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Abstract

In a previous paper, I have defined non-commutative generalised Dedekind symbols
for classical PSL(2,Z)-cusp forms using iterated period polynomials. Here I generalise
this construction to forms of real weights using their iterated period functions
introduced and studied in a recent article by R. Bruggeman and Y. Choie.

1 Introduction: generalised Dedekind symbols
The classical Dedekind symbol encodes an essential part of modular properties of the
Dedekind eta function and appears in many contexts seemingly unrelated to modular
forms (cf. [10,19]). Fukuhara in [6,7], and others ([1,5], gave an abstract definition of gen-
eralised Dedekind symbols with values in an arbitrary commutative group and produced
such symbols from period polynomials of PSL(2,Z)-modular forms of any even weight.
In the note [17], I have given an abstract definition of generalised Dedekind symbols for

the full modular group PSL(2,Z) taking values in arbitrary non-necessarily commutative
group and constructed such symbols from iterated versions of period integrals of modular
forms of integral weights considered earlier in [15,16].
In this article, I extend these constructions to cusp forms of real weights, studied in

particular in [3,11,12]. The essential ingredient here is furnished by the introduction of
iterated versions of their period integrals following [4].

1.1 Dedekind symbols

The Dedekind eta function is a holomorphic function of the complex variable z with
positive imaginary part given by

η(z) = eπ iz/24
∞∏

k=1
(1 − e2π ikz).

It is a cusp form of weight 1/2, and from PSL(2,Z)-invariance of η(z)24dz6 it follows that
for any fractional linear transformation γ ∈ PSL(2,Z),

γ z := az + b
cz + d

with c > 0 we can obtain a rational number
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s(a, c) := − 1
π i

[
log η(γ z) − logη(z) − 1

2
log((cz + d)/i)

]
+ a + d

12c

called the (classical) Dedekind symbol.
It satisfies the reciprocity relation (which can be easily extended to all c ∈ Z)

s(a, c) + s(c, a) = a/c + c/a + 1/ac − 3 sgn(a).

1.2 Generalised Dedekind symbols with values in an abelian group

Using a slightly different normalisation and terminology of [6], one can define the gen-
eralised Dedekind symbol d(p, q) as a function d : W → G where W is the set of pairs
of coprime integers (p, q), and G an abelian group. It can be uniquely reconstructed from
the functional equations

d(p, q) = d(p, q + p), d(p,−q) = −d(p, q), (1.1)

d(p, q) − d(q,−p) = p2 + q2 − 3pq + 1
12pq

. (1.2)

Studying other PSL(2,Z)-modular forms in place of η, one arrives to generalised Dedekind
symbols, satisfying similar functional equations, in which the right hand side of (1.2)
is replaced by a different reciprocity function, which in turn satisfies simpler functional
equations and which uniquely defines the respective Dedekind symbol: see [6,7] and 1.1
below.
In particular, let F (z) be a cusp form of even integral weight k + 2 for � := PSL(2,Z).

Its period polynomial is the following function of t ∈ C:

PF (t) :=
∫ i∞

0
F (z)(z − t)kdz. (1.3)

Fukuhara has shown that (slightly normalised) values of period polynomials at rational
points form a reciprocity function

fF (p, q) := pkPF (q/p) =
∫ i∞

0
F (z)(pz − q)kdz, (1.4)

whose respective Dedekind symbol is

dF (p, q) =
∫ i∞

p/q
F (z)(pz − q)kdz. (1.5)

1.3 Non-commutative generalised Dedekind symbols

In [17], I introduced non-commutative generalised Dedekind symbols with values in a
non-necessarily abelian group G by the following definition.

