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Abstract

We introduce and study the notion of conic stability of multivariate complex
polynomials in C[z], which naturally generalizes the stability of multivariate
polynomials. In particular, we generalize Borcea’s and Brändén’s multivariate version of
the Hermite–Kakeya–Obreschkoff Theorem to the conic stability and provide a
characterization in terms of a directional Wronskian. And we generalize a major
criterion for stability of determinantal polynomials to stability with respect to the
positive semidefinite cone.

1 Introduction
Stable polynomials have a richhistory (see, e.g., [22]) and attracted a lot of interest in recent
years. Prominent research directions include the generalization of classical results on
univariate stable polynomials tomultivariate stable polynomials (see, e.g., [3,4,6,16,26]) as
well as applications of stable polynomials to various areas of mathematics and theoretical
computer science, see [1,5,10,19–21,24] and the references therein. A polynomial f =
f (z) = f (z1, . . . , zn) ∈ C[z] = C[z1, . . . , zn] is called stable if every root z satisfies Im(zj) ≤
0 for some j. A stable polynomial f with real coefficients is called real stable.
In [15], the authors and deWolff introduced a geometric approach to stability phenom-

ena introducing the imaginary projection of a polynomial as the set

I(f ) = {Im(z) = (Im(z1), . . . , Im(zn)) : f (z) = 0}, (1.1)

where Im(·) denotes the imaginary part of a complex number. Using this notion, stability
of f is equivalent to I(f ) ∩ (R>0)n = ∅.
This geometric view upon stability of polynomials naturally suggests to extend the

results of the (usual) stability notion to more general real cones. In this article, given a
cone K ⊂ R

n, a polynomial f is called K-stable if I(f ) ∩ intK = ∅, where intK denotes
the interior of K . Note that (R≥0)n-stability coincides with the usual stability. And note
that setting � = R

n + iK , our K -stability also falls into the more general class of stability
notions which forbid zeroes in an arbitrarily given complex set � ⊂ C

n—however, as
pointed out in [26, p. 81], little can be said on a class of that generality. For polynomials
with matrix variables, we consider the special case where K = S+

n is the cone of positive
semidefinite matrices.
In the paper, we initiate to develop a theory of K -stability of multivariate polynomials.

To begin with, we extend the well-known characterization of stable polynomials in terms
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of hyperbolic polynomials to the conic case, see Lemma 3.4. Our main contribution is the
generalization of three core results on multivariate stable polynomials to the conic stabil-
ity. Firstly, we show that the classical Theorem of Hermite–Kakeya–Obreschkoff, which
has been generalized from the univariate to the multivariate case by Borcea and Brändén
[6, Theorem 6.3.8], can be further generalized to K -stability for multivariate polynomi-
als; see Theorem 4.3. Secondly, we characterize conic stability with respect to polyhedral
cones and non-polyhedral cones in terms of a directional Wronskian; see Theorem 4.4.
Thirdly, we show that Borcea’s and Brändén’s prominent criterion for stability of deter-
minantal polynomials in [3, Theorem 2.4] can be generalized to stability with respect to
the positive semidefinite cone S+

n ; see Theorem 5.3.
Our statements and their proofs apply conic duality, and the generalization of the sta-

bility criterion for determinantal polynomials is given in terms of the Khatri–Rao product
of matrices.
While our work was mainly motivated by the intrinsic relevance and the structure of

stable polynomials, we note that the case K = S+
n is naturally related to the Siegel upper

half-spaces in the theory of modular forms, see Sect. 2.3.
Beside the actual statements themselves, we think that these extensions pinpoint that

the conic stability offers a very natural generalized framework for studying stability issues
of multivariate polynomials.
The paper is structured as follows. In Sect. 2, we collect some known statements and

the connection to Siegel upper half-spaces in the theory of modular forms. In Sect. 3, we
provide some basic results on K -stable polynomials. Then, in Sect. 4, we generalize the
multivariate Hermite–Kakeya–ObreschkoffTheorem to the conic setting and study conic
stability by means of the directional Wronskian. Section 5 contains the generalization of
the characterization of stability for determinantal polynomials.

