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Abstract

We define canonical real analytic versions of modular forms of integral weight for the
full modular group, generalising real analytic Eisenstein series. They are harmonic Maass
waveforms with poles at the cusp, whose Fourier coefficients involve periods and
quasi-periods of cusp forms, which are conjecturally transcendental. In particular, we
settle the question of finding explicit ‘weak harmonic lifts’ for every eigenform of
integral weight k and level one. We show that mock modular forms of integral weight
are algebro-geometric and have Fourier coefficients proportional to n1−k (a′

n + ρan) for
n �= 0, where ρ is the normalised permanent of the period matrix of the corresponding
motive, and an, a′

n are the Fourier coefficients of a Hecke eigenform and a weakly
holomorphic Hecke eigenform, respectively. More generally, this framework provides a
conceptual explanation for the algebraicity of the coefficients of mock modular forms
in the CM case.

1 Introduction
Let H denote the upper-half plane with the usual left action by � = SL2(Z). This paper
is the third in a series [2,3] studying subspaces of the vector space M! of real analytic
functions f : H → C which are modular of weights (r, s) for r, s ∈ Z, i.e.

f (γ z) = (cz + d)r(cz + d)sf (z) for all γ =
(
a b
c d

)
∈ � , z ∈ H, (1.1)

which furthermore admit an expansion of the form

f =
∑

|k|≤M
L
k
( ∑
m,n≥−N

a(k)m,nqmqn
)

where a(k)m,n ∈ C , (1.2)

for M,N ∈ Z, where q = exp(2π iz) and L = log |q| = −2πIm(z). The space M! is
equipped with differential operators ∂ , ∂ closely related to Maass’ raising and lowering
operators [17], and a Laplacian �. In [2], we defined a subspace MI ! ⊂ M! of modu-
lar iterated integrals, generated from weakly holomorphic modular forms by repeatedly
taking primitives with respect to ∂ and ∂ . In this instalment, we describe the subspace
MI !

1 ⊂ MI ! of modular iterated integrals of length one. These correspond to a modular
incarnation of the abelian quotient of the relative completion of the fundamental group
[4,15] of the moduli stack of elliptic curves M1,1. They span the first level in an infinite
tower of non-abelian or ‘mixed’ modular functions whose general definition was given in
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[4, Sect. 18.5]. In [3] we worked out the Eisenstein part of this construction; here we spell
out the length one subspace of the general case.
Examples of functions in the class MI !

1 are given by real analytic Eisenstein series,
which are well known. Let r, s ≥ 0 such that w = r + s ≥ 2 is even, and define

Er,s = w!
(2π i)w+2

1
2

∑
(m,n)∈Z2\{0,0}

L

(mz + n)r+1(mz + n)s+1 .

These functions are real analytic and modular of weights (r, s) and admit an expansion of
the form (1.2) (with N = 0). Following the presentation given in [2, Sect. 4], they are the
unique solutions to the following system of differential equations:

∂Er,s = (r + 1)Er+1,s−1 for s ≥ 1,

∂Er,s = (s + 1)Er−1,s+1 for r ≥ 1,

where the definition of ∂ , ∂ is given in Sect. 3.1 and

∂Ew,0 = LGw+2, ∂E0,w = LGw+2,

where G2k are the Hecke normalised holomorphic Eisenstein series:

G2k = −b2k
4k

+
∑
n≥1

σ2k−1(n)qn , k ≥ 1 . (1.3)

Since ∂L−1Ew,0 = Gw+2, the functions L−1Ew,0 are modular primitives (with respect to
∂) of holomorphic Eisenstein series, and are annihilated by the Laplacian.
In this paper, we shall construct real analytic cusp forms H(f )r,s which are canonically

associated with any Hecke cusp form, and satisfy an analogous system of differential
equations. It is clear fromtheir construction that they are ‘motivic’, in that their coefficients
only involve the periods of pure motives associated with cusp forms [21]. The functions
H(f )r,s generate MI !

1, and furthermore, they generate the subspace of HM! ⊂ M! of
eigenfunctions of the Laplacian. In other words, the overlap between the space M! and
the set of Maass waveforms is exactly described by the functions studied in this paper.

1.1 Real Frobenius

The essential ingredient in our construction is the real Frobenius, also known as complex
conjugation. For all n ∈ Z letM!

n denote the space of weakly holomorphic modular forms
of weight n.
They admit a Fourier expansion

f =
∑

m≥−N
am(f )qm, where am(f ) ∈ C (1.4)

for N ∈ Z. Although the differential operator D = q d
dq does not preserve modularity, a

well-known result due to Bol implies that its powers define linear maps

Dn+1 : M!−n −→ M!
n+2

for all n ≥ 0. The quotient M!
n+2/Dn+1M!−n can be interpreted as a space of modular

forms of the second kind [6,11,23]. Indeed, it is canonically isomorphic to the algebraic
de Rham cohomology of themoduli stack of elliptic curves with certain coefficients, and in
particular, admits an action by Hecke operators. Furthermore, one shows [14] that every
element f ∈ M!

n+2/Dn+1M!−n has a unique representative f ∈ M!
n+2 such that f has a pole

at the cusp of order at most dim Sn+2:

ord∞f ≥ − dim Sn+2 .
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This provides a splittingM!
n+2 = Dn+1M!−n ⊕ M!

n+2/Dn+1M!−n which is possibly unnat-
ural, but is canonical. We shall use this splitting to provide canonical constructions and
uniqueness statements in the theorems below. A purist may prefer to avoid using this
splitting at the expense of working modulo Dn+1M!−n.
The ‘single-valued involution’ is a canonical Hecke-equivariant map

s : M!
n+2/D

n+1M!−n
∼−→ M!

n+2/D
n+1M!−n .

It exists in much greater generality [5, Sect. 4.1] and is induced, via the comparison
isomorphism, by complex conjugation on Betti cohomology. By the previous remarks, it
lifts to an involution onM!

n+2, which acts by zero on Dn+1M!−n. In fact, it can be written
down explicitly on each cuspidal Hecke eigenspace in terms of a period matrix

Pf =
(

η+
f ω+

f
iη−

f iω−
f

)
∈ GL2(C), (1.5)

where ω+
f , iω

−
f are the periods and η+

f , iη
−
f the quasi-periods with respect to a basis f, f ′ of

a cuspidal Hecke eigenspace. More precisely, we show that

s(f ) =
(η+

f ω−
f + η−

f ω+
f

η−
f ω+

f − η+
f ω−

f

)
f +

( 2ω+
f ω−

f

η+
f ω−

f − η−
f ω+

f

)
f ′ . (1.6)

It doesnot dependon the choice of basis f, f ′. Thequantityω+
f ω−

f is related to thePetersson
norm of f . The determinant of the period matrix det(Pf ) is proportional to a power of
2π i. The quantity i(η+

f ω−
f + η−

f ω+
f ) is the permanent of the period matrix, hence:

s(f ) = −perm(Pf )
det(Pf )

f +
2iω+

f ω−
f

det(Pf )
f ′.

1.2 Summary of results

Theorem 1.1 Let n ≥ 0. Let f be a cuspidal Hecke eigenform of weight n + 2 for SL2(Z).
There exists a unique family of real analytic modular functions

H(f )r,s ∈ M!
r,s

for all r + s = n and r, s ≥ 0, satisfying the system of differential equations

∂H(f )r,s = (r + 1)H(f )r+1,s−1 if s ≥ 1,

∂H(f )r,s = (s + 1)H(f )r−1,s+1 if r ≥ 1

and

∂H(f )n,0 = Lf, ∂H(f )0,n = L s(f ) .

The H(f )r,s are eigenfunctions of the Laplace operator with eigenvalue −n. Equivalently,
the functions L−1H(f )r,s are harmonic: �L

−1H(f )r,s = 0.

The theorem holds also for weak cusp forms, defining a canonical map

Hr,s : S!n+2/D
n+1M!−n −→ M!

r,s

for all r + s = n, with r, s ≥ 0. Since s(Gn+2) = −Gn+2, the real analytic Eisenstein series
satisfy identical equations except with a difference of sign (for ∂E0,n, which satisfies ∂E0,n
= −L s(Gn+2)). This justifies calling theH(f )r,s real analytic cusp forms.
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The theorem can be rephrased as follows. Consider the real analytic vector-valued
functionH(f ) : H → C[X, Y ] defined by
H(f ) = ∑

r+s=nH(f )r,s(X − zY )r(X − zY )s . It is equivariant for the standard right
action of � on C[X, Y ] and satisfies

dH(f ) = π i f (z)(X − zY )ndz + π i s(f )(X − zY )ndz .

The functions H(f )r,s are given by the following explicit formula. First, for any weakly
holomorphic modular form (1.4), write for all k ≥ 0

f (k) =
∑
n∈Z\0

an(f )
(2n)k

qn . (1.7)

It is an iterated primitive of f for q d
dq . For all r, s ≥ 0 with r + s = n define

Rr,s(f ) = (−1)r
(
n
r

) n∑
k=s

(
r

k − s

)
(−1)k

k !
Lk f

(k+1) . (1.8)

Theorem 1.2 The functionsH(f ) have the following form:

H(f )r,s = a0(f )
n + 1

L + αf (−1)r
(
n
r

)
L

−n + Rr,s(f ) + Rs,r(s(f ))

for some uniquely determined αf ∈ C.

The constant term αf can be computed (Sect. 6.6) from the Fourier coefficients of f and
s(f ) in the case when f is cuspidal, and is given by an odd zeta value in the case when f
is an Eisenstein series. It is a pure period in the cuspidal case; and a mixed period in the
Eisenstein case. This dichotomy is due to the fact that the Tate twists of the Tate motive
have non-trivial extensions, but the Tate twists of the motive of a cusp form do not (in the
relevant range). When f is holomorphic, the constant αf is proportional to the Petersson
norm of f .
When f is a Hecke cuspidal eigenform with coefficients in a number field Kf , the coef-

ficients in the expansion ofH(f )r,s lie in a Kf -vector space of dimension at most 3 which
is spanned by periods. We show furthermore:

(1) If f is aHecke eigenfunctionwith eigenvalues λm, then the functionsH(f )r,s satisfy an
inhomogeneous Hecke eigenvalue equation with eigenvalues m−1λm. See Sect. 6.5
for precise statements.

(2) The action of Gal(Q/Q) on Hecke eigenfunctions extends to an action on the func-
tions H(f )r,s, for every r, s. In fact, this action extends to an action of a ‘motivic’
Galois group on a larger class of modular forms which acts on the coefficients in the
expansion (1.2). This will be discussed elsewhere.

The main ingredient in this paper is the single-valued involution s, which is derived from
the real Frobenius. It would be interesting to replace it with a p-adic crystalline Frobenius
to define p-adic versions of real analytic cusp forms (see [12]).

1.3 Weak harmonic lifts andmock modular forms of integral weight

Consider the special case r = n, s = 0. For the sole purposes of this introduction set

f̃ = L
−1H(f )n,0 .



Brown Res Math Sci (2018) 5:34 Page 5 of 36 34

Corollary 1.3 For every (weakly holomorphic) cusp form f of weight n + 2, the function f̃
is a canonical weak harmonic lift of f . More precisely, using the notation (3.3),

∂ f̃ = f and �n+1,1 f̃ = 0 .

In particular, f̃ is a weak Maass waveform. It is given explicitly by

f̃ = αf

Ln+1 +
n∑

k=0

(
n
k

)
(−1)k

k !
Lk+1 f

(k+1) + n!
Ln+1 s(f )

(n+1).

