
REVIEW

Stabilized-cycle strategy for a multi-item, capacitated,
hierarchical production planning problem in rolling
schedules

Malte Meistering1 • Hartmut Stadtler1

Received: 27 November 2017 / Accepted: 13 January 2019 / Published online: 29 January 2019

� The Author(s) 2019

Abstract Little research has been done on hierarchical production planning sys-

tems (HPPS) in the context of rolling schedules with service-level constraints. Here,

we adapt the stabilized-cycle strategy, which has initially been created for the

master planning level (Meistering and Stadtler in Prod Oper Manag 26:2247–2265,

2017), to a two-level, multi-item, capacitated (short-medium-term) HPPS with

demand uncertainty. For each planning level, we present extensions for mixed-

integer programming models from literature (CLSP-L, PLSP) and introduce antic-

ipation functions, as well as linking constraints. In a computational study, we

analyze the performance of the HPPS with different rolling schedule strategies: the

period-based, the order-based, and the stabilized-cycle strategy. It turns out that the

stabilized-cycle strategy dominates the period-based strategy for all studied

instances. For some instances, the stabilized-cycle strategy even dominates the

order-based strategy; while in remaining instances, the stabilized-cycle strategy

provides non-dominated solutions with a significant smaller downside deviation

from service-level agreements and only a minor increase of costs.
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1 Introduction

Many manufacturing companies use computer-based planning systems (e.g.,

advanced planning systems (APS), enterprise resources planning (ERP) or

manufacturing resources planning (MRP II) systems) to support strategic, tactical,

and operational decisions. Planning systems not only require consideration of

interdependencies between several planning tasks, but also must incorporate data

uncertainty to react flexibly to data changes. This helps to minimize costs and to

ensure service-level agreements. Short-medium-term production planning problems

(e.g., lot-sizing and scheduling in a make-to-stock environment) are especially

susceptible to demand uncertainty (e.g., last-minute canceled or rushed orders).

However, current commercial mixed-integer programming (MIP) solvers cannot

provide (even near) optimum solutions for such a problem in a total model, while

successively solved partial models ignore most interdependencies between

decisions. In a compromise between interdependencies and variety of decisions in

a model, hierarchical planning systems (HPS) are used to meet requirements of

short-medium-term production planning problems (Fleischmann et al. 2015).

The impact of medium-term planning decisions on actual costs and service levels

of the short-term planning level is rarely studied for a hierarchical production

planning system (HPPS) facing demand uncertainty and executed in rolling

schedules. Here, we define an HPPS as the compilation of an hierarchical planning

concept in a software system including mathematical (e.g., MIP) models,

coordination mechanism and (optional) organizational specifications for implemen-

tation (e.g., rolling schedules). This article presents an HPPS solving multi-item,

capacitated production planning and single-machine scheduling problems applied in

rolling schedules. The HPPS aims to reach minimal costs and minimal downside

deviations of actual service levels from target service levels at the end of a finite

reporting period (i.e., 1 year). A potential application area of the HPPS might be the

consumer goods industry. However, models within the paper are idealized standard

models which can be adapted in straightforward manner since these are linear MIP

models.

In Meistering and Stadtler (2017), a new strategy named ‘‘stabilized-cycle’’ has

been presented to better cope with demand uncertainty in single-level, medium-term

production planning problems. In this article, we extend their work by additionally

considering a short-term production planning problem resulting in a short–medium-

term HPPS. As in Meistering and Stadtler (2017), the service-level definition used is

the product-specific fill rate [e.g., the proportion of a product’s demand directly

fulfilled from stock (Minner and Transchel 2010)], which must be reached at the end

of a finite reporting period. Such a service-level definition is in line with findings

from a theoretical (Thomas 2005) and a practical (Wieland et al. 2012) point of

view.

The paper is structured as follows. Section 2 includes a literature review of

planning strategies for planning systems considering demand uncertainty and HPPS.

In Section 3, the concept of multi-item, capacitated HPPS is presented. The MIP

models used within the HPPS are introduced in Sect. 4. Section 5 contains a
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computational study and Sect. 6 summarizes results and provides an outlook for

future research.

2 Literature review

According to Bookbinder and Tan (1988), three planning strategies exist for dealing

with demand uncertainty in production planning systems: the static uncertainty

strategy, the static–dynamic uncertainty strategy and the dynamic uncertainty

strategy. In the static uncertainty strategy, all setup and lot-size decisions are made

once at the beginning of the planning interval. All decisions in the planning interval

are realized and cannot be revised later. In the static–dynamic uncertainty strategy,

setup decisions are made at the beginning of the planning interval, while lot-size

decisions are made at the beginning of each period, when the initial inventory is

known. In the dynamic uncertainty strategy, only decisions concerning the current

period are made considering the current period’s information. This strategy provides

far-from-optimum solutions, especially if the ratio between setup and inventory-

holding costs is high (Bookbinder and Tan 1988).

Rolling schedules are an alternative to better cope with data uncertainty and are

widely used in APS-, ERP- or MRP II-driven production planning (Stadtler and

Fleischmann 2012; Fleischmann et al. 2015). In rolling schedules a plan is

generated for a finite planning interval, but only decisions for periods in the frozen

horizon are realized (Stadtler et al. 2012). Decisions for periods beyond the frozen

horizon are preliminary and can be revised later. After the re-planning interval has

elapsed, information is updated and a new plan is generated. The determination of

the frozen horizon length can either be period, order or service-level based

(Meistering and Stadtler 2017). Thus, there are at least three rolling schedule

strategies: the period-based, the order-based and the stabilized-cycle strategy. In the

period-based strategy the frozen horizon is set to a given number of periods (often

one period), while the frozen horizon in the order-based strategy is product specific

and set to a given number of order cycles (Sridharan and Berry 1990). Note that, the

period- and the order-based strategy can be regarded as special cases of the static

uncertainty strategy where only the first periods/order cycles in the planning horizon

are fixed. In the stabilized-cycle strategy, no fixed frozen horizon needs to be

determined in advance (Meistering and Stadtler 2017). However, a products current

order cycle is kept as long as the service level is under control. Meistering and

Stadtler (2017) show that, for a single-level, multi-item, capacitated production

planning system with demand uncertainty, all of them are superior to the static

uncertainty strategy. Hence, we use rolling schedules as one element of the HPPS.

APS use an HPS architecture to support strategic, tactical, and operative

decisions. According to Schneeweiss (2003), an HPS consists of at least two linked

planning levels with one sub-problem each: a top and a base level. Commonly, an

anticipated base level is used at the top level to predict a possible base-level

reaction, which in turn influences top-level decisions. While the top level instructs

the base level (top–down signal), the base level considers the instructions and may

provide reactions to the top level (bottom–up influence). After final decisions are
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made at the base level, these are implemented in the object system (e.g., the shop

floor). Subsequently, ex-post feedback is provided to the planning system.

According to Fleischmann and Meyr (2003), an HPPS is characterized by three

major features (top–down): an increasing level of detail, a decreasing planning

horizon and an increasing planning frequency.

The first HPPS has been presented in Hax and Meal (1975). Here, the authors

divide all production planning tasks into separate levels. The coordination of

isolated levels is defined by instructions. Rolling schedules are used for re-planning,

assuming certainty of demand. Further research on this type of HPPS has been done,

for example by Bitran and Hax (1977), Bitran et al. (1981) and Bitran et al. (1982).

According to Gelders and Van Wassenhove (1982), it is not sufficient to solve

problems for each level individually and that effective coordination mechanisms are

needed to obtain good results for HPPS. A large amount of research has been done

for HPPS implemented in MRP systems (e.g., Andersson et al. 1981; Axsaeter and

Joensson 1984; Meal et al. 1987). However, shortcomings of MRP systems (e.g.,

non-compliance with capacity constraints) are well known. Thus, we omit an

extensive review of articles dealing with HPPS in MRP environments. Instead, we

focus on HPPS as an APS or an add on to MRP II, ERP systems, which are more

relevant to our production planning problem. More general literature reviews of

theoretical and operational HPS application can be found in Steven (1994) and

MacKay et al. (1995).

A detailed analysis of HPPS is documented in Stadtler (1988). Here, the

architecture of HPPS is analyzed, regarding its practical application to lot-sizing

problems. Focusing on lot-sizing problems, Stadtler (1988) develops the concept of

effective lot-size demand. In a computational study including rolling schedules and

partial demand uncertainty, Stadtler (1988) shows that effective lot-size demands

increase the precision of estimating inventory levels. This results in more

suitable directives for short-term planning and, in turn, decreases costs.

Fransoo (1993) discovers that traditional uncapacitated lot-sizing algorithms

result in cycle times which are in conflict with capacity concerns. Hence, the author

develops a two-level hierarchical model for the flow process industry under the

assumption of uncertain, stationary demands. In the HPPS, cycle time and lot-size

decisions are considered at the top level, since they determine the long-term output.

At the base level, short-term production order scheduling is used to control the

service levels of individual products. Note that no costs minimization takes place at

the base level. This helps to stabilize operational schedules. In a case study, Fransoo

(1993) illustrates the application of the HPPS to a real-world company, but no

general evidence nor any major profit increase caused by the HPPS is mentioned.

Relatively new research on HPPS dealing with uncertainties is documented in

Gebhard (2009). A robust two-level HPPS, based on the structure of an APS,

implemented in rolling schedules is developed to better cope with uncertainties. At

the top level, a robust, aggregated model is used to determine long-term production

plans and capacities per month. At the base level, a robust model formulation of the

capacitated lot-sizing problem defines weekly lot sizes. Sequencing and demand

during a week is not considered. In a computational study, Gebhard (2009) shows

that the robust HPPS is advantageous to a deterministic HPPS with static safety
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stocks. However, due to high complexity of scenario-based robust optimization

models, the study only considers three re-plans for each instance. Thus, it

demonstrates that robust optimization can be applied to HPPS, but generalizations

are limited.

