k

for some f € M’ From the proof of Proposition 5.4, each term MX;( has a

r—s+2°
—s—k
modular primitive th. Define X; via the formula

—=s—k

0
L~X,=F — L* X .
; 2 (s — "k
0<k<s—1
Then X; is a modular primitive of Lf and F is of the required form, completing the
induction step. The case where s > r follows by complex conjugating, which reverses the

roles of  and s. Taking both cases together implies the first statement. ]

In particular,

+ an element F € MZ} of modular weights (1, 0) is necessarily an eigenfunction of the
Laplacian with eigenvalue —#.

« an element F ¢ /\/lI!1 of modular weights (# — 1, 1) is a linear combination of two
eigenfunctions of the Laplacian with possible eigenvalues {—#, 0}.

« an element F € MZ} of total weight w can have eigenvalues in the set

{—w, 0, w-2, 2(W_3): 3(W—4); ey %(1—%)}

Remark 5.9 Elements in MZ}( for k > 2 are no longer harmonic and satisfy a more
complicated structure with respect to the Laplace operator. See, for example, [3, Sect. 11.3-
4].

5.3 Ansatz for primitives
Recall that for f € M 42 a weakly holomorphic modular form, the functions f *) and
R, 5(f) were defined in (1.7) and (1.8). In particular,

S (Y K
Ruolf) = 1)2(,{)( Df e,

Roalf) = (-1 20, (5.6)

We shall write Rs instead of R, s(f) when f is understood.
Proposition 5.10 The functions R, satisfy

0rRys = (r + 1)Ryy15-1 forall s>1
aan,O = (_l)an(O) .

Furthermore,

_ (S+ l)Rr—l,s—H éfr >1,
aer,s =
0 ifr=0.

Proof Let us write

n

_ "\ kK e
Su= 2 ()0t

k=s
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and show that for all s > 1,

0rSps +8Sr41,5-1 =0.
We first verify using (3.2) that

—k p(k+1) 2m 1-k m —k p(k+1)
oL = | N o —a, L g | + (r = kLTS
(2m)k+1
meZ\0
_ Ll_kf(k) +(r— k)L—kf(k+1) )

It follows that

arSr,s + SSr+l,sfl = Z (k i S) (_l)kk!(Llikf(k) + (7’ — k)]Likf(kJrl))

k<n
r+1 kg~ k1)
—1)"k'L
(Lt tren)
Using r 4+ s = n, the right-hand side reduces to

r B kﬁ et~k + 1)(n — k) B sr+1) 7
kgn(k—s)( D ]L,kf [ k—s+1 Y k)+k—s+1]_0

since the term in square brackets simplifies to zero. Finally, since

n
Rr,s = (_1)r (r)sr,s >

we find that for all s > 1,

(r + s)! r+9)(r+1)
— — (=1 oy M TN A
O Rys — (r + DRy 151 = (—1) ls! O Sps — (=1) o+ — 1)!Sr+1,s—1
(r + s)!
= (—1)"T <8,S,,S + SSr+1,s—1)

which vanishes. This proves the first equation. For the second, by (5.6), we have

n

8an,O = (_l)n Z
k=0
By telescoping, only the first term in square brackets (for k = 0), and the second term (for

n!

= k)‘ (_l)k [Ll_kf(k) + (}’l _ k)L_kf(k+l)]

k = n) survive. The latter is zero, and the former is exactly (—1)"Lf ),
For the last part, compare dsR,,s and (s + 1)R, 1,511 using:

(7 r 1yl n r—1 B
(M) )s =t () (L e

where n = r + 5. The case r = 0 is immediate from Lemma 3.1. O

Lemma 5.11 LetE : H — V,, @ C be real analytic and T -equivariant such that

dE dE
— =0, — =cX-2zY),
0z 0z
wherec € C. Thenc =0 and E = (:ﬁ)" Y" for some o € C. Writing

E= Z E (X —zY) (X —ZY)5,

r+s=n

we find that
Eys = a(—l)’(”>L—” .
r

IfE is modular equivariant and n > 0 then o vanishes.