The problem of constructing weak harmonic lifts has a long history, but an explicit con-
struction has remained elusive. The existence of weak harmonic lifts in a much more
general setting was proved in [9]. Having established existence, the general shape of the
Fourier expansion is easily deduced—the only issue is to determine the unknown Fourier
coefficients. On the other hand a direct, but highly transcendental, construction using
Poincaré series was given in [8,20], involving complicated special functions. This pro-
cedure is potentially ill-defined: when the space of cusp forms has dimension greater
than one, it involves choices, since there are relations between Poincaré series. The ques-
tion of whether weak harmonic lifts have irrational coefficients or not has been raised
in [10,11,20]. Our results imply that these functions, despite appearances, are in fact of
geometric, and indeed, motivic, origin.
The ‘mock’ modular form associated with f̃ is the complex conjugate of the antiholo-

morphic part of f̃ times Ln+1. It is harmonic and given by

Mf = αf + n! s(f )(n+1).

When f is aHecke eigenform, s(f ) is given by (1.6), which leads to a very simple and explicit
construction of mock modular forms of integral weights for SL2(Z). In the literature, it is
customary to rescale the mock modular forms by the Petersson norm. This gives

M′
f = α′

f + (n − 1)!
∑

m∈Z\{0}

a′
m + ρ am
mn−1 qm , (1.9)

where am, a′
m are the Fourier coefficients of f, f ′, respectively, and

ρ = −1
2

( η+

ω+ + η−

ω−
)
.

The quantity α′
f is in the field of definition of the am, a′

m.
In Sect. 8, we compute this explicitly in the case of Ramanujan’s � function. Let

� = q − 24 q2 + 252 q3 − 1472 q4 + 4830q5 + · · · ,
�′ = q−1 + 47709536 q2 + 39862705122 q3 + · · · ,

where �′ ∈ M!
12 is the unique normalised weakly holomorphic modular form which has

a pole of order 1 at the cusp, and whose Fourier coefficients a0, a1 vanish. In this case
an, a′

n ∈ Z, and an is the Ramanujan τ -function. The functions �,�′ are a basis for the
de Rham realisation of the motive [21] of �. If ρ is irrational (as expected), then the nth
Fourier coefficient ofM′

f is irrational if and only if an �= 0.
Since the space of cusp forms of weight 12 is one-dimensional, the method of Poincaré

series [8] also yields in this case an explicit expression for this mock modular form in
terms of special functions. Comparing the Fourier coefficients of the two gives:
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Corollary 1.4 For all n > 0,

2π n
11
2

∞∑
c=1

K (−1, n, c)
c

I11
(4π√

n
c

)
= a′

n + ρan,

where K denotes a Kloosterman sum and I a Bessel function [20].

Since modular forms of level one do not have complex multiplication, Grothendieck’s
period conjecture, applied to the motives of cusp forms, would imply that its Fourier
coefficients are transcendental. The reader will easily be able to generalise the results of
this paper to the case of a general congruence subgroup using the results of [23].1 In an
“Appendix”, we explain how the existence of a complex multiplication on the motive of a
cusp form implies an algebraicity constraint on the single-valued involution. This explains
the phenomena studied in the recent paper [10] which observed algebraicity of the Fourier
coefficients of suitably normalised Maass waveforms associated with modular forms with
complex multiplication.

1.4 Contents

In Sect. 2 we review the theory of weakly holomorphic modular forms. Much of this
material is standard, but many aspects are not widely known and may be of independent
interest. In Sect. 3 we review some properties of the space M! of real analytic modular
forms from [2], and its subspaces HM! (Sect. 4) of Laplace eigenfunctions and MI !

(Sect. 5) of modular integrals. In Sect. 6 we describe the action of Hecke operators on
HM!. Much of this material is well known. In Sect. 7 we prove the existence of weak
modular lifts, and in Sect. 8 we discuss Ramanujan’s function �.

2 Background on weakly holomorphic modular forms
2.1 Weakly holomorphic modular forms

The vector spaceM!
n of weakly holomorphic modular forms of weight n ∈ Z is the vector

space of holomorphic functions f : H → C with possible poles at the cusp, which are
modular of weight n. They admit a Fourier expansion of the form

f =
∑

n≥−N
anqn, where an ∈ C . (2.1)

The space S!n ⊂ M!
n of weakly holomorphic cusp forms are those with a0 = 0. The

subspace of functions with Fourier coefficients an in a subring R ⊂ C will be denoted by
M!

n(R).
Consider the following operator, which does not in general preserve modularity:

D = q
d
dq

. (2.2)

An identity due to Bol [1] (see also Lemma 3.3) implies, however, that

Dn+1 : M!−n −→ M!
n+2 .

Its image is contained in the space of cusp forms S!n+2. Elements in the cokernel of this
map can be viewed as modular forms ‘of the second kind’, and can be interpreted as

1After we had written this paper, K. Ono and N. Diamantis kindly pointed out the recent work of Candelori [11], which
is closely related to our construction and applies for modular forms of level ≥ 5. His formula (48) for the Fourier
coefficients in the case n �= 0 is very similar to (1.9). The case n = 0 requires an additional argument, which we provide
in this paper using Hecke operators.
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algebraic de Rham cohomology. Surprisingly this fact is not well known. It appeared for
the first time implicitly in the work of Coleman [13] on p-adic modular forms, and later
in [11,21–23]. A direct proof in the case of level one was given in [6].

Theorem 2.1 LetM1,1 denote the moduli stack of elliptic curves over Q, and V the alge-
braic vector bundle defined by the de Rham cohomology H1

dR(E/M1,1) of the universal
elliptic curve E overM1,1, equipped with the Gauss–Manin connection. Set Vn = Symn V .
For all n ≥ 0, there is a canonical isomorphism of Q vector spaces

M!
n+2(Q)/Dn+1M!−n(Q) ∼−→ H1

dR(M1,1;Vn) . (2.3)

The right-hand side vanishes if n is zero or odd.

This theorem has a number of consequences that we shall spell out below. Many of these
have been known for some time, others apparently not.
There is a canonical decomposition into Eisenstein series and cusp forms

H1
dR(M1,1;Vn) = H1

cusp,dR(M1,1;Vn) ⊕ H1
eis,dR(M1,1;Vn) .

Via the isomorphism (2.3), the latter is generated by Eisenstein series (1.3)

H1
eis,dR(M1,1;Vn) = QGn+2

for all n ≥ 2, and the former is isomorphic to the space of cusp forms

H1
cusp,dR(M1,1;Vn) = S!n+2(Q)/Dn+1M!−n(Q) .

Serre duality induces a pairing on the latter space. Explicitly, if f, g ∈ S!n+2 are weakly
holomorphic cusp forms of weight n+2with Fourier coefficients ak (f ), ak (g), respectively,
it is given by [6,14, Sect. 5]

{f, g} =
∑
k∈Z

ak (f )a−k (g)
kn+1 . (2.4)

It vanishes if f or g is in the image of the Bol operator Dn+1. We have

dimQH1
cusp,dR(M1,1;Vn) = 2 dimC Sn+2 .

One shows [14] that every equivalence class

[f ] ∈ M!
n+2/D

n+1M!−n

has a unique representative f ∈ M!
n+2 such that the order of the zero satisfies

ord∞f ≥ − dim Sn+2 .

Thus, we have a canonical isomorphism

M!
n+2 = Dn+1M!−n ⊕ H1

dR(M1,1;Vn) .

2.1.1 Hecke operators

The isomorphism (2.3) is equivariant with respect to the action of Hecke operators Tm,
for m ≥ 1, which act via the formula (6.2) (which we shall re-derive, in a more general
context, in Sect. 6). If a formal power series (2.1) has a pole of order p at the cusp, then
Tmf has a pole of ordermp at the cusp.
The Hecke operators commute with the Bol operator:

[Tm,Dn] = 0 for all n ,



34 Page 8 of 36 Brown ResMath Sci (2018) 5:34

which implies that there is an action of the Hecke algebra for all n

Tm : M!
n+2/D

n+1M!−n −→ M!
n+2/D

n+1M!−n .

The action of Hecke operators respects the decomposition into Eisenstein series and cusp
forms. In particular, the Eisenstein series G2k are normalised Hecke eigenfunctions: for
all n ≥ 2 andm ≥ 1,

TmGn+2 = σn+1(m)Gn+2. (2.5)

The pairing (2.4) is orthogonal with respect to the action of Tm [14]

{Tmf, g} = {f, Tmg} for all f, g ∈ S!n+2 .

The space of cusp forms decomposes over Q into Hecke eigenspaces

H1
cusp,dR(M1,1;Vn) ⊗Q Q =

⊕
λ

HdR
λ ⊗Kλ Q ,

where λ = (λm)m≥1 and HdR
λ is a two-dimensional Kλ vector space, where Kλ ⊂ R is the

number field generated by the λm. HdR
λ is generated by a normalised Hecke eigenform

fλ ∈ Mn+2(Kλ),

which satisfies Tmfλ = λmfλ for allm, and a weak Hecke eigenform

f ′
λ ∈ M!

n+2(Kλ),

which satisfies for allm ≥ 1:

Tmf ′
λ = λm f ′

λ (mod Dn+1M!−n(Kλ)) . (2.6)

We can assume as a consequence of [6, Proposition 5.6], that fλ, f ′
λ satisfy:

{f ′
λ, fλ} = 1 ,

and furthermore, that f ′
λ has poles at the cusp of order at most dim Sn+2. With these

conventions, HdR
λ has a basis

HdR
λ = f ′

λKλ ⊕ fλKλ, (2.7)

which is well defined up to transformations f ′
λ �→ f ′

λ + afλ, for a ∈ Kλ.

Remark 2.2 One could fix a ‘canonical’ basis of HdR
λ either by assuming that the Fourier

coefficient a1 of f ′ is equal to 1, or by demanding that {f ′
λ, f

′
λ} = 0 (note that {fλ, fλ} = 0

holds automatically). This will not be required in this paper. The latter condition holds
for the basis chosen in Sect. 8.

2.1.2 Group cohomology and cocycles

Let � = SL2(Z). Let Vn denote the local system SymnR1π∗Q onM1,1(C) where π : E →
M1,1 is the universal elliptic curve and Q is the constant sheaf on E(C). Its fibre at the
tangent vector ∂/∂q on the q-disc ([4], Sect. 4.1) is the vector space

Vn =
⊕
i+j=n

QXiY j

of homogeneous polynomials in variables X, Y , corresponding to the standard homology
basis of the fibre of the universal elliptic curve. It admits a right action by �

(X, Y )
∣∣
γ

= (aX + bY, cX + dY )
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for γ of the form (1.1). Recall that the space of cocycles Z1(�;Vn) is the Q-vector space
generated by functions γ �→ Cγ : � → Vn satisfying the cocycle equation

Cgh = Cg
∣∣
h + Ch for all g, h ∈ � .

Such a cocycle is uniquely determined by CS, CT , where

S =
(
0 −1
1 0

)
, T =

(
1 1
0 1

)
. (2.8)

The polynomials CS, CT satisfy a system of equations called the cocycle equations. A
cocycle is called cuspidal if CT = 0. The subspace of coboundaries B1(�;Vn) is the Q-
vector space generated by cocycles of the form

Cγ = P
∣∣
γ

− P

for some P ∈ Vn. The cohomology group is defined by

H1(�;Vn) = Z1(�;Vn)/B1(�;Vn) .