Definition 1.1 A G-valued reciprocity function is a map f : W → G satisfying the
following conditions:

f (p,−q) = f (−p, q), (1.6)

f (p, q)f (−q, p) = 1G, (1.7)

f (p, p + q)f (p + q, q) = f (p, q). (1.8)

Applying (1.8) to p = 1, q = 0, we get f (1, 1) = 1G where 1G is the identity. From (1.7),
we then get f (−1, 1) = 1G.Moreover, f (−p,−q) = f (p, q) so that f (p, q) depends only on
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q/p which obviously can now be an arbitrary point in P1(Q) including ∞. (Of course, i∞
in integrals like (1.3)–(1.5) coincides with ∞ of the real projective line).
The function (1.4) taking values in the additive group of complex numbers satisfies

equations (1.6)–(1.8) (written additively).

Definition 1.2 Let f be a G-valued reciprocity function.
A generalised G-valued Dedekind symbolD with reciprocity function f is a map

D : W → G : (p, q) �→ D(p, q)

satisfying the following conditions (1.9)–(1.11):

D(p, q) = D(p, q + p), (1.9)

D(p,−q) = D(−p, q), (1.10)

so thatD(−p,−q) = D(p, q). Finally,

D(p, q)D(q,−p)−1 = f (p, q). (1.11)

Clearly, knowingD one can uniquely reconstruct its reciprocity function f . Conversely,
any reciprocity function uniquely defines the respective generalised Dedekind symbol
([17], Theorem 1.8).
In [17] I constructed such reciprocity functions using iterated integrals of cusp forms of

integral weights. In the main part of this note, I will (partly) generalise this construction
to cusp forms of real weights.
Period polynomials of cusp forms of integer weights appear in many interesting con-

texts. Their coefficients are values of certain L-functions in integral points of the crit-
ical strip ([13,14] and many other works); they can be used in order to produce “local
zeta–factors” in the mythical algebraic geometry of characteristic 1 ([18]); they describe
relations between certain inner derivations of a free Lie algebra ([2,8,9,20]), essentially
because iterated period polynomials define representations of unipotent completion of
basic fundamental modular groupoids.
Iterated period polynomials of real weights can be compared to various other construc-

tions where interpolation from integer values to real values occurs, e. g. Deligne’s theory
of “ symmetric groups Sw , w ∈ R” using a categorification. It would be very interesting to
find similar categorifying constructions also in the case of modular forms of real weights.
One can expect perhaps appearance of “modular spacesM1,w, w ∈ R.” Notice that certain
p-adic interpolations appeared already long time ago in the theory of p-adic L-functions.

2 Modular forms of real weight and their period integrals
In this section, I fix notation and give a brief survey of relevant definitions and results
from [11,12], and [4]. I adopt conventions of [4], where modular forms of real weights are
holomorphic functions on the upper complex half-plane, whereas their period integrals,
analogues of (1.3), are holomorphic functions on the lower half-plane.

2.1 Growth conditions for holomorphic functions in upper/lower complex half-planes

Let P1(C) be the set of C-points of the projective line endowed with a fixed projective
coordinate z. This coordinate identifies the complex plane C with the maximal subset of
P1(C) where z is holomorphic.
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We put

H+ := {z ∈ C | Im z > 0}, H− := {t ∈ C | Im t < 0}.
As in [4], we identify holomorphic functions onH+ andH− using antiholomorphic invo-
lution: F (z) �→ F (z). In the future, holomorphic functions on H− will often be written
using coordinate t = z. On the other hand, the standard hyperbolic metric of curvature
−1 on H+ ∪ H−, ds2 = |dz|2/(Im z)2 looks identically in both coordinates.
Cusps P1(Q) are rational points on the common boundary of H+ and H− (including

infinite point). Denote by P+, resp. P− the space of functions F (z) holomorphic in H+,
resp. H− satisfying for some constants K,A > 0 and all z ∈ H± inequality

|F (z)| < K (|z|A + |Imz|−A). (2.1)

This is called the polynomial growth condition.
Cusp forms and their iterated period functions with which we will be working actually

satisfy stronger growth conditions near the boundary: see 2.4 below.