Brown Res Math Sci (2018) 5:34 Page210of36 34

Proof Consider the function e : $§ — C obtained by composing E with V,, ® C —
(V, ® C)/YC = C. It is the coefficient of X" in E. It satisfies g—i = 0 and g—; = c and
therefore e = cz + B for some B € C. Since T fixes Y and actson X by T'(X) = X + Y, the
condition of T-invariance implies that e(z + 1) = e(z). This forces ¢ = 0. It follows that
3%5 = %E = 0 and so E is constant. By T-invariance, E lies in V;/ = CY”, and hence

E = ﬁY” for some o € C. But

o n_ o 1 . ~ - "
- ()" Yh= (i) (z — Z)" <(X zY) - (X zY))
— ,Hgn(_l)r(:) (X —ary (- zvy

since L. = wi(z — z), which proves the formula for E,.;.
Finally, if E is modular equivariant, E,; € CL™" is modular of weights (r, s) withr +s =
n > 0. But L™" is modular of weights (#, n), which implies that E,.; = 0. ]

Corollary 5.12 Let f € M;, 4o be a weakly holomorphic modular form. Let Xy,0 be a
modular primitive of Lf, and let X, and g € M; o be as determined by Proposition 5.4.
Then the zeroth Fourier coefficients of f and g are conjugate:

a = ao(f) = ao(g)
and there exists some o € C such that
a n _
Xps = ——L+ a(—l)’( )]L_” + Rps(f) + Ry (g) (5.7)
n+1 r
forallr,s > 0andr+s =n
Proof Leta = ap(f). Define
a —_—
Yr,s =——7L+ Rr,s(f) + Rs,r(g) .
n+1

We first check that the expression for Y, satisfies the equations (5.3). By (3.2), we have
9;L = (r + 1)L, and by Proposition 5.10, we deduce that 9,Y;s = (r + 1)Y,11,_1 for all
s > 1. Similarly, using the fact that # is even, we check that

9, Y0 =all+ 0,R,0(f) =all + (_l)nf(O) L=Lf.
By complex conjugating, §S Y5 = (s+1)Y,_ 151 forallr > 1,and
O Yon=al+ 5an,0(g) =L(a +§(0)) ,

Define E,s = X;,s — Y,5. The function E = ) . E,o(X —zY)"(X — zY)* satisfies

oE oE -
== = i —a)(X —zZY)"
% 0 and P wi(ao(g) — a)( zY)

by (3.8). It is a real analytic and T -invariant section of V,, ® C, since X,; and Y, are
T'-invariant. By the previous lemma we conclude that there exists an « € C such that

n
Xr',s = O{(—l)r (r)]L_n + Yr,s

for all ¥ + s = n, and furthermore, that ay(g) = a. O
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We shall determine the unknown coefficient o using Hecke operators. Another way to
prove the corollary is to use the fact that X,,s are eigenfunctions of the Laplacian (Proposi-
tion 5.8) and the explicit shape (4.3) and (4.4) for the latter. We chose the approach above
since it explains the origin of the indeterminate coefficient «, and since functions in MZ
are not harmonic in general.

Corollary 5.13 A modular primitive of Lf, if it exists, is of the form:

a o n—— < (n k!
X, = —NL P " y(n+1) -1 k_ (k+1) . 5.8
o= Lt e +I;)(k>( ) ka (5.8)

5.4 Example: real analytic Eisenstein series
Let &, denote the functions defined in the introduction. By [2, Proposition 4.3], and
equation (5.7), we have

5;",s = Egs + Rr,s(Gw+2) + Rs,r(Gw+2) )

where

0 —_¢ —1) w w! -w
s = T nmwra - TV gt DR

In this example the coefficient « is an odd zeta value, which is the period of a non-trivial

extension of Tate motives, and is conjecturally transcendental. It can be obtained as a
special value of a suitably defined L-function of £, (see [2], Sect. 9.4).

6 Hecke operators
We review some basic properties of Hecke operators. For any o € GLy(R) write

ay by
— ) 6.1
* (ca dw) (6.1)

i.e. a, b, ¢, d are the standard generators on the affine ring O(GL5).

6.1 Definition

Letf : § — V, ® C be real analytic and equivariant. Let m > 1 be an integer, and let
M, denote the set of 2 x 2 matrices with integer entries which have determinant m. The
Hecke operator is defined by the formula®

T,,f(z):% > flaz)],.

a€l\M,,
Since f is equivariant, it follows that forall y € T,
flyaa)l,, =fv(@)] |, =fle2)],

and hence the formula for T,,f is well defined. The set of cosets I'\M,, is finite and are
described below. Since right multiplication by any y € T" defines a bijection of cosets

2The reason for the factor m~! is that f is a function; the usual formula for Hecke operators involves one-forms: for o
as in (6.1),

det(a)

dod) = v

and the det(«) accounts for an extra multiple of m in the formula for Ty,.
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I'\M,, —> T'\M,,, we deduce from the calculation

(T2, = Y flayal,, = Y fl'2)

ael'\M,, o' el\M,,

o = Inf(2)

that T,,f : 9 — V,, ® C is equivariant. Via the dictionary Sect. 3.3 between equivariant
vector-valued modular forms and modular forms of weights (7, s), we deduce an action of
T,, on the latter. It is given by the following formula.

Lemma 6.1 Iff is real analytic modular of weights (r, s), then
r+s—l

Tnf = 2 T A s T Ay

ael\M,,

f(az)

and is real analytic modular of weights (r, s).