2 Preliminaries
Throughout the text, bold letters denote n-dimensional vectors unless noted otherwise.

2.1 Stability theorems

As general references on stable polynomials, we refer to [6,22,26]. Note that in our def-
inition of stability, the zero polynomial is not stable, in consistency with the convention
in [6].
For univariate, real stable polynomials f, g ∈ R[z], let W (f, g) = f ′g − g ′f denote the

Wronskian of f and g and write f 
 g ifW (f, g) ≤ 0 onR. Note that univariate, real stable
polynomials are real-rooted. In the context of univariate stable polynomials, the following
concept of interlacing roots naturally appears.

Definition 2.1 Let f, g ∈ R[z] be two univariate, real-rooted polynomials with roots
α1 ≤ α2 ≤ · · · ≤ αdeg f and β1 ≤ β2 ≤ · · · ≤ βdeg g . We say that f and g interlace if
their roots alternate, i.e., α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · or β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · ·. If all
inequalities are strict, f and g interlace strictly.
We say that f interlaces g properly (or: f is a proper interlacing of g), if

• βdeg g ≥ αdeg f ≥ βdeg g−1 ≥ αdeg f −1 ≥ · · ·, when the leading coefficients of f and g
have the same sign,
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• αdeg f ≥ βdeg g ≥ αdeg f −1 ≥ βdeg g−1 ≥ · · ·, when the leading coefficients of f and g
have different signs.

For interlacing polynomials f and g , the degrees of f and g can only differ by at most 1.
We collect two classical theorems on univariate stable polynomials (see [22,26]).

Proposition 2.2 (Hermite–Biehler) For f, g ∈ R[z]\{0}, the following are equivalent:
(1) g + if is stable.
(2) f, g are real stable and f 
 g.
(3) f, g are real stable and f interlaces g properly.

Extending the definition of
 and of interlacing to arbitrary f, g ∈ R[x] by requiring real
stability of f and g , condition (2) can be written shortly as f 
 g and (3) can be written
shortly as: f interlaces g properly.

Proposition 2.3 (Hermite–Kakeya–Obreschkoff (HKO, for short)) Let f, g ∈ R[z]. Then
λf + μg is stable or the zero polynomial for all λ,μ ∈ R if and only if f and g interlace or
f ≡ g ≡ 0.

Moreover, the following theorem will be useful.

Proposition 2.4 (Hurwitz, see Theorem 1.3.8 in [22]) Let {fj}j∈N ⊂ C[z] be a sequence of
polynomials non-vanishing in a connected open set U ⊂ C

n, and assume it converges to a
function f uniformly on compact subsets of U. Then, f is either non-vanishing on U or it is
identically 0.

For multivariate polynomials f, g ∈ R[z], one writes f 
 g if g + if is stable (see,
e.g., [6,26]; note that this makes the multivariate Hermite–Biehler statement a definition
rather than a theorem). The multivariate version of the HKO Theorem then has the same
format as the univariate version. Themultivariate theoremwas shown in [6, Theorem1.6],
see also [4, Theorem 2.9], [26, Theorem 2.9].

Proposition 2.5 (MultivariateHKOofBorcea andBrändén)Let f, g ∈ R[z]. Then,λf +μg
is stable or the zero polynomial for all λ,μ ∈ R if and only if f 
 g or g 
 f or f ≡ g ≡ 0.

An important class of stable polynomials comes from determinantal representations
([3, Theorem 2.4], see also [7,11,17]).

Proposition 2.6 (Borcea, Brändén) Let A1, . . . , An be positive semidefinite d×d-matrices
and B be a Hermitian d × d-matrix, then

f (x) = det
( n∑

j=1
xjAj + B

)

is real stable or the zero polynomial.

Determinantal representations of this kind are relevant in the context of the Lax con-
jecture (proven by Lewis et al. [17], see [6, Corollary 6.7] for a formulation on stable
polynomials) as well as its variations and generalizations (see, for example, [3, Section 5]).
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2.2 Imaginary projections and hyperbolicity cones

Set Ac = R
n\A for the complement of a set A ⊆ R

n, and write clA for its closure.
For a polynomial f ∈ C[z], the complement (cl I(f ))c of the imaginary projection (1.1)
consists of finitely many convex components [15]. In the special case of a non-constant
polynomial f = ∑n

i=1 aizi + a0 with real coefficients a1, . . . , an ∈ R and a0 ∈ C, we have
I(f ) = {y ∈ R

n :
∑n

i=1 aiyi + Im(a0) = 0}.
A homogeneous polynomial f ∈ C[z] is called hyperbolic in a real direction e ∈ R

n if
f (e) = 0 and for every x ∈ R

n the function t �→ f (x + te) has only real roots. Denote
by C(e) = {x ∈ R

n : f (x + te) = 0 ⇒ t < 0} the hyperbolicity cone of f with respect to
e. Then, C(e) is convex, f is hyperbolic with respect to every point e′ in its hyperbolicity
cone, and C(e) = C(e′) (see [9]).
For a homogeneous polynomial f ∈ C[z], the hyperbolicity cones of f coincide with the

components of I(f )c [14].