Seipl (2009) studies an HPPS which, in contrast to Gebhard (2009), consists of

deterministic MIP models in a three-level HPPS. While the top level considers lot-

sizing decisions per month for a planning interval of a year, the medium level

tackles lot-size decisions for weekly periods for a planning interval of 12 weeks. To

cope with demand uncertainty, Seipl (2009) uses static safety stocks. Rolling

schedules with period-based frozen horizons are used at the medium level. Thus,

weekly lot-size decisions can be adjusted to actual inventories. The base level

dedicates machine scheduling for frozen periods of the medium level. Instructions

from upper to lower levels are provided through a top–down signal. Seipl (2009)

studied interdependencies between different input (e.g., production cycle lengths,

penalty costs, safety stocks) and output (e.g., costs, mean lot sizes, fill rates)

parameters. In a computational study, Seipl (2009) finds out that actual fill rates at

the end of a finite reporting period vary largely with a large portion of downside

deviations. This finding remains consistent, irrespective of input parameters, and

leads to a low level of trust in HPPS.

Guimaraes (2013) uses a hierarchical approach similar to an APS to solve

production planning problems in the beverage industry. The HPPS is structured in a

short–medium-term planning (lot-sizing and scheduling) problem and a long-term

planning (capacity coordination) problem. While each of the decision levels is

studied separately, a holistic analysis of the HPPS is omitted. The short–medium-

term planning problem, including sequence-dependent setup costs, is tackled

through a newly formulated model of the capacitated lot-sizing and scheduling

problem, with sequencing decisions (CLSD) implemented in rolling schedules with

period-based frozen horizons. The model integrates short- and medium-term

production planning in a single problem with a detailed plan at the beginning of the

planning interval and a raw estimation of capacity utilization and costs in later

periods. Demand is assumed to be seasonal and known with certainty. Hence, beside

the end-of-horizon effect in rolling schedules, demand uncertainty is excluded.

A comparison of an integrated production planning system (IPPS) to an HPPS is

made by Vogel et al. (2017). The studied HPPS considers aggregate production

planning and master production scheduling (MPS), applied in rolling schedules.

Thus, machine scheduling is not considered by Vogel et al. (2017). While demand is

assumed to be known with certainty at the beginning of the planning interval, it is

assumed to be uncertain in later periods. In a computational study, Vogel et al.

(2017) demonstrate that the IPPS is superior to the HPPS for the studied instances.

The literature review shows that much research has been done in the field of

HPPS. However, most of the studied HPPS only use optimization models at the top

level, while base-level decisions result from disaggregating top-level decisions.

While Guimaraes (2013) ignores demand uncertainty, most of the studied HPPS

assume certain demand at the beginning of a planning interval and uncertain

demand in later periods (e.g., Stadtler 1988; Vogel et al. 2017). Only few HPPS

consider demand uncertainty at the level at which it occurs: the short-term
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production planning and scheduling level (e.g., Fransoo 1993; Seipl 2009).

However, the HPPS of Fransoo (1993) can only be applied to planning problems

with stationary demands and assumes lost sales. Thus, non-fulfilled demand from

the past does not influence current production planning decisions. The HPPS of

Seipl (2009) can be applied to production planning problems with non-stationary

demand. Furthermore, Seipl (2009) assumes that non-fulfilled demand from the past

is backordered and must be fulfilled with the next goods receipt, prior to current

period demands. Thus, the production planning problem considered in this article is

closely related to the one studied in Seipl (2009).

To the best of our knowledge, no HPPS exists that minimizes costs and downside

deviations of fill rates for a multi-item, capacitated, production planning and

scheduling problem with demand uncertainty.The novelty of our paper is that we

show how standard MIP model formulations (e.g., the CLSP-L and the PLSP) have

to be adapted to become an HPPS that keeps setup and holding costs low while

taking into account fill rate constraints evaluated over a given reporting period.

While the top-level planning tasks have already been addressed in Meistering and

Stadtler (2017) in the context of the CLSP with rolling schedules, it is not clear if

the stabilized-cycle strategy also works in a hierarchical setting. Especially, we now

assess the fulfillment of the fill rate constraints at the bottom planning level based on

daily demands. Furthermore, we present an extensive computational study of a

hierarchical production planning system with service level constraints in rolling

schedules.

3 A capacitated hierarchical production planning system for rolling
schedules

In this section, we introduce a two-level HPPS for the capacitated, multi-item

production and scheduling problem. According to the proposal of Stadtler (1988),

the section is structured as follows. First, the planning problem is analyzed and

decomposed into sub-problems (Sect. 3.1). Second, planning models and planning

strategies for each sub-problem are proposed (Sect. 3.2). Third, a mechanism for

coordinating sub-problems is introduced (Sect. 3.3).

3.1 Analysis and decomposition of the planning problem

To analyze the capacitated, multi-item production planning problem and to

decompose it into sub-problems, we make use of the supply chain planning matrix

presented in Stadtler and Fleischmann (2012). The matrix classifies and decomposes

supply chain planning tasks subject to their business functions (e.g., procurement,

production, distribution or sales) and according to their planning horizons (e.g.,

long-, medium- or short-term). Production planning and scheduling tasks are

classified in the production section with a medium- and a short-term planning

horizon. The aim of these tasks is to find lot sizes and production sequences for

machines at the lowest level of data aggregation, so they can be used for shop floor

control. Thus, the lot-sizing and machine scheduling problem defines the sub-
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problem of the base level in our HPPS. However, lot-sizing and machine scheduling

decisions depend on available machine capacities, which are defined at the master

planning level. Additionally, seasonal demands usually cannot be foreseen at the

base level due to the short-term planning horizon. At the top level, decisions

regarding available machine capacities and seasonal inventories are made with a

medium-term planning horizon. These decisions are provided to the base level.

3.2 Planning models and strategies

After sub-problems are defined, planning models and strategies for the sub-

problems must be chosen. According to Suerie and Stadtler (2003), planning models

are differentiated regarding the characteristics of periods. If the length of a period is

chosen so that several setup activities can take place in a single period, the model is

characterized as a big-bucket model. The period length of a small-bucket model is

rather short, permitting at most one setup per period. Subsequently, periods of a big-

bucket (small-bucket) model are named macro-periods (micro-periods). Here, we

distinguish between planning strategies for re-planning at the beginning of a macro-

period and for re-planning during a macro-period. While the planning strategy for

re-planning at the beginning of a macro-period concerns both levels, the planning

strategy for re-planning during a macro-period only affects the base level. A rolling

schedule strategy is used for re-planning at the beginning of a macro-period and the

static–dynamic uncertainty strategy is used for re-planning during a macro-period.

For determining production sequences on a single capacitated machine and

defining the production volume per product and micro-period for a short-term

planning interval, we propose the proportional lot-sizing and scheduling problem

(PLSP)—a small-bucket model—presented in Haase (1994). The PLSP determines

the sequence and lot sizes for multi-items on a single, capacitated machine while

considering setup and inventory-holding costs.

To define additional capacity on the machine (e.g., overtime and/or additional

employees) per macro-period and seasonal inventories for each product at the end of

each macro-period, we use the capacitated lot-sizing problem with linked lot sizes

(CLSP-L)—a big-bucket model—as presented in Suerie and Stadtler (2003). The

CLSP-L determines setup activities, lot sizes and inventories for a single,

capacitated machine and allows setup carry-overs from one macro-period to the

next.

Using the CLSP-L at the top level, some sequencing decisions of the PLSP at the

base level are anticipated. This makes the CLSP-L a predestined model in

conjunction with the PLSP in an HPPS. However, using the standard CLSP-L model

formulation of Suerie and Stadtler (2003) is insufficient in the context of rolling

schedules and demand uncertainty. Hence, we extend it in accordance with the

proposals of Meistering and Stadtler (2017) for the CLSP model formulation and

add further anticipation functions. Following the implementation of decisions of the

PLSP in the object system, these are realized and current data are provided to the

planning system by ex-post feedback prior to each re-plan in rolling schedules, see

Fig. 1.
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3.3 Coordination of models and levels

To secure that the PLSP (base level) considers instructions (e.g., available capacities

and seasonal stocks) of the CLSP-L (top level), the models are linked by appropriate

linking constraints. To avoid instructions from the CLSP-L which result in either

expensive or, even worse, infeasible solutions of the PLSP, suitable anticipation

functions for the CLSP-L are needed. Such functions aim to anticipate the impact of

instructions from the CLSP-L to the PLSP. By following a classic top–down signal,

direct reactions of the PLSP to the CLSP-L are omitted in the HPPS.

The coordination of models takes into account different levels of data

aggregation between planning levels. First, the planning interval length differs

among planning models. While the CLSP-L considers a medium-term planning

interval of �t macro-periods, the PLSP considers a planning interval of up to tB

macro-periods split up into �s micro-periods. To distinguish data and variables of the

PLSP (base level) from those used in the CLSP-L (top level), these are indicated by

superscripts. Here, superscript B stands for ‘‘base level’’ and superscript T

represents the ‘‘top level’’. Data and variables without a superscript are valid for

both planning levels. Second, both planning levels are using the same aggregation of

data for products: see Table 1. This holds true for setup costs, which come up for

setup activities. Third, in contrast to setup costs, inventory-holding costs are

aggregated from the base level to the top level. The same applies for the machine

capacity, expected demands and variance of demands. Fourth, the aggregation of

safety stocks is slightly different. Here, we use expected demands and the variation

CLSP-L
)3002(eirüSdnareltdatS

extended like in

Meistering and Stadtler (2017)

PLSP
Haase (1994)

instruction reaction

planning system

+ anticipation functions

object system

implementation

ex-post
feedback

Fig. 1 A general capacitated, multi-item, two-level HPPS
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of demands in the disaggregated form of the base level for calculating safety stocks

for each product j, micro period s and each (integer) production cycle length (sB).

Safety stocks are calculated by the optimization model of Tempelmeier (2011).

Subsequently, we aggregate the safety stocks (sB
j;s;sþsB ) depending on the production

cycle length in micro-periods to safety stocks (sT
j;t;tþsT ) depending on the production

cycle length in macro-periods: see Fig. 2. This is done by setting the maximum

safety stock of all production cycle lengths in micro-periods (sB) belonging to the

production cycle length of a macro period (sT). This must be done for at least two

reasons. First, the safety stock level does not necessarily increase continuously with

an increasing production cycle length if the optimization model of Tempelmeier

(2011) is used. Second, to offer the PLSP enough freedom for sequencing, the

CLSP-L should use the highest safety stock size for a production cycle length in

macro-periods (sT) as might be needed, by mapping the cycle in micro-periods (sB).