Proof For any « as in (6.1),

d
(X —oth)|a = %(X —zY).

Writing f inthe form f =} . fr (X —zY)" (X —zY)*, we find that

Tmf = Z Z f det(a)” (X —zY)' (X —ZY)*
aeF\Mm r+s=n ” CO‘Z + do) (caZ + do)*
Reading off the coefficients gives the stated formula. -

6.2 Properties
Lemma 6.2 View T, multiplication by 1L, and d, 3, A as operators acting on real analytic
modular functions. Then they satisfy
mTy, L=LT,,
[Tm; 3] = [Tm; 5] =0.

The second equation implies that [T, A] = 0.

Proof For any « as in (6.1),

_ det(a)
Im(@2) = =g 1 do) @

If f is modular of weights (r, s), then Im(z)f is modular of weights (r — 1, s — 1) and

m! 53
Tm(Im(2)f) = — Im(az)f (0z
m(Im(z)) aeFX\Z:\/Im (caz + do) 1 (caZ + do )1 (@z)f (@)
mr+s—2 1
mD D T ayea Ty @)= T @)
ael\M,,
The first equation follows from . = —27Im(z). One verifies for any « of the form (6.1)

(dropping the subscripts « for convenience):
- ((cz + ) f(@2) = (cz + )"+ ) 0f ) (@2),
3((2 + d) 7 (@2) = (2 + )z + d) 7 (3f) (@2).

Page 23 of 36
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Since 9,f is modular of weights (r + 1,5 — 1)

m"+5*1
Tm(arf) = FZ (Caz =+ da)H_l(Caz + da)s_l (8rf)((xz)
ael\M,y,
— m =1 f(otz) B
_ QEFZ\;M (CaZ + du)® ar((caz i da)r) — 3, Tolf),

which proves that [T, 3]f = 0. The statement for d follows by complex conjugation. The
equation [T, A]f = 0 follows from the definition of the Laplacian (Sect. 3.1). O

By [24, Sect. 5.2 Lemma 2], a complete set of representatives for the set of cosets I'\ M,
are given by the o1(m) = 3_,,, d integer matrices

ab

0d where ad=m,a>1,0<b<d.

It follows from Lemma 6.1 that for any f modular of weights (r, s), we have

b
Lf@=m Y Y (0, 62)

ad=m,a,d>0 0<b<d

where w = r + s is the total weight of f, which is the usual formula. The operators T3,
commute and satisfy the following relations [24, Sect. 5.1]:

TTy = Ty if (m, n) coprime,
TpTpyr = Ty +pw_1Tp;H if p prime, n > 1

viewed as operators acting on modular forms of total weight w.

6.3 g-expansions
The Hecke operators do not preserve the spaces M and M'. Indeed, it follows from the
definitions that the map f(z) > f (@) acts via

ma __na

Lkg"g" > (g)kebri(mfn)g Lyq% 7%
The following corollary is a consequence of formula (6.2) and continuity.
Corollary 6.3 Let R C C. The Hecke operator Ty defines a linear map
Ty : M'(R) — MINP(R[INY)

where ./\/l[N (S) is the space of real analytic modular forms which admit an expansion in
Slg VN, g VN, gV/N, g N T L],
It is well known that for r € Z,

0 ifd/r

Z eZm‘r% — ‘ (6.3)

0<bed d ifd]r.

Corollary 6.4 Letf € M. with an expansion
f=Y a})Liq"g" (6.4)
satisfying the property that for all d|N, d > 1,

“Ef:,)n =0 whenever0m=n (modd). (6.5)
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Then Tnf € M.,. More precisely, one has the formula

Inf =) o) L'a"7" 66
ke, v
where
2\ k
_1/a «
oc}(fl = Z @ 1(ﬁ> “(,L\)zﬂ.
al(Np,v),a>1 a2’ a2

In particular, iff € M, s and satisfies (6.5), then Tnf € M.

Proof Apply Ty to the expansion of f via formula (6.2) to deduce that
_ a\k 1 o \b ma_na
BTN S (BT et

km,n ad=N,a,d>0 0<b<d
This reduces using (6.3) to

a\k _ ma _na
h=3 3 (G) ettt
kmn ad=N,a,d>0

By assumption (6.5), replace m, n with m’ = m/d and ' = n/d to obtain

a\k _ Y/ L
TNf: Z Z (6_1) a” laf;/)d’n/deqmaqnu.

km',n' ad=N,a,d>0
Comparing with (6.6) and collecting terms in g*g" gives

k
k) _ w—1(4 (k)
ah’z, = E a (3) B va -
al(N,pv),a>1 a

where in the sum, d denotes N /a. O

Condition (6.5) holds in particular if ag(,,),, = O for all mn # 0.
Corollary 6.5 The Hecke algebra acts on HM'.

