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•

Taı̈eb Mellouli2

Received: 4 February 2016 / Accepted: 10 September 2019 / Published online: 19 September 2019

� The Author(s) 2019

Abstract Facing economic pressure and case-based compensation systems, hos-

pitals strive for effectively planning patient hospitalization and making efficient use

of their resources. To support this endeavor, this paper proposes a flexible hierar-

chical mixed-integer linear programming (MILP)-based approach for the day-level

scheduling of clinical pathways (CP). CP form sequences of ward stays and treat-

ments to be performed during a patient’s hospitalization under consideration of all

relevant resources such as beds, operating rooms and clinical staff. Since in most

hospitals CP-related information needed for planning is not readily available, we

propose a data-driven approach in which the structure of the CP to be scheduled

including all CP-related constraints is automatically extracted from standardized

hospital billing data available in every German hospital. The approach uses a

flexible multi-criteria objective function considering several patient- and hospital-

related aspects which makes our approach applicable in various scenarios. Fur-

thermore, in contrast to other approaches, it considers several practically relevant

aspects ensuring the implementability of the scheduling results such as multiple

ward stays per hospitalization and gender-separated room assignments. Regarding

the treatment resources such as operation rooms and clinical staff, it considers the

eligibility of resources for treatments based on information such as special
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equipment or qualification and represents complex resources individually to avoid

disaggregation problems. To allow solving the resulting complex and large-scale

scheduling problem for realistically dimensioned problem instances, we propose a

hierarchical two-stage MILP approach involving carefully designed anticipation

components in the first-stage model. We evaluate our approach in a case study with

real-world data from a German university hospital showing that our approach is able

to solve instances with a planning horizon of 1 month exhibiting 1088 treatments

and 302 ward stays of 286 patients. In addition to comparing our approach to a

monolithic MILP approach, we provide a detailed discussion of the scheduling

results for two practically motivated scenarios.

Keywords Clinical pathways � Scheduling � MILP � Health care planning �
Patient flow � Data driven � Case study

1 Introduction

In Germany, hospitals cause around 25% of the total costs of the health care system

(Destatis 2014). To reduce these costs of about 76bn Euro per year, the German

Diagnosis-Related Groups (DRG) system was established in 2003. In contrast to the

earlier length-of-stay-based reimbursement system, hospitals now receive a

diagnosis-dependent lump sum per case. As a consequence, hospitals have a strong

incentive to reduce their patients’ lengths of stay and to effectively manage clinical

processes and resources.

At the time of writing, however, every third hospital is still unprof-

itable (Augurzky 2015) which, together with demographic change, yields a great

need for increasing the efficiency of hospitals. According to Villa et al. (2009),

clinical pathways (CP) are among the most promising instruments for achieving an

efficient utilization of both human and physical hospital resources. CP are specific

sets of time-constrained treatments and ward stays to be performed between a

patient’s admission and discharge to cure a certain disease. Besides increasing the

transparency and the standardization of medical processes, CP are instrumental in

hospitalization scheduling and controlling (Jacobs 2007). Despite this often-stated

potential, however, CP and patient flow scheduling are still waiting to form an

integral part of day-to-day practice in many hospitals.

According to Roeder et al. (2003), Kirschner et al. (2007), Küttner and Roeder

(2007), and Salfeld et al. (2009), an important obstacle for a widespread utilization

of CP is the fact that manually creating CP forms a tedious endeavor. In addition,

since CP are mostly used in a descriptive way, only few CP formalisms discussed in

the literature enable both the automatic extraction of CP structures from hospital

data and their employment for scheduling. Furthermore, many important parameters

affecting pathway schedules such as emergency patient arrivals, (exact) treatment

durations, resource availability or complications arising in surgeries are subject to

uncertainty. Moreover, given that the pathway-scheduling problem has to consider

complex constraints as well as all relevant resources, it constitutes a complex large-

scale optimization problem. As a consequence, many pathway-scheduling
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approaches rely on simplifications and operate on a high level of aggregation which

makes putting the resulting schedules into practice difficult: The approach from

Saadani et al. (2014), for example, completely ignores bed resources. Finally, while

hospital scheduling typically considers multiple objectives related to economics,

patients and staff members, many approaches focus on one-dimensional perfor-

mance indicators, typically based on cost minimization or profit maximization

(Hulshof et al. 2012).

Motivated from a case study with a German university hospital, this paper

addresses most of the issues discussed above and proposes a tactical pathway-

scheduling approach intended to support hospital case managers responsible for the

coordination and scheduling of treatments and ward stays. The main contributions

of this paper can be summarized as follows.

First, we propose a data-driven approach to pathway scheduling. Our approach is

based on scheduling relevant pathway information automatically extracted from

standardized hospital billing data available for every hospital in Germany using the

pathway-mining approach introduced by Helbig et al. (2015). As a result, one of the

most time-consuming data preparation steps necessary for pathway scheduling—

defining pathways and their constraints—is automated to a large extent. To the best

of our knowledge, the resulting approach is the first to combine process mining

techniques with optimization-based decision support for scheduling clinical

pathways.

Second, we propose a day-level pathway-scheduling approach considering all

pathway constraints and hospital resources on an adequate level of detail which is

flexible enough to consider multiple scheduling criteria: it considers multiple ward

stays during hospitalization and gender-separated room assignments. Moreover, it

explicitly accounts for resource eligibility constraints for treatments, e.g., based on

specific feature and skill requirements. In addition, it allows considering important

resources individually while aggregating identical resources if appropriate. Finally,

to support scheduling pathways for a broad range of possible objective structures,

the objective function in our approach involves a weighted combination of multiple

hospital- and patient-related criteria including fairness and workload-balancing

criteria.

Third, to tackle the resulting complex large-scale scheduling problem for realistic

problem instances involving up to 300 patients with a planning horizon of a full

month, we propose a two-stage mixed-integer linear programming (MILP) approach

based on a hierarchical decomposition: The first-stage model determines the

admission dates and schedules complex treatments with a high duration. Given

instructions from the first model, the second model schedules the ward stays, assigns

all patients to gender-separated rooms and schedules the remaining treatments. To

align the first-stage instructions with the second-stage requirements, the first-stage

model involves anticipation components to account for the gender separation

requirement and to consider pathway constraints involving the full set of treatments.

Fourth, we evaluate the overall approach including the automatic CP extraction

in a set of experiments conducted with real-world data from a German university

hospital involving 286 elective patients and 1088 treatments. On the one hand, we

evaluate our hierarchical approach in comparison with a monolithic mixed integer
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linear programming (MILP) approach: we compare solution times as well as

solution quality of both approaches; furthermore, we investigate the effect of

employing different degrees of anticipation within the hierarchical approach. On the

other hand, we provide a detailed evaluation of two scheduling scenarios: in the first

scenario, our approach is used to establish balanced resource utilization throughout

the planning horizon; in the second scenario, the main goal is to obtain a high

resource utilization at the beginning of the planning horizon.