2.2 Actions of modular group

The standard left action of PSL(2,Z) upon P1(C) by linear fractional transformations of z

z �→ γ (z) = az + b
cz + d

defines the right action upon holomorphic functions inH±. In the theory of automorphic
forms of even integral weight, this natural right action is considered first upon tensor
powers of 1-forms F (z)(dz)k/2 and then transported back to holomorphic functions by
dividing the result by (dz)k/2. Equivalently, the last action on functions can be defined
using integral powers of j(γ , z) := cz + d:

(F |1kγ )(z) = j(γ , z)−kF (γ z) (2.2)

and similarly in t-coordinate.
In the theory of automorphic forms of general real weight k , the relevant generalisation

requires two additional conventions. First, we define (cz + d)k using the following choice
of arguments:

arg (cz + d) ∈ (−π ,π ] for z ∈ H+,
arg (ct + d) ∈ [−π ,π ) for t ∈ H−.

Second,multiplicationby (cz+d)k is completedby anadditional complex factordepending
on γ .

Definition 2.1 A unitary multiplier system v of weight k ∈ R (for the group SL(2,Z)) is
a map v : SL(2,Z) → C, |v(γ )| = 1, satisfying the following conditions. Put

jv,k (γ , z) := v(γ )(cz + d)k .

Then we have

jv,k (γ δ, z) = jv,k (γ , δz) · jv,k (δ, z) (2.3)

and

jv,k (−γ , z) = jv,k (γ , z). (2.4)
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Identities (2.3) and (2.4) imply that the formula

F (z) �→ v(γ )j(γ , z)kF (γ z) = jv,k (γ , z)F (γ z) (2.5)

defines a right action of SL(2,Z)/(±id) = PSL(2,Z) upon functions holomorphic in H+.
Functions invariant with respect to this action and having exponential decay at cusps (in
terms of geodesic distance, cf. [12] and [3]) are called cusp forms for the full modular group
of weight k with multiplier system v.
For such a form F (z), one can define its period function PF (t) by the formula similar to

(1.3). Generally, it is defined only on H− and satisfies the polynomial growth condition
near the boundary.
Moreover, behaviour of period functions of modular forms with respect to modular

transformations involves the action

(P|v−kγ )(t) := v(γ )−1j(γ , t)kP(γ t) = jv,k (γ , t)P(γ t), (2.6)

which is the right action of PSL(2,Z) upon functions holomorphic in H−.

2.3 Modular forms

Let F ∈ P+ be a holomorphic function of polynomial growth in H+ (see 2.2) satisfying
the SL(2,Z)-invariance condition:

(F |vk+2γ )(z) = F (z) for all γ ∈ SL(2,Z). (2.7)

It is called amodular form of weight k +2 andmultiplier system v. Such a modular form is
called a cusp form if in addition its Fourier series at all cusps contain only positive powers
of the relevant exponential function (cf. [12]).
The space of all such forms is denoted C0(�, k + 2, v). It can be non-trivial only if k > 0.

2.4 Period integrals

For a cusp form F ∈ C0(�, k, v) and points a, b in H+ ∪ {cusps} we put ωF (z; t) :=
F (z)(z − t)kdz and define its integral as a function of t ∈ H−:

Iba (ωF ; t) :=
∫ b

a
ωF (z; t).

If a and/or b is a cusp, then the integration path near it must follow a segment of geodesic
connecting a and b.Wemay andwill assume that in our (iterated) integrals the integration
path is always the segment of geodesic connecting limits of integration.
More generally, for a finite sequence of cusp forms Fj ∈ C0(�, kj + 2, vj) and ωj(z) =

ωj(z; t) := Fj(z)(z − t)kj dz, j = 1, . . . , n, where t is considered as parameter, we put

Iba (ω1, . . . ,ωn; t) :=
∫ b

a
ω1(z1)

∫ z1

a
ω2(z2) . . .

∫ zn−1

a
ωn(zn). (2.8)

These functions of t are holomorphic onH− and extend holomorphically to a neighbour-
hood of P1(R)\{a, b} (we assume here that a, b are cusps). More precisely, they belong to
the PSL(2,R)-module Dω0 ,∞

v,−k defined in Sec. 1.6 of [3], where v, k are defined by

v(γ ) := v1(γ )v2(γ ) . . . vn(γ ), k = k1 + k2 + · · · + kn.