Iff =f*+f° +fh as in (4.2) then (Txnf)® = Tn(f*) for e € {a, 0, h}. It follows from the
formula that if f* has a pole of order at most p at the cusp, then Tf*® has a pole of order
at most Np at the cusp, for ¢ = g, /.

Corollary 6.6 Let f be as in Corollary 6.4. Let w = r + s. Then
k —k (k
aby = oncrw-1 (NN K 2] 6.7)

Corollary 6.7 Let N = p be prime. Then for all k, 11, v,

®) _ . —k (k) wk—1_(K)
Ay =P Ayupyp TP Aspv/p

where the second term arises only if p divides u and v, and is absent otherwise.

The space of almost weakly holomorphic modular forms M ![Gj, IL*] consists of har-
monic functions. It is preserved by the Hecke operators.

Example 6.8 The modified Eisenstein series G5 = G, — ﬁ is modular of weights (2, 0)

and lies in My o, where

1 1
Galg) = ——+ Y _o1(nq" = ~2 +q+3+44® + 744 + - -
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By formula (6.7) with w = 2, we find that T,,(L™!) = n~lo_1(n)L~! = o1(n)L"}, and
hence, G; is a Hecke eigenform. For all n > 1,

T,G5 = 01(n)Gj .

Remark 6.9 The quotient HM' Jd(HM') also admits an action of the Hecke algebra.

6.4 Hecke operators on weakly holomorphic modular forms

Letf e M,'( be a weak Hecke eigenform. Then for all m,

+2
(Tm - )Mm)f = Ym

for some A,,, where v, is a weakly holomorphic modular form
Ym € DKM,

Since the operators Ty, T,, commute, they satisfy

(Tm - )\m)lﬂn = (Tn - )\n)wm (6-8)

for all m, n. From the standard relations between Hecke operators:

I/fmrl = )anm + T I/fn

for all (m, n) coprime. For all p prime and n > 1,

Yyt = Tyt — P Yt + At

6.5 Hecke action on modular primitives
Let f, g X,,s be as in Proposition 5.4.

Proposition 6.10 f is a weak Hecke eigenform with eigenvalues ), if and only if g is a
weak Hecke eigenform with eigenvalues Ay,. In this case,

A 1,0 3
(T = 22 ) Xos = — L7 (S o+ < ) (6.9)
m m r! s!
or some weakly holomorphic functions Y, ¢, € M*, satisfyin
y n ying
1,
(T = Alf = — L7710
1 _,_
(T — Am)g = -~ L1, . (6.10)

Proof Suppose thatf is a weak Hecke eigenform with eigenvalues A,,. Therefore, by (3.4),
there exists for everym > 1 a y, € M’_n such that

1
(Tm _ )Lm)f — _‘ ]Lfnflan+ll//m .
n!
Since 0X,,0 = Lf, it follows from [T}, 3] = 0 (Lemma 6.2) that
A 1
8<Tm — —'”)Xn,o — Ly,
m mn!

Hence, by Lemma 3.1 there exists a ¢, € M, such that

(Tm — %’”)Xn,o - %L—"(i—}:wm +¢7) . 6.11)
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This proves the case (r, s) = (1, 0) of (6.9). By taking the complex conjugate of Lemma 3.4
we find, using the fact that 5%,4 = 0, that

305y, = 005y, — 050U, = k(n — k + 1)05 1y, .
By induction on s, this in turn implies that

53 3711]0 9n—s
— Yy, =

s! n! (n—s)!

Ym -

From the definition X,.s = g—;X,,,o, we apply é—f to (6.11) and use [T, 3] = 0 (Lemma 6.2)
and the previous equation to deduce that
Am 1,9 '
(T = =2 Vs = L7 (S o + =) -
m m r! s!
This proves (6.9). Now apply 3 to this expression in the case (7, s) = (0, n). We find, since
9Xo,, = Lg and 8y, = O that,

—n+1
]

bm

(Tm - )\—’”)Lg _ Ly
m m n!

which is equivalent by Lemma 6.2 to the second line of (6.10). By (3.4), g is a weak Hecke

eigenform with eigenvalues A,,, and completes the proof. The converse result, where we

assume that g is a weak Hecke eigenform and deduce the same for f, holds by complex

conjugation. O

Remark 6.11 Remark 5.5 implies an equality on the Betti image under compg ;5 of the de
Rham cohomology classes in H{}R(/\/l 11(C); Vy):

27if (2)(X — 2Y)"dz] = [2mig(z)(X — zY)"dz].

Since the Hecke operators act on cohomology, it follows that f is a weak Hecke eigenform
if and only if g is, and that they have the same eigenvalues. Incidentally, this argument
also proves that g = s(f).