Note that in this paper, we do not explicitly address the stochastic character of the

pathway-scheduling problem: on the one hand, our approach only deals with

scheduling elective patients for which most planning-relevant information is known

ahead. Nonetheless, one of the goals of the planning approach is to establish

balanced resource utilization and resource buffers to ensure that emergency cases

can be handled adequately. On the other hand, our approach employs conservative

point estimates for uncertain treatment times to obtain schedules which are robust

with regard to treatment time variations. Like the other authors dealing with clinical

pathway planning (see e.g., Gartner and Kolisch 2014 and Burdett and Kozan 2018),

we assume that additional uncertainties such as absence of medical staff, resource

breakdowns or stochastic patient arrivals are addressed by embedding our pathway-

scheduling approach in a rolling planning process.

The remainder of this paper is structured as follows. Section 2 provides an

overview of the rich literature dealing with offline operational scheduling in

hospitals and identifies possible objectives, efficient modeling techniques and

aspects to be considered in clinical pathway scheduling. Section 3 introduces the

constraint-based CP concept according to which the scheduling is carried out and

sketches the automated CP mining approach mentioned above. In Sect. 4, we

introduce our hierarchical MILP approach consisting of an aggregated first-stage

model for scheduling complex treatments and determining the admission day and a

detailed second-stage model for scheduling the remaining treatment and assigning

patients to rooms. In Sect. 5, we explain the real-world dataset from a university

hospital used in our computational experiments. In addition, we illustrate the results

from mining CP for the hospital’s largest department. Section 6 presents the results

from using our MILP approach for scheduling the extracted CP for all elective

patients of the department of urology. To demonstrate the effects of varying the

weights in the multi-criteria objective function, we discuss two scenarios: in the first

scenario, the resource allocation is balanced across the planning horizon; in the

second scenario, resources are preferably allocated at the beginning of the horizon.

Section 7 concludes the paper and points to further research opportunities.

2 Related work

We employ the taxonomy of planning decisions in health care introduced by

Hulshof et al. (2012) to structure the following literature review. According to this

taxonomy, the problem considered in this paper can be characterized as an offline

operational planning problem: complete CP for elective patients are scheduled

within a planning horizon of about 1 month considering activities at the level of
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individual patients and resources. Since our approach takes all kinds of hospital

resources into account, the following literature review does not only regard CP-

related literature but also considers more general hospital resource scheduling

approaches to identify aspects relevant for our research. Since the assignment of

staff to shifts and inventory management issues are not in the scope of this paper,

articles dealing with these topics are not included in the following review.

Furthermore, the review is restricted to articles involving mathematical program-

ming as solution technique published after 2005. Table 1 shows the related work

classified by the combinations of considered resources and treatments.

Since surgeries form the greatest source of income for most hospitals (Denton

et al. 2007) and at the same time operating rooms (OR) constitute the most

expensive type of resource using more than 10% of a typical hospital budget (Jebali

et al. 2006; Chaabane et al. 2008), there is a rich body of literature dealing with

surgery scheduling. The main goals of surgery scheduling are to reduce costs

(overtime costs, penalties for idle time or fixed costs for opening an OR) and to

increase the utilization of the available OR. This is achieved by either allocating

surgeries to a given set of OR (Lamiri et al. 2007; Lamiri et al. 2008a, b; Fei et al.

2009; Denton et al. 2010; Riise and Burke 2011; Meskens et al. 2013), sequencing a

set of given surgeries (Denton et al. 2007; Cardoen et al. 2009a; Cardoen and

Demeulemeester 2011) or both (Jebali et al. 2006; Testi and Tànfani 2009; Roland

et al. 2010; Batun et al. 2011; Marques et al. 2012; Clavel et al. 2017). In most

cases, mathematical programming, heuristics, column generation or combinations of

these methods are used to find a good or even optimal solution with respect to a

typically multi-criteria objective function. With regard to the scope of the present

article, the main insights from the surgery scheduling literature can be summarized

as follows: Overtime should be avoided and the well-being of the medical staff

should be considered (Roland et al. 2010; Meskens et al. 2013), a flexible pooling

strategy of OR has significant benefits (Batun et al. 2011), the eligibility of

Table 1 Overview of related work

Resources Related articles

Operating Room Jebali et al. (2006), Denton et al. (2007), Lamiri et al. (2007), Chaabane et al.

(2008), Lamiri et al. (2008a, b), Cardoen et al. (2009a), Fei et al. (2009), Testi

and Tànfani (2009), Denton et al. (2010), Roland et al. (2010), Batun et al.

(2011), Cardoen and Demeulemeester (2011), Marques et al. (2012) and Clavel

et al. (2017)

Beds Demeester et al. (2010), Ceschia and Schaerf (2011), Schmidt et al. (2013), Helm

and Van Oyen (2014) and Vancroonenburg et al. (2014)

Treatments Vlah Jerić and Figueira (2010, 2012) and Schimmelpfeng et al. (2012)

Operating room and

beds

Pham and Klinkert (2008), Cardoen et al. (2009b), Augusto et al. (2010), Fei et al.

(2010), Chow et al. (2011), Banditori et al. (2013), Sun et al. (2013),

Vancroonenburg et al. (2013), Ceschia and Schaerf (2014) and Li et al. (2015)

Clinical pathways Vissers (2005), Conforti et al. (2011), Helbig (2011), Gartner and Kolisch (2014)

and Saadani et al. (2014)
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operating rooms for surgeries may depend on special operating room equipment

(Denton et al. 2007) and the patients’ welfare should be taken into account (Testi

and Tànfani 2009). Regarding the solution methods, carefully decomposing the

problem into solving multiple small problems often yields a good performance in

terms of solution time without having a significantly negative impact on solution

quality (Jebali et al. 2006; Lamiri et al. 2007; Lamiri et al. 2008a, b; Fei et al. 2009;

Denton et al. 2010; Batun et al. 2011; Marques et al. 2012). For a recent survey on

OR scheduling, see Samudra et al. (2016).

As stated by Helm and Van Oyen (2014), a proper bed management is necessary

to avoid having to dismiss patients because of blocked beds, surgical cancelations

and operational chaos. In the literature, two kinds of bed management problems are

discussed both of which typically consider medical needs as well as patient

preferences: elective admission scheduling and the patient-to-room assignment.