1 2 . . . 14 15 16 17 . . . 29 30 31 32 . . . 44 45 46 47 . . . 59 60

II IVI III

sTj,I,II = max{sBj,1,16, . . . , sBj,1,30}
sTj,I,III = max{sBj,1,31, . . . , sBj,1,45}

sTj,I,IV = max{sBj,1,46, . . . , sBj,1,60}
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. . .
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. . .

sBj,1,45

sBj,1,46
. . .

sBj,1,60

Fig. 2 Safety stock aggregation from base level to top level

Table 1 Data aggregation of the capacitated, multi-item hierarchical production planning system

Top level Base level

Period Macro Micro

Planning interval T ¼ ftjt ¼ 1; . . .; �tg S ¼ fsjs ¼ 1; . . .; �s; with tB � �tg
Products j ¼ 1; . . .; �j

Setup costs Per setup activity

Holding costs Per unit and period t Per unit and period s

Capacity Units per period t Units per period s

Demand At the end of each period t At the end of each period s

Demand variation Per period t Per period s

Safety stocks Per cycle length in macro-periods s Per cycle length in micro-periods s
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4 Mathematical optimization models

In this section, mathematical optimization models used within the HPPS are

introduced. Section 4.1 presents an extended CLSP-L model formulation and

Sect. 4.2 introduces an extended PLSP model formulation.

4.1 Top level: extended CLSP-L model formulation

In the following section, we extend the CLSP-L model formulation of Suerie and

Stadtler (2003) as presented in Meistering and Stadtler (2017). First, we incorporate

safety stocks depending on the production cycle length (subsequently called

dynamic) to better cope with demand uncertainty. Therefore, safety stocks are

determined internally by the model, corresponding to the actual production cycle

length, which might vary in the planning interval. Note that safety stocks for

different cycle lengths must be provided to the model as data. Thus, they must be

determined in advance for every product j, period t and production cycle length sT.

Second, the looking beyond the planning horizon approach of Stadtler (2000) is

applied to the model formulation to reduce the truncated horizon effect. Third, soft-

capacity constraints are used to ensure feasibility, even if capacity is insufficient. As

the complexity of the extended CLSP-L is still high, we split the planning interval to

reduce complexity. Only the first part (t ¼ 1; . . .; tL) considers linked lot sizes, while

t ¼ tL þ 1; . . .; �t neglects them. Thus, the top-level model is a mixture of an

extended CLSP-L and an extended CLSP.

Sets

J ¼ fjjj ¼ 1; . . .;�jg Set of products

T ¼ ftjt ¼ 1; . . .;�tg Set of macro-periods

Data

bonusj;t;tþs (Negative) bonus payments for the last production cycle of each

product j

bT
t

Production capacity in macro-period t

dT
j;t

Expected demand of product j in macro-period t

hcT
j

Inventory-holding costs per macro-period t and product unit j

iTj;0 Initial inventory of product j

jj Production coefficient of product j

lTj Last setup period of product j prior to the planning interval

mT
j;t

Sufficiently large number for lot-size decisions (e.g.,

ðbt þ zT
maxÞ � jj 8j 2 J; t 2 T)

pcT
t

Costs for an additional capacity unit in macro-period t

scj Setup costs of product j

ssT
j;t;tþs Safety stocks for a cycle beginning in macro-period t and a length of s

macro-periods

sTmax
j

Externally given product-specific upper bound for the TBO in macro-

periods
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slj;t Myopic optimal TBO of product j in macro-period t (e.g., determined

by Groff’s heuristic)

tL The last macro-period within the planning interval with linked lot sizes

(tL � �t)
Tmax The last macro-period considered beyond the planning horizon

wT
j;1

Initial setup status, 1 if the resource is setup for product j, 0 otherwise

zT
max

Maximal additional capacity per macro-period

Variables

BLT
j;t

Authorized backlogs of product j at the end of macro-period t

CT
t

Additional capacity units in macro-period t

IT
j;t

Physical inventory of product j at the end of macro-period t

QQT
j;t

1, if period t is a single-item production period of product j, 0 otherwise

VT
j;t;tþs 1, if a setup for product j is scheduled in macro-period t while the next

setup is scheduled in macro-period t þ s, 0 otherwise

WT
j;t

1, if the setup state of product j is carried over from macro-period t � 1 to

macro-period t, 0 otherwise

XT
j;t

Lot size of product j in macro-period t

YT
j;t

1, if a setup for product j takes place in macro-period t, 0 otherwise

ZT Total costs

The objective function (1) minimizes setup and inventory-holding costs, costs for

additional capacity units and (negative) bonus payments for production cycles

ending beyond the planning horizon, under the assumption of deterministic

demands.

min ZT ¼
X�j

j¼1

X�t

t¼1

scj � YT
j;t þ

X�j

j¼1

X�t

t¼1

hcT
j � IT

j;t þ
X�t

t¼1

pcT
t � CT

t

þ
X�j

j¼1

X�t

t¼1

Xs
l
j;t

s¼�t�tþ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
iftþsl

j;t � �tþ2

VT
j;t;tþs � bonusT

j;t;tþs

ð1Þ

subject to

IT
j;t�1 � BLT

j;t�1 þ XT
j;t � IT

j;t ¼ dT
j;t � BLT

j;t 8j 2 J; t 2 T ð2Þ

X�j

j¼1

jj � XT
j;t � bT

t þ CT
t 8t 2 T ð3Þ

XT
j;t �mT

j;t � ð WT
j;t|{z}

ift� tL

þYT
j;tÞ 8j 2 J; t 2 T

ð4Þ
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X�j

j¼1

WT
j;t ¼ 1 8j 2 J; t ¼ 2; . . .; tL ð5Þ

YT
j;t þWT

j;t þ
X�j

k¼1|{z}
ifk\[ j

QQT
k;t � 1 8j 2 J; t ¼ 1; . . .; tL ð6Þ

WT
j;t � YT

j;t�1 þ QQT
j;t�1 8j 2 J; t ¼ 2; . . .; tL ð7Þ

QQT
j;t � WT

j;q|{z}
ifq� tL

8j 2 J; t ¼ 1; . . .; tL; q 2 ft; t þ 1g:
ð8Þ

Equation (2) balance inventories, backlogs and lot sizes while ensuring demand

fulfillment for each product j and period t. As situations in which given safety

stocks (ssT
j;t;tþs) for a production cycle yield negative values might exist, inventory

balance constraints have to incorporate authorized backlogs (BLT
j;t). BLT

j;t are

restricted by the provided (negative) safety stocks due to constraints (10) and (19).

Constraints (3) limit the production time of each period to the regular capacity

(bT
t ) and the additional capacity (CT

t ). The use of CT
t is linked to (high) costs

(pcT
t ). Thus, the model only uses CT

t if bT
t is insufficient. Constraints (4) secure

that the machine is set up if a production is scheduled for product j in period

t. Within the first part of the planning interval, two options exist. First, the setup

state of the machine is carried over from period t � 1 to period t (WT
j;t ¼ 1).

Second, a setup activity is needed for product j in period t (YT
j;t ¼ 1). In the second

part of the planning interval (t[ tL), only the latter exists. Constraints (5)–(8)

only apply for linked lot sizes, i.e., for periods t ¼ 1; . . .; tL. Equalities (5) ensure

that precisely one setup state is carried over from period t � 1 to period t. Con-

straints (6) ensure that for each product j there is at most one setup activity in

period t or a setup state carry over from period t � 1 to t, or a single-item

production of any product other than j. Furthermore, constraints (7) ensure that an

exclusive production of product j in period t requires a setup carry-over from t � 1

up to period t þ 1 (WT
j;t ¼ WT

j;tþ1 ¼ 1). The range of QQT
j;t is restricted by con-

straints (8).

To choose the correct safety stock for a production cycle and to consider the

looking beyond the planning horizon approach of Stadtler (2000), we adopt

constraints (9)–(15) presented in Meistering and Stadtler (2017). Compared to

Meistering and Stadtler (2017), we only added the setup state carry-over variable

(WT
j;t) for periods within the time interval allowing linked lot sizes in Eq. (12).

Hence, Eq. (12) ensure that each setup period or setup state carry-over defines the

end of a production cycle. All other equations are equal to the ones presented in

Meistering and Stadtler (2017).
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IT
j;t�1 � ssT

j;lT
j
;t � V

T
j;lT

j
;t

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ift� lT

j
þsTmax

j
^ ss

j;lT
j
;t
� 0

þ
XminðsTmax
j ;t�1Þ

s¼1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ifssT

j;t�s;t � 0

ssT
j;t�s;t � VT

j;t�s;t

8j 2 J; t ¼ 2; . . .;�t þ 1

ð9Þ

BLT
j;t�1 � �ssT

j;lT
j
;t � V

T
j;lT

j
;t

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ift� lT

j
þsTmax

j
^ ssT

j;lT
j
;t
\0

þ
XminðsTmax
j ;t�1Þ

s¼1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ifssT

j;t�s;t\0

�ssT
j;t�s;t � VT

j;t�s;t

8j 2 J; t ¼ 2; . . .;�t þ 1

ð10Þ

IT
j;�t �

X�t

t¼1|{z}
iftþsl

j;t � �tþ2

Xs
l
j;t

s¼�t�tþ2

ssT
j;t;tþs þ

Xtþs�1

s¼�tþ1

dT
j;s

 !
� VT

j;t;tþs 8j 2 J
ð11Þ

XsTmax
j

s¼1|{z}
ifðt�sÞ2T[flT

j
g

VT
j;t�s;t ¼ YT

j;t þWT
j;t|fflffl{zfflffl}

ift� tL

8j 2 J; t 2 T
ð12Þ

XsTmax
j

s¼1|{z}
ifðt�sÞ2T[flT

j
g

VT
j;t�s;t ¼

X�t�tþ1

s¼1|ffl{zffl}
ifs� sTmax

j

VT
j;t;tþs þ

Xs
l
j;t

s¼�t�tþ2

VT
j;t;tþs

8t 2 T; j 2 J

ð13Þ

XsTmax
j

s¼�lT
j
þ1

VT
j;lT

j
;lT
j
þs ¼ 1 8j 2 J ð14Þ

X�t

t¼1|{z}
iftþsTmax

j
� �tþ1

VT
j;t;�tþ1 þ

X�t

t¼1

Xs
l
j;t

s¼�t�tþ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
iftþsl

j;t � �tþ2

VT
j;t;tþs ¼ 1 8j 2 J:

ð15Þ

Constraints (16)–(18) define the initial states of BLT
j;t, I

T
j;t and WT

j;t. Finally, con-

straints (19)–(26) set the domains of the decision variables. Note that additional

capacities (CT
t ) are limited to the external parameter zT

max, see (20).