6.6 Determination of the coefficient of L™"
Corollary 6.12 Letf g € M;+2 and X, be as in the previous proposition. Then

X0 = a(~1) <n>L_”,
’ r

where the constant a € C satisfies for allm > 1

(Ont1(m) — dw) @ = ao(Vm) + ao(Pm), (6.12)

where ag denotes the zeroth Fourier coefficient.
Iff is cuspidal, 6y,41(m) — Ay, # O for all m sufficiently large, in which case

_ ao(Ym) + ao(dm)
a=—""_""T""

0n+1(m) — Am (6.13)

In particular, if f, g have real Fourier coefficients, then « is real.

Proof By Proposition 6.10,

" —
(mTy, — )‘«m)Xn,O = L_”(ﬁwm + ¢m>
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for all m > 1. By equation (5.7), the constant term of X, is XS,O =« lL7", since f is a cusp
form. On the other hand, equation (6.7) in weight # implies that

n+1
mT, L™" =o_,_1(m)m" ' L™" = Z (T) L™ =oyp1(m)L7".

dim a

Putting the pieces together yields
_ _ 0" —
(n T = 3n)Xf)g = @1 m) = A L = L (aiy (S0 ) + ao@m)
where ag)()) denotes the coefficient in the expansion (1.2). Since ¥, € M’_n,

agn (@ Ym) = a1 ... m) = (=1 mal (Ym)

by successive application of (3.2), which never decreases the powers of L.
The X, are the eigenvalues of a normalised holomorphic Hecke eigenform g € S,.».
Then A,;, = a,,(g) and an elementary estimate [16, Lemma 2], implies that |4,,(g)| grows

n/2+1 n+1

at most like m . Since oy,41(m) > m" "+, it follows that (0,41 (1) — A;;,) is nonzero for

sufficiently large m. ]

The consistency of equations (6.12) for different values of m follows from (6.8). Equation
(6.13) would have poles for every # if f were an Eisenstein series by (2.5).

7 Existence of modular primitives
Having determined the form of modular primitives, we now turn to their existence.

7.1 Cocycles and periods

Let us fix a system A of Hecke eigenvalues corresponding to a cuspidal eigenform f € S;,42,
and let HfR, Hf be as defined in Sect. 2. For simplicity, we shall drop the subscripts A
from now on, and set K = K. Let

feMuyr and  feM,,,

denote a K -basis for H%R of the form (2.7). Likewise, choose a K -basis P* of H3+ and P~
of HB~. We have P% = 0. The polynomials PSi are known, respectively, as the even and
odd period polynomials of f.

Let us choose a basepoint zg € $andlet C, C’ € Z1(T'; V;,) denote the cocycles associated
with f and f”, respectively. The comparison isomorphism (2.10) implies that

[Cl=n" [P +in~ [P7],
[Cl =o' [P +io™ [P7], (7.1)

+

where w™, iw™, nT, in™ are the entries of the period matrix in these bases.

Lemma 7.1 There exists a canonical Hecke equivariant splitting over Q:

s Hyp(Ts Vi) —> Ziyp (T3 V2.

cusp

Proof See [4, Lemma 7.3]. O

We can assume that P1, P~ ¢ chusp

the cohomology classes chosen earlier. They satisfy P% =0.

(T'; V,, ® K) are the unique Hecke-equivariant lifts of
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Corollary 7.2 There exist polynomials Q, Q' € V, ® C such that forall y € T,
I _ o pt i pe /
Cy =7 Py +”7 Py +Q()(’Y)|)/—id’
C, =" Pf +io” P, + QX Y)|y_id.

The polynomials Q, Q' depend on the choice of basepoint z.

7.2 Real and imaginary analytic cusp forms
We shall construct explicit modular primitives of cusp forms in two steps.
Recall that the integrals Fy(z) were defined in (2.11) relative to the basepoint zp € .

Definition 7.3 Define real analytic functions  — V,, ® C by
T(2) = i)™ (0 Re (@) = Q) — ' Re (F(2) - Q)),
Ry(2) = i)™ (o7 Im () — Q) = 7 Im (@) - Q))
Note that (2.11) involves an odd power of 2, which explains why ‘real’ and ‘imaginary’

are apparently interchanged.

These functions satisfy the differential equations
dZy(z) = w*Re (27if ()X — 2Y)"dz) — n*Re (27if (2)(X — 2Y)"dz)
=i <w+f’ —nTf)(X —zY)"dz + ni(n+f_ —o'f)(X —zY)"dz
and similarly
ARy (2) = i (0f = n7f)(X = 2¥)"dz + 7i(@ f = )X — ZY)"dZ
Theorem 7.4 The functions Z;(z) and Ry(z) are well defined (independent of the choice

of basepoint zy), and I'-equivariant.