Elective admission scheduling problems are solved, e.g., by local search heuristics

(Ceschia and Schaerf 2011), MILP (Helm and Van Oyen 2014) or random forest

models (Schmidt et al. 2013). Demeester et al. (2010) solve the patient-to-room

assignment problem using a tabu search heuristic. Vancroonenburg et al. (2014)

develop an integrated model to solve both problems at once to increase both

planning flexibility and operational efficiency. Gender-separated room assignment

is typically considered as a crucial issue, see Demeester et al. (2010, Ceschia and

Schaerf (2011), Schmidt et al. (2013), and Vancroonenburg et al. (2014).

According to Schimmelpfeng et al. (2012), scheduling treatments (encompassing

not only surgeries but all types of medical activities) manually often leads to an

inefficient resource allocation and can have negative effects on quality of care and

patient satisfaction. To avoid this, Vlah Jerić and Figueira (2010) develop a decision

support system (DSS) to support the construction of a daily schedule of medical

treatments considering available resources and other criteria. They use a scatter

search heuristic to construct a set of Pareto-optimal solutions among which the user

can interactively choose. Another approach by the same authors presented in Vlah

Jerić and Figueira (2012) determines daily treatment schedules considering the

availability of medical equipment and physicians. Their approach is based on a

multi-objective binary programming formulation for which different solution

approaches such as variable neighborhood search, scatter search and non-dominated

sorting genetic algorithms are compared. Schimmelpfeng et al. (2012) outline a

conceptual framework for a DSS to support the scheduling process of treatments in

a rehabilitation hospital. To handle realistic problem dimensions, a hierarchical

approach is developed using a daily model for aggregated long-term scheduling and

an intra-day model (either time- or resource-oriented) for short-term scheduling.

As argued by Chow et al. (2011), trying to achieve a high OR utilization without

considering further surgery-related resources often results in issues such as staff

overtime, surgical cancelations and long surgical waiting times. In particular,

scheduling surgeries without taking the availability of recovery beds into account

often leads to problems. To avoid this issue, several authors propose to

simultaneously schedule both the surgery and the following stay in a recovery

bed or on a ward. For instance, Pham and Klinkert (2008) propose to allocate

hospital resources to individual surgical cases divided into preoperative,
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perioperative (= surgery), postoperative intensive care unit (ICU) modes and

formulate this problem as a MILP multi-mode blocking job shop model. Cardoen

et al. (2009b) solve a surgical case scheduling problem in a day-care facility. They

formulate a multi-objective model to minimize peaks in recovery bed usage, the

occurrence of recovery overtime and violations of staff and patients’ preferences.

Their approach is based on a combination of column generation and dynamic

programming. To analyze the impact of recovery in OR when no recovery bed is

available, Augusto et al. (2010) use a Lagrangian relaxation-based approach. Their

results show a high benefit of this improved flexibility in resource usage, in

particular in case of high demands for recovery beds. Fei et al. (2010) construct

weekly surgery schedules for OR considering recovery beds to maximize resource

utilization while minimizing overtime and idle time between surgeries. They use a

hierarchical two-stage solution approach which first computes the date of the

surgeries based on a set partitioning formulation solved by a column generation

technique. In the second step, taking into account the availability of recovery beds

the daily surgery scheduling problem in which the sequence of surgeries is

determined is formulated as a flow-shop problem and solved by a hybrid genetic

heuristic. The authors show that their overall approach allows reducing idle- and

overtime increasing resource utilization. Chow et al. (2011) use Monte Carlo

Simulation to predict bed requirements from historical data. Based on this, they

formulate a MILP to reduce peaks in bed occupancy by scheduling surgeon blocks

and patient types. Another simulation optimization approach for the surgery

scheduling problem aiming at a maximal patient throughput is developed by

Banditori et al. (2013). The authors first use a MILP model to determine the number

of cases to be treated by surgery groups in each time slot of a month. The model is

then fine-tuned with a simulation approach to obtain both robust and easy-to-

implement schedules. Sun et al. (2013) propose a weekly scheduling approach to

achieve a high OR utilization. The authors formulate a MILP taking into account

limited key resources like ICU-beds and workload of surgeons. Vancroonenburg

et al. (2013) incorporate OR and gender separation constraints in their approach for

the elective patient admission scheduling problem. Their goal is to determine how

scheduling surgical and non-surgical admissions impacts room assignments at

wards. Ceschia and Schaerf (2014) address a similar patient admission problem

considering OR utilization constraints, gender-separated room assignment, a flexible

planning horizon and the notion of patient delay using a local search heuristic. Li

et al. (2015) develop a MILP-based lexicographic goal programming approach of

scheduling OR and beds considering competing resources such as surgical and

nursing staff, anesthesiologists and recovery beds.

The most promising way to avoid bottlenecks, idle time and overtime during

hospital patient flow is to schedule not only surgeries, possibly augmented with

induced bed resources, but each patient’s full CP. Vissers (2005) proposes a master

surgery scheduling approach for CP involving cardiothoracic surgeries based on

computing the patient mix with a MILP model. He divides the care process into four

successive steps (medium care unit (MCU), surgery, ICU, MCU) and computes the

master schedule for a planning cycle of 4 weeks taking OR, MCU-beds, ICU-beds

and nursing staff for ICU-beds into account. An approach to schedule full CP of
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elective patients for a week hospital1 is introduced by Conforti et al. (2011). The

authors show their results from scheduling clinical services (diagnostics and

surgeries) as well as patient admissions to maximize the patient flow using a MILP

model in a case study with 20 patients. Helbig (2011) presents a MILP model for the

operational hour-based scheduling of interdisciplinary CP containing treatments,

surgeries, order constraints and ward stays. The aim of the model is to minimize

waiting time and to finish each CP as early as possible within the planning horizon

under consideration of practical constraints like gender separation in rooms and a

fair distribution of waiting time among all patients. The paper reports results from

experiments with artificial small-scale problem instances with up to four patients. A

patient flow planning approach to maximize the length of stay (LOS)-based

contribution margin for DRG-based reimbursement policies is developed by Gartner

and Kolisch (2014). The authors formulate two MILP models to schedule CP, one

with fixed and one with variable patient admission dates. They experiment with

these models in a static and in a dynamic setting in which the MILP is embedded in

a rolling horizon approach. The results dealing with a planning horizon of 28 days

and 150 patients show the potential to achieve a higher contribution margin and a

significantly reduced time between admission and surgery compared to given

manual solutions. Saadani et al. (2014) propose a MILP-based CP scheduling

approach in which treatments using different resources are scheduled to minimize

the patients’ length of stay. Their CP contain multiple treatments but no bed

requirements. The authors present results for an instance of 20 patients and a

planning horizon of 14 days. Recently, Burdett and Kozan (2018) proposed an

approach using constructive heuristics and metaheuristics for scheduling CP

operating on a very high level of detail: They schedule not only the day, but also the

time of day of the treatments. Their approach takes into account all major treatment

resources under consideration of resource eligibility constraints; in addition, it

considers multiple ward stays and bed resources on wards.