There is a natural action of Hecke operators onH1(�;Vn). In fact, this action lifts (via the
Eichler–Shimura isomorphism [25,26], see below) to an action on the space of cocycles
Z1(�;Vn) which preserves B1(�;Vn) [19].
Complex conjugation on M1,1(C) induces an involution called the real Frobenius F∞

upon H1(�;Vn) (and in fact Z1(�;Vn)). It acts on � by conjugation by

ε =
(
1 0
0 −1

)

and on Vn by right action by ε, i.e. (X, Y ) �→ (X,−Y ) (see [4] Sect. 5.4). In particular, there
is a canonical decomposition

H1(�;Vn) = H1(�;Vn)+ ⊕ H1(�;Vn)− (2.9)

into F∞-eigenspaces. The first is spanned by classes of cocycles C such that CS is ε-
invariant (even), the second by cocycles which are anti-invariant (odd).
Finally, there is an inner product onH1

cusp(�;Vn) induced by a pairing between cocycles
and compactly supported cocycles [4, Sect. 8.3]:

{ , } : Z1(�;Vn) × Z1
cusp(�;Vn) −→ Q ,

a formula for which was given by Haberland, e.g. [4, 2.11].

2.1.3 Eichler–Shimura isomorphism

The following corollary is a consequence of a mild extension [6] of Grothendieck’s alge-
braic de Rham theorem.

Corollary 2.3 There is a canonical isomorphism

compB,dR : H1
dR(M1,1;Vn) ⊗Q C

∼−→ H1(�;Vn) ⊗Q C . (2.10)

It respects the action of Hecke operators on both sides.

In particular, the comparison isomorphism respects the decomposition into Eisenstein
and cuspidal parts. It can be computed as follows. Fix a point z0 ∈ H.
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Definition 2.4 For every f ∈ M!
n+2, where n ≥ 0, let us write

Ff (z) =
∫ z0

z
(2π i)n+1f (τ )(X − τY )ndτ . (2.11)

The integral converges since z0 is finite. It defines a 1-cocycle

Cf
γ (X, Y ) = Ff (γ z)

∣∣
γ

− Ff (z) ∈ Z1(�;Vn ⊗ C) . (2.12)

which is independent of z.

Changing z0 modifies this cocycle by a coboundary. We deduce a linear map

M!
n+2 −→ H1(�;Vn ⊗ C)

f �→ [Cf ]

which is well defined, i.e. independent of the choice of point τ0, and Hecke equivariant.
One easily shows (see [7] or version 1 of [2]) that f ∈ Dn+1M!−n if and only if [Cf ] ∈
B1(�;Vn) ⊗ C, and hence the previous map descends to an isomorphism

M!
n+2/D

n+1M!−n
∼−→ H1(�;Vn) ⊗ C,

which corresponds via Theorem 2.1 to the comparison isomorphism compB,dR.

2.1.4 Periodmatrix

Since the comparison isomorphism is Hecke equivariant, it respects the decomposition
into Hecke eigenspaces.
Let HB

λ denote the Hecke eigenspace of H1(�;Vn) corresponding to the eigenvalues λ.
It is a Kλ-vector space of dimension 2 and admits a decomposition

HB
λ = HB,+

λ ⊕ HB,−
λ

into ± eigenspaces with respect to the real Frobenius F∞.
The comparison isomorphism induces a canonical isomorphism

compB,dR : HdR
λ ⊗Q C

∼−→ HB
λ ⊗Q C .

Definition 2.5 Let us choose generators P±
λ of HB,±

λ , respectively, and a basis (2.7) for
HdR

λ . A period matrix is the comparison isomorphism compB,dR written with respect to
these bases:

Pλ =
(

η+
λ ω+

λ

iη−
λ iω−

λ

)
. (2.13)

It is well defined up to multiplication on the left by a diagonal matrix with entries in K×
λ ,

which reflects the ambiguity in the choices of P±
λ up to scalar, and multiplication on the

right by a lower triangular matrix with 1’s on the diagonal.

From the compatibility of the period isomorphism with complex conjugation and real
Frobenius (Sect. 2.1.6), the numbers ω±

λ , η
±
λ are real. The ω+

λ , iω
−
λ are the usual periods

of fλ, the numbers η+
λ , iη

−
λ could be called its ‘quasi-periods’ and seem not to have been

considered in the literature. It was proved in [6, Theorem 1.7] that

det(Pλ) ∈ (2π i)n+1K×
λ .
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2.1.5 Hodge theory

The de Rham cohomology groupH1
dR(M1,1;Vn) admits an increasing weight filtrationW

and a decreasing Hodge filtration F byQ-vector spaces. The basis (2.7) is compatible with
the Hodge filtration.
Similarly, H1(�;Vn) is equipped with an increasing filtration W compatible with the

weight filtration on de Rham cohomology via the comparison isomorphism.
Thus,H1(�;Vn) defines a mixed Hodge structure and is in fact the Betti realisation of a

motive [21]. The latter admits a decomposition (as motives)

H1(M1,1;Vn) = H1
cusp(M1,1;Vn) ⊕ H1

eis(M1,1;Vn),

whereH1
eis,dR(M1,1;Vn) ∼= Q(−n−1) andH1

cusp(M1,1;Vn) decomposes, overQ, as a direct
sum of motives Vλ of rank 2 of type (n + 1, 0) and (0, n + 1).

2.1.6 Real Frobenius and single-valuedmap

The constructions in this paper are simply a consequence of complex conjugation. The
comparison isomorphism fits in the following commuting diagram

compB,dR : H1
dR(M1,1;Vn) ⊗Q C

∼−→ H1(�;Vn) ⊗Q C

↓ ↓
compB,dR : H1

dR(M1,1;Vn) ⊗Q C
∼−→ H1(�;Vn) ⊗Q C

where the vertical map on the left is the C-anti-linear isomorphism cdR which is the
identity on H1

dR(M1,1;Vn) and complex conjugation on C; and the vertical map on the
right is F∞ ⊗ cB where cB is complex conjugation on the coefficients.
It follows that the real Frobenius F∞ induces an isomorphism which we have had

occasion to call the ‘single-valued map’ [5, Sect. 4.1]:

s : H1
dR(M1,1;Vn) ⊗Q C

∼−→ H1
dR(M1,1;Vn) ⊗Q C .

It is none other than the composition

s = comp−1
B,dR ◦ (F∞ ⊗ id) ◦ compB,dR .

It induces an isomorphism on every Hecke eigenspace

s : HdR
λ ⊗ C

∼−→ HdR
λ ⊗ C .

Written in the basis (2.7), it is given explicitly by the ‘single-valued’ period matrix

Pλ
−1Pλ = i

det Pf

(
η+

λ ω−
λ + ω+

λ η−
λ 2ω+

λ ω−
λ

−2η+
λ η−

λ −η+
λ ω−

λ − ω+
λ η−

λ

)
.

On the Hecke eigenspace corresponding to Eisenstein series, which is a pure Tate motive
Q(−n − 1), s is multiplication by −1 and s(G2n+2) = −G2n+2. For cusp forms,

s(f ) =
(η+

f ω−
f + η−

f ω+
f

η−
f ω+

f − η+
f ω−

f

)
f +

( 2ω+
f ω−

f

η+
f ω−

f − η−
f ω+

f

)
f ′ .

From this formula for s(f ) and the equation {f, f ′} = 1 we find that

{f, s(f )} = 2iω+
λ ω−

λ

det(Pf )
, (2.14)

which by Proposition 5.6 of [6] is proportional (depending on one’s choice of normalisa-
tion) to the Petersson normof f . One could define the Petersson normof f ′ to be {f ′, s(f ′)},
which, in the case when f ′ is normalised by {f ′, f ′} = 0, gives

{f ′, s(f ′)} = 2iη+
λ η−

λ

det(Pf )
.
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The diagonal entries of the single-valued periodmatrix are proportional to the permanent

perm (Pλ) = i(η+
λ ω−

λ + ω+
λ η−

λ ) ,

and the coefficient of f in s(f ) is the quantity

perm (Pλ)
det (Pλ)

= η+
λ /η−

λ + ω+
λ /ω−

λ

η+
λ /η−

λ − ω+
λ /ω−

λ

. (2.15)

The constructions above clearly work for the motives [21] of any cuspidal eigenforms
of integral weight for congruence subgroups of SL2(Z). The preceding formula has impli-
cations in the case when the motive admits complex multiplication (see “Appendix”).

3 The spaceM! of non-holomorphic modular forms
We recall some definitions from [2]. Let

L = log |q| = iπ (z − z) = −2πy, (3.1)

which is modular of weights (−1,−1). Recall thatM! is the complex vector space of real
analytic modular functions (1.1) admitting an expansion of the form (1.2). Let M ⊂ M!

denote the subspace of functions for which N is zero, i.e. such that a(k)m,n vanishes if m or
n is negative. IfM!

r,s denotes the subspace of functions of modular weight (r, s), then

M! =
⊕
r,s

M!
r,s

is a bigraded algebra over C. The constant part of f is defined to be

f 0 =
∑

|k|≤M
L
ka(k)0,0 ∈ C[L±] .

We say that f is a cusp form if f 0 = 0. The subspace of cusp forms is denoted S ! ⊂ M!,
and its component of weights (r, s) is denoted S !

r,s.

3.1 Differential operators

There exist bigraded derivations

∂ , ∂ : M! −→ M!

of bidegrees (1,−1) and (−1, 1), whose restrictions to a componentM!
r,s are

∂r = (z − z)
∂

∂z
+ r and ∂s = (z − z)

∂

∂z
+ s

respectively. The following is a straightforward consequence:

∂rL
kqmqn = (2mL + r + k)Lkqmqn,

∂sL
kqmqn = (2nL + s + k)Lkqmqn . (3.2)

It is valid for any integers k,m, n, r, s.

Lemma 3.1 For all r, s, the kernels of ∂ , ∂ are given by

(M!
r,s ∩ ker ∂r) ∼= L

−rM!
s−r ,

(M!
r,s ∩ ker ∂s) ∼= L

−sM!
r−s .

In particular, (ker ∂) ∩ (ker ∂) = C[L±].



Brown Res Math Sci (2018) 5:34 Page 13 of 36 34

Since there exist weakly holomorphic modular forms of negative weight, it follows that
primitives inM!

r,s, unlike the spaceMr,s, are never unique.
The bigraded Laplace operator is the linear map

� : M! −→ M!

of bidegree (0, 0), which acts onM!
r,s by

�r,s = −∂s−1∂r + r(s − 1) = −∂r−1∂s + s(r − 1) . (3.3)

Define linear operators

h,w : M! −→ M!

by h(f ) = (r − s)f and w(f ) = (r + s)f for all f ∈ M!
r,s.

Lemma 3.2 These operators satisfy the equations

[∂ , ∂] = h, [h, ∂] = 2∂ , [h, ∂] = −2∂ ,

i.e. ∂ , ∂ generate a copy of sl2. Furthermore,

[∂ ,L] = [∂ ,L] = [∂ ,�] = [∂ ,�] = 0 , and

[L,�] = wL, [L,w] = 2L, [L,h] = [�,w] = 0 ,

The equations [∂ ,L] = [∂ ,L] imply that L is constant for the differential operators ∂ , ∂ ,
and justify calling f 0 the ‘constant’ part.

3.2 Bol’s operator

Recall the operator

D = q
d
dq

= 1
2π i

∂

∂z
.

Lemma 3.3 For all n ≥ 0, the following identity of operators holds:

L
n+1

( 1
π i

∂

∂z

)n+1 = ∂0∂−1 . . . ∂−n . (3.4)

Proof Consider the Weyl ring Q[x, ∂
∂x ] and write θ = x ∂

∂x . Then the following identity is
easily verified for all n ≥ 1:

θ (θ − 1) . . . (θ − n) = xn+1
(

∂
∂x

)n+1 . (3.5)

For example, it can be tested on xm for m ≥ 0. Set dz = (π i)−1∂/∂z and observe that
∂r = Ldz + r. Since dzL = 1, there is an isomorphism C[x, ∂/∂x] ∼→ C[L, dz] sending x
to L and ∂/∂x to dz . The image of θ + r is ∂r , so (3.4) is equivalent to (3.5). ��

Since ∂ commutes with L, we can write

Dn+1
∣∣∣
M!−n,•

=
( ∂

2L

)n+1∣∣∣
M!−n,•

. (3.6)

This defines for all s ∈ Z a linear map

Dn+1 : M!−n,s −→ M!
n+2,s .