The key role in our constructions is played by the following result ([4], Lemma 3.2):
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Lemma 2.1 The iterated period integral (2.8) as a function of t ∈ H satisfies for all
γ ∈ SL(2,Z) the following functional equations:

(Iba (ω1, . . . ,ωn; ·)|v−kγ )(t) = Iγ
−1b

γ −1a (ω1, . . . ,ωn; t) (2.9)

(see 2.6).

3 Generalised reciprocity functions from iterated period integrals
3.1 Non-commutative generating series

Fix a finite family of cusp forms as in 2.4 and the respective family of 1-formsω := (ωj(z; t)).
Let (Aj), j = 1, . . . , l, be independent associative but non-commuting formal variables.
As in [15], we produce the generating series of all integrals of the type (2.8):

J ba (�; t) := 1 +
∑

n≥1

∑

1≤m1 ,...,mn≤l
Iba (ωm1 , . . . ,ωmn ; t)Am1 . . .Amn.

Consider the multiplicative group G of the formal series in (Aj) with coefficients in
functions of t and lower term 1 (Aj commute with coefficients). The right action of
SL(2,Z) upon this group is defined coefficientwise. In particular, the action upon J ba (�; t)
is given by:

(J ba (�; ·)|v−kγ )(t) =:= 1 +
∑

n≥1

∑

1≤m1 ,...,mn≤l
(Iba (ωm1 , . . . ,ωmn ; ·)|v−kγ )(t)Am1 . . .Amn.

Moreover, the linear action of the groupGL(l,C) upon (A1, . . . , Al) extends to its action
upon the group of formal series G. We will need here only the action of the subgroup of
diagonal matrices.
Let γ ∈ PSL(2,Z) and (p, q) ∈ W. Then, we will denote by v(γ )∗ the automorphism of

such a ring sending Am to vm(γ )−1Am.

Definition 3.1 The generalised reciprocity function associated with the family ω := (ωj)
is the map of the set of coprime pairs of positive integers (p, q) �→ fω(p, q) ∈ G defined by

fω(p, q) = f (p, q)

:= 1 +
∑

n≥1

∑

1≤m1 ,...,mn≤l
pkm1+···+kmn I∞0 (ωm1 , . . . ,ωmn ; qp−1)Am1 . . .Amn.

Put now

σ =
(
0 −1
1 0

)
, θ =

(
1 1
0 1

)
.

Theorem 3.1 The function f satisfies the following functional equation generalising (1.8):

f (p, q) = (v(θ ) ∗ f (p, q + p)) · (v(θσθ ) ∗ f (q + p, q)), (3.1)

It can be extended to the function defined on coprime pairs (p, q), p > 0, q < 0, using the
functional equation generalising (1.7)

f (p, q) := (v(σ ) ∗ f (−q, p))−1 (3.2)

and defining the right hand side via Definition 3.1.

Remark According to [3], (2.12), we have

vm(σ ) = e−π i(km+2)/2, vm(θ ) = eπ i(km+2)/6.
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Hence, vm(θσθ ) = e−π i(km+2)/6.

Proof The direct computation shows that

θ−1(0) = −1, θ−1(∞) = ∞, (θσθ )−1(0) = 0, (θσθ )−1(∞) = −1.