BLT
j;0 ¼ maxf0;�iTj;0g 8j 2 J ð16Þ

IT
j;0 ¼ maxf0; iTj;0g 8j 2 J ð17Þ

WT
j;1 ¼ wT

j;1 8j 2 J ð18Þ
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BLT
j;t � 0 8j 2 J; t 2 T ð19Þ

CT
t 2 N ^ CT

t � zT
max 8t 2 T ð20Þ

IT
j;t � 0 8j 2 J; t 2 T ð21Þ

QQT
j;t 2 f0; 1g 8j 2 J; t ¼ 1; . . .; tL ð22Þ

VT
j;t;tþs 2 f0; 1g 8j 2 J; t 2 T [ flTj g; s ¼ 1; . . .; sTmax

j ð23Þ

WT
j;t 2 f0; 1g 8j 2 J; t ¼ 1; . . .; tL ð24Þ

XT
j;t � 0 8j 2 J; t 2 T ð25Þ

YT
j;t 2 f0; 1g 8j 2 J; t 2 T : ð26Þ

To accelerate the solving process of the CLSP-L, we add three kinds of valid

inequalities. First, we extend the model formulation by inventory/setup inequalities

proposed in Suerie and Stadtler (2003) (here documented in Appendix 1). The

second set of valid inequalities used is the capacity/single-item production

inequality set presented in Suerie and Stadtler (2003) (Appendix 2). Third, we add

further valid inventory inequalities presented in Meistering and Stadtler (2017)

(Appendix 3).

4.2 Base level: extended PLSP model formulation

Next, we extend the PLSP model formulation of Haase (1994) by dynamic safety

stocks and soft capacity constraints.

Sets

J ¼ fjjj ¼ 1; . . .;�jg Set of products

S ¼ fsjs ¼ 1; . . .; �sg Set of micro-periods

Data

bB
s

Production capacity in micro-period s

dB
j;s

Expected demand of product j in micro-period s

� Small negative value

hcB
s

Inventory-holding costs per day and product unit j

iBj;0 Initial inventory of product j

iBj;�s Final inventory of product j

jj Production coefficient of product j

lBj Last setup of product j prior to the planning interval in micro-periods

mB
j;s

Sufficiently large number for production volume in micro-period s for

product j (e.g., ðbB
t þ zB

maxÞÞ � jj 8j 2 J; t 2 T)

mBL
j;s

Sufficiently large number for the backlog of product j in micro-period s

mI
j;s

Sufficiently large number for the inventory of product j at the end of

micro-period s
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pcB
s

Costs for an additional capacity unit in micro-period s

scj Setup costs of product j

sfT Number of micro-periods within a macro-period

sfD Number of micro-periods within a day

ssB
j;s;sþs Safety stocks for a cycle beginning in micro-period s and a length of s

micro-periods

sBmax
j

Externally given product-specific upper bound for the TBO in micro-

periods

wB
j;0

Initial setup state, 1 if resource is setup for product j, 0 otherwise

zB
max

Maximal additional capacity per micro-period

Variables

BLB
j;s

Authorized backlogs of product j at the end of micro-period s

CB
s

Additional capacity units in micro-period s

IB
j;s

Physical inventory of product j at the end of micro-period s

NB
j;t

Indicates whether the inventory or the backlog is positive for product j at

the end of micro-period s (= 1) or not (= 0)

VB
j;s;sþs 1, if a setup for product j is scheduled in micro-period s while the next

setup is scheduled in micro-period t þ s, 0 otherwise

WB
j;s

1, if the setup state of product j is carried over from micro-period s to

micro-period sþ 1, 0 otherwise

XB
j;s

Production volume of product j in micro-period s

YB
j;s

1, if a setup activity for product j takes place in micro-period s, 0 otherwise

ZB Total costs

The objective function (27) minimizes inventory-holding, setup, and penalty

costs for additional capacity units assuming deterministic demands. Inventory-

holding costs are only taken into account at the end of each sfDth micro-period.

Aiming to schedule production as early as possible within the first macro period t,

we renounce holding costs for the first macro-period and offer an incentive for early

production by adding small values (multiples of �) for inventory-holding in the first

macro period.

min ZB ¼
X�j

j¼1

X�s

s¼1

scj � YB
j;s þ

X�j

j¼1

X�s

s¼sfT

|{z}
ifs�sfB¼0

hcB
j � IB

j;s þ
X�s

s¼1

pcB
s � CB

s

�
X�j

j¼1

XsfT�1

s¼1

� � ðsfT � sÞ � IB
j;s

ð27Þ

subject to

IB
j;s�1 � BLB

j;s�1 þ XB
j;s ¼ dB

j;s þ IB
j;s � BLB

j;s 8j 2 J; s 2 S ð28Þ
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X�j

j

jj � XB
j;s � bB

s þ CB
s 8s 2 S ð29Þ

XB
j;s �mB

j;s � ðWB
j;s þWB

j;s�1Þ 8j 2 J; s 2 S ð30Þ

WB
j;s � YB

j;s þWB
j;s�1 8j 2 J; s 2 S ð31Þ

X�j

j

WB
j;s ¼ 1 8s 2 S: ð32Þ

Constraints (28)–(32) are the well-known PLSP constraints (Haase 1994). Equa-

tion (28) represents inventory balance constraints extended by the authorized

backlogs. Authorized backlogs are restricted to the absolute negative safety stocks

determined by constraints (38) and (48). Constraints (29) ensure that the sum of the

regular capacity and the additional capacity is not exceeded by the capacity

requirements of the production volume. Since additional capacity units are linked to

high penalty cost coefficient (pcB
s ), the model only chooses them if the regular

capacity (bB
s ) results in an infeasible solution. Constraints (30) ensure that product

j can only be produced in period s if the resource is set up for it. Furthermore,

constraints (31) link the setup activity variables (YB
j;s) to the setup state variables

(WB
j;s). The special aspect of the PLSP is that precisely one setup state carry-over of

product j from period s to sþ 1 (Eq. (32)) exists and that, at most, one setup activity

is allowed per period s (Haase 1994). Note that lot sizes can be produced over one

period or several consecutive periods. Consequently, the number of products pro-

duced in a period s is limited to two. With two products per period maximum, the

production sequence for the shop floor control is set as follows: the product j with

the setup state carry-over from s� 1 to s (WB
j;s�1 ¼ 1) is scheduled first and the

product j with the setup activity in period s (YB
j;s ¼ 1) is scheduled second.

XsSmax
j

s¼1|{z}
ifs�s2S[flB

j
g

VB
j;s�s;s ¼ YB

j;s þWB
j;s�1 8j 2 J; s 2 S

ð33Þ

XsSmax
j

s¼1�lB
j|fflffl{zfflffl}

iflB
j
þs2S[f�sþ1g

VB
j;lB

j
;lB
j
þtau ¼ 1 8j 2 J

ð34Þ

X�s

s¼lB
j|{z}

ifs2S[flB
j
g ^ sþsSmax

j
� �sþ1

VB
j;s;�sþ1 ¼ 1 8j 2 J

ð35Þ
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XsSmax
j

s¼1|{z}
ifs�s2S[flB

j
g

VB
j;s�s;s ¼

X�s�sþ1

s¼1|ffl{zffl}
ifs� smax

j

VB
j;s;sþs 8j 2 J; s 2 S

ð36Þ

IB
j;s�1 � ssB

j;lB
j
;s � V

B
j;lB

j
;s

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ifs� lB

j
þsSmax

j
^ ssB

j;lB
j
;s
� 0

þ
Xminfsmax
j ;s�1g

s¼1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ifssB

j;s�s;s � 0

ssB
j;s�s;s � VB

j;s�s;s

8j 2 J; s ¼ sf T þ 1; . . .; �s

ð37Þ

BLB
j;s�1 � �ssB

j;lB
j
;s � V

B
j;lB

j
;s

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ifs� lB

j
þsSmax

j
^ ssB

j;lB
j
;s
\0

þ
Xminfsmax
j ;s�1g

s¼1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ifssB

j;s�s;s\0

�ssB
j;s�s;s � VB

j;s�s;s

8j 2 J; s ¼ sfT þ 1; . . .; �s

ð38Þ

IB
j;�s ¼ maxf0; iBj;�sg 8j 2 J ð39Þ

BLB
j;�s ¼ maxf0;�iBj;�sg 8j 2 J: ð40Þ

Furthermore, we extend the PLSP model formulation by equations (33)–(40) to

ensure that the PLSP chooses the correct safety stock for every production cycle.

The functionality of Eqs. (33)–(38) is similar to the functionality of Eqs. (9), (10),

and (12)–(15) of the CLSP-L (see also Meistering and Stadtler 2017). The only

difference is that we neglect the looking beyond the planning horizon approach of

Stadtler (2000) in the PLSP model formulation as final inventories/backlogs are set

by Eqs. (39) and (40) to externally given parameters provided by the CLSP-L.

Equation (35) ensures that the last production cycle of each product ends in the last

period of the planning interval. Due to externally given initial and final inventories

as well as the limited capacity and limited setup activities per micro period s, the

PLSP might result in infeasible solutions. To counteract such situations, the mini-

mum inventory and maximum backlog constraints (37) and (38) are only considered

for micro-periods s that do not belong to the first macro-period. However, relaxing

constraints (37) and (38) enable the PLSP to have both positive inventories and

backlogs of product j in micro-periods of the first macro period. In combination with

the objective function (27), which offers an incentive for positive inventories during

the first macro-period, the model formulation results in an unbounded solution. To

prevent this, we extended the PLSP model formulation by inequalities (41) and (42).

Due to binary variables NB
j;s, backlogs are bounded by mBL

j;s and either backlogs or a

positive inventory will exist at the end of a micro-period s in the first macro-period.