2.3 The Siegel upper half-space

The Siegel upper half-space (or Siegel upper half-plane) Hg of degree g (or genus g) is
defined as

Hg = {A ∈ C
g×g symmetric : Im(A) is positive definite},

where Im(A) = (Im(aij))g×g ([23], see also, e.g., [25, Section 2]). The Siegel upper half-
space constitutes the domain on which the Siegel theta functions are defined. It can be
used to parameterize polarized varieties (see also, for example, [13, Vol. 1, Section 3.I] and
for the use in elliptic curve cryptography [8, Section 5.1]).

3 K -stability and psd-stability
Let K be a proper cone in R

n, that is, a full-dimensional, closed and pointed convex cone
in R

n. We consider the following generalization of stability. Let Sn be the set of real
symmetric n×n-matrices, and let S+

n and S++
n denote its subsets of positive semidefinite

and positive definite matrices.

Definition 3.1 A polynomial f ∈ C[z] is called K-stable, if f (z) = 0 whenever Im(z) ∈
intK .
If f ∈ C[Z] on the symmetric matrix variables Z = (zij)n×n is S+

n -stable, then f is called
positive semidefinite-stable (for short, psd-stable).

Equivalently, a polynomial f ∈ C[Z] on the symmetric matrix variables Z = (zij)n×n is
psd-stable if there does not exist a matrix Z in the Siegel upper half-spaceHn with f (Z) =
0. Note that psd-stability generalizes the usual stability in the sense that a polynomial
f (z1, . . . , zn) is stable if and only if f (diag(z1, . . . , zn)) is psd-stable.

Example 3.2 (i) Let f ∈ R[z] be given by f (z) = aT z + b, where a is a real n-dimensional
vector and b ∈ R. Then, f is K -stable if and only if a ∈ intK ∗ or −a ∈ intK ∗, where
K ∗ = {y ∈ R

n : 〈x, y〉 ≥ 0 for all x ∈ K } denotes the dual cone of K and 〈·, ·〉 is the
Euclidean dot product on R

n.
Namely, if a ∈ intK ∗ or−a ∈ intK ∗, say, a ∈ intK ∗, then for any z = x+ iy ∈ C

n with
y ∈ intK we have

f (z) = 〈a, x〉 + i〈a, y〉 + b,
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because a is real. Hence, Im f (z) = 0, and thus f is K -stable.
Conversely, let f be K -stable. Assuming a /∈ ± intK ∗, there exists y′ ∈ intK with

〈a, y′〉 ≤ 0 and y′′ ∈ intK with 〈a, y′′〉 ≥ 0. Hence, there exists some y ∈ intK with
〈a, y〉 = 0. Choosing x ∈ R

n with 〈a, x〉 + b = 0 gives a contradiction to the stability of f .
For usual stability, this implies thewell-known statement that f = aT z+b is stable if and

only if a ∈ (R>0)n or −a ∈ (R>0)n. For psd-stability, this implies that f (Z) = 〈Z, A〉 + b
with A ∈ Sn is psd-stable if and only if A � 0 or −A � 0; here, the scalar product is
〈Z, A〉 = tr(AHZ) = tr(AZ) and AH is the Hermitian transpose of A.
(ii) As an example for psd-stability, the polynomial f (Z) = detZ on the set of symmetric

n × n-matrices is psd-stable. We postpone the proof to Example 3.7.

Example 3.3 For the polynomial

f (z1, z2, z3) = det
((

1 0
0 1

)

z1 +
(
0 1
1 0

)

z2 +
(
1 0
0 1

)

z3

)

= (z1 + z3)2 − z22
= (z1 + z3 − z2)(z1 + z3 + z2),

Section 2.2 implies that the imaginary projection is

I(f ) = {y ∈ R
3 : y1 − y2 + y3 = 0} ∪ {y ∈ R

3 : y1 + y2 + y3 = 0} .
Since, for example, ( 12 , 1,

1
2 ) ∈ I(f ) ∩ R

3
>0, f is not stable. In contrast to this, setting

Z =
(
z1 z2
z2 z3

)

, the polynomial f (Z) = f (z1, z2, z3) is psd-stable. Namely, for y ∈ I(f ),
we have

det
(

y1 ±(y1 + y3)
±(y1 + y3) y3

)

= y1y3 − (y1 + y3)2 ≤ 0

as a consequence of the arithmetic-geometric mean inequality, hence y /∈ int S+
2 .