Therefore (cf. Eq. (1.5) of [15])

J∞0 (�; t) = J∞−1(�; t)J−1
0 (�; t) = J θ

−1(∞)
θ−1(0) (�; t) · J (θσθ )−1(∞)

(θσθ )−1(0) (�; t). (3.3)

We now apply (2.9) to both factors in the right hand side of (3.3) termwise. To avoid cum-
bersome notations, we will restrict ourselves to simple integrals, that is, to the coefficients
of terms linear in (Aj). The general case easily follows from this one.
We have then from (2.6):

Iθ
−1(∞)

θ−1(0) (ωj(z; t)) = v(θ )−1j(θ , t)kj · I∞0 (ωj(z; θ (t)))

= v(θ )−1 · I∞0 (ωj(z; t + 1)) (3.4)

and similarly

I (θσθ )−1(∞)
(θσθ )−1(0) (ωj(z; t)) = v(θσθ )−1j(θσθ , t)kj · I∞0 (ωj(z; θ (t)))

= v(θσθ )−1 · (t + 1)kj · I∞0
(

ωj

(
z;

t
t + 1

))
. (3.5)

Thus, from (3.3) we get the following identity for Aj-coefficients:

I∞0 (ωj(z; t)) = v(θ )−1I∞0 (ωj(z; t + 1))

+ v(θσθ )−1 · (t + 1)kj · I∞0
(

ωj

(
z;

t
t + 1

))
. (3.6)

In view of growth estimates of period functions in [3,4], we may put here t = q/p, where
q, p are coprime integers, p > 0. We get

I∞0 (ωj(z; qp−1)) = v(θ )−1I∞0 (ωj(z; (q + p)p−1))

+ v(θσθ )−1 · ((q + p)p−1)kj · I∞0 (ωj(z; q(q + p)−1)) (3.7)

that is,

pkj I∞0 (ωj(z; qp−1)) = v(θ )−1pkj I∞0 (ωj(z; (q + p)p−1))

+ v(θσθ )−1 · (q + p)kj · I∞0 (ωj(z; q(q + p)−1)). (3.8)

Thus, if we put, interpolating formula (1.4) (established for even integer weights)

f0,j(p, q) := pkj I∞0 (ωj(z; qp−1)), (3.9)

then we get from (3.7) functional equations

f0,j(p, q) = v(θ )−1f0,j(p, q + p) + v(θσθ )−1f0,j(q + p, q). (3.10)

This is the Aj-linear part of (3.1). The general case is obtained in the same way.
Similarly, looking at the Aj-coefficients in the identity J∞0 (�; t)Jσ (∞)

σ (0) (�; t) = 1 and
applying (2.6) for t = −pq−1 we get

f0,j(p, q) + v(σ )f0,j(−q, p) = 0.

The reasoning as above completes the proof. 
�
Remark In this Theorem 3.1, we avoided the simultaneous direct treatment of all cusps
qp−1 because in our context we have to use the identities of the type pk · ((p + q)p−1)k =
(p + q)k which require a separate treatment depending on the signs of integers involved,
and the cusps 0 and∞ should also be treated separately already in the definition of f (p, q).
We leave this as an exercise for the reader.
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3.2 Dedekind cocycles

In the last section of [17], equations for reciprocity functions of even integer weights
(cf. Definition 1.1 above) were interpreted as defining a special class of 1-cocycles of
� := PSL(2,Z).
More precisely, let G be a possibly non-commutative left �-module. It is known that

PSL(2,Z) is the free product of its two subgroups Z2 and Z3 generated, respectively, by

σ =
(
0 −1
1 0

)
, τ =

(
0 −1
1 −1

)
.

Restriction to (σ , τ ) of any cocycle in Z1(PSL(2,Z),G) belongs to the set

{ (X, Y ) ∈ G × G |X · σX = 1, Y · τY · τ 2Y = 1 }. (3.11)

In fact, this defines a bijection between cocycles and pairs (3.11).
An element (X, Y ) of (3.11) is called (the representative of) the Dedekind cocycle, iff it

satisfies the relation

Y = τX. (3.12)

Let now G0 be a group. Denote by G the group of functions f : P1(Q) → G0 with
pointwise multiplication. Define the left action of � upon G by

(γ f )(x) = f (γ −1x); f ∈ G, x ∈ P1(Q), γ ∈ �. (3.13)

Let f : W → G0 be a G0-valued reciprocity function, as in Definition 1.1. Define
elements Xf , Yf ∈ G as the following functions P1(Q) → G0:

Xf (qp−1) := f (p, q), (3.14)

Yf (qp−1) := (τXf )(qp−1) = Xf (τ−1(qp−1)) = f (q, q − p). (3.15)

Then, the map f �→ (Xf , Yf ) establishes a bijection between the set of G0-valued reci-
procity functions and the set of (representatives of) Dedekind cocycles from Z1(�,G)
([17], Theorem 3.6).
We will now show that generalised Dedekind cocycles also can be constructed from

iterated integrals of cusp forms of real weights, although the respective �-module of
coefficients will not be of the form (3.13).