Proof The I'-equivariance of Z¢(z) follows from Corollary 7.2:

If(yz)‘y —Ir(z) = ot (n+ P;‘) — 77+<a)+ P;‘) =0.
Changing base point zg yields a modular equivariant solution to the same differential
equation for dZy given above (which is independent of the basepoint). By Lemma 5.11,
any modular equivariant solution is unique. The argument for R (z) is similar. o
Extract the coefficients of Z; and Ry via
Iy = Y LX —2Y) (X —ZY),,

r+s=n

Rp= Y RyX —zY)(X —zY)"
r+s=n

They define weakly holomorphic modular forms in M".

Corollary 7.5 There exists a family I,.; € ./\/l!,)s, forr + s = n, such that

0lps = (r+ Dhy15-1 forall1<s<mn,
5Ir,s =+ 11541 foralll<r<mn,

and

dal,0= L<w+f/ — n+f), 510,,, = L(n+f — w+f_’)
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They are ‘imaginary’ in the sense that I, = —I,.
Similarly, there exists a family of elements Ry,s € /\/l!,,sfor r+s=mnandr,s > 0, satisfying
the identical equations, except that the last line is replaced by

IR, 0 = ]L(aff’ — nff) and AR, = }L(aff_’ — nff),
They are ‘real’ in the sense that E,} s =R,

Proof This is a straightforward application of (3.9) to the previous discussion. O

7.3 Modular primitives of cusp forms
Since the period isomorphism is invertible, we can change basis, to deduce the existence
of modular primitives for all cusp forms.

Definition 7.6 For any basis f, /' of (2.7) define
Hif) = p~ (0 Ty — 0 Ry),
) =7 (0T — ) Ry),
where p = (w;rnf_ — wf_n;') = —i det(Pr) # 0, and nf, inf_, w}', ia)f_ are entries of the
period matrix Py with respect to this basis.
Write H(f) = >, H(f)rs(X — 2Y)" (X —ZY)* as usual.
Theorem 7.7 The family of functions H(f),,s satisfy the equations

OH s = (r + DH()rg15-1 Sforalll<s<n
AH()rs = (s + DH()r_1541 foralll<r<n

and
AH o =1Lf  dH()on = Ls(f).

The family of functions H(f'),,s satisfy the same equations with f interchanged everywhere
with f', and w interchanged with n. In particular, f admits a canonical weak harmonic lift
(see Sect. 1.3).

Proof Straightforward consequence of the previous corollary using:

s(@tf —nf) =~ (of —n"f) ands (0™ f =0 f) = (0 f =07 f) .
This is immediate from the definition of the single-valued period matrix I_Df_le on noting
that P (f) = ip~ (™' = n*f) and P () = p~ @ f = 07 ). o
It follows from uniqueness (lemma 5.11) that H(f),s is well defined (only depends on
f and not the choice of basis f, f'), since it only depends on f and its image under the
single-valued involution s(f), which is canonical.

In this manner we have defined a canonical modular primitive (compare discussion of
Sect. 1.3):

HR — M., (Ko, 1))
f = H{)no
This map is injective since L™dH(f),,0 = f.
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Corollary 7.8 For all r + s = n, complex conjugation acts via:

H(f)r,s = H(s(f))s,r .

Corollary 7.9 Suppose that f € S, is a cuspidal Hecke eigenform. The constant term in
H(f)r,s is proportional to the Petersson norm of f times L ™"

HE)° e (£s(f)} KL

Proof This follows from (6.13): the term 1, vanishes since f has no pole, and the sole
contribution to @ comes, via ¢,,, from the action of Hecke operators on the f’ term in
g = s(f) € Cf @ Cf’. But the coefficient of f in s(f) is proportional to {f, s(f)}, since
{£f} =0and {f,f'} € K,. The quantity {f, s(f)} can be interpreted as the Petersson norm
via (2.14) and the comments which follow. O

Corollary 7.10 Every modular form admits a modular primitive in M',

Proof Every modular form of integral weight is a linear combination of Eisenstein series
and cuspidal Hecke eigenforms. ]

7.4 Vanishing constant term

The space HR ® C decomposes into eigenspaces with respect to the map s:
HRQC=HRQC)"®H®RQC)".

They are, respectively, the preimages of H gt ® C under the comparison isomorphism.

An element f € (HR ® C)* satisfies s(f) = f, and hence, H(f), is proportional to the
‘real’ function R(f),.s.

Anelement f € (HR ®C)~ satisfies s(f) = —f, and hence, H(f),. is proportional to the
‘imaginary’ function Z(f),.;. The latter satisfies Z; = 0 since by Corollary 7.5 and (6.13),
the constant term « is real and hence vanishes since Z(f),, = —Z(f)y. It is therefore
cuspidal: Z(f),.s € S'.