The following lemma allows to reducemultivariateK -stability to univariate stable poly-
nomials.

Lemma 3.4 A polynomial f ∈ C[z]\{0} is K -stable if and only if for all x, y ∈ R
n with

y ∈ intK the univariate polynomial t �→ f (x + ty) is stable.

Proof If f is not K -stable, then there exists x ∈ R
n and y ∈ intK with f (x + iy) = 0.

Hence, i is a zero of the univariate polynomial t �→ f (x + ty) and thus that univariate
polynomial is not stable.
Conversely, if t �→ f (x + ty) is not stable for y ∈ intK , then there is some α + iβ ∈ C

with β > 0 and 0 = f (x + (α + iβ)y) = f (x + αy + iβy). Since βy ∈ intK , f is not
K -stable. ��
As reviewed in Sect. 2.2, for a homogeneous polynomial f , every component in the

complement of the imaginary projection I(f ) is a hyperbolicity cone. In particular, f is
stable if and only if f is hyperbolic with respect to every point in the positive orthant [9].
This generalizes as follows.

Theorem 3.5 Let f ∈ C[z] be homogeneous. Then, the following are equivalent:
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(1) f is K -stable.
(2) I(f ) ∩ intK = ∅.
(3) f is hyperbolic with respect to every point in intK.

Proof The equivalence (1) ⇔ (2) is clear.
“(3) ⇒ (1)” If f is not K -stable, then there exists x ∈ R and e ∈ intK with f (x+ ie) = 0.

Hence, i is a root of t �→ f (x + te), so that f is not hyperbolic with respect to e.
“(1) ⇒ (3)” Assume t �→ f (x + te) is not hyperbolic for e ∈ intK . In case f (e) = 0, the

point ie is a root of the homogeneous polynomial f as well, so that f is not hyperbolic then.
Hence, f (e) = 0 and there is x ∈ R andα+iβ ∈ Cwithβ = 0 and f (x+(α+iβ)e) = 0.We
can assume that β > 0, since−x− (α + iβ)e is a zero of f , too. Hence, 0 = f (x+αe+ iβe)
and βe ∈ intK , so that f is not K -stable. ��

The following consequence of the connection between K -stability and the imaginary
projection explains that the convexity assumption in the stability notion is natural.

Corollary 3.6 If f is K -stable for a non-convex cone K with non-empty, connected interior,
then it is cl(conv(int(K )))-stable, where cl(·) and conv(·) denote the closure and the convex
hull.

Proof If f is K -stable, then I(f ) ∩ intK = ∅, that is, intK ⊆ I(f )c. Since intK is
connected, it is contained in one of the connected components of (cl I(f ))c. Denote this
component by C . The convexity of any component in (cl I(f ))c (see Sect. 2.2) implies that
for K ′ := cl(conv(int(K ))), we have intK ′ ⊆ conv intK ⊆ C . Since C ⊆ (cl I(f ))c, f is
K ′-stable. ��

Example 3.7 We complete Example 3.2 and show that f (A) = detA on the space of
(complex) symmetric matrices is psd-stable.
Let B ∈ Sn be positive definite and consider the univariate polynomial t �→ f (A + tB).

Its roots are the eigenvalues of the symmetricmatrix−B−1/2AB−1/2, whereB−1/2 denotes
the unique square root of B−1. Hence, it is real-rooted. Thus, f is hyperbolic with respect
to any positive definite matrix. By Theorem 3.5, f is psd-stable.

The following fact generalizes the specialization property of stable polynomials (see,
e.g., [26, Lemma 2.4]). We will use it for the special case K1 = R≥0.

Fact 3.8 Let K = K1 ×K2 ⊂ R
n ×R

m be a cone. If f (z1, z2) is K -stable, then f (a+ ib, z2)
is K2-stable for any a ∈ R

n and b ∈ intK1.