Its complex conjugate defines a map Dn+1 : M!
r,−n → M!

r,n+2 for all r.
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3.3 Vector-valuedmodular forms

Call a real analytic function F : H → Vn ⊗ C equivariant if for every γ ∈ SL2(Z) and all
z ∈ H it satisfies (Sect. 2.1.2):

F (γ z)
∣∣
γ

= F (z) .

There is a correspondence [2, Sect. 7.2], between sections of the trivial bundle Vn ⊗C on
H and families of functions Fr,s : H → C for r + s = n with r, s ≥ 0. It is given by writing

F (z) =
∑

r+s=n
Fr,s(X − zY )r(X − zY )s . (3.7)

Then F is equivariant if and only if each Fr,s is modular of weights (r, s). Furthermore, F
admits an expansion in C[q−1, q−1, q, q]][z, z] if and only if each Fr,s ∈ M!

r,s.
A special case of [2, Proposition 7.2 ] implies that

dF = π i f (z)(X − zY )ndz + π i g(z)(X − zY )ndz (3.8)

holds if and only if the following system of equations is true:

∂Fr,s = (r + 1)Fr+1,s−1 for all s ≥ 1,

∂Fr,s = (s + 1)Fr−1,s+1 for all r ≥ 1,

∂Fn,0 = Lf , ∂F0,n = Lg . (3.9)

In the present paper, we only consider the case f, g ∈ M!
n+2.

3.4 Some useful lemmas

Lemma 3.4 Let f ∈ M!
r,s, and write h = r − s. Suppose that ∂f = 0. Then

∂∂
k f = k(h − k + 1) ∂k−1f

for all integers k ≥ 0.

Proof It follows from [∂ , ∂] = h and induction that

∂∂
k − ∂

k
∂ =

∑
i+j=k−1,i,j≥0

∂
i
h ∂

j (3.10)

Applying this to f gives the stated formula. ��
Corollary 3.5 Let f ∈ M!

r,s with r ≥ s. Let h = r − s ≥ 0. Then if

∂f = 0 and ∂
h+1f = 0,

then f ∈ CL
−r if r = s and f vanishes if h > 0.

Proof By Lemma 3.1, ∂f = 0 implies that f ∈ L
−rM!

s−r . In particular, the coefficients in
its expansion (1.2) satisfy a(k)m,n(f ) = 0 if m �= 0. This property is stable under ∂ , so the
same holds for all ∂nf . Again by Lemma 3.1, ∂h+1f = 0 implies that ∂

hf ∈ L
−sM!, and its

coefficients satisfy a(k)m,n(∂
hf ) = 0 if either m �= 0 or n �= 0. It follows that ∂

hf ∈ C[L±].
If h = 0, then f ∈ M!

r,r and we have shown that f ∈ CL
−r . Now if h > 0, ∂hf ∈ M!

s,r ,
and it follows that ∂

hf = 0 since all powers of L lie on the diagonal h = 0. Applying the
previous lemma to f , we find that

∂∂
k f = k(h − k + 1) ∂k−1f

and so by decreasing induction on k , for 1 ≤ k ≤ h, we deduce that ∂
k−1f vanishes for all

k ≥ 1. This completes the proof. ��
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4 The spaceHM! of harmonic functions
Definition 4.1 LetHM! ⊂ M! (respectively,HM ⊂ M) denote the space of functions
which are eigenfunctions of the Laplacian. For any λ ∈ C let

HM!(λ) = ker
(
� − λ : M! −→ M!

)
denote the eigenspace with eigenvalue λ.

Lemma 4.2 The spaceHM!(λ) is stable under the action of sl2:

∂ , ∂ : HM!(λ) −→ HM!(λ)

and furthermore, multiplication by L is an isomorphism

L : HM!
r+1,s+1(λ) −→ HM!

r,s(λ − r − s) . (4.1)

Proof The first equation follows since [∇ , ∂] = [∇ , ∂] = 0 by Lemma 3.2. For the second,
[L,�] = wL implies that if �F = λF , then �(LF ) = (λ − w)LF . ��
The lemma remains true on replacingHM!(λ) byHM(λ) = HM!(λ) ∩ M.

Lemma 4.3 Every Laplace eigenvalue is an integer:

HM! =
⊕
n∈Z

HM!(n) .

Every element F ∈ HM!(λ) has a unique decomposition

F = Fh + F0 + Fa , (4.2)

where F0 ∈ C[L±] is the constant part of F , and

Fh ∈ C[q−1, q]][L±],
Fa ∈ C[q−1, q]][L±]

are the (weakly) ‘holomorphic’ and ‘antiholomorphic’ parts of F and have no constant
terms. Furthermore, each piece is an eigenfunction: �F• = λF• for • ∈ {h, 0, a}.
Proof This was proved for the space HM in [2, lemma 5.2]. The proof is more or less
identical forM!. ��
One can be more precise ([2], Sect. 5.1). Let F ∈ HM!

r,s with eigenvalue λ ∈ Z. Let
w = r + s be the total weight. Then there exists a k0 ∈ Z such that

F0 ∈ CL
k0 ⊕ CL

1−w−k0 , (4.3)

where k0 < 1 − w − k0 and λ = k0(1 − w − k0), and furthermore:

Fh ∈
−s⊕

k=k0

C[q−1, q]]Lk , Fa ∈
−r⊕

k=k0

C[q−1, q]]Lk . (4.4)

5 The spaceMI !
1 of weakmodular primitives

The subspaceMI ! ⊂ M! of modular iterated integrals was defined in [2].

Definition 5.1 LetMI !−1 = 0. For every k ≥ 0, let

MI !
k ⊂

⊕
r,s≥0

M!
r,s
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be the largest subspacewhich is concentrated in thepositive quadrant ofM! (withmodular
weights (r, s) with r, s ≥ 0) with the property that

∂MI !
k ⊂ MI !

k + M![L] ⊗ MI !
k−1,

∂MI !
k ⊂ MI !

k + M![L] ⊗ MI !
k−1 (5.1)

for all k ≥ 0. We defineMI ! = ∑
k MI !

k . It is closed under complex conjugation.

We call the increasing filtrationMI !
k ⊂ MI ! the length. In this paper we shall focus only

on length ≤ 1. We first dispense with the subspace of length 0.

Proposition 5.2 MI !
0 = C[L−1].

Proof Firstly, the space C[L−1] satisfies the conditions of the definition since [∂ ,L] =
[∂ ,L] = 0, and soC[L−1] ⊂ MI !

0. Now let F ∈ MI !
0 be of modular weights (n, 0), where

n ≥ 0. Since ∂F has weights (n+1,−1), which lies outside the positive quadrant, we must
by (5.1) and MI !−1 = 0 have ∂F = 0. Similarly, the element F ′ = ∂

nF has weights (0, n)
and so ∂F ′ = 0 since it also lies outside the positive quadrant. By Corollary 3.5, F vanishes
if n > 0 and F ∈ C if n = 0. By complex conjugation, it follows that MI !

0 vanishes in
modular weights (0, n) and (n, 0) for all n ≥ 1 and is contained in C in weights (0, 0). We
can now repeat the argument for any F ∈ MI !

0 of modular weights (n, 1) by replacing
F with LF and arguing as above. We deduce that MI !

0 vanishes in all weights (n, 1) and
(1, n) for n ≥ 2 and is contained in CL

−1 in weights (1, 1). Continuing in this manner, we
conclude thatMI !

0 ⊂ C[L−1]. ��

5.1 Modular iterated integrals of length one

It follows from the previous proposition that MI !
1 is the largest subspace of M! which

satisfies

∂MI !
1 ⊂ MI !

1 + M![L±],
∂MI !

1 ⊂ MI !
1 + M![L±]. (5.2)

In particular, any element F ∈ MI !
1 of weights (n, 0), with n ≥ 0, satisfies

∂F = Lf

for some f ∈ M!
n+2 weakly holomorphic of weight n + 2. We call such an element a

modular primitive of Lf . It is necessarily a Laplace eigenfunction with eigenvalue −n
since (� + n)F = −∂∂F = 0 by (3.3).

Remark 5.3 As a consequence, L−1F satisfies ∂L−1F = f and �L
−1F = 0. It is therefore

what is known as a weak harmonic lift of f .

Proposition 5.4 Let n ≥ 0. Let f be a weakly holomorphic modular form of weight n+ 2,
and let Xn,0 ∈ M! be a primitive of Lf :

∂Xn,0 = Lf .

Then there exist unique elements Xr,s ∈ M!
r,s, for r, s ≥ 0 and r + s = n such that

∂Xr,s = (r + 1)Xr+1,s−1 for s ≥ 1,

∂Xr,s = (s + 1)Xr−1,s+1 for r ≥ 1 (5.3)
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and

∂X0,n = Lg

for some g ∈ M!
n+2 a weakly holomorphic modular form of weight n + 2. It follows that

(� + n)Xr,s = 0 for all r + s = n, i.e. Xr,s ∈ HM!(−n).

Proof Suppose that Xn,0 is a primitive of Lf . Define Xr,s by the formula

Xr,s = ∂
s

s!
Xn,0 (5.4)

for all r + s = n, r, s ≥ 0. The second equation of (5.3) holds for all r, s. For the first
equation, apply identity (3.10) to Xn,0 to obtain

∂∂
kXn,0 − ∂

k
∂Xn,0 = k(n − k + 1)∂k−1Xn,0 .

For k ≥ 1 the second term is L ∂
k f , which vanishes. Therefore, by (5.4),

k ! ∂Xn−k,k = k(n − k + 1)(k − 1)!Xn−k+1,k−1

which is exactly the first equation of (5.3). Applying h = [∂ , ∂] to X0,n, and using the
equations (5.3), one finds that ∂∂X0,n = 0. Therefore,

∂X0,n ∈ M!−1,n+1 ∩ ker ∂−1,

and by Lemma 3.1, it follows that ∂X0,n = Lg for some g ∈ M!
n+2 as claimed. Finally, the

fact that the Xr,s are Laplace eigenfunctions with eigenvalue −n follows easily from (3.3),
(5.3) and, when n = 0, the equations ∂Xn,0 = Lf , ∂X0,n = Lg . ��

Remark 5.5 If we define X : H → Vn ⊗ C by

X =
∑

r+s=n
Xr,s(X − zY )r(X − zY )s

then X is modular equivariant, and equations (5.3) are equivalent to

dX = 2π i
2

(
f (z)(X − zY )ndz + g(z)(X − zY )ndz

)
.

The fact that the coefficients Xr,s are eigenfunctions is equivalent to the identity

∂2

∂z∂z
X = 0 .

We now turn to uniqueness.

Lemma 5.6 Let Xn,0 (respectively, X ′
n,0) be modular primitives of Lf , and let Xr,s, g (resp.

X ′
r,s, g ′) be the functions in M! defined in Proposition 5.4. Then there exists a weakly

holomorphic modular form ξ ∈ M!−n such that for all r + s = n and r, s ≥ 0

X ′
r,s − Xr,s = L

−n ∂
s

s!
ξ ,

and

g ′ − g = 1
n!

∂
n+1

L
−n−1ξ .

In other words, g and g ′ are equivalent modulo Dn+1M!−n.