BLB
j;s �mBL

j;s � NB
j;s 8j 2 J; s ¼ 1; . . .; sfT ð41Þ

IB
j;s �mI

j;s � ð1 � NB
j;sÞ 8j 2 J; s ¼ 1; . . .; sfT ð42Þ

with
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mBL
j;s ¼ max 0;�iBj;0

n o
þ
Xs

k¼1

dB
j;k 8j 2 J; s ¼ 1; . . .; sfT ð43Þ

mI
j;s ¼ iBj;�s þ

X�s

k¼s

dB
j;k 8j 2 J; s ¼ 1; . . .; sfT: ð44Þ

Finally, constraints (45)–(47) set initial states of BLB
j;s, I

B
j;s, and WB

j;s and constraints

(48)–(55) define domains of decision variables. Note that additional capacities (CB
s )

are limited to the externally given integer value zB
max, see (49).

BLB
j;0 ¼ maxf0;�iBj;0g 8j 2 J ð45Þ

IB
j;0 ¼ maxf0; iBj;0g 8j 2 J ð46Þ

WB
j;0 ¼ wB

j;0 8j 2 J ð47Þ

BLB
j;s � 0 8j 2 J; s 2 S ð48Þ

CB
s 2 N ^ CB

s � zB
max 8s 2 S ð49Þ

IB
j;s � 0 8j 2 J; s 2 S ð50Þ

NB
j;s 2 f0; 1g 8j 2 J; s 2 S ð51Þ

VB
j;s;sþs 2 f0; 1g 8j 2 J; s 2 S [ flBj g; s ¼ 1; . . .; sSmax

j ð52Þ

WB
j;s 2 f0; 1g 8j 2 J; s 2 S ð53Þ

XB
j;s � 0 8j 2 J; s 2 S ð54Þ

YB
j;s 2 f0; 1g 8j 2 J; s 2 S: ð55Þ

We add valid inventory inequalities (56) to set lower bounds for end-of-period

inventories of each setup period by adding up period demands beyond the setup

period and the safety stocks belonging to the production cycle. Here, inventories for

product j are bounded by the safety stocks required, if the preceding lot size is

started before the planning interval (first term of right hand side), or the safety

stocks plus demand covering sS micro periods, if a lot size is started in period s� 1

(second term of right hand side).

IB
j;s�1 � ssB

j;lS
j
;s � V

B
j;lS

j
;s

þ
Xminf�s�sþ1;sBmax

j �1g

s¼0

ssB
j;s�1;sþs þ

Xsþs�2

k¼s

dB
j;k

 !
� VB

j;s�1;sþs

8j 2 J; s ¼ sfT þ 1; . . .; �s:

ð56Þ
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4.3 Anticipation functions for the CLSP-L

The main coordination problem between the planning levels of the HPPS addressed

here is converting the products’ lot sizes into a feasible production sequence with

minimal costs. While the PLSP takes the production sequence into account, the

CLSP-L—except for the first and the last scheduled products—neglects the

production sequence within a macro-period. The first and the last scheduled

products are determined by the setup state carry-over variables. All other products

that are planned to be produced in a macro-period are scheduled without any

specific sequence.

As usual, the CLSP-L assumes that demand is due at the end of a macro-period.

Hence, the production sequence during a macro-period has no impact on demand

fulfillment. However, the PLSP assumes that demand will be due at the end of a

micro-period. Thus, the production sequence is important for demand fulfillment.

Therefore, the aim of coordination is that CLSP-L instructions provide the PLSP a

sufficient degree of freedom for production sequencing. With a high degree of

freedom, expected demands during a macro period can be fulfilled without multiple

setup activities of one product in a macro-period and/or without the need of

additional capacity.

As there is often no further information on the demand pattern within a micro-

period, we assume that demand in a macro-period is evenly spread over its micro-

periods. This is an approximate anticipation function representing a compromise

between the exactness of modeling the base level and the difficulty of modeling and

solving the resultant model (along the lines of Schneeweiss 2003).

A high degree of freedom for production sequencing in the PLSP would be

achieved by setting the minimal inventory for each product at the end of each

macro-period t such that it is sufficient to cover expected demands during the

macro-period t þ 1. This leads to an identical number of setup activities in the

CLSP-L and the PLSP. However, inventory-holding costs and fill rates are

unnecessarily high. Thus, a compromise between inventories and degree of freedom

for production sequencing is needed to coordinate the CLSP-L and the PLSP. We

propose to add functions to the extended CLSP-L model formulation for

anticipating the (expected) minimal inventory for each product at the end of each

macro-period (t� tL).

The first anticipation function affects the minimal inventory of product j at the

end of macro-period t � 2 if it is the last scheduled product in macro-period t � 1

(WT
j;t ¼ 1). By adding inequalities (57) to the CLSP-L, the inventory of product j at

the end of macro-period t � 2 covers at least all expected demands, plus the

corresponding safety stock up to the moment at which the last production in macro-

period t � 1 begins at the latest. Note that we assume that demand can be fulfilled

from production immediately and that the production rate is no less than the demand

rate. The expected demand until the start of production is calculated by subtracting

the expected demands during the production time (XDj;t) from the expected weekly

demand. Due to constraints (58), variables XDj;t are forced to 0 if product j is not the
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last product scheduled in period t and is limited to the expected demand during the

production time by constraints (59).

IT
j;t�2 � dT

j;t�1 �WT
j;t � XDj;t�1

þ
Xsmax
j

s¼1|{z}
ifðt�s�1Þ2T[flT

j
g

ssT
j;t�s�1;t�1 � VT

j;t�s�1;t�1

8j 2 J; t ¼ fhT
j þ 3; . . .; tL

ð57Þ

XDj;t�1 � dT
j;t�1 �WT

j;t 8j 2 J; t ¼ fhT
j þ 2; . . .; tL ð58Þ

XDj;t�1 � dT
j;t�1 �

jj
bT
t�1

� XT
j;t�1 8j 2 J; t ¼ fhT

j þ 2; . . .; tL: ð59Þ

The second function anticipates minimal inventory at the end of macro-period t � 1

for all products j that are neither the first (WT
j;t ¼ 0) nor the last scheduled ones

(WT
j;tþ1 ¼ 0) in macro-period t. Since the deterministic CLSP-L will be applied in a

stochastic demand setting, we expect that run-out times of those products will vary

around the middle of a macro-period. Hence, inequalities (60) ensure that the

inventory of each product j at the end of macro-period t � 1 (if WT
j;t ¼ WT

j;tþ1 ¼ 0)

covers at least half of the expected demands during the average production time of a

macro-period t, plus the corresponding safety stock. The average utilization rate

(util) must be provided externally to the CLSP-L.

IT
j;t�1 �

dT
j;t � util

2
� ð1 �WT

j;t �WT
j;tþ1|fflfflfflffl{zfflfflfflffl}

ift� tL

Þ þ
Xsmax
j

s¼1|{z}
ifðt�sÞ2T[flT

j
g

ssT
j;t�s;t � VT

j;t�s;t

8j 2 J; t ¼ fhT
j þ 2; . . .; tL:

ð60Þ

By adding inequalities (57)–(60) to the extended CLSP-L model formulation, the

solution of the CLSP-L provides a suitable degree of freedom for sequencing

decisions in the PLSP, while requiring less inventory than for the scenario, in which

the minimal inventory covers at least the macro period’s demands.

If the stabilized-cycle strategy is used, we add another fill-rate based anticipation

function to the CLSP-L model formulation. This should help to avoid multiple setup

activities for product j within a macro-period in the production plan of the PLSP.

We observed that the CLSP-L tends to link the product with the highest ratio of

inventory-holding costs to setup costs from period t to t þ 1. This indicates that

linked lot-size decisions are completely cost-driven and ignore demand coverage in

macro-periods t þ 1. This might lead to high backlogs or to high costs in the PLSP.

Hence, it is beneficial using the minimal fill-rate parameter (bmin
j;t ) to determine

linked lot sizes, if the stabilized-cycle strategy is used. The bmin
j;1 parameter

represents the minimal fill rate of product j that is required at the end of the first
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macro-period in order not to violate the target fill rate (btar
j ) at the end of the

reporting period. More details regarding bmin
j;t are provided in Meistering and

Stadtler (2017) and in Sect. 4.5. Here, we use bmin
j;1 to determine an expected

artificial inventory (aij) for each product j at the end of the first macro-period, if a

setup activity of product j is planned in macro-period t ¼ 1. The artificial inventory

is calculated by adding allowed backlogs of the first macro-period (ð1 � bmin
j;1 Þ � dT

j;1)

to the initial inventory and subtracting the expected demands of the first macro-

period: see equations (62). Therefore, a product j with a high aij (e.g., a product has

a high initial inventory and/or a high degree of freedom of backlogs (small bmin
j;1 ))

represents a high chance of ending the first macro-period without additional setups

or penalized backlogs. Thus, by adding equalities (61)–(63) to the CLSP-L model

formulation, the product ĵ with the highest aij at the end of the first macro-period is

linked to the second macro-period.

WT
ĵ;2

¼ 1 ð61Þ

with

aij ¼ IT
j;0 þ ð1 � bmin

j;1 Þ � dT
j;1 � dT

j;1 8j 2 JjYT
j;1 ¼ 1 ð62Þ

ĵ ¼ arg max
8 j2J

faijg 8j 2 JjYT
j;1 ¼ 1: ð63Þ

4.4 Linking constraints for the PLSP

According to the general functionality of an HPPS, the base level must consider

instructions from the top level. For the HPPS presented in this article, the PLSP has

to reach a given final inventory level for each product j by the end of the short-term

planning interval. Furthermore, additional capacities are limited. Both, the final

inventory level (�i
T
j;tB ) and the maximum additional capacity per macro-period t (�cT

t )

are provided to the PLSP by the solution of the CLSP-L: see Fig. 3.

To ensure that the provided additional capacity per macro-period is not exceeded

in the PLSP, constraints (64) are added to the PLSP model formulation. These

constraints limit the sum of additional capacity units (CB
s ) of all micro-periods s

belonging to macro-period t (s ¼ 1 þ ðt � 1Þ � sfT; . . .; t � sfT) to the provided

additional capacity (�cT
t ).

Xt�sfT

s¼1þðt�1Þ�sfT

CB
s � �cT

t 8t ¼ 1; . . .; tB: ð64Þ

To ensure that the PLSP considers the final inventory provided by the CLSP-L

solution for each product j by the end of the planning interval (�s), constraints (65)

and (66) are added to the PLSP model formulation.