Summarizing the results of the literature review, the most promising way to

improve the patient flow in hospitals is to consider the full CP of each patient. As

shown above, scheduling CP involves various complex aspects to be considered by a

CP scheduling approach to achieve practically useful and implementable schedules:

• Given the multitude of relevant objectives, the approach should allow to include

multiple objective criteria related to both patients and resources:

– Important patient-related objectives encompass the consideration of LOS

(the main driver of schedule-related costs in a DRG system), admission day

preferences and hospitalization without delays.

– Among the resource-related objectives, minimization of overtime and idle

time, establishing a balanced workload and achieving a high level of

resource utilization are the most important.

1 A week hospital is a hospital where the duration of all hospitalizations is at most 1 week.
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• To obtain implementable pathway schedules, patients should be assigned to

concrete rooms taking gender separation into account.

• For an adequate representation of resource requirements, scheduling should

consider the eligibility of resources for treatments which depends on resource

properties such as special qualifications or equipment. Furthermore, to avoid

disaggregation problems as sketched in the introduction, important treatment

resources such as OR should be considered individually instead of in an

aggregated way.

• It is unlikely to find a monolithic approach for exactly solving a CP scheduling

problem considering all of the aspects described above. However, decomposing

the problem into multiple stages, if carried out carefully, can be a promising

approach to achieve good results within acceptable solution times also for large-

scale instances involving more than 200 patients, a 30-day planning horizon and

1000 treatments.

We are not aware of any mathematical programming-based CP scheduling

approach taking into account all the aspects mentioned above. As a consequence,

this paper proposes a novel hierarchical MILP approach to schedule whole CP with

hospital-wide ward stays able to handle the mentioned aspects for real-world

problem instances.

An additional important feature of our approach is its data-driven nature: by

employing the pathway-mining approach and the constraint-based representation of

CP introduced by Helbig et al. (2015), the structure of the CP to be scheduled can be

automatically extracted from standardized data available in every German hospital.

It becomes clear from the recent survey articles Yang and Su (2014) and Rojas et al.

(2016) that process mining for clinical pathways and in healthcare in general forms

a very active field of research. As described in Rojas et al. (2016), however, the

results of the process mining are typically used for analyzing and improving

healthcare processes using techniques from business process management. Our

approach in contrast is, to the best of our knowledge, the first one tightly coupling

process mining with mathematical optimization for scheduling clinical pathways.

3 Constraint-based CP representation

Even though the general concept of CP is well-known and widely accepted, there is

no standard formalism for representing CP (Vanhaecht et al. 2006). While the

formal representation of a CP is of secondary importance if it serves merely

descriptive purposes, it is crucial when CP form the basis of scheduling patient flow.

Conforti et al. (2011), for example, consider a CP as a set of treatments to be

scheduled without imposing inter-treatment dependencies. Gartner and Kolisch

(2014) represent the possible schedules for each CP on a directed graph in which the

arcs form minimum time lags between the clinical activities. The CP scheduling

approach proposed in this work relies on the constraint-based CP representation

introduced in (Helbig et al. 2015). We give a brief overview and example of this
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representation in this section; for details regarding the representation as well as

regarding the pathway-mining approach, we refer the reader to (Helbig et al. 2015).

As illustrated in Fig. 1, the time scale of the pathway representation is days and a

CP is considered on two levels: the level of ward stays and the level of treatments.

On the level of ward stays, a CP forms a chronological sequence of ward stays S.
Note that while in many cases, the set of ward stays S is a singleton, there are cases

in which ward changes are part of the planned pathway of elective patients: as an

example, in the department of urology considered in our case study, there are

several cases with complex surgeries involving both a stay in an intensive care unit

(ICU) and on a regular ward; in total, 6% of the cases in the dataset involve multiple

ward stays.

In the CP representation, a ward stay s 2 S is associated with a set of eligible

wardsWs; this means that for stay s, the patient may be assigned to one of the wards

in ws. In Fig. 1, for example, the ward stay s2 may either be assigned to ward w2 or

to ward w3. A ward stay is characterized by an admission event vads and a discharge

event vdiss . The admission event vads1 of the first stay s1 corresponds to the hospital

admission and always takes place at the first day of the CP. All other ward stay

events have feasible time intervals indicating when they can be scheduled (e.g., the

discharge vdiss1
can be scheduled from day 3 to day 6, see Fig. 1). The number of days

between admission and discharge on a ward forms the length of stay (LOS) on that

ward. For every ward stay, the LOS is constrained by a minimum and a maximum

number of days. During hospitalization, each ward stay requires a bed resource and

it is assumed that there are no gap days between two adjacent ward stays.

On the second level of the CP representation, a treatment t corresponds to a

surgery or any other clinical service to be performed to cure a disease. A CP

Fig. 1 Constraint-based CP concept
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contains a set T of different treatments. Each of these treatments lasts at most 1 day

and can only be performed if the required amount of all necessary resource types

(e.g., surgeons, special rooms, theater nurses or the patient) is available. To

facilitate scheduling, treatments are clustered into treatment groups; the treatments

within the same group g have to be scheduled at the same day (see e.g., t2 and t3 in

Fig. 1). Some treatment types may occur in multiple groups which means that they

have to be performed once per group (t2, for example, occurs in two groups). To

ensure medically correct schedules, each treatment group g has a feasible time

interval dg; �dg
� �

relative to the first admission event. In Fig. 1, this interval

corresponds to the length of the bar associated with the treatment group (e.g., g2 has

the feasible interval [2;3]). In addition, a medically correct order can be enforced by

precedence constraints imposing a minimum and a maximum time lag c
g;g0

; �cg;g0
h i

between two related treatment groups g and g0 (e.g., in Fig. 1, g5 needs to fall into

the interval [1;3] relative to the scheduled day of g4). Moreover, a group can be

associated with a certain ward stay s which means that the group can only be

scheduled during that ward stay (e.g., g1 and g2 from Fig. 1 can only be scheduled

during the first ward stay). Note that by grouping treatments as described, many CP-

related constraints are aggregated and in some cases even considered implicitly. On

the one hand, this contributes to a tractable size of the MILP models presented in the

next section, on the other hand, the modeling itself is facilitated by the grouping.