4 A conic generalization of the HKO theorem
We show that the Theorem of Hermite–Kakeya–Obreschkoff as given in Proposition 2.3
can be generalized to conic stability.
For f, g ∈ R[z], we write f 
K g if g + if is K -stable. First, we generalize the auxiliary

result in [4, Lemma 2.8] (see also [26, Proposition 2.7]).

Theorem 4.1 Let f and g be real polynomials in z = (z1, . . . , zn). Then, g + if is K -stable
if and only if g + wf ∈ R[z, w] is K ′-stable, where K ′ = K × R≥0.

Proof “⇐” This follows from Fact 3.8, setting w = i.
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“⇒” Let g + if be K -stable. By Lemma 3.4, the univariate polynomial

t �→ g(x + ty) + if (x + ty)

is stable for all x, y ∈ R
n with y ∈ intK . For fixed x, y ∈ R

n with y ∈ intK , we write
f̃ (t) = f (x + ty) and g̃(t) = g(x + ty) as polynomials in R[t]. By the univariate Hermite–
Biehler Theorem 2.2, f̃ interlaces g̃ properly, in particular, f̃ and g̃ are real stable. Let
w = α + iβ with α ∈ R and β > 0. By Lemma 3.4, we have to show that the univariate
polynomial

t �→ g̃ + α f̃ + iβ f̃ = g̃ + (α + iβ)f̃ (4.1)

is stable. By the univariate Hermite–Kakeya–Obreschkoff Theorem 2.3, the linear com-
bination β f̃ + αg̃ is real stable. Then W (β f̃ , g̃ + α f̃ ) = βW (f̃ , g̃) ≤ 0 on R, and thus we
can deduce β f̃ 
 g̃ + α f̃ . Invoking again the univariate Hermite–Biehler Theorem 2.2
shows that the univariate polynomial (4.1) is stable. This completes the proof. ��
Proposition 4.2 For everyK-stable polynomial h = g+if with g, f ∈ R[z] thepolynomials
f and g are K-stable or identically zero.

Proof By Theorem 4.1, a nonzero polynomial g + if is K -stable if and only if g + yf is
K ′-stable with K ′ = K ×R≥0. Using Hurwitz’s Theorem 2.4, sending y → 0 and y → ∞,
respectively, gives that g and f are K -stable polynomials or identically zero. ��
Now, we show the following HKO generalization for K -stability.

Theorem 4.3 (Conic HKO Theorem) Let f, g ∈ R[z]. Then, λf + μg is either K-stable or
the zero polynomial for all λ,μ ∈ R if and only if f + ig or g + if is K -stable or f ≡ g ≡ 0.

Proof “⇐” Let g + if be K -stable and let λ,μ ∈ R (the case f + ig can be treated
analogously). By Proposition 4.2, we can assume μ = 0, and hence, by factoring μ, it
suffices to consider g + λf .
By Theorem4.1, the polynomial g+yf isK×R≥0-stable. Using Fact 3.8, we set y = λ+i,

which gives the K -stable polynomial (g + λf ) + if . With Proposition 4.2, the K -stability
of g + λf follows.
“⇒” Assume that λf + μg is either K -stable or identically zero for all λ,μ ∈ R. Let

x + iy ∈ C
n with y ∈ intK . We write f̃ (t) = f (x + ty) and g̃(t) = g(x + ty). Due to

Lemma 3.4, the univariate polynomial λf̃ + μg̃ is stable. The univariate HKO Theorem
2.3 implies that f̃ and g̃ interlace.
First, assume that f̃ interlaces g̃ properly for all x + iy ∈ C

n with y ∈ intK . By the
Hermite–Biehler Theorem 2.2, g̃ + if̃ is stable for all x + iy ∈ C

n with y ∈ intK , which
impliesK -stability by Lemma3.4. The casewhere g̃ interlaces f̃ properly for all x+iy ∈ C

n

with y ∈ intK is treated analogously.
It remains the case where f̃ interlaces g̃ properly for one x1 + iy1 ∈ C

n with y1 ∈ intK
and g̃ interlaces f̃ properly for another x2 + iy2 ∈ C

n with y2 ∈ intK . For 0 ≤ τ ≤ 1, we
consider the homotopies

xτ = τx1 + (1 − τ )x2, yτ = τy1 + (1 − τ )y2.