IB
j;�s � max 0;�i

T
j;tB

n o
8j 2 J ð65Þ
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BLB
j;�s � max 0;��iTj;tB

n o
8j 2 J: ð66Þ

To accelerate the solution process, we reduce the solution space by fixing some

binary decision variables of the PLSP with respect to the CLSP-L solution. Thus, we

use constraints (67) to set all setup variables YB
j;s of product j belonging to macro-

period t and the setup state carry-over variable (WB
j;ðt�1Þ�sfT ) to 0, if no link into

macro-period t ( �wT
j;t ¼ 0) and no setup activity (�yT

j;t ¼ 0) exist for macro-period t in

the solution of the CLSP-L.

WB
j;ðt�1Þ�sfT þ

Xt�sfT

s¼1þðt�1Þ�sfT

YB
j;s ¼ 0 8j 2 J; t ¼ 1; . . .; tBj�yT

j;t ¼ �wT
j;t ¼ 0: ð67Þ

4.5 Model adjustments for rolling schedules

For re-plans during a macro-period, we make use of the static–dynamic uncertainty

strategy. Thus, in a re-plan during a macro-period the PLSP adjusts lot sizes, while

setup variables (YB
j;s) are fixed to the production and machine scheduling plan from

the beginning of the macro-period. Due to fixed setup decisions, limited machine

capacity and uncertain demands, re-plans during a macro-period might result in

infeasible solutions. To counteract this, we extend the PLSP model formulation for

re-plans during a macro-period by further backlog variables BLFEA
j;s . Those backlogs

are added to the inventory balance constraints (28), resulting in constraints (69). To

ensure that BLFEA
j;s are only used once capacity is exhausted, these are penalized

within the modified objective function (68).

min ZB
Daily ¼ ZB þ

X�s

s¼1

X�j

j¼1

penFEA
j � BLFEA

j;s ð68Þ

IB
j;s�1 � BLB

j;s�1 � BLFEA
j;s�1 þ XB

j;s ¼ dB
j;s þ IB

j;s � BLB
j;s � BLFEA

j;s

8j 2 J; s 2 S
ð69Þ

BLFEA
j � 0 8j 2 J; s 2 S: ð70Þ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c̄T1

46 47 48 ... 58 59 60

s = (t − 1) · sfT + 1, . . . , t · sfT s = (t − 1) · sfT + 1, . . . , t · sfT

1 2 3 4 . . . t̄ − 3 t̄ − 2 t̄ − 1 t̄

īTj,4 , c̄T4

t = 1, . . . , t̄

CLSP-L

PLSP
. . .

Fig. 3 Instructions of the CLSP-L provided to the PLSP (with 15 shifts per macro-period)
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To secure that each re-plan of the base level considers the same instructions, we

propose variable planning intervals for re-plans during the macro-period (Stadtler

1988). Meaning that the last micro-period �s of the planning interval is the same for

all re-plans during a macro-period, whereas the first period of the planning interval

is rolled forward with every re-plan. Thus, the length of the planning intervals varies

between s ¼ 1; . . .; �s and s ¼ sfT � rp; . . .; �s, with rp as the length of the re-planning

interval of the base level. For re-plans at the beginning of a macro-period, we use

rolling schedule strategies for the top level and the base level. Thus, some con-

straints of the CLSP-L and the PLSP model formulation must be modified to ensure

that setup and lot-size decisions within the frozen horizon are not revised by a re-

plan. Hence, we introduce a new parameter fhT
j , which indicates the last macro-

period t of the frozen part of the planning interval for product j. Here, the range of

constraints (9) and (10) of the CLSP-L model formulation is adjusted to

t ¼ fhT
j þ 2; . . .; �t þ 1, and the range of constraints (84), (85) and (90) is updated to

t ¼ fhT
j þ 1; . . .; �t þ 1. For the PLSP model formulation, the range of constraints

(37), (38) and (56) is modified to s ¼ fhT þ sfT þ 1; . . .; �s. Additionally the range of

constraints (41) and (42) is set to s ¼ 1; ::; fhT þ sfT. Note that the major difference

between the rolling schedule strategies (e.g., period-based, order-based and stabi-

lized-cycle strategy) is the determination of frozen horizons. Thus, the determina-

tion of fhT
j is treated differently among the strategies.

In the period-based strategy, the frozen horizon is set to a specific number of

periods (Sridharan and Berry 1990). To gain high planning flexibility, the frozen

horizon is usually set to the shortest possible number of periods for all products.

According to Xie et al. (2003), it is beneficial to set the number of periods of the re-

planning interval equal to the number of frozen periods to reduce planning

nervousness. With a re-planning interval equal to the frozen horizon, fhT
j has to be

set to 0 for all products and re-plans.

In the order-based strategy, the frozen horizon of product j is set to a number of

production cycles (Sridharan and Berry 1990). Thus, for a multi-item lot-sizing

problem, the length of frozen horizons can differ between products. To enable re-

planning for each product in each re-plan, a re-planning interval of one period is

required. Hence, fhT
j is defined as the last period of the Xth production cycle if

started in the first period, and is reduced by the number of periods of the re-planning

interval before every re-plan.

If the stabilized-cycle strategy is used, no fixed frozen horizons need to be

determined in advance (Meistering and Stadtler 2017). The parameter fhT
j is set as in

the order-based strategy, but might be revised if the expected fill rate (bexp
j;1 ) of

product j at the end of the first macro-period is smaller than the minimal fill rate

(bmin
j;1 ) of product j that has to be reached by the end of the first macro-period. Thus,

there is a great chance that the target fill rate (btar
j ) is not violated. While btar

j is

externally given, the fill-rate parameters bmin
j;t and bexp

j;t are calculated by Eqs. (71)

and (72). More details regarding the stabilized-cycle strategy and fill-rate

parameters are provided in Meistering and Stadtler (2017).
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bexp
j;t ¼ 1 � EfFj;tðIj;t�1Þg

dj;t
ð71Þ

bmin
j;t ¼ min btar

j ;

btar
j �

Pt�1

s¼1

dobs
j;s þ dext

j;t þ
P�p

s¼tþ1

dj;s

� �
�
Pt�1

s¼1

dfill
j;s � dcum

j

dext
j;t

8
>>><

>>>:

9
>>>=

>>>;
: ð72Þ

Those fill-rate parameters can also be used within the PLSP model. This is of

particular relevance concerning the ‘‘unbounded’’ backlogs BLB
j;s of micro-periods s

belonging to the first macro-period. On the one hand, feasible and cost-minimizing

solutions are reached by relaxing bounds for BLB
j;s. On the other hand, all expected

demands during the first macro-period are allowed to be backordered until the last

micro-period of the first macro-period. This might result in high downside devia-

tions of actual fill rates from those given. Using bmin
j;t , we can calculate ‘‘allowed’’

backlogs of product j in the current first macro-period, so that btar
j is met at the end

of the reporting period (first term of the right-hand side of constraints (76)).

We further introduce new variables BLPEN
j;s and BOB

j;s. Variables BLPEN
j;s represent

backlogs of product j in micro-period s in the first macro-period greater than the

‘‘allowed’’ backlogs (ð1 � bmin
j;1 Þ �

PsfT

s¼1 d
B
j;s). Variables BOB

j;s indicate backorders of

product j in period s. Constraints (75) set the lower bound of BOB
j;s for each product j

and period s to the difference of BLB
j;s and BLB

j;s�1. The value of BLPEN
j;s is determined

by constraints (76). For each BLPEN
j , penalty costs (blcB

j ) are added to the objective

function of the PLSP resulting in modified objective functions for re-plans at the

beginning of (during) a macro-period (73) respectively (74) if the stabilized-cycle

strategy is used.

min ZB�sc ¼ZB þ
X�j

j¼1

blcB
j � BLPEN

j ð73Þ

min ZB�sc
Daily ¼ZB

Daily þ
X�j

j¼1

blcB
j � BLPEN

j ð74Þ

BOB
j;s �BLB

j;s � BLB
j;s�1 8j 2 J; s ¼ 1; . . .; sfT ð75Þ

XsfT

s¼1

BOB
j;s �ð1 � bmin

j;1 Þ �
XsfT

s¼1

dB
j;s þ BLPEN

j 8j 2 J ð76Þ

BLPEN
j � 0 8j 2 J ð77Þ

BOB
j;s � 0 8j 2 J; s ¼ 1; . . .; sfT: ð78Þ
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5 Computational study

We now analyze and compare the performance of the HPPS in rolling schedules

with the stabilized-cycle, the order-based and the period-based strategy, in a

computational study.

5.1 Test instances

In the computational study, we use some of the instances presented in Meistering

and Stadtler (2017). These instances have been designed for big-bucket, lot-sizing

problems. Thus, we use the data of an instance at the top level, while data for the

base level are disaggregated. Each instance consists of six products, one capacitated

machine and a reporting period of one year, divided into 48 macro-periods,

respectively weeks (�p ¼ 48). The planning interval at the top level is set to twelve

weeks (�t ¼ 12), including a linked-lot-size interval of eight weeks (tL ¼ 8). The

planning interval at the base level is set to 4 weeks (tB ¼ 4). Each week consists of

five working days (sfD ¼ 5), which in turn consist of three shifts of 7 h each. Thus,

the number of shifts belonging to a week is 15 (sfT ¼ 15), which is sufficiently large

enough to schedule all products (�j ¼ 6) within a week. The planning interval length

is a compromise between finding nearby optimal solutions of the models in adequate

computing times with a standard MIP solver, and covering at least two complete

production cycles in the planning interval at the top level. Assuming a 24-h day, one

additional working hour maximum can be used per shift (zB
max ¼ 1). This

automatically results in a maximum of 15 additional working hours per week

(zT
max ¼ 15). The penalty costs for an additional working hour

(pcT
t ¼ pcB

s ¼ �t � �j � scj þ 1) are set to constant high values for each week/shift.

Table 2 presents an overview of further parameters of the 16 instances.