Proof By Lemma 3.1, X ′
n,0 − Xn,0 ∈ L

−nM!−n. Apply (5.4) and (3.6) to conclude. ��
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Corollary 5.7 If Xn,0 is a primitive ofLf , and Xr,s, g are as defined in Proposition 5.4, then
Yr,s = Xs,r is a system of solutions to the equations (5.3) and satisfies

∂Yn,0 = Lg and ∂Y0,n = Lf .

Therefore, complex conjugation reverses the roles of f and g.

5.2 Harmonic functions and structure ofMI !
1

We show that the modular primitives of Proposition 5.4 generate MI !
1 under multipli-

cation by L−1. This section can be skipped and is not required for the rest of the paper.

Proposition 5.8 Modular integrals of length one lie in the harmonic subspace ofM!:

MI !
1 ⊂ HM! .

Moreprecisely, any element F ∈ MI !
1 ofmodularweights (r, s) canbeuniquely decomposed

as a linear combination of elements

F =
∑

0≤k≤min{r,s}
Fk ,

where Fk ∈ MI !
1 also has modular weights (r, s) and satisfies:

�Fk = (k − 1)(r + s − k) Fk .

Specifically, if r ≥ s, each Fk is of the form Fk = L
−k∂

s−kXk , for some Xk a modular
primitive of Lfk , where fk ∈ M!

r+s+2−2k is weakly holomorphic.
In the case s ≤ r, we can take Fk = L

−k∂r−kXk , with Xk a modular primitive of Lgk ,
where gk ∈ M!

r+s+2−2k is weakly holomorphic.

Proof Suppose that F is in MI !
1 of modular weights (r, s) with r ≥ s. We show by

induction on s that it is a linear combination:

F =
∑

0≤k≤s
Fk where Fk = L

−k ∂
s−k

(s − k)!
Xk ∈ M!

r,s, (5.5)

where ∂Xk ∈ LM!, and hence, Xk is a modular primitive of total weight r + s − 2k . By
Proposition 5.4, Xk is a Laplace eigenfunction with eigenvalue 2k − r − s, and it follows
from [�, ∂] = 0 and (4.1) that Fk is also an eigenfunction with eigenvalue

(2k − w) + (w − 2k) + (w − 2k + 2) + · · · + (w − 2) = (k − 1)(w − k),

where we write w = r + s. Since these eigenvalues are distinct for distinct values of
0 ≤ k ≤ w/2, the Fk are linearly independent and the decomposition is unique.
The statement (5.5) is true for F of modular weights (n, 0): in that case (5.2), together

with the fact that ∂F lies outside the positive quadrant, implies that

∂F ∈ M![L±]

and hence ∂F = Lf , for some f ∈ M!
n+2. Therefore, F is a modular primitive of Lf , and

by Proposition 5.4, an eigenfunction of the Laplacian with eigenvalue −n. Now suppose
that F ∈ MI !

1 of modular weights (r, s) with r ≥ s ≥ 0 and suppose that (5.5) is true for
all smaller values of s. Then since

∂F ∈ MI !
1 + M![L±]
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has modular weights (r + 1, s − 1), the induction hypothesis implies that

∂F = L
1−sf +

∑
0≤k≤s−1

L
−k ∂

s−1−k

(s − 1 − k)!
Xk

for some f ∈ M!
r−s+2. From the proof of Proposition 5.4, each term ∂

s−1−k

(s−1−k)!Xk has a

modular primitive ∂
s−k

(s−k)!Xk . Define Xs via the formula

L
−sXs = F −

∑
0≤k≤s−1

L
−k ∂

s−k

(s − k)!
Xk .

Then Xs is a modular primitive of Lf and F is of the required form, completing the
induction step. The case where s ≥ r follows by complex conjugating, which reverses the
roles of r and s. Taking both cases together implies the first statement. ��
In particular,

• an element F ∈ MI !
1 of modular weights (n, 0) is necessarily an eigenfunction of the

Laplacian with eigenvalue −n.
• an element F ∈ MI !

1 of modular weights (n − 1, 1) is a linear combination of two
eigenfunctions of the Laplacian with possible eigenvalues {−n, 0}.

• an element F ∈ MI !
1 of total weight w can have eigenvalues in the set

{−w , 0 , w − 2 , 2(w − 3) , 3(w − 4) , . . . , w
2 (1 − w

2 )}.
Remark 5.9 Elements in MI !

k for k ≥ 2 are no longer harmonic and satisfy a more
complicated structurewith respect to the Laplace operator. See, for example, [3, Sect. 11.3-
4].

5.3 Ansatz for primitives

Recall that for f ∈ M!
n+2 a weakly holomorphic modular form, the functions f (k) and

Rr,s(f ) were defined in (1.7) and (1.8). In particular,

Rn,0(f ) = (−1)n
n∑

k=0

(
n
k

)
(−1)k

k !
Lk f

(k+1),

R0,n(f ) = (−1)n
n!
Ln f

(n+1). (5.6)

We shall write Rr,s instead of Rr,s(f ) when f is understood.

Proposition 5.10 The functions Rr,s satisfy

∂rRr,s = (r + 1)Rr+1,s−1 for all s ≥ 1

∂nRn,0 = (−1)nLf (0) .

Furthermore,

∂sRr,s =
⎧⎨
⎩
(s + 1)Rr−1,s+1 if r ≥ 1,

0 if r = 0.

Proof Let us write

Sr,s =
n∑

k=s

(
r

k − s

)
(−1)k

k !
Lk f

(k+1) ,
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and show that for all s ≥ 1,

∂rSr,s + sSr+1,s−1 = 0 .

We first verify using (3.2) that

∂rL
−k f (k+1) =

⎛
⎝ ∑

m∈Z\0

2m
(2m)k+1 amL

1−kqm
⎞
⎠ + (r − k)L−k f (k+1)

= L
1−k f (k) + (r − k)L−k f (k+1) .

It follows that

∂rSr,s + sSr+1,s−1 =
∑
k≤n

(
r

k − s

)
(−1)kk !

(
L
1−k f (k) + (r − k)L−k f (k+1)

)

+s
((

r + 1
k − s + 1

)
(−1)kk !L−k f (k+1)

)
Using r + s = n, the right-hand side reduces to∑

k≤n

(
r

k − s

)
(−1)k

k !
Lk f

(k+1)
[−(k + 1)(n − k)

k − s + 1
+ (r − k) + s(r + 1)

k − s + 1

]
= 0

since the term in square brackets simplifies to zero. Finally, since

Rr,s = (−1)r
(
n
r

)
Sr,s ,

we find that for all s ≥ 1,

∂rRr,s − (r + 1)Rr+1,s−1 = (−1)r
(r + s)!
r!s!

∂rSr,s − (−1)r+1 (r + s)!(r + 1)
(r + 1)!(s − 1)!

Sr+1,s−1

= (−1)r
(r + s)!
r!s!

(
∂rSr,s + sSr+1,s−1

)
which vanishes. This proves the first equation. For the second, by (5.6), we have

∂nRn,0 = (−1)n
n∑

k=0

n!
(n − k)!

(−1)k
[
L
1−k f (k) + (n − k)L−k f (k+1)]

By telescoping, only the first term in square brackets (for k = 0), and the second term (for
k = n) survive. The latter is zero, and the former is exactly (−1)nLf (0).
For the last part, compare ∂sRr,s and (s + 1)Rr−1,s+1 using:

(−1)r
(
n
r

)(
r

k − s

)
(s − k) = (−1)r−1

(
n

r − 1

)(
r − 1

k − s − 1

)
(n − r + 1).

where n = r + s. The case r = 0 is immediate from Lemma 3.1. ��
Lemma 5.11 Let E : H → Vn ⊗ C be real analytic and T-equivariant such that

∂E
∂z

= 0,
∂E
∂z

= c(X − zY )n,

where c ∈ C. Then c = 0 and E = α
(π i)n Y

n for some α ∈ C. Writing

E =
∑

r+s=n
Er,s(X − zY )r(X − zY )s,

we find that

Er,s = α(−1)r
(
n
r

)
L

−n .

If E is modular equivariant and n > 0 then α vanishes.
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Proof Consider the function e : H → C obtained by composing E with Vn ⊗ C →
(Vn ⊗ C)/YC ∼= C. It is the coefficient of Xn in E. It satisfies ∂e

∂z = 0 and ∂e
∂z = c and

therefore e = cz+β for some β ∈ C. Since T fixes Y and acts on X by T (X) = X +Y , the
condition of T -invariance implies that e(z + 1) = e(z). This forces c = 0. It follows that
∂
∂z E = ∂

∂z E = 0 and so E is constant. By T -invariance, E lies in VT
n = CY n, and hence

E = α
(π i)n Y

n for some α ∈ C. But

E = α

(π i)n
Y n = α

(π i)n
1

(z − z)n
(
(X − zY ) − (X − zY )

)n
= αL−n

∑
r+s=n

(−1)r
(
n
r

)
(X − zY )r(X − zY )s

since L = π i(z − z), which proves the formula for Er,s.
Finally, if E is modular equivariant, Er,s ∈ CL

−n is modular of weights (r, s) with r + s =
n > 0. But L−n is modular of weights (n, n), which implies that Er,s = 0. ��

Corollary 5.12 Let f ∈ M!
n+2 be a weakly holomorphic modular form. Let Xn,0 be a

modular primitive of Lf , and let Xr,s and g ∈ M!
n+2 be as determined by Proposition 5.4.

Then the zeroth Fourier coefficients of f and g are conjugate:

a = a0(f ) = a0(g)

and there exists some α ∈ C such that

Xr,s = a
n + 1

L + α(−1)r
(
n
r

)
L

−n + Rr,s(f ) + Rs,r(g) (5.7)

for all r, s ≥ 0 and r + s = n.

Proof Let a = a0(f ). Define

Yr,s = a
n + 1

L + Rr,s(f ) + Rs,r(g) .

We first check that the expression for Yr,s satisfies the equations (5.3). By (3.2), we have
∂rL = (r + 1)L, and by Proposition 5.10, we deduce that ∂rYr,s = (r + 1)Yr+1,s−1 for all
s ≥ 1. Similarly, using the fact that n is even, we check that

∂nYn,0 = aL + ∂nRn,0(f ) = aL + (−1)nf (0) L = L f .

By complex conjugating, ∂sYr,s = (s + 1)Yr−1,s+1 for all r ≥ 1, and

∂nY0,n = aL + ∂nRn,0(g) = L(a + g (0)) .

Define Er,s = Xr,s − Yr,s. The function E = ∑
r+s=n Er,s(X − zY )r(X − zY )s satisfies

∂E
∂z

= 0 and
∂E
∂z

= π i(a0(g) − a)(X − zY )n

by (3.8). It is a real analytic and T -invariant section of Vn ⊗ C, since Xr,s and Yr,s are
T -invariant. By the previous lemma we conclude that there exists an α ∈ C such that

Xr,s = α(−1)r
(
n
r

)
L

−n + Yr,s

for all r + s = n, and furthermore, that a0(g) = a. ��
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We shall determine the unknown coefficient α using Hecke operators. Another way to
prove the corollary is to use the fact thatXr,s are eigenfunctions of the Laplacian (Proposi-
tion 5.8) and the explicit shape (4.3) and (4.4) for the latter.We chose the approach above
since it explains the origin of the indeterminate coefficient α, and since functions inMI
are not harmonic in general.

Corollary 5.13 A modular primitive of Lf , if it exists, is of the form:

Xn,0 = a
n + 1

L + α

Ln + n!
Ln g

(n+1) +
n∑

k=0

(
n
k

)
(−1)k

k !
Lk f

(k+1) . (5.8)

5.4 Example: real analytic Eisenstein series

Let Er,s denote the functions defined in the introduction. By [2, Proposition 4.3], and
equation (5.7), we have

Er,s = E0
r,s + Rr,s(Gw+2) + Rs,r(Gw+2) ,

where

E0
r,s = − Bw+2

2(w + 1)(w + 2)
L + (−1)r

(
w
r

)
w!