8 Example: Real analytic version of Ramanujan’s function A
8.1 Weakly holomorphic cusp forms in weight 12
Let n = 10. Let A denote Ramanujan’s cusp form of weight 12

A=q[]Q—q""* =q-24q"+ 2524 + 1472 4" + 48304° — 60484° + - - -

n>1

Since dim S12 = 1, it is a Hecke eigenform with eigenvalues in Z. There exists a unique
weakly holomorphic modular form A’ € M}, which has a pole of order at most 1 at the
cusp, and whose Fourier coefficients ag, a; vanish. Explicitly,

A = g7 4 47709536 ¢* + 39862705122 ¢° + 7552626810624 g* + - - -

It satisfies {A, A’} = 1. It follows that there is a single cuspidal Hecke eigenspace, and that
it has the de Rham basis:

HH® = clusp,dR(MLl; Vio) = QA" @ QA.
The function A’ is a weak Hecke eigenform with the same eigenvalues as A:

(Trn — Am)A" = Dupm forallm > 1

34
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for some p,, € M!_m. For example, 1y = —24 and hence (T, — A3)A’ = D vy, where
pr=24G1aA"2 = —q 2 — 24q7 ! + 196560 + 477095364 + - - - .

In the notations of Proposition 6.10, we have v, = 10!27!p, by (3.4).

8.2 Cocycles
Let P* € ZY(T"; Vip) be the Hecke-invariant cocycles P* . T — Vjo which are uniquely
determined by P% = 0and

36
P;_ — a(ylo _XIO) +X2Y2(X2 _ YZ)S,
Py =4X°Y —25X7Y3 4+ 42X°Y° — 25X3Y7 + 4XY°.
Their Haberland inner product is {P*, P~} = 1. They provide a Betti basis

HB = Hclusp,B(Ml,l;VIO) = QPJF (&) QP7 .

8.3 Periods
Following the method given in Sect. 2, we can easily compute the period matrix (2.13) in
this basis. We find that forall y € T,

/ Crt AKX - 2Y)%dz = o' P} + 0™ P,
14
where

w4 = —68916772.809595194754..., w_ = —5585015.3793104018668 . ..

which agree with the numerical values for the periods of A given in the literature. The
periods of A’, on the other hand, are ., in_ where

n+ = 127202100647.17709477 ..., n— = 10276732343.649132750. ..

I could find no reference for these values for comparison. In accordance with proposition
5.6 of [6], we can indeed verify numerically that

w
det (’7* ‘ *) — 10! x (2701,
in_ iw—
The Petersson norm of A, in its standard normalisation, is
—2wiw_

—211(2 2 = 0.00000103536205... > 0
i

8.4 Single-valued involution

The single-valued period matrix is

i nte” +n ot 20w~ _ (648.84093... —0.3520770. ..
1027 i)11 Wt~ —Te +ne+))  \1195742.7... —648.84093. ..

in the basis A, A’. It does not depend on the choice of Betti basis. Therefore,
s(A)=cA"+ 1A where 0 = —0.35207 ..., 7 = —648.84. ..

For convenience, we evaluate the ratio

T nto et 1<n+
'O_cr_ 2wtw™ )

oy ”_> = 1842.8947269 . ..
ot o~
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8.5 The constant term
Since 011(2) = 2049, we check that

011(2) — Ay = 2073 = 3.691

is nonzero and therefore since 1y = 10! 2_11192,

ao(yn) 100 196560 10! 7!13
o11(2) —ry 211 3691 = 211 691 °

The 691 in the denominator is a consequence of the congruence A = Gy (mod 691).
Formula (6.13) therefore implies that

7113 10! 7113 2iwtw™

691 217 7 691 (ami)ll

8.6 Real analytic cusp forms
The real analytic cusp forms H(A),,s for r + s = 10 can be written down explicitly from
the formulae given in Theorem 1.2.

8.7 The mock modular form Mx
Denote the Fourier coefficients of A, A’ by ay, a,,. Our formula for the ‘mock’ modular
form defined in Sect. 1.3 is

10! \—~oa, +ta, ,
MA:OH'ZHZ a1
n

where o, T are the periods given above. In order to compare more directly with Ono’s
normalisation [20], let us rescale by setting

11 x 211 7'13 (l/ + pa
[ 2 n n n

Its first five Fourier coefficients are given exactly by

11,( L 65520 +< 3 1490923> )

4 eo1 P17 \356" A
+( 28 164044054) 5, )
19683" 729 )1 :

By uniqueness, this function coincides with the mock modular form for A given in [20]

and discussed in [10]. We have verified, by substituting the above numerical value of p,

that this agrees with the computation in [20] (1.7) to the accuracy given in that paper.
Ono’s formula [20] for its nth Fourier coefficient, for n > 0, is:

i K(—t, n, c)111(4ng/ﬁ>

om (122

c=1

where K is a Kloosterman sum and / is a Bessel function. Combining this with our expres-
sion for its Fourier coefficients proves Corollary 1.4.
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Appendix: remark on complex multiplication
Both referees specifically asked for clarification of some remarks concerning complex
multiplication. Complex multiplication does not arise for modular forms of full level and
is mostly irrelevant to the present paper. Therefore, we shall remain brief. Nonetheless,
it seems not to be widely known that complex multiplication induces relations between
both the periods and the quasi-periods of motives.