The mean demand per week t over a reporting period is set to lT
j ¼ 1000 for all

products and instances. Here, instances with and without seasonal demand are

studied. Given the seasonal factors (sdT
j;t), the mean demand of product j in week t is

dT
j;t ¼ lT

j � sdT
j;t, which is also the demand forecast for week t. At the base level, we

assume that demand occurs at the end of each day. By assuming five days per week,

we set the demand forecast of the last shift of a day to a fifth of dT
j;w. All other shifts

of a day presume a mean demand of zero. No bias and no updates of forecasts are

considered. A forecast error only appears in the first period of a rolling schedule

after lot-sizing and sequencing decisions have been made (Meistering and Stadtler

2017). Given the coefficient of variation (cv), the daily standard deviation of the

demand is rB
j;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdT

j;w � cvÞ2=sfD
q

. The realized demand dobs
j;s for product j at the

end of the last shift of a day is calculated by a truncated normal distribution

(maxf0;NVðdB
j;s;r

B
j;sÞg).

Sequence-independent setup costs (scj) are set to $1000 for all products and no

setup times are assumed. As proposed in Meistering and Stadtler (2017), the

Business Research (2020) 13:3–38 27

123



inventory-holding costs per product j and week t are determined by equation (79)

and disaggregated to inventory-holding costs per product j and day by Eq. (80).

hcT
j ¼ ð2 � scjÞ=ðlT

j � TBO2
j Þ ð79Þ

hcB
j ¼ hcT

j =sfD: ð80Þ

Initial inventories are uniformly distributed in the interval [0, EOQj] for all products

j. The last setup lTj of product j prior to the reporting period is defined subject to its

initial inventory and its expected mean demand. Here, we only consider instances

with mixed envisaged TBOj. Meaning that each pair of products are assigned to the

same envisaged TBOj of either two, three or five weeks. We execute the study either

with a low (70%) or a high (85%) machine utilization rate. The target fill rate btar
j is

set to either 95% or 98% for all products in an instance.

Each instance is repeated 30 times (�r ¼ 30). This is equivalent to a simulation of

30 years. Since every single year is taken as a sample (with identical initial

inventories and setup states), we have 30 independent samples per instance. This

should be large enough for statistical analysis (Sheskin 2011).

5.2 Rolling schedule strategies

As proposed in Meistering and Stadtler (2017), we analyze the performance of the

HPPS by comparing the results of three rolling schedule strategies: the period-

based, order-based, and the stabilized-cycle strategy. An overview of settings used

within each strategy in re-plans at the beginning of a week is presented in Tables 3

and 4.

As mentioned in Sect. 4.5, the strategies differ in the way of freezing decisions at

the top level and in minor details of their model formulations. To gain a better

overview, Table 5 shows the specific model formulations used to determine lot sizes

and machine schedules at different planning levels and different planning times.

The top level provides instructions to the base level for the first four weeks.

Instructions generated by the CLSP-L contain the available additional capacity per

week, the target inventory for each product j at the end of the fourth week and

allowed setup activities per week. For re-plans during a week, the static–dynamic

uncertainty strategy is used in all strategies. Penalty costs for using a ’feasibility’

backlog (BLFEA
j;s ) in re-plans during a week are set to high costs (e.g.,

Table 2 Parameters of the data set attributed to Meistering and Stadtler (2017)

Seasonality factor, sdT
j;t

Constant or seasonal

Coefficient of variation of weekly demand, cv 0.2, 0.3

Natural lengths of the production cycle TBOj Mixed (2 / 3 / 5)

Machine utilization (based on lj) Low (70%), high (85%)

Target fill rate, btar
j

95%, 98%
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penFEA
j ¼ pcB

s þ 1). This ensures that BLFEA
j;s are only chosen by the model if there

are no other means.

First, we study the rolling schedule strategy with period-based frozen horizons.

As can be seen from Table 3, only the first week’s decisions of the top-level

planning interval are fixed, while decisions for all other weeks are subject to

revision. The re-planning interval is set to the first week. In a re-plan at the base

level at the beginning of a week, production volume and setup decisions are made

for the upcoming 60 shifts. While all setup decisions within the first week are

realized, the production volume might be revised by the daily re-plan. Note that

setup activities are only allowed at the base level if they were planned by the top

level.

Second, the order-based rolling schedule strategy is considered. Here, product-

specific, order-based frozen horizons are used for freezing decisions at the top level.

Therefore, a product’s frozen horizon is equal to the first production cycle length, if

it started in the first period of the planning interval. Using the same re-planning

interval as the period-based strategy, only decisions beyond a product’s frozen

horizon may be revised in re-plans at the top level. The re-planning strategy at the

base level is similar to the one described in the period-based strategy.

Third, the stabilized-cycle strategy is used for production planning and

scheduling. As in the period-/order-based strategy, the re-planning interval is set

to the first week at the top level. No fixed frozen horizons are defined, but

decisions within the re-planning interval are fixed. As in Meistering and Stadtler

(2017), the worst-case demand scenario is set to dext
j;t ¼ dj;t þ 3 � rj;t and the

estimated fill-rate best
j is determined by the same preparatory simulation procedure

with data from the top level. Again, the re-planning strategy for a re-plan during a

week is similar to the one described in the period-based strategy. However, the

model formulation of the PLSP used within the stabilized-cycle strategy is slightly

different: see Table 5. Thus, penalty costs (blcB
j ) for a backlog that is higher than

the ‘‘authorized’’ backlog (blallowed
j ) must be calculated by Eq. (81). Here, penalty

costs are determined subject to setup costs, target fill rate and mean demand, using

data from the top level.

blcB
j ¼ scj

ð1 � btar
j Þ � dT

j;t

8j 2 J: ð81Þ

Table 3 Strategy settings used at the top level

Strategy Top level

Planning interval Frozen horizon Re-planning

Period-based 12 periods (tL ¼ 8) First week First week

Prder-based 12 periods (tL ¼ 8) First cycle First week

Stabilized-cycle 12 periods (tL ¼ 8) – First week
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Note that fill-rate parameters bexp
j;t and bmin

j;t are updated before every re-plan of the

top level by considering current inventories, actual fulfilled demand and expected

parameters for the remaining days of the first week of the current planning

interval.

5.3 Computational results

The computational study has been executed on an Intel(R) Core(TM) i7 processor

with a clock speed of 3.4 GHz, 16.0 GB RAM and 4 threads, using Windows 7

Professional and the same simulation environment as Meistering and Stadtler

(2017). Models are implemented in Xpress-IVE (Version 1.24.12) and solved by the

Xpress Optimizer (Version 29.01.10). The maximum computational time per re-plan

and planning level is set to 100 s. While we observed that some re-plans at the

beginning of a week do not yield optimal solutions within the computational time

limit, all re-plans during a week reach optimal solutions. For the sake of

completeness, mean optimality gaps per planning level for re-plans at the beginning

of a week are presented in Tables 6, 7, 8 (i.e., CLSP-L Gap and PLSP Gap). The

Table 4 Strategy settings used at the base level

Strategy Base level

Planning

interval

Frozen horizon for

setups

Frozen horizon for lot

sizes

Re-

planning

Period-based 60 shifts 15 shifts Three shifts Three

shifts

Order-based 60 shifts 15 shifts Three shifts Three

shifts

Stabilized-

cycle

60 shifts 15 shifts Three shifts Three

shifts

Table 5 Objectives and constraints for top, base level and each planning strategy

Strategy Top level Base level—at the beginning

of a week

Base level—during a week

Period/order-

based

Stabilized-

cycle

Period/order-

based

Stabilized-

cycle

Period/order-

based

Stabilized-

cycle

Objective (1) (1) (27) (73) (68) (74)

Constraints (2)–(26) (2)–(26) (28)–(56) (28)–(56) (29)–(56) (29)–(56)

(57)–(60) (57)–(63) (64)–(67) (64)–(67) (64)–(67) (64)–(67)

(84)–(90) (84)–(90) (75)–(78) (69)–(70) (69)–(70)

(75)–(78)
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optimization model of Tempelmeier (2011) is used in combination with the binary

search heuristic of Manna and Waldinger (1987) to determine safety stocks.

The performance of each strategy is analyzed by two indicators: mean downside

deviation (DD�r) of the actual fill rates (bj;r) of products j at the end of reporting

periods in repetition r from the target fill rate (btar
j )(see Eq. 82), and actual mean

costs (cr) based on inventory-holding and setup costs of realized decisions in

repetition r (see equation 83).

DD�r ¼
1

�r
�
X�r

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
�j

X�j

j¼1

ðminf0; bj;r � btar
j gÞ2

vuut ð82Þ

c�r ¼
1

�r
�
X�r

r¼1

cr: ð83Þ

Beside mean downside deviations and mean costs, Tables 6, 7, 8 contain the mean

proportion of the prematurely aborted cycles (ac) for each strategy. This provides

insights into the planning nervousness of the strategies. Note that all strategies are

unable to solve the HPPS for the same two repetitions in two instances with seasonal

demand and a cv of 0.3. Thus, only 28 repetitions are used for validating the

performance for these instances, which are marked by asteriks in Tables 6, 7, 8.