4 A hierarchical MILP approach for scheduling clinical pathways

The pathway-scheduling problem considered in this paper consists of determining

the patient’s admission and discharge days, the start and end days of the ward stays

and the days on which treatments are performed. The scheduling accounts for

precedence relations between treatments and considers all critical hospital resources

such as beds, medical staff as well as treatment and operating rooms. Bed resources

are considered on the level of rooms, accounting for the requirement of gender

separation. Treatments are associated with resource requirements. It is assumed that

for each requirement there is a set of eligible resources and a given amount of

resource time needed for the treatment. Each resource, in turn, is associated with a

time capacity for each given day. Identical resources may be considered in an

aggregated way; however, to avoid disaggregation problems, important complex

resources such as operating rooms are considered individually.

With respect to the level of detail considered, the pathway-scheduling problem

addressed in this paper is situated between the problems considered in Gartner and

Kolisch (2014) and in Burdett and Kozan (2018): both the problems considered in

Gartner and Kolisch (2014) and in this paper schedule treatments on the time-

aggregated level of days, but in contrast to the problem addressed here, Gartner and

Kolisch (2014) do not consider multiple ward stays, bed assignment to gender-

separated rooms and resource eligibility constraints. Burdett and Kozan (2018), in

contrast, consider multiple ward stays and resource eligibility constraints such that

the level of detail for representing resources is similar to our work. However, the
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problem addressed in Burdett and Kozan (2018) deals with the exact timing of

treatments instead of only determining the day on which a treatment is performed.

Gartner and Kolisch (2014) point out that the pathway-scheduling problem they

address is related to the resource-constrained project scheduling problem (RCPSP),

with the important difference that treatments are assumed to take a fraction of a the

time unit (in this case: a day) while in project scheduling, activities are typically

assumed to take multiple units of time. Using the terminology from Artigues et al.

(2015), the model presented by Gartner and Kolisch (2014) can be characterized as

a time-indexed formulation, that is, the main decision variables for scheduling

activities are binary variables with a day index. The authors assume that each

resource requirement is associated with a single set of aggregated resources. As a

result, no treatment-to-resource assignment is needed and the resource capacity

constraint can be formulated using the time-indexed treatment scheduling variables.

The resulting model instances are fairly compact and can be solved to optimality by

standard MILP solvers even for realistically sized instances.

Using the analogy to RCPSP, extending the problem addressed in Gartner and

Kolisch (2014) by the consideration of treatment-specific resource eligibility is very

similar to the extension of the RCPSP to a project staffing and scheduling problem

in which resources are considered as flexible or multi-skilled and each task is

associated with a set of eligible resources. As discussed in Correia and Saldanha-da-

Gama (2015), this setting adds a whole new dimension to the RCPSP since tasks are

not only scheduled but also explicitly assigned to resources. Incorporating resource

eligibility in MILP formulations for the RCPSP typically results in additional

variables and constraints, see, e.g., the formulation proposed in Correia and

Saldanha-da-Gama (2015) and, as also discussed therein, makes the problems much

harder to solve. Note that the modeling framework for project staffing and

scheduling problems proposed in Correia and Saldanha-da-Gama (2015) is based on

natural-date variables, that is, on variables representing start times of tasks. Our

formulation presented below employs both natural-date variables (e.g., for the start

day of ward stays) and time-indexed variables (e.g., for resource assignments). Note

that Burdett and Kozan (2018) do not provide a MILP formulation of their very

detailed CP scheduling problem—their solution approach uses constructive

heuristics and metaheuristics.

Instead of resorting to metaheuristic approaches to deal with the computational

complexity of the problem considered in this paper, similar to Schimmelpfeng et al.

(2012), we employ a two-stage MILP approach which can be viewed as a

constructional hierarchical decomposition in the terminology of hierarchical

planning, see, e.g., (Schneeweiss 1998). The first stage determines the ‘‘corner-

stones’’ of the clinical pathway, that is, the patient admission and discharge dates as

well as the dates for the complex key treatments of each clinical pathway.

Considering the first-stage decisions as fixed instructions, the second stage solves

the full problem sketched above.

To obtain a high-quality solution for the full problem, the first-stage model

anticipates major aspects of the full planning problem using anticipation model

components obtained by the means of aggregation and relaxation. While the first

stage does not determine the ward stays, it anticipates ward stay scheduling under
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consideration of the gender separation requirement on the level of aggregated room

types. Furthermore, while it only schedules complex treatments (under consider-

ation of all required treatment resources), to make this scheduling consistent with

the pathway constraints involving all treatments, the first-stage model also involves

all remaining treatment groups (neglecting the respective resource requirements).

Before presenting the MILP formulations for the first-stage and the second-stage

model, we give a short overview of the notational conventions used in the

presentation. A full list of all symbols used in the models is given in the Appendix;

in addition, all symbols are explained in the description of the models.

4.1 Notation conventions and variable domains

We use calligraphic symbols for representing sets, in some cases refined with

descriptive superscripts. As an example, P denotes the set of patients and Pm

denotes the set of male patients. Descriptive superscripts are also used for variables

and parameters; subscripts are reserved for indices. Indices and parameters are in

lowercase. Greek letters are used for path-relative time information (see Sect. 3).

Decision variables are capitalized and we utilize the following conventions to

enhance the readability of the models: the letter X is used for variables for which the

value corresponds to a day in the planning period, that is, the domain of these

variables is the set D ¼ 1; . . .; Dj jf g. Superscripts are used to refer to specific

groups of variables, e.g., Xws
p;s denotes the start day of ward stay s of patient p. Day-

indexed variables are mostly denoted with Y . For example, the binary variable Yward
p;w;d

indicates whether patient p stays at ward w at day d or not. Bookkeeping variables

representing a duration, a slack or a violation of a soft constraint are denoted with

U; again specified with a descriptive superscript and possibly with an additional

superscript signifying the direction of a violation. As an example, the variable Uadþ
p

represents a positive violation from the desired admission date of patient p. If not

specified otherwise, the bookkeeping variables are continuous non-negative

variables. The letter Z is used for integer variables mostly representing assignment

decisions—for example, the indicator variable Zroom
p;s;q takes the value of 1 if patient p

stays in room q throughout her ward stay s.