The roots of f̃ and g̃ vary continuously with τ . Since f̃ and g̃ interlace for all x + iy ∈ C
n

with y ∈ intK , there must be some τ ∈ [0, 1] such that the roots of f (xτ + tyτ ) and the
roots of g(xτ + tyτ ) coincide. Hence, there is a c ∈ R such that cf (xτ + tyτ ) ≡ g(xτ + tyτ ).
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Let h = cf − g . Then, h(xτ + tyτ ) ≡ 0, which implies in particular h(xτ + iyτ ) = 0. Due
to the initial hypothesis, the polynomial h = cf − g is either K -stable or identically zero.
Since the point xτ + iyτ ∈ C

n is a root of the polynomial h with yτ ∈ intK , h must be
identically zero. This implies cf ≡ g . Since by assumption, f and g are K -stable, and since
K -stable polynomials remain K -stable under multiplication with a complex scalar, f + ig
and g + if are K -stable as well or f ≡ g ≡ 0. ��
For f, g ∈ C[z], we denote byWv(f, g) := ∂v f ·g−f ·∂vg the v-Wronskian of f and g , where

∂v denotes the directional derivative with respect to v. This allows to give a generalization
of [4, Theorem 2.9] (see also [26, Corollary 2.10]) for polyhedral and non-polyhedral cones
in terms of the directional v-Wronskian.

Theorem 4.4 For f, g ∈ R[z]\{0}, the following are equivalent.
(1) g + if is K -stable.
(2) g + yf is K × R≥0-stable.
(3) λg + μf is K -stable or the zero polynomial for all λ,μ ∈ R and Wv(f, g) ≤ 0 on R

n

for all v ∈ intK.

If K is a polyhedral cone K = cone(v(1), . . . , v(k)), the statements are also equivalent to

(4) λg + μf is K -stable or the zero polynomial for all λ,μ ∈ R and Wv(j) (f, g) ≤ 0 on R
n

for all j = 1, . . . , k.

Proof “(1)⇔(2)” follows by Theorem 4.1.
“(1)⇒(3)” The first part follows by the conic HKO Theorem 4.3. For the second part,

let x + iv ∈ C
n with v ∈ intK . By Lemma 3.4, the univariate restriction

t �→ g(x + tv) + if (x + tv)

is stable. The univariate Hermite–Biehler Theorem 2.2 implies f (x+ tv) 
 g(x+ tv), i.e.,

0 ≥ W (f (x + tv), g(x + tv)) = g(x + tv)2
d
dt

(
f (x + tv)
g(x + tv)

)

for all t ∈ R. Now, the claim follows from

Wv(f, g)(x) = W
(
f (x + tv), g(x + tv)

)|t=0 ≤ 0 .

“(3)⇒(1)” By the conic HKO Theorem 4.3, f + ig or g + if is K -stable. And by Lemma
3.4 and the univariate Hermite–Biehler Theorem 2.2, for all x + iv ∈ C

n with v ∈ intK ,
the univariate real polynomials f̃ (t) = f (x+ tv) and g̃(t) = g(x+ tv) interlace. Moreover,
the elementary rule d

dt h(x + tv) = ∂
∂vh(z)|z=x+tv gives

W (f̃ (t), g̃(t)) = Wv(f (z), g(z))|z=x+tv ≤ 0

by assumption. Hence, the univariate restrictions

t �→ g(x + tv) + if (x + tv)

are stable, and thus by Lemma 3.4, g + if is K -stable.
“(3)⇒(4)” Since K = cone(v(1), . . . , v(k)), this implication follows immediately from a

continuity argument.
“(4)⇒(1)” Let x + iy ∈ C

n with y ∈ intK . We can assume that y ∈ cone(v(1), . . . , v(n))
with linearly independent vectors v(1), . . . , v(n). Let λ1, . . . , λn ≥ 0 with y = ∑n

j=1 λjv(j).
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By the precondition, f and g areK -stable, and, by Theorem 4.3, g+ if or f + ig isK -stable.
By Lemma 3.4, the univariate restriction to t �→ x + ty is stable. Its Wronskian fulfils

W
(
f (x + yt), g(x + yt)

) = g(x + tv)2
d
dt

(
f (x + yt)
g(x + yt)

)
.

Expressing this via d
dt h(x + yt) = ∑n

j=1 λj
∂

∂v(j) h(z)
∣∣
∣
z=x+yt

in terms of directional deriva-
tives, we obtain

W
(
f (x + yt), g(x + yt)

) = g(x + tv)2
n∑

j=1
λj

∂

∂v(j)

(
f (z)
g(z)

) ∣∣∣
z=x+yt

=
n∑

j=1
λjWv(j) (f, g)(x + yt) ≤ 0 .