As shown in Tables 6, 7, 8, the stabilized-cycle strategy is the best strategy

subject to DD�r for all instances. The order-based strategy is the best strategy

Table 6 Computational results of the period-based strategy

Instance c�r ($) DD�r (%) CLSP-L gap (%) PLSP gap (%) ac (%)

Constant 95/70/0.2 201,154.25 0.31 4.23 0.79 15.54

95/85/0.2 204,176.70 0.10 5.60 1.10 19.24

95/70/0.3 209,367.67 0.84 3.00 1.80 18.17

95/85/0.3 216,325.25 0.56 4.33 4.28 20.44

98/70/0.2 209,074.89 1.52 2.96 1.65 16.71

98/85/0.2 215,259.95 0.84 4.25 1.78 17.36

98/70/0.3 230,242.79 0.56 2.86 5.08 19.06

98/85/0.3 238,826.72 0.86 4.40 8.17 21.85

seasonal 95/70/0.2 202,963.49 0.13 3.91 0.75 18.23

95/85/0.2 213,103.15 0.27 6.29 3.61 20.55

95/70/0.3 211,191.49 0.55 2.98 1.48 19.39

95=85=0:3� 228,797.81 0.77 5.96 8.90 22.77

98/70/0.2 210,908.06 1.07 3.02 1.49 18.45

98/85/0.2 219,596.44 0.82 5.15 4.17 21.99

98/70/0.3 229,411.40 0.89 2.94 5.21 21.68

98=85=0:3� 245,521.19 1.11 5.72 13.19 23.66

Mean 217,870.08 0.70 4.23 3.97 19.69
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Table 7 Computational results of the order-based strategy

Instance c�r ($) DD�r (%) CLSP-L gap (%) PLSP gap (%) ac

Constant 95/70/0.2 176,481.73 2.03 1.49 0.19 –

95/85/0.2 176,928.68 2.38 2.70 0.21 –

95/70/0.3 185,473.66 3.03 1.09 0.32 –

95/85/0.3 185,843.00 2.81 2.14 0.55 –

98/70/0.2 186,391.94 3.28 1.05 0.30 –

98/85/0.2 188,963.68 2.69 2.14 0.45 –

98/70/0.3 201,378.23 3.03 1.01 1.06 –

98/85/0.3 205,845.48 2.73 2.43 2.55 –

Seasonal 95/70/0.2 177,468.49 1.70 1.57 0.10 –

95/85/0.2 181,717.08 2.29 3.95 2.30 –

95/70/0.3 186,092.73 2.63 1.45 0.49 –

95=85=0:3� 195,414.52 3.27 4.15 5.75 –

98/70/0.2 186,488.39 3.14 1.34 0.38 –

98/85/0.2 194,255.53 3.09 3.57 3.73 –

98/70/0.3 198,225.13 3.55 1.45 1.38 –

98=85=0:3� 212,108.09 3.49 4.28 9.52 –

Mean 189,942.27 2.82 2.24 1.83 –

Table 8 Computational results of the stabilized-cycle strategy

Instance c�r [$] DD�r (%) CLSP-L gap (%) PLSP gap (%) ac (%)

Constant 95/70/0.2 187,279.89 0.01 1.24 0.51 4.17

95/85/0.2 193,948.93 0.02 2.55 1.09 4.50

95/70/0.3 197,463.68 0.03 0.96 0.92 8.08

95/85/0.3 202,662.12 0.05 2.16 2.26 6.40

98/70/0.2 199,145.55 0.10 1.03 0.79 6.22

98/85/0.2 203,940.04 0.14 2.12 1.80 5.85

98/70/0.3 212,650.43 0.31 0.92 2.11 7.48

98/85/0.3 217,841.00 0.21 2.49 4.65 6.99

Seasonal 95/70/0.2 187,996.91 0.00 1.49 0.5 4.27

95/85/0.2 196,113.42 0.00 3.84 4.24 3.63

95/70/0.3 197,717.48 0.09 1.37 1.37 7.46

95=85=0:3� 211,708.52 0.09 4.00 7.56 5.93

98/70/0.2 200,313.35 0.14 1.30 1.03 5.88

98/85/0.2 209,525.61 0.13 3.40 4.43 5.55

98/70/0.3 213,638.86 0.28 1.34 2.83 8.77

98=85=0:3� 231,382.41 0.32 4.04 11.50 8.21

mean 203,958.01 0.12 2.14 2.97 6.21
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regarding c�r for all instances. Both, the period-based (Mc�r ¼ 14:70%) and the

stabilized-cycle strategy (Mc�r ¼ 7:38%) result in higher costs compared to the

order-based strategy. However, the order-based strategy does not ensure that the

target fill rate is at least reached on average over all 30 repetitions and products.

This results in rather high DD�r. The stabilized-cycle strategy leads to lower c�r and

less DD�r than the period-based strategy for all instances. Thus, the stabilized-cycle

strategy is superior to the period-based strategy. However, the evaluation of

strategies is bi-criteria meaning that it is impossible to trade off an increase of c�r and

a decrease of DD�r. Hence, no clear conclusion regarding the stabilized-cycle and the

order-based strategy can be drawn without preference information of the decision-

maker.

Further insights are possible, if we take a closer look at the specific instances. As

can be seen in Tables 7 and 8, the order-based strategy result in greater costs in four

instances (btar
j ¼ 0:98 and cv ¼ 0:3) than the stabilized-cycle strategy for the same

instance with btar
j ¼ 0:95, see Table 9. Because the corresponding DD�r of the

stabilized-cycle strategy are lower than those of the order-based strategy—if

calculated for a btar
j ¼ 0:95—the stabilized-cycle strategy is superior to the order-

based strategy for these instances. For other instances, the stabilized-cycle strategy

at least provides solutions with a clearly smaller DD�r and only a minor increase in

costs compared to the order-based strategy. Thus, the stabilized-cycle strategy

weakly dominates the order-based strategy.

For a better understanding of the numerical results (Tables 6, 7, 8), Fig. 4 shows

the costs per reporting period and the fill rates per product and reporting period for

the instance 95%=70%=0:3 with constant demands. Evidently, mean costs per

reporting period are lowest (c�r ¼ 185;473:66$) for the order-based strategy.

However, there is not even one reporting period in which all products reach at

least the target fill rate of 0.95. This leads to a rather high mean downside deviation

(DD�r ¼ 3:03%:). If the period-based strategy is used, the mean costs

(c�r ¼ 209;367:67$) and the mean fill rates (b�p
�j
¼ 98:01) are the highest among

the studied strategies. However, there are still reporting periods in which some

products do not reach the target fill rate. This results in a mean downside deviation

of 0.84 percentage points.

Table 9 Order-based (btar
j ¼ 0:98) vs. stabilized-cycle (btarj ¼ 0:95)

Instances Order-based btar
j ¼ 0:98 Stabilized-cycle btar

j ¼ 0:95

c�r [$] DD�r (%) c�r ($) DD�r (%)

Constant �/70/0.3 201,378.23 1.06 197,463.68 0.03

�/85/0.3 205,845.48 0.92 202,662.12 0.05

Seasonal �/70/0.3 198,225.13 1.44 197,717.48 0.09

�/85/0.3 212,108.09 1.42 211,708.52 0.09
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If the stabilized-cycle strategy is used, almost all products reach the target fill rate

at the end of each reporting period. In only seven out of the 30 years, one product

out of six misses the target fill rate by only a narrow margin. This results in the

lowest mean downside deviations (DD�r ¼ 0:03%) among the three strategies. While

the stabilized-cycle strategy results in lower mean costs than the period-based

strategy (Mc�r ¼ � 5:69%), it leads to higher mean costs than the order-based

strategy (Mc�r ¼ 6:46%) for the instance 95%=70%=0:3 with constant demand.

6 Conclusion

Based on the characterization of an HPPS proposed in Fleischmann and Meyr

(2003), we developed an HPPS to tackle a capacitated, multi-item, short-medium-

term production planning and scheduling problem. In contrast to most studied

HPPS, we address the lot-sizing and machine scheduling decisions, assuming

demand uncertainty, at the level at which it occurs: the shop floor. The aim of the

HPPS is to provide production plans with a negligible small number of violations

from a given target fill rate in a reporting period, while keeping setup and holding

costs relatively low.

The HPPS is based on two levels: the master planning problem (top level) and the

production planning and scheduling problem (base level). At each level, a deterministic

MIP model formulation is used to solve the respective planning problem. While an

extended CLSP-L is used to determine the availability of additional capacity and end-

of-period inventories at the top level, an extended PLSP is used to simultaneously

define lot sizes and production sequences at the base level. Suitable anticipation
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Fig. 4 Costs per reporting period and fill rates per product and reporting period for the instance
95%=70%=0:3 with constant demand
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functions for the CLSP-L and linking constraints for the PLSP are provided. Using

those functions and constraints, an appropriate coordination between the models is

reached. Both extended model formulations are in line with the extensions presented in

Meistering and Stadtler (2017). While rolling schedules are used as the planning

strategy for re-plans at the beginning of each macro-period, the static–dynamic

uncertainty strategy is used for re-plans during the macro-period at the base level.

The performance of three rolling schedule strategies is studied when being

applied to the HPPS. The performance of the HPPS has been evaluated based on 16

instances, considering a reporting interval of 48 periods and six products, with and

without seasonal demands. Most results from the medium-term problem observed in

Meistering and Stadtler (2017) have been confirmed for the HPPS.

As in the medium-term problem, the order-based strategy results in the lowest

mean costs and the largest downside deviation. In contrast to the results of the

medium-term problem, in which the target fill rate could at least be reached on

average over all products and all reporting periods for each instance, the results of

the HPPS show that the target fill rate is not even reached on average for any of the

studied instances.

The period-based strategy leads to the highest mean costs in the HPPS. This is in

line with the results observed for the medium-term problem. Again, the fill rates of

the HPPS differ from the results of the medium-term problem. While in the

medium-term problem each product reached at least the target fill rate in every

reporting period resulting in no downside deviation at all, meeting target fill-rates

for the HPPS cannot be ensured for the period-based strategy.

The stabilized-cycle strategy leads to similar results for the HPPS as observed in

the medium-term problem. This means that almost no downside deviations of actual

fill rates from the target fill rates exist at the end of a reporting period, while there is

only a moderate increase of costs in comparison to the order-based strategy. As the

period-based strategy results in higher costs and higher downside deviations than

the stabilized-cycle strategy for all studied instances, the stabilized-cycle strategy is

superior to the period-based strategy. Since the evaluation of the performance is bi-

criterial, no direct comparison of the stabilized-cycle strategy and the order-based

strategy can be made without preference information of the decision-maker.

However, for some instances we are able to show that the stabilized-cycle strategy

dominates the order-based strategy. For the other instances, the stabilized-cycle

strategy provides at least solutions with a smaller downside deviation and only a

minor increase of costs compared to the order-based strategy.

To be able to react more flexibly to uncertain demands during a macro-period,

future research should study rolling schedules at the base level instead of the static–

dynamic uncertainty strategy. Since the presented mathematical optimization

models are known to be NP-hard (Florian et al. 1980), only small instance can be

solved to optimality in reasonable computational times by commercial optimizers.

Thus, either improved exact algorithms or meta-heuristics should be sought to find

good solutions in terms of quality and computational time, especially if real-world

problems must be solved.
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Appendix 1: Inventory/setup inequalities following Suerie and Stadtler
(2003)
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Appendix 2: Capacity/single-item production inequalities following
Suerie and Stadtler (2003)
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Appendix 3: Inventory inequalities following Meistering and Stadtler
(2017)
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