4.2 First-stage model

In the following exposition, we present the first-stage model used to determine the

admission and discharge dates of the patients as well as the dates of the (complex)

key treatments in the clinical pathways. Note that all other decisions considered in

the following model such as the start and end days of the ward stays, the aggregated

gender-separated room assignments and the scheduled dates of the non-complex

treatment groups are not transferred to the second-stage model as instructions but

merely serve the purpose of anticipation.
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4.2.1 Scheduling admission, ward stays and discharge

For each ward stay s from the ordered set Sp ¼ 1. . . Sp

�� ��� �
of ward stays of patient

p, the decision variable Xws
p;s represents the start day of s. The set of constraints (1)

both compute the length Ulos
p;s of each ward stay and establish the correct sequencing

of each patient’s ward stays. Note that in the constraint sets associated with the last

ward stay Sp

�� �� of patient p, the index Sp

�� ��þ 1 arises as a subscript of the ward stay

start variable. This variable can be interpreted as the first day after the end of

hospitalization. The set of constraints (2) enforces the hard lower bound blosp;s as well

as the soft upper bound �blosp;s along with the upper bound violation variable Ulosþ
p;s for

the length of stay of ward stay s of patient p:

Xws
p;sþ1 � Xws

p;s ¼ Ulos
p;s 8p 2 P; s 2 Sp ð1Þ

blosp;s �Ulos
p;s � �blosp;s þ Ulosþ

p;s 8p 2 P; s 2 Sp ð2Þ

Every patient p has a desired admission day ddesAdp . In the set of constraints (3),

the deviation of the scheduled admission day Xws
p;1 from this day is registered by the

variables Uad�
p and Uadþ

p both of which are bound by the maximum allowed

deviation �bdevAd enforced by the constraint set (4):

Xws
p;1 ¼ ddesAdp � Uad�

p þ Uadþ
p 8p 2 P ð3Þ

0�Uad�
p � �bdevAd; 0�Uadþ

p � �bdevAd 8p 2 P ð4Þ

4.2.2 Aggregated consideration of bed resources and gender separation

For anticipation purposes, the first-level model considers bed resources as well as

the gender separation requirement on the level of aggregated room types. To model

these requirements, the day-indexed variables Yward
p;s;w;d indicate whether on day d;

patient p occupies a bed on ward w during ward stay s on one of the eligible wards

in set Wp;s. The three sets of constraints (5–7) link the bed occupation variables

Yward
p;s;w;d to the scheduling of the ward stays: Constraint (5) ensures that the number of

bed occupation days equals the length of the ward stays; constraints (6) and (7) force

the bed occupation days to fall into the scheduled period of the corresponding ward

stay:
X

w2Wp;s

X

d2D
Yward
p;s;w;d ¼ Ulos

p;s 8p 2 P; s 2 Sp; ð5Þ

Xws
p;s � d þM 1�

X

w2Ws;p

Yward
p;s;w;d

0

@

1

A 8p 2 P; s 2 Sp; d 2 D; ð6Þ
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Xws
p;sþ1 � 1� d �M 1�

X

w2Ws;p

Yward
p;s;w;d

0

@

1

A 8p 2 P; s 2 Sp; d 2 D: ð7Þ

To ensure that a patient is assigned to a single ward during the full ward stay, we

introduce the binary ward assignment variable Zward
p;s;w indicating whether the ward

stay s of patient p is assigned to ward w. The set of bundle constraints (8) ensures

that this assignment is unique; constraints (9) ensure that the bed occupation

variables only take a value of one for the assigned ward:
X

w2Wp;s

Zward
p;s;w ¼ 1 8p 2 P; s 2 Sp; ð8Þ

Yward
p;s;w;d � Zward

p;s;q 8p 2 P; s 2 Sp;w 2 Wp;s; d 2 D: ð9Þ

While the first-stage model does not involve an assignment of patients to a

concrete room, it enforces that for each day, there exists an assignment of patients to

rooms respecting the gender separation requirement. To achieve this, the set of

rooms Qw on ward w is partitioned into subsets Qw;b according to the number of

beds b in the rooms; the set B contains the possible number of beds in rooms. For

each day d 2 D, the number of rooms on ward w with b beds used as female (male)

room is decided by the integer decision variable ZfRoom
w;b;d (ZmRoom

w;b;d ). The constraints

(10) ensure that on each day d on each ward w and for room capacity b, the total

number of male and female rooms does not exceed the number Qw;b

�� �� of rooms with

the corresponding capacity. The constraints (11) and (12) ensure that for each ward

w on each day d, the number of female (male) patients having a bed on a certain

ward does not exceed the total number of beds available in the rooms assigned to

female (male) patient plus the number of additional beds recorded in the variables

UfBedþ
w;d and UmBedþ

w;d .

ZfRoom
w;b;d þ ZmRoom

w;b;d � Qw;b

�� �� 8w 2 W; b 2 B; d 2 D; ð10Þ
X

p2Pf

X

s2Sp;w

Yward
p;s;w;d �

X

b2B
bZfRoom

w;b;d þ UfBedþ
w;d 8w 2 W; d 2 D; ð11Þ

X

p2Pm

X

s2Sp;w

Yward
p;s;w;d �

X

b2B
bZmRoom

w;b;d þ UmBedþ
w;d 8w 2 W; d 2 D: ð12Þ

4.2.3 Scheduling treatments considering pathway constraints

As noted in Sect. 3, our approach aggregates treatments occurring on the same day

form a treatment group. In the mathematical model, the integer decision variable

Xtreat
p;g represents the day on which the treatment group g from the set Gp of all

treatment groups of a patient p is scheduled. To anticipate the pathway constraints in

the first-stage model, the set Gp encompasses all treatment groups (not only those

containing key treatments to be scheduled in the first stage).

The scheduling of treatments is linked to the scheduling of ward stays in two

ways: first, as modelled in constraints (13), for each treatment group g, there is a
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time window dp;g; �dp;g
� �

relative to the admission date of patient p associated with

the variable Xws
p;1; violations of the time window are registered by the variables and

Utwþ
p;g . Second, as modelled by constraints (14), a subset Gp;s of the treatment groups

Gp of a patient p may require to be performed during the ward stay s of p:

Xws
p;1 þ dp;g �Xtreat

p;g �Xws
p;1 þ �dp;g þ Utwþ

p;g 8p 2 P; g 2 Gp; ð13Þ

Xws
p;s �Xtreat

p;g �Xws
p;sþ1 � 1 8p 2 P; s 2 Sp; g 2 Gp;s: ð14Þ

In addition to the relations enforced by (13) and (14), the constraint-based

pathway model described in Sect. 4 considers sequence constraints providing an

interval c
g;g0

; �cg;g0
h i

between a treatment group g and a successive treatment group

g0. The set of successors of a treatment group g in the pathway of patient p subject to

this type of constraint is denoted with Gsucc
p;g ; the respective constraints in the model

can be formulated as follows:

Xtreat
p;g þ c

p;g;g0
�Xtreat

p;g0 �Xtreat
p;g þ �cp;g;g0 8p 2 P; g 2 Gp; g

0 2 Gsucc
p;g ð15Þ

4.2.4 Modelling treatment resource requirements

To perform the treatments in the aggregated treatment groups, certain resources

such as operating rooms, physicians and nurses are needed. As mentioned above, the

first-stage model only considers the resource requirement for a subset of treatment

groups. In the following exposition, this subset is denoted with Gres
p .