Hence, f (x + yt) 
 g(x + yt), and thus by the Hermite–Biehler Theorem 2.2, g(x +
yt) + if (x + yt) is stable. By Lemma 3.4, g + if is K -stable. ��

5 psd-Stability
In this section, we consider the cone K = S+

n of positive semidefinite matrices. In many
settings, this cone provides a natural generalization of the non-negative cone (see, e.g.,
[2]). In Theorem 5.3, we provide a generalization of a stability criterion for determinantal
polynomials to the psd-stability.
Recall that for two matrices, A = (aij)n1×n2 and B = (bij)k1×k2 , the Kronecker product

(or tensor product) A ⊗ B is the n1k1 × n2k2 block matrix C = (Cij)n1×n2 with blocks
Cij = aijB. A generalization of the Kronecker product is the Khatri–Rao product, which
is defined as follows.

Definition 5.1 Let A = (Aij)n1×n2 and B = (Bij)n1×n2 be block matrices with n1 × n2
blocks of size p1 × p2 and q1 × q2, respectively. The Khatri–Rao product of A and B is
defined as

A ∗ B = (Aij ⊗ Bij)n1×n2 ,

which is a block matrix with n1 × n2 blocks of size p1q1 × p2q2.

Note that in the case of p1 = p2 = 1, the Khatri–Rao product provides a scalar multi-
plication of the blocks Bij by the scalars aij . And in the case n1 = n2 = 1, A and B only
consist of a single block and A ∗ B gives the usual Kronecker product.
While it is classically known that theKroneckerproduct of positive semidefinitematrices

is positive semidefinite [12], the following result on theKhatri–Raoproductwill be relevant
in our situation [18].

Proposition 5.2 (Liu, Theorems 5 and 6 in [18]). Let A = (Aij)n1×n2 and B = (Bij)n1×n2
be blockmatrices with the same block structure n1×n2. If A and B are positive semidefinite,
then A ∗ B is positive semidefinite. If A is positive semidefinite with positive definite blocks
on the diagonal and B is positive definite, then A ∗ B is positive definite.
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Note that the positive semidefiniteness of A implies that its blocks satisfy Aij = AH
ji ,

where AH
ij denotes the Hermitian transpose of Aij . Now we show the following general-

ization of Proposition 2.6 to psd-stability.

Theorem 5.3 Let A = (Aij)n×n be a block matrix with n × n blocks of size d × d. If A
is positive semidefinite and B is a Hermitian d × d-matrix, then the polynomial f (Z) =
det(

∑n
i,j=1 Aijzij + B) on the set of symmetric n × n-matrices is psd-stable or identically

zero.

Proof Wewrite Id for the d×d identity matrix and 1m1×m2 for the all-ones matrix of size
m1 × m2. First consider the case where A is positive semidefinite with positive definite
blocks on the diagonal.
Let X, Y ∈ Sn with Y � 0. In view of Lemma 3.4, we have to show that the univariate

polynomial t �→ f (X + tY ) has only real roots.
We can interpret Y as a block matrix with blocks of size 1 × 1. Using the Khatri–Rao

product, Y ∗ A is a block matrix whose (i, j)th block is yijAij , and we obtain the identity

n∑

i,j=1
yijAij = (11×n ⊗ Id) · (

Y ∗ A
) · (1n×1 ⊗ Id). (5.1)

Note that the multiplication by the matrices from left and right in (5.1) provides a block-
wise summation of all the blocks in Y ∗ A.
By Proposition 5.2, Y ∗ A is positive definite. Hence, for v ∈ R

d\{0}, we have

vT
(
(11×n ⊗ Id) · (

Y ∗ A
) · (1n×1 ⊗ Id)

)
v

= (vT · · · vT )(Y ∗ A
)
(vT · · · vT )T > 0.

This implies that the Hermitian matrix Q := ∑n
i,j=1 Aijyij is positive definite.