3.3 A digression: left versus right

Treating cocycles with non-commutative coefficients, we may prefer to work with left
or right modules of coefficients, depending on the concrete environment. We will give a
description of Dedekind cocycles with coefficients in a right module.
The sets of left/right 1-cocycles with coefficients in a left/right moduleG are defined by

Z1
l (�,G) := {λ : � → G | λ(γ1γ2) = λ(γ1) · γ1λ(γ2) }, (3.16l)

Z1
r (�,G) := { ρ : � → G | ρ(γ1γ2) = (ρ(γ1)|γ2) · ρ(γ2) }. (3.16r)

where ∗|γ denotes the right action of γ .
Let ρ ∈ Z1

r (PSL(2,Z),G) and set U := ρ(σ ), V := ρ(τ ). From σ 2 = τ 3 = 1 and from
(3.16r) it follows that

(U |σ ) · U = 1, (V |τ 2) · (V |τ ) · V = 1. (3.17)

Moreover, any pair (U,V ) ∈ G × G satisfying (3.17) comes from a unique cocycle
ρ ∈ Z1

r (PSL(2,Z),G).
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Lemma 3.1 (a) If the map G × � → G: (g, γ ) �→ g |γ defines on G the structure of right
�-module, then the map (γ , g) �→ γ g := g |γ −1 defines on G the structure of left
�-module.
This construction establishes a bijection between the sets of structures of left/right
�-modules on G.

(b) For such a pair of left/right structures and an element λ ∈ Z1
l (PSL(2,Z),G), define

ρ : � → G : ρ(γ ) = (λ(γ −1))−1. (3.18)

This establishes a bijection of the respective set of 1-cocycles Z1
l (�,G) and Z1

r (�,G).
(c) Assume now that � = PSL(2,Z). If (λ, ρ) is a pair of cocycles connected by (3.18), put

as above U := ρ(σ ), V := ρ(τ ), and as in [17], sec. 3, X := λ(σ ), Y := λ(τ ).
In this way, Dedekind right cocycles defined by the additional condition V = U |σ
bijectively correspond to the Dedekind left cocycles defined in [17] by the condition
Y = τX.

This can be checked by straightforward computations.

3.4 Dedekind cocycles from cusp forms of real weights

In this subsection, we take for G the subgroup of non-commutative series in Ai (with
coefficients in functions on H−) generated by all series of the form J ba (�; t), a, b ∈ P1(Q)
and fixed � (cf. Sect. 3.1).
The left action of � = PSL(2,Z) upon G is defined by

γ J ba (�; t) := Jγ bγa (�; t).

Every cusp a defines the left cocycle λa : � → G:

λa(γ ) := J aγa(�; t)

because

J aγ1γ2a = J aγ1a · Jγ1aγ1γ2a = J aγ1a · γ1J aγ2a.

In order to construct our Dedekind cocycle, we combine the σ -component of λ∞ with
τ -component of λ0:

Theorem 3.2 The pair

X := J∞0 (�; t), Y := J01 (�; t) (3.19)

is (the representative of) a left Dedekind cocycle.

Proof We have

X · σX = J∞0 (�; t) · J0∞(�; t) = 1,

Y · τY · τ 2Y = J01 (�; t) · J1∞(�; t) · J∞0 (�; t) = 1,

and finally

τX = J τ∞
τ0 (�; t) = J01 (�; t) = Y. 
�
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