When it comes to the representation of these resource requirements, most

publications dealing with pathway scheduling rely on a simple representation of

resources and requirements: resources have a unique resource type (or a unique

identifier) and the resource requirements are formulated in terms of time needed per

resource type (or per specific resource). In reality, however, the eligibility of

resources for treatment requirements depends on a set of resource properties such as

qualifications (e.g., the capability of conducting a certain surgery) or features (e.g.,

special equipment only available in certain operating rooms). In this work, this more

complex type of representing resource eligibility is modelled as follows:

We represent the resource requirements on the level of treatment groups. For

each group, the requirements of all treatments in the group are aggregated. The set

of resource requirements for treatment group g of patient p is denoted with Kp;g; the

amount of resource time needed for the requirement k 2 Kp;g is given by the

parameter ap;g;k. A resource requirement k is further associated with a set Rk of

eligible resources.

For each day d and for each eligible resource k 2 Kp;g for group g of patient p,

there is a binary assignment variable Zres
p;g;k;r;d indicating whether resource r is used

to cover the resource requirement k of treatment group g of patient p scheduled at

day d. The set of bundle constraints (16) ensures that exactly one resource is chosen

for each requirement; constraints (17) link the resource assignment variables to the

treatment group scheduling variables. For each resource r, the nominal capacity at

day d is given by �bresr;d; using the slack variables Uot
r;d and Uit

r;d registering the
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overtime and the idle time, the corresponding resource capacity constraints are

given in (18). Constraints (19) ensure that for both the amount of overtime and of

idle time per resource and day is restricted by an upper bound (�botr and �bitr ):
X

d2D

X

r2Rk

Zres
p;g;k;r;d ¼ 18p 2 P; g 2 Gres

p ; k 2 Kp;g; ð16Þ

Xtreat
p;g ¼

X

d2D

X

r2Rk

dZres
p;g;k;r;d 8p 2 P; g 2 Gres

p ; k 2 Kp;g; ð17Þ

X

p2P

X

g2Gres
p

X

k2Kp;g

aresp;g;kZ
res
p;g;k;r;d ¼ �bresr;d þ Uot

r;d � Uit
r;d 8r 2 R; d 2 D ð18Þ

0�Uot
r;d � �botr ; 0�Uit

r;d � �bitr 8r 2 R; d 2 D ð19Þ

Note that our formulation of resource requirements and capacities given by the

constraints (16–19) is valid both for individual and aggregated resources. Resources

can be aggregated if they have the same properties, e.g., the same qualifications or

features. For example, in our case study, the OR-nurses can be considered as an

aggregated resource. In case of an aggregated resource r 2 R, the resource capacity
�bresr;d per day corresponds to the sum of the capacity of all individual resources on that

day.

Note, however, that in addition to adequately modelling resources with different

features and skills, there is another reason for individually considering (complex)

resources: the requirements for these resources often comprise multiple hours and it

is not possible to switch the assigned resource during a treatment. Aggregating these

resources thus easily leads to a situation where there is no feasible disaggregated

allocation to individual resources for an aggregated solution.

4.2.5 Objective function

The objective function of the first-stage model involves multiple patient- and

resource-related objectives combined in a single function. Depending on the

preferences of the decision maker, the objective function coefficients can be chosen

accordingly. An important part of the objective function deals with patient delays.

The constraints sets (20) and (21) compute the total delay Udel
p of a patient:

constraint set (20) ensured that the total delay of a patient is at least as large as the

number of days exceeding the medically required minimum length of stay blosp . In

addition to that, the constraints (21) force the total delay to be greater than the sum

of the ward stay delays Ulosþ
p;s and the treatment delays Utwþ

p;t . To establish fairness

among the patients and to avoid huge delays of single patients, a min–max objective

involving the maximum total delay UmaxDel of all patients is used; UmaxDel is forced

to the maximum of all patient delays by constraints (22). Similarly, to be able to

enforce a smooth resource allocation along the full planning horizon, for each

resource r 2 R, the constraints (23) compute the maximum overtime UmaxOt
r and the

maximum idle time UmaxIt
r over all days of the planning horizon:
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Udel
p �Ulos

p � blosp 8p 2 P ð20Þ

Udel
p �

X

s2Sp

Ulosþ
p;s þ

X

t2T p

Utwþ
p;t 8p 2 P ð21Þ

UmaxDel �Udel
p 8p 2 P ð22Þ

UmaxOt
r �Uot

r;d;U
maxIt
r �Uit

r;d 8r 2 R; d 2 D ð23Þ

The first patient-related term in the first-stage minimization objective function

(24) is the maximum total delay UmaxDel weighted with the penalty cmaxDel. The

other patient-related terms involve the individual delays Udel
p associated with the

penalty cdel as well as the deviations from the desired admission days Uad�
p and Uadþ

p

of each patient p weighted with the coefficient cad. The remaining elements of the

objective function deal with resource-related aspects: a penalty cbedþ is imposed for

each female and male extra bed needed per day. Regarding the treatment resources,

overtime and idle time of each resource r 2 R are considered in the objective

function two ways: first, for each resource, the maximum overtime UmaxOt
r and idle

time UmaxIt
r over the full planning period are considered using the penalties cmaxOt

and cmaxIt. Second, for each day d 2 D, the overtime Uot
r;d and idle time Uit

r;d,

weighted with the penalties cotd and citd , contribute to the objective function:

mincmaxDelUmaxDel þ
X

p2P
cdelUdel

p þ cad Uad�
p þ Uadþ

p

� �� �

þ
X

w2W

X

d2D
cbedþ UfBedþ

w;d þ UmBedþ
w;d

� �

þ
X

r2R
cmaxOtUmaxOt

r þ cmaxItUmaxIt
r þ

X

d2D
cotd U

ot
r;d þ citdU

it
r;d

� �
 !

ð24Þ

4.3 Second-stage model

Considering the instructions from the first-stage model, that is, the patient admission

and discharge dates as well as the dates of the complex treatments, the second-stage

model schedules the remaining treatments and performs the detailed allocation of

patients to rooms on the wards respecting gender separation constraints.

Besides the fact that in the second-stage model, certain decisions are considered

as fixed, the main differences between the first-stage and the second-stage model are

the level of detail on which the bed resources are modeled and the fact that in the

second-stage model, all treatment groups are scheduled under consideration of their

resource requirements. As a result, assuming that in the second-stage model, the sets

of treatment groups Gres
p contains all relevant treatment groups instead of only the

subset of complex key treatments, the constraint sets (1–4) dealing with scheduling

ward stays (implying admission and discharge days) and (13–23) mainly dealing

with treatment scheduling and the allocation treatment resources also appear in the

second-stage model. In the following, we present the structurally different parts of

the second-stage model, that is, the constraints for fixing the first-level decisions, the
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model component for representing bed resources on a high level of detail and the

objective function in which the bed-related terms make use of the variables

introduced in the second-stage model.