The positive definite matrix Q has a square root Q1/2. Set H = ∑n
i,j=1 Aijxij + B. Then,

for any real symmetric n × n-matrix X , the univariate polynomial

t �→ f (X + tY ) = det
( n∑

i,j=1
Aij(xij + tyij) + B

)

= det(H + tQ)

= det(Q) det(Q−1/2HQ−1/2 + tId)

has only real roots, since they are the negatives of the eigenvalues of the Hermitian matrix
Q−1/2HQ−1/2.
Now, for the general case, let A be a positive semidefinite matrix. Let A(k) = (A(k)

ij )n×n
be a sequence of positive semidefinite block matrices with positive definite blocks on the
diagonal, which approximateA. Then the polynomials f (k)(Z) = det(

∑n
i,j=1 A

(k)
ij zij+B) are

psd-stable and hence have no root in the (open) Siegel upper half-plane. Due to Hurwitz’s
Theorem 2.4, the limit polynomial f is either identically zero or also non-vanishing on the
Siegel upper half-plane, i.e., it is psd-stable. ��
For an example of Theorem 5.3, observe that choosing A as the block matrix with 2× 2

blocks of size 2 × 2,

A11 =
(
1 0
0 1

)

, A12 = A21 =
(

0 1/2
1/2 0

)

, A22 =
(
1 0
0 1

)
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and B = 0 results in Example 3.3. Since A = (Aij) has the double eigenvalues 1/2 and 3/2,
it is positive semidefinite, so that Theorem 5.3 implies the psd-stability of

f (Z) = det(A11z11 + 2A12z12 + A22z22), where Z =
(
z11 z12
z12 z22

)

.

The criterion stated in Theorem 5.3 is sufficient, but not necessary. The following is a
counterexample.

Example 5.4 Let Z = (zij)2×2 be symmetric and

f (Z) = det

⎛

⎝
2∑

i,j=1
Aijzij

⎞

⎠ = det
((

1 0
0 5

)

z11 + 2
(
0 2
2 0

)

z12 +
(
5 0
0 1

)

z22

)

.

We claim that f is psd-stable. Namely, for a real matrix Y = (yij)2×2 � 0, we have

f (Y ) = (y11 + 5y22)(5y11 + y22) − 16y212 > 5(y211 + y222) + (
26 − 16

)
y11y22 > 0,

since y11, y22 > 0. Hence,
∑2

i,j=1 Aijyij � 0, and thus, by Example 3.2 (ii), f is psd-stable.
However, the matrix

A = (Aij) =

⎛

⎜
⎜⎜
⎝

1 0 0 2
0 5 2 0
0 2 5 0
2 0 0 1

⎞

⎟
⎟⎟
⎠

is not positive semidefinite, since already the 2 × 2-minor with indices (1, 4) is negative.

We note that already the most simple case of a 2 × 2-matrix Z and diagonal coefficient
matrices Aij provides nonlinear conditions as the following statement shows.

Proposition 5.5 Let Aij = diag(a(ij)1 , . . . , a(ij)d ) be diagonal d × d-matrices, 1 ≤ i, j ≤ n.
Then the blockmatrix A = (Aij) is positive semidefinite if and only if for every k ∈ {1, . . . , d}
the matrix (a(ij)k )1≤i,j≤n is positive semidefinite.
For n = 2 and a Hermitian block matrix A = (Aij), the criterion becomes

a(11)k , a(22)k ≥ 0, and a(11)k a(22)k − |a(12)k |2 ≥ 0 , k = 1, . . . , d.

Proof Since the blocks of A are diagonal matrices, every row of A contains at most n
nonzero entries. Namely, in the kth row of the i-th block row, these are the elements a(ij)k ,
j = 1, . . . , n. By reordering the rows and columns of A using a permutation matrix P,
the resulting matrix PTAP has block diagonal structure with blocks Ak := (a(ij)k )i,j of size
n× n. Thus, A is positive semidefinite if and only if each block Ak is positive semidefinite.
For n = 2, these blocks are of size 2. Hence, the minors of A consist of factors of the

form a(11)k a(22)k − a(12)k a(21)k together with diagonal elements. ��

6 Conclusion and outlook
Wehave introduced the concept of conic stability formultivariate polynomials inC[z] and
showed generalizations of some core results for stable polynomials to the conic stability.
Thesepositive results also show that the conic generalizationof the stability notion appears
to be very natural and fruitful. In particular, this raises the general question to which
extent the theory of stable polynomials, for instance stability preserving operators, can be
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generalized to the conic stability. With regard to the theorems on conic stability in this
article, a question is if they can be further extended to even more general types of stability
regions.
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