2w+1 ζ (w + 1)L−w .

In this example the coefficient α is an odd zeta value, which is the period of a non-trivial
extension of Tate motives, and is conjecturally transcendental. It can be obtained as a
special value of a suitably defined L-function of Er,s (see [2], Sect. 9.4).

6 Hecke operators
We review some basic properties of Hecke operators. For any α ∈ GL2(R) write

α =
(
aα bα

cα dα

)
, (6.1)

i.e. a, b, c, d are the standard generators on the affine ringO(GL2).

6.1 Definition

Let f : H → Vn ⊗ C be real analytic and equivariant. Let m ≥ 1 be an integer, and let
Mm denote the set of 2× 2 matrices with integer entries which have determinantm. The
Hecke operator is defined by the formula2

Tmf (z) = 1
m

∑
α∈�\Mm

f (αz)
∣∣
α
.

Since f is equivariant, it follows that for all γ ∈ �,

f (γαz)
∣∣
γα

= f (γ (αz))
∣∣
γ

∣∣
α

= f (αz)
∣∣
α

and hence the formula for Tmf is well defined. The set of cosets �\Mm is finite and are
described below. Since right multiplication by any γ ∈ � defines a bijection of cosets

2The reason for the factorm−1 is that f is a function; the usual formula for Hecke operators involves one-forms: for α

as in (6.1),

d(αz) = det(α)
(cαz + dα)2

dz ,

and the det(α) accounts for an extra multiple ofm in the formula for Tm .
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�\Mm
∼−→ �\Mm, we deduce from the calculation

(Tmf )(γ z)
∣∣
γ

=
∑

α∈�\Mm

f (αγ z)
∣∣
αγ

=
∑

α′∈�\Mm

f (α′z)
∣∣
α′ = Tmf (z)

that Tmf : H → Vn ⊗ C is equivariant. Via the dictionary Sect. 3.3 between equivariant
vector-valued modular forms and modular forms of weights (r, s), we deduce an action of
Tm on the latter. It is given by the following formula.

Lemma 6.1 If f is real analytic modular of weights (r, s), then

Tmf =
∑

α∈�\Mm

mr+s−1

(cαz + dα)r(cαz + dα)s
f (αz)

and is real analytic modular of weights (r, s).

Proof For any α as in (6.1),

(X − αzY )
∣∣
α

= det(α)
(cαz + dα)

(X − zY ) .

Writing f in the form f = ∑
r+s=n fr,s(X − zY )r(X − zY )s, we find that

Tmf = 1
m

∑
α∈�\Mm

∑
r+s=n

fr,s(αz)
det(α)n

(cαz + dα)r(cαz + dα)s
(X − zY )r(X − zY )s .

Reading off the coefficients gives the stated formula. ��

6.2 Properties

Lemma 6.2 View Tm, multiplication byL, and ∂ , ∂ ,� as operators acting on real analytic
modular functions. Then they satisfy

mTm L = LTm ,

[Tm, ∂] = [Tm, ∂] = 0 .

The second equation implies that [Tm,�] = 0.

Proof For any α as in (6.1),

Im(αz) = det(α)
(cαz + dα)(cαz + dα)

Im(z) .

If f is modular of weights (r, s), then Im(z)f is modular of weights (r − 1, s − 1) and

Tm(Im(z)f ) =
∑

α∈�\Mm

mr+s−3

(cαz + dα)r−1(cαz + dα)s−1 Im(αz)f (αz)

= Im(z)
∑

α∈�\Mm

mr+s−2

(cαz + dα)r(cαz + dα)s
f (αz) = 1

m
Im(z)Tmf (z) .

The first equation follows from L = −2πIm(z). One verifies for any α of the form (6.1)
(dropping the subscripts α for convenience):

∂r
(
(cz + d)−r f (αz)

) = (cz + d)−r−1(cz + d)
(
∂r f

)
(αz),

∂s
(
(cz + d)−sf (αz)

) = (cz + d)(cz + d)−s−1
(
∂sf

)
(αz).
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Since ∂r f is modular of weights (r + 1, s − 1)

Tm(∂r f ) =
∑

α∈�\Mm

mr+s−1

(cαz + dα)r+1(cαz + dα)s−1 (∂r f )(αz)

=
∑

α∈�\Mm

mr+s−1

(cαz + dα)s
∂r

( f (αz)
(cαz + dα)r

)
= ∂rTm(f ),

which proves that [Tm, ∂]f = 0. The statement for ∂ follows by complex conjugation. The
equation [Tm,�]f = 0 follows from the definition of the Laplacian (Sect. 3.1). ��
By [24, Sect. 5.2 Lemma 2], a complete set of representatives for the set of cosets �\Mm
are given by the σ1(m) = ∑

d|m d integer matrices(
a b
0 d

)
where ad = m , a ≥ 1 , 0 ≤ b < d .

It follows from Lemma 6.1 that for any f modular of weights (r, s), we have

Tmf (z) = mw−1
∑

ad=m,a,d>0

1
dw

∑
0≤b<d

f
(az + b

d

)
, (6.2)

where w = r + s is the total weight of f , which is the usual formula. The operators Tm
commute and satisfy the following relations [24, Sect. 5.1]:

TmTn = Tmn if (m, n) coprime,

TpTpn = Tpn+1 + pw−1Tpn−1 if p prime, n ≥ 1

viewed as operators acting on modular forms of total weight w.

6.3 q-expansions

The Hecke operators do not preserve the spaces M and M!. Indeed, it follows from the
definitions that the map f (z) �→ f ( az+b

d ) acts via

L
kqmqn �→

(a
d

)k
e2π i(m−n) bd Lkq

ma
d q

na
d

The following corollary is a consequence of formula (6.2) and continuity.

Corollary 6.3 Let R ⊂ C. The Hecke operator TN defines a linear map

TN : M!(R) −→ M[N ],!(R[e2π i/N ])

whereM[N ],!(S) is the space of real analytic modular forms which admit an expansion in
S[q−1/N , q−1/N , q1/N , q1/N ]][L].

It is well known that for r ∈ Z,

∑
0≤b<d

e2π ir
b
d =

⎧⎨
⎩0 if d� | r,
d if d|r.

(6.3)

Corollary 6.4 Let f ∈ M!
r,s with an expansion

f =
∑

a(k)m,nL
kqmqn (6.4)

satisfying the property that for all d|N, d > 1,

a(k)m,n = 0 whenever 0 �≡ m ≡ n (mod d) . (6.5)
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Then TN f ∈ M!
r,s. More precisely, one has the formula

TN f =
∑
k,μ,ν

α(k)
μ,ν L

kqμqν (6.6)

where

α(k)
μ,ν =

∑
a|(N,μ,ν),a≥1

aw−1
(a2
N

)k
a(k)μN

a2
, νN
a2

.

In particular, if f ∈ Mr,s and satisfies (6.5), then TN f ∈ Mr,s.

Proof Apply TN to the expansion of f via formula (6.2) to deduce that

TN f =
∑
k,m,n

Nw−1
∑

ad=N,a,d>0

(a
d

)k 1
dw

∑
0≤b<d

a(k)m,ne
2π i(m−n) bd Lkq

ma
d q

na
d .

This reduces using (6.3) to

TN f =
∑
k,m,n

∑
ad=N,a,d>0

(a
d

)k
aw−1a(k)m,nL

kq
ma
d q

na
d .

By assumption (6.5), replacem, n withm′ = m/d and n′ = n/d to obtain

TN f =
∑
k,m′ ,n′

∑
ad=N,a,d>0

(a
d

)k
aw−1a(k)m′d,n′dL

kq m′aq n′a .

Comparing with (6.6) and collecting terms in qμqν gives

α(k)
μ,ν =

∑
a|(N,μ,ν),a≥1

aw−1
(a
d

)k
a(k)μd

a , νda
.

where in the sum, d denotes N/a. ��
Condition (6.5) holds in particular if a(k)m,n = 0 for allmn �= 0.

Corollary 6.5 The Hecke algebra acts onHM!.

If f = f a + f 0 + f h as in (4.2) then (TN f )• = TN (f •) for • ∈ {a, 0, h}. It follows from the
formula that if f • has a pole of order at most p at the cusp, then TN f • has a pole of order
at most Np at the cusp, for • = a, h.

Corollary 6.6 Let f be as in Corollary 6.4. Let w = r + s. Then

α
(k)
0,0 = σ2k+w−1(N )N−k a(k)0,0 . (6.7)

Corollary 6.7 Let N = p be prime. Then for all k,μ, ν,

α(k)
μ,ν = p−ka(k)μp,νp + pw+k−1a(k)μ/p,ν/p

where the second term arises only if p divides μ and ν, and is absent otherwise.

The space of almost weakly holomorphic modular forms M![G∗
2,L±] consists of har-

monic functions. It is preserved by the Hecke operators.

Example 6.8 The modified Eisenstein series G∗
2 = G2 − 1

4L is modular of weights (2, 0)
and lies inM2,0, where

G2(q) = − 1
24

+
∞∑
n=1

σ1(n)qn = − 1
24

+ q + 3q2 + 4q3 + 7q4 + · · ·
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By formula (6.7) with w = 2, we find that Tn(L−1) = n−1σ−1(n)L−1 = σ1(n)L−1, and
hence, G∗

2 is a Hecke eigenform. For all n ≥ 1,

TnG
∗
2 = σ1(n)G∗

2 .

Remark 6.9 The quotientHM!/∂(HM!) also admits an action of the Hecke algebra.

6.4 Hecke operators on weakly holomorphic modular forms

Let f ∈ M!
k+2 be a weak Hecke eigenform. Then for allm,

(Tm − λm)f = ψm

for some λm, where ψm is a weakly holomorphic modular form

ψm ∈ Dk+1M!
−k .

Since the operators Tm, Tn commute, they satisfy

(Tm − λm)ψn = (Tn − λn)ψm (6.8)

for allm, n. From the standard relations between Hecke operators:

ψmn = λnψm + Tm ψn

for all (m, n) coprime. For all p prime and n ≥ 1,

ψpn+1 = Tpψpn − pk+1ψpn−1 + λpnψp .

6.5 Hecke action onmodular primitives

Let f, g, Xr,s be as in Proposition 5.4.

Proposition 6.10 f is a weak Hecke eigenform with eigenvalues λm if and only if g is a
weak Hecke eigenform with eigenvalues λm. In this case,

(
Tm − λm

m

)
Xr,s = 1

m
L

−n
(∂r

r!
ψm + ∂

s

s!
φm

)
(6.9)

for some weakly holomorphic functions ψm,φm ∈ M!−n satisfying

(Tm − λm)f = 1
n!

L
−n−1∂n+1ψm,

(Tm − λm)g = 1
n!

L
−n−1∂n+1φm . (6.10)

Proof Suppose that f is a weak Hecke eigenformwith eigenvalues λm. Therefore, by (3.4),
there exists for everym ≥ 1 a ψm ∈ M!−n such that

(Tm − λm)f = 1
n!

L
−n−1∂n+1ψm .

Since ∂Xn,0 = Lf , it follows from [Tm, ∂] = 0 (Lemma 6.2) that

∂
(
Tm − λm

m

)
Xn,0 = 1

mn!
L

−n∂n+1ψm.