Let k C C be a number field and consider the category 7 whose objects are triples
M = (Myg, Mp, c) where M is a k-vector space, Mp a Q-vector space and ¢ is an
isomorphism My ® C — Mg ®q C. The morphisms in 7 are linear maps on the
components Mp, M compatible with c¢. A pure motive over k defines an object in 7,
where M r, Mp are its de Rham and Betti realisations (relative to the embedding k C C),
and ¢ the comparison isomorphism. A period matrix for M is a representation of c as a
matrix with respect to a choice of bases for M z and Mp. Let M be an object of 7 of rank
2, equipped with an isomorphism

uw:mM—M

such that u? +au + b = 0 for some a, b € k, for some irreducible polynomial x? + ax + b
with zeros in an extension field K C C. Then p ®id induces an automorphism of Mz ® K,
which splits into eigenspaces for i ® id. Let 01, o2 be a Q-basis of Mp and choose a basis
of eigenvectors f1, fo of Myp ® K, with eigenvalues A1, Ay, respectively. They are the zeros
of the quadratic polynomial 2 4 ax + b. The period matrix of M ® K, in this basis, has
entries

w;j = oi(cf;) forl <ij=<2.

The map u induces equivalences of matrix coefficients [5, Sect. 2]
MM, fi, 01] = [M, parfy, 01 = [M, fi, ngoi]

which, on applying the period homomorphism, induces a relation between periods
Ajw1j = Q1w1,; + QoW

where ,ugol = w101 + ap09, and «; € Q. Since the period matrix has non-vanishing
determinant, and since A; ¢ Q, it follows from (A; — a1)w1; = aawo; that all w;; are
nonzero and satisfy

w1j/wy; € K>

for j = 1,2. In conclusion, for a suitably chosen de Rham basis of eigenforms for the
complex multiplication, the ratio of both periods and quasi-periods (with respect to this
basis) is algebraic. Since complex multiplication induces a morphism of mixed Hodge
structure, it preserves the Hodge filtration on the de Rham cohomology, and so we can
assume the above de Rham basis is adapted to the Hodge filtration.

Example 8.1 Suppose that M are the realisations of the motive of a CM modular form.
Then Mp = M; ® My has a decomposition into Frobenius-invariant and anti-invariant
subspaces, and write w™, iw™, n, in~ for the entries of the period matrix P with respect to
a choice of de Rham basis of Mz ® K which are p-eigenvectors, and Betti basis which are
eigenvectors for real Frobenius. These notations are consistent with our earlier notations
(2.13). With this choice of de Rham basis, the quantity (2.15) is algebraic. More precisely,
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if we write o™ = aiw_ and n* = Bin_, for o, B € K*, then the single-valued period
matrix takes the form

515 a—p a—pB ) n-
pP= (2_a) o atp
p—a ) - p—a
and we see that its diagonal entries are algebraic. Therefore, with respect to any basis
of Mg, the single-valued period matrix is obtained from the above by conjugation by a

matrix with entries in K. In particular, the single-valued map s only involves the Petersson
norm of f (see Sect. 2.1.6), and algebraic numbers in K.

Example 8.2 (The case of an elliptic curve). We use the notations of [18, Chapter 3].
Many thanks to J. Fresdn for bringing this reference to our attention. For t € §), satisfying
A+ Bt 4+ Ct? = 0, where A, B, C € Z, lemma 3.1 of loc. cit. implies that there exists an
algebraic « in the field of complex multiplication, such that

w) = Twi
An — Ctny = kw3 .
The number « is not always zero, and so the ratio of quasi-periods 12 /71 is not algebraic in

these cases. However, changing de Rham basis by adding to the differential of the second
kind a multiple r of the holomorphic differential changes the quasi-periods by

n=ni+rw; fori=12
and we find that
Anj — Ctnhy = (A — CT2)r + k)

which vanishes precisely when
—KT
T 24+ Bt
Note that 24 + Bt # 0, since Im(7) > 0. The quasi-periods defined with respect to the
new de Rham basis are indeed proportional by an algebraic number:

r

Any = Ctny,
and « vanishes exactly when the new de Rham basis agrees with the original one.
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