Hence, by Lemma 3.1 there exists a φm ∈ M!−n such that
(
Tm − λm

m

)
Xn,0 = 1

m
L

−n
(∂n

n!
ψm + φm

)
. (6.11)
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This proves the case (r, s) = (n, 0) of (6.9). By taking the complex conjugate of Lemma 3.4
we find, using the fact that ∂ψm = 0, that

∂∂kψm = ∂∂kψm − ∂k∂ψm = k(n − k + 1)∂k−1ψm .

By induction on s, this in turn implies that

∂
s

s!
∂n

n!
ψm = ∂n−s

(n − s)!
ψm .

From the definition Xr,s = ∂
s

s! Xn,0, we apply ∂
s

s! to (6.11) and use [Tm, ∂] = 0 (Lemma 6.2)
and the previous equation to deduce that

(
Tm − λm

m

)
Xr,s = 1

m
L

−n
(∂r

r!
ψm + ∂

s

s!
φm

)
.

This proves (6.9). Now apply ∂ to this expression in the case (r, s) = (0, n). We find, since
∂X0,n = Lg and ∂ψm = 0 that,

(
Tm − λm

m

)
Lg = 1

m
L

−n ∂
n+1

n!
φm

which is equivalent by Lemma 6.2 to the second line of (6.10). By (3.4), g is a weak Hecke
eigenform with eigenvalues λm, and completes the proof. The converse result, where we
assume that g is a weak Hecke eigenform and deduce the same for f , holds by complex
conjugation. ��

Remark 6.11 Remark 5.5 implies an equality on the Betti image under compB,dR of the de
Rham cohomology classes in H1

dR(M1,1(C);Vn):

[2π if (z)(X − zY )ndz] = [2π i g(z)(X − zY )ndz] .

Since the Hecke operators act on cohomology, it follows that f is a weak Hecke eigenform
if and only if g is, and that they have the same eigenvalues. Incidentally, this argument
also proves that g = s(f ).

6.6 Determination of the coefficient of L−n

Corollary 6.12 Let f, g ∈ M!
n+2 and Xr,s be as in the previous proposition. Then

X0
r,s = α(−1)r

(
n
r

)
L

−n ,

where the constant α ∈ C satisfies for all m ≥ 1

(σn+1(m) − λm)α = a0(ψm) + a0(φm), (6.12)

where a0 denotes the zeroth Fourier coefficient.
If f is cuspidal, σn+1(m) − λm �= 0 for all m sufficiently large, in which case

α = a0(ψm) + a0(φm)
σn+1(m) − λm

. (6.13)

In particular, if f, g have real Fourier coefficients, then α is real.

Proof By Proposition 6.10,

(mTm − λm)Xn,0 = L
−n

(∂n

n!
ψm + φm

)
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for allm ≥ 1. By equation (5.7), the constant term of Xn,0 is X0
n,0 = α L

−n, since f is a cusp
form. On the other hand, equation (6.7) in weight n implies that

mTm L
−n = σ−n−1(m)mn+1

L
−n =

∑
d|m

(m
d

)n+1
L

−n = σn+1(m)L−n .

Putting the pieces together yields

(mTm − λm)X0
n,0 = (σn+1(m) − λm)α L

−n = L
−n

(
a(0)0,0

(∂n

n!
ψm

)
+ a(0)0,0(φm)

)
,

where a(0)0,0 denotes the coefficient in the expansion (1.2). Since ψm ∈ M!−n,

a(0)0,0(∂
nψm) = a(0)0,0(∂−1 . . . ∂−nψm) = (−1)nn!a(0)0,0(ψm)

by successive application of (3.2), which never decreases the powers of L.
The λm are the eigenvalues of a normalised holomorphic Hecke eigenform g ∈ Sn+2.

Then λm = am(g) and an elementary estimate [16, Lemma 2], implies that |am(g)| grows
at most likemn/2+1. Since σn+1(m) ≥ mn+1, it follows that (σn+1(m)− λm) is nonzero for
sufficiently largem. ��

The consistency of equations (6.12) for different values ofm follows from (6.8). Equation
(6.13) would have poles for every n if f were an Eisenstein series by (2.5).

7 Existence of modular primitives
Having determined the form of modular primitives, we now turn to their existence.

7.1 Cocycles and periods

Let us fix a system λ ofHecke eigenvalues corresponding to a cuspidal eigenform f ∈ Sn+2,
and let HdR

λ , HB
λ be as defined in Sect. 2. For simplicity, we shall drop the subscripts λ

from now on, and set K = Kλ. Let

f ∈ Mn+2 and f ′ ∈ M!
n+2

denote a K -basis forHdR of the form (2.7). Likewise, choose a K -basis P+ ofHB,+ and P−

of HB,−. We have P±
T = 0. The polynomials P±

S are known, respectively, as the even and
odd period polynomials of f .
Let us choose abasepoint z0 ∈ H and letC,C ′ ∈ Z1(�;Vn) denote the cocycles associated

with f and f ′, respectively. The comparison isomorphism (2.10) implies that

[C ′] = η+ [P+] + iη− [P−],
[C] = ω+ [P+] + iω− [P−], (7.1)

where ω+, iω−, η+, iη− are the entries of the period matrix in these bases.

Lemma 7.1 There exists a canonical Hecke equivariant splitting over Q:

s : H1
cusp(�;Vn) −→ Z1

cusp(�;Vn) .

Proof See [4, Lemma 7.3]. ��

We can assume that P+, P− ∈ Z1
cusp(�;Vn ⊗ K ) are the unique Hecke-equivariant lifts of

the cohomology classes chosen earlier. They satisfy P±
T = 0.
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Corollary 7.2 There exist polynomials Q,Q′ ∈ Vn ⊗ C such that for all γ ∈ �,

C ′
γ = η+ P+

γ + iη− P−
γ + Q′(X, Y )

∣∣
γ−id,

Cγ = ω+ P+
γ + iω− P−

γ + Q(X, Y )
∣∣
γ−id .

The polynomials Q,Q′ depend on the choice of basepoint z0.

7.2 Real and imaginary analytic cusp forms

We shall construct explicit modular primitives of cusp forms in two steps.
Recall that the integrals Ff (z) were defined in (2.11) relative to the basepoint z0 ∈ H.

Definition 7.3 Define real analytic functions H → Vn ⊗ C by

If (z) = (2π i)−2n
(
ω+Re

(
Ff ′ (z) − Q′) − η+Re

(
Ff (z) − Q

))
,

Rf (z) = (2π i)−2n
(
ω−Im

(
Ff ′ (z) − Q′) − η−Im

(
Ff (z) − Q

))
.

Note that (2.11) involves an odd power of 2π i, which explains why ‘real’ and ‘imaginary’
are apparently interchanged.

These functions satisfy the differential equations

dIf (z) = ω+Re
(
2π if ′(z)(X − zY )ndz

) − η+Re
(
2π if (z)(X − zY )ndz

)
= π i

(
ω+f ′ − η+f

)
(X − zY )ndz + π i

(
η+f − ω+f ′)(X − zY )ndz

and similarly

dRf (z) = π i
(
ω−f ′ − η−f

)
(X − zY )ndz + π i

(
ω−f ′ − η−f

)
(X − zY )ndz

Theorem 7.4 The functions If (z) and Rf (z) are well defined (independent of the choice
of basepoint z0), and �-equivariant.

Proof The �-equivariance of If (z) follows from Corollary 7.2:

If (γ z)
∣∣
γ

− If (z) = ω+(
η+ P+

γ

)
− η+(

ω+ P+
γ

)
= 0 .

Changing base point z0 yields a modular equivariant solution to the same differential
equation for dIf given above (which is independent of the basepoint). By Lemma 5.11,
any modular equivariant solution is unique. The argument forRf (z) is similar. ��
Extract the coefficients of If andRf via

If =
∑

r+s=n
Ir,s(X − zY )r(X − zY )s,

Rf =
∑

r+s=n
Rr,s(X − zY )r(X − zY )s.

They define weakly holomorphic modular forms inM!.

Corollary 7.5 There exists a family Ir,s ∈ M!
r,s, for r + s = n, such that

∂ Ir,s = (r + 1)Ir+1,s−1 for all 1 ≤ s ≤ n,

∂ Ir,s = (s + 1)Ir−1,s+1 for all 1 ≤ r ≤ n ,

and

∂ In,0 = L

(
ω+f ′ − η+f

)
, ∂ I0,n = L

(
η+f − ω+f ′).
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They are ‘imaginary’ in the sense that Ir,s = −Is,r .
Similarly, there exists a family of elements Rr,s ∈ M!

r,s for r+s = n and r, s ≥ 0, satisfying
the identical equations, except that the last line is replaced by

∂ Rn,0 = L

(
ω−f ′ − η−f

)
and ∂ Rn,0 = L

(
ω−f ′ − η−f

)
.

They are ‘real’ in the sense that Rr,s = Rs,r .

Proof This is a straightforward application of (3.9) to the previous discussion. ��

7.3 Modular primitives of cusp forms

Since the period isomorphism is invertible, we can change basis, to deduce the existence
of modular primitives for all cusp forms.

Definition 7.6 For any basis f, f ′ of (2.7) define

H(f ) = p−1
(
ω−
f If − ω+

f Rf
)
,

H(f ′) = p−1
(
η−
f If − η+

f Rf
)
,

where p = (ω+
f η−

f − ω−
f η+

f ) = −i det(Pf ) �= 0, and η+
f , iη

−
f ,ω

+
f , iω

−
f are entries of the

period matrix Pf with respect to this basis.

WriteH(f ) = ∑
r+s=nH(f )r,s(X − zY )r(X − zY )s as usual.

Theorem 7.7 The family of functionsH(f )r,s satisfy the equations

∂ H(f )r,s = (r + 1)H(f )r+1,s−1 for all 1 ≤ s ≤ n

∂ H(f )r,s = (s + 1)H(f )r−1,s+1 for all 1 ≤ r ≤ n

and

∂ H(f )n,0 = Lf, ∂ H(f )0,n = Ls(f ).

The family of functionsH(f ′)r,s satisfy the same equations with f interchanged everywhere
with f ′, and ω interchanged with η. In particular, f admits a canonical weak harmonic lift
(see Sect. 1.3).

Proof Straightforward consequence of the previous corollary using:

s
(
ω+f ′ − η+f

) = − (
ω+f ′ − η+f

)
and s

(
ω−f ′ − η−f

) = (
ω−f ′ − η−f

)
.

This is immediate from the definition of the single-valued period matrix P−1
f Pf on noting

that P−1
f (f ) = ip−1(ω+f ′ − η+f ) and P−1

f (f ′) = p−1(ω−f ′ − η−f ). ��
It follows from uniqueness (lemma 5.11) that H(f )r,s is well defined (only depends on
f and not the choice of basis f, f ′), since it only depends on f and its image under the
single-valued involution s(f ), which is canonical.
In this manner we have defined a canonical modular primitive (compare discussion of

Sect. 1.3):

HdR
λ −→ M!

n,0(Kλ[ω±
λ , η

±
λ ]) .

f �→ H(f )n,0
This map is injective since L−1∂H(f )n,0 = f .
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Corollary 7.8 For all r + s = n, complex conjugation acts via:

H(f )r,s = H(s(f ))s,r .

Corollary 7.9 Suppose that f ∈ Sn is a cuspidal Hecke eigenform. The constant term in
H(f )r,s is proportional to the Petersson norm of f times L−n

H(f )0 ∈ {f, s(f )}KλL
−n .

Proof This follows from (6.13): the term ψm vanishes since f has no pole, and the sole
contribution to α comes, via φm, from the action of Hecke operators on the f ′ term in
g = s(f ) ∈ Cf ⊕ Cf ′. But the coefficient of f ′ in s(f ) is proportional to {f, s(f )}, since
{f, f } = 0 and {f, f ′} ∈ Kλ. The quantity {f, s(f )} can be interpreted as the Petersson norm
via (2.14) and the comments which follow. ��

Corollary 7.10 Every modular form admits a modular primitive inM!.

Proof Every modular form of integral weight is a linear combination of Eisenstein series
and cuspidal Hecke eigenforms. ��

7.4 Vanishing constant term

The space HdR ⊗ C decomposes into eigenspaces with respect to the map s:

HdR ⊗ C = (HdR ⊗ C)+ ⊕ (HdR ⊗ C)− .

They are, respectively, the preimages of H±
B ⊗ C under the comparison isomorphism.

An element f ∈ (HdR ⊗ C)+ satisfies s(f ) = f , and hence,H(f )r,s is proportional to the
‘real’ functionR(f )r,s.
An element f ∈ (HdR⊗C)− satisfies s(f ) = −f , and hence,H(f )r,s is proportional to the

‘imaginary’ function I(f )r,s. The latter satisfies I0
r,s = 0 since by Corollary 7.5 and (6.13),

the constant term α is real and hence vanishes since I(f )r,r = −I(f )r,r . It is therefore
cuspidal: I(f )r,s ∈ S !.

8 Example: Real analytic version of Ramanujan’s function�

8.1 Weakly holomorphic cusp forms in weight 12

Let n = 10. Let � denote Ramanujan’s cusp form of weight 12

� = q
∏
n≥1

(1 − qn)24 = q − 24 q2 + 252 q3 + 1472 q4 + 4830q5 − 6048q6 + · · ·

Since dim S12 = 1, it is a Hecke eigenform with eigenvalues in Z. There exists a unique
weakly holomorphic modular form �′ ∈ M!

12 which has a pole of order at most 1 at the
cusp, and whose Fourier coefficients a0, a1 vanish. Explicitly,

�′ = q−1 + 47709536 q2 + 39862705122 q3 + 7552626810624 q4 + · · ·
It satisfies {�,�′} = 1. It follows that there is a single cuspidal Hecke eigenspace, and that
it has the de Rham basis:

HdR = H1
cusp,dR(M1,1;V10) = Q�′ ⊕ Q� .

The function �′ is a weak Hecke eigenform with the same eigenvalues as �:

(Tm − λm)�′ = D11pm for allm ≥ 1
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for some pm ∈ M!−10. For example, λ2 = −24 and hence (T2 − λ2)�′ = D11 ψ2, where

p2 = 24G14�
−2 = −q−2 − 24q−1 + 196560 + 47709536q + · · · .

In the notations of Proposition 6.10, we have ψ2 = 10! 2−11p2 by (3.4).

8.2 Cocycles

Let P± ∈ Z1(�;V10) be the Hecke-invariant cocycles P± : � → V10 which are uniquely
determined by P±

T = 0 and

P+
S = 36

691
(Y 10 − X10) + X2Y 2(X2 − Y 2)3,

P−
S = 4X9Y − 25X7Y 3 + 42X5Y 5 − 25X3Y 7 + 4XY 9.

Their Haberland inner product is {P+, P−} = 1. They provide a Betti basis

HB = H1
cusp,B(M1,1;V10) = QP+ ⊕ QP− .

8.3 Periods

Following the method given in Sect. 2, we can easily compute the period matrix (2.13) in
this basis. We find that for all γ ∈ �,∫

γ

(2π i)11�(z)(X − zY )10dz = ω+P+
γ + ω−P−

γ ,

where

ω+ = −68916772.809595194754 . . . , ω− = −5585015.3793104018668 . . .

which agree with the numerical values for the periods of � given in the literature. The
periods of �′, on the other hand, are η+, iη− where

η+ = 127202100647.17709477 . . . , η− = 10276732343.649132750 . . .

I could find no reference for these values for comparison. In accordance with proposition
5.6 of [6], we can indeed verify numerically that

det
(

η+ ω+
iη− iω−

)
= 10! × (2π i)11 .

The Petersson norm of �, in its standard normalisation, is
−2ω+ω−
211(2π i)22

= 0.00000103536205 . . . > 0

8.4 Single-valued involution

The single-valued period matrix is

i
10!(2π i)11

(
η+ω− + η−ω+ 2ω+ω−

2η+η− −(η+ω− + η−ω+)

)
=

(
648.84093 . . . −0.3520770 . . .

1195742.7 . . . −648.84093 . . .

)

in the basis �,�′. It does not depend on the choice of Betti basis. Therefore,

s(�) = σ�′ + τ� where σ = −0.35207 . . . , τ = −648.84 . . .

For convenience, we evaluate the ratio

ρ = τ

σ
= −η+ω− + η−ω+

2ω+ω− = −1
2

( η+

ω+ + η−

ω−
)

= 1842.8947269 . . .
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8.5 The constant term

Since σ11(2) = 2049, we check that

σ11(2) − λ2 = 2073 = 3.691

is nonzero and therefore since ψ2 = 10! 2−11p2,

a0(ψ2)
σ11(2) − λ2

= 10!
211

196560
3.691

= 10!
211

7! 13
691

.

The 691 in the denominator is a consequence of the congruence � ≡ G12 (mod 691).
Formula (6.13) therefore implies that

α = 7! 13
691

10!
211

σ = 7! 13
691

2iω+ω−

(4π i)11
.

8.6 Real analytic cusp forms

The real analytic cusp forms H(�)r,s for r + s = 10 can be written down explicitly from
the formulae given in Theorem 1.2.

8.7 The mock modular formM�

Denote the Fourier coefficients of �,�′ by an, a′
n. Our formula for the ‘mock’ modular

form defined in Sect. 1.3 is

M� = α + 10!
211

∑
n

σa′
n + τan
n11

qn,

where σ , τ are the periods given above. In order to compare more directly with Ono’s
normalisation [20], let us rescale by setting

M′
� = −11 × 211

σ
M� = 11!

(
− 7! 13

691
+

∑
n

a′
n + ρan
n11

qn
)
.

Its first five Fourier coefficients are given exactly by

11!
(
q−1 − 65520

691
− ρq +

( 3
256

ρ − 1490923
64

)
q2

+
(

− 28
19683

ρ − 164044054
729

)
q3 + · · ·

)
.

By uniqueness, this function coincides with the mock modular form for � given in [20]
and discussed in [10]. We have verified, by substituting the above numerical value of ρ,
that this agrees with the computation in [20] (1.7) to the accuracy given in that paper.
Ono’s formula [20] for its nth Fourier coefficient, for n > 0, is:

−2π �(12)n− 11
2

∞∑
c=1

K (−1, n, c)
c

I11
(4π√

n
c

)

whereK is a Kloosterman sum and I is a Bessel function. Combining this with our expres-
sion for its Fourier coefficients proves Corollary 1.4.
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Appendix: remark on complexmultiplication
Both referees specifically asked for clarification of some remarks concerning complex
multiplication. Complex multiplication does not arise for modular forms of full level and
is mostly irrelevant to the present paper. Therefore, we shall remain brief. Nonetheless,
it seems not to be widely known that complex multiplication induces relations between
both the periods and the quasi-periods of motives.
Let k ⊂ C be a number field and consider the category T whose objects are triples

M = (MdR,MB, c) where MdR is a k-vector space, MB a Q-vector space and c is an
isomorphism MdR ⊗k C

∼→ MB ⊗Q C. The morphisms in T are linear maps on the
components MB,MdR compatible with c. A pure motive over k defines an object in T ,
whereMdR,MB are its de Rham and Betti realisations (relative to the embedding k ⊂ C),
and c the comparison isomorphism. A period matrix for M is a representation of c as a
matrix with respect to a choice of bases forMdR andMB. LetM be an object of T of rank
2, equipped with an isomorphism

μ : M −→ M

such that μ2 + aμ+ b = 0 for some a, b ∈ k , for some irreducible polynomial x2 + ax+ b
with zeros in an extension fieldK ⊂ C. Thenμ⊗id induces an automorphismofMdR⊗K ,
which splits into eigenspaces for μ ⊗ id. Let σ1, σ2 be a Q-basis ofMB and choose a basis
of eigenvectors f1, f2 ofMdR ⊗ K , with eigenvalues λ1, λ2, respectively. They are the zeros
of the quadratic polynomial x2 + ax + b. The period matrix of M ⊗ K , in this basis, has
entries

ωi,j = σi(cfj) for 1 ≤ i, j ≤ 2 .

The map μ induces equivalences of matrix coefficients [5, Sect. 2]

λj[M, fj, σ1] = [M,μdRfj , σ1] = [M, fj,μ∨
Bσ1]

which, on applying the period homomorphism, induces a relation between periods

λjω1,j = α1ω1,j + α2ω2,j

where μ∨
Bσ1 = α1σ1 + α2σ2, and αi ∈ Q. Since the period matrix has non-vanishing

determinant, and since λj /∈ Q, it follows from (λj − α1)ω1,j = α2ω2,j that all ωi,j are
nonzero and satisfy

ω1,j/ω2,j ∈ K×

for j = 1, 2. In conclusion, for a suitably chosen de Rham basis of eigenforms for the
complex multiplication, the ratio of both periods and quasi-periods (with respect to this
basis) is algebraic. Since complex multiplication induces a morphism of mixed Hodge
structure, it preserves the Hodge filtration on the de Rham cohomology, and so we can
assume the above de Rham basis is adapted to the Hodge filtration.

Example 8.1 Suppose that M are the realisations of the motive of a CM modular form.
ThenMB = M+

B ⊕ M−
B has a decomposition into Frobenius-invariant and anti-invariant

subspaces, andwriteω+, iω−, η+, iη− for the entries of the periodmatrix P with respect to
a choice of de Rham basis ofMdR ⊗K which areμ-eigenvectors, and Betti basis which are
eigenvectors for real Frobenius. These notations are consistent with our earlier notations
(2.13). With this choice of de Rham basis, the quantity (2.15) is algebraic. More precisely,
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if we write ω+ = αiω− and η+ = βiη−, for α,β ∈ K×, then the single-valued period
matrix takes the form

P−1P =
⎛
⎝ α+β

α−β

(
2β

α−β

)
ω−
η−(

2α
β−α

)
ω−
η−

α+β
β−α

⎞
⎠

and we see that its diagonal entries are algebraic. Therefore, with respect to any basis
of MdR, the single-valued period matrix is obtained from the above by conjugation by a
matrix with entries inK . In particular, the single-valuedmap s only involves the Petersson
norm of f (see Sect. 2.1.6), and algebraic numbers in K .

Example 8.2 (The case of an elliptic curve). We use the notations of [18, Chapter 3].
Many thanks to J. Fresán for bringing this reference to our attention. For τ ∈ H, satisfying
A + Bτ + Cτ 2 = 0, where A, B, C ∈ Z, lemma 3.1 of loc. cit. implies that there exists an
algebraic κ in the field of complex multiplication, such that

ω2 = τω1

Aη1 − Cτη2 = κω2 .

The number κ is not always zero, and so the ratio of quasi-periods η2/η1 is not algebraic in
these cases. However, changing de Rham basis by adding to the differential of the second
kind a multiple r of the holomorphic differential changes the quasi-periods by

η′
i = ηi + rωi for i = 1, 2

and we find that

Aη′
1 − Cτη′

2 = ((A − Cτ 2)r + κτ )ω1

which vanishes precisely when

r = −κ τ

2A + Bτ
.

Note that 2A + Bτ �= 0, since Im(τ ) > 0. The quasi-periods defined with respect to the
new de Rham basis are indeed proportional by an algebraic number:

Aη′
1 = Cτη′

2 ,

and κ vanishes exactly when the new de Rham basis agrees with the original one.
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