4.3.1 Enforcing the instructions from the first-stage model

To enforce the instructions from the first-stage model in the second-stage model, we

impose the following constraints fixing the respective variables: constraints set (25)

fixes the admission day dadp and the discharge day ddisp of each patient. Assuming that

for each patient p, the set of treatment groups scheduled by the first-stage model is

denoted with Gfixed
p and that dtreatp;g corresponds to the day on which treatment group

g 2 Gfixed
p is scheduled, constraints (26) fix the respective scheduling decisions in the

second-stage model:

Xws
p;1 ¼ dadp ;Xws

p; Sj jþ1 � 1 ¼ ddisp 8p 2 P ð25Þ

Xtreat
p;g ¼ dtreatp;g 8p 2 P; g 2 Gfixed

p ð26Þ

4.3.2 Bed resources, room assignment and gender separation based on individual

rooms

In contrast to the first-stage model in which on each ward, the rooms with a common

bed capacity are aggregated, the second-stage model considers each room

individually. For each day d, the binary day-indexed room stay variables Y room
p;s;q;d

determine whether a patient p stays in room q in ward stay s; Qp;s denotes the set of

rooms which can be used by patient p for ward stay s. In analogy to the constraints

(5–7) in the first-stage model, constraints (27–29) link the Y room
p;s;q;d variables to the

ward stay start variables Xws
p;s; enforcing the allocation of a bed in a room for each

day of each ward stay:
X

q2Qp;s

X

d2D
Y room
p;s;q;d ¼ Ulos

p;s 8p 2 P; s 2 Sp ð27Þ

Xws
p;s � d þM 1�

X

q2Qp;s

Y room
p;s;q;d

0

@

1

A 8p 2 P; s 2 Sp; d 2 D ð28Þ

Xws
p;sþ1 � 1� d �M 1�

X

q2Qp;s

Y room
p;s;q;d

0

@

1

A 8p 2 P; s 2 Sp; d 2 D ð29Þ

In the second-stage model, it is assumed that a patient resides in the same room

during the full ward stay. The assignment of a room q to a patient p at her ward stay

s is represented in the binary decision variable Zroom
p;s;q ; the constraints set (30) ensures

that each patient is assigned exactly one room during each ward stay. Constraints

(31) enforce that the values of the day-indexed room assignment variables Y room
p;s;q;d are

in line with the same-room requirement.
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X

q2Qp;s

Zroom
p;s;q ¼ 1 8p 2 P; s 2 Sp ð30Þ

Y room
p;s;q;d � Zroom

p;s;q 8p 2 P; s 2 Sp; q 2 Qp;s; d 2 D ð31Þ

The gender separation requirement means that on each day in each room, all

occupants share the same gender. In the model, the binary decision variable YmRoom
q;d

is introduced; YmRoom
q;d equals 1 if room q is a ‘‘male room’’ and 0 if room q is a

‘‘female room’’ on day d. The constraints (32) and (33) enforce that for each day d

and in each room q, the gender of the room occupants is consistent with the value of

the variable YmRoom
q;d and at the same time ensure the room capacity is respected. It is

assumed that the room capacity can be extended by extra beds registered by the

variable UmBedþ
q;d for beds occupied by males and UmBedþ

q;d occupied by females. The

set of constraints (34) ensures that for each room and for each day, the upper bound

baddq for the number of extra beds is respected and that the gender of the extra bed

occupants matches the gender assignment of the rooms on each day:
X

p2Pm

X

s2Sp;q

Y room
p;s;q;d � bqY

mRoom
q;d þ UmBedþ

q;d 8q 2 Q; d 2 D ð32Þ

X

p2Pf

X

s2Sp;q

Y room
p;s;q;d � bq 1� YmRoom

q;d

� �
þ UfBedþ

q;d 8q 2 Q; d 2 D ð33Þ

UmBedþ
q;d � baddq YmRoom

q;d ;UfBedþ
q;d � baddq 1� YmRoom

q;d

� �
8q 2 Q; d 2 D ð34Þ

4.3.3 Objective function

The objective function of the second-stage model is given by (35). While the

scheduling objectives of both levels are basically identical, the objective function

(35) reflects the main differences between the models on the two levels: first, since

the admission decisions are fixed in the second stage, (35) does not consider

admission day preferences. Second, since the level of detail of the bed allocation in

the second-stage model is higher than in the first-stage model, the corresponding

term is adapted:

min cmaxDelUmaxDel þ
X

p2P
cdelUdel

p þ
X

q2Q

X

d2D
cbedþ UfBedþ

q;d þ UmBedþ
q;d

� �

þ
X

r2R
cmaxOtUmaxOt

r þ cmaxItUmaxIt
r þ

X

d2D
cotd U

ot
r;d þ citdU

it
r;d

� �
 ! ð35Þ

5 Real-world case study from a German university hospital

The research presented in this paper is based on a partnership with a German

University Hospital providing us both with a real-world dataset and with an

opportunity to discuss our assumptions and results with domain experts such as the
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case manager of the department of urology considered in our investigation. In 2011,

the case study hospital had around 36,000 admissions divided into around 25,000

elective and 11,000 emergency inpatients. Figure 2 shows the amount of elective

admissions on each ward in 2011. The department of urology (HA2200) has the

highest number of cases; Fig. 3 shows the distribution of these cases grouped by

month of admission.

We agreed with the partner hospital to base our analysis and our experiments on

the peak month March 2011 exhibiting the highest number of cases. In close

collaboration with the case manager, we prepared and validated the input data

required for our approach including two sets objective function weights representing

two different planning scenarios. The remainder of this section describes and

illustrates these input data: Sect. 5.1 deals with the cases and their CP information

automatically extracted by the pathway-mining approach sketched in Sect. 3.

Section 5.2 describes how the data regarding resource requirements and resource

capacities were obtained. Finally, Sect. 5.3 explains the planning scenarios used for

the computational experiments.

5.1 Case data and automated pathway extraction

As explained above, we conduct our investigation with the real-world data for cases

admitted in March 2011 to the department of urology of a German university

hospital. For these cases, we applied the CP mining approach proposed in Helbig

et al. (2015) and shortly sketched in Sect. 3 of this paper. Since this mining

approach operates with standardized hospital billing data according to the

§21KHEntG2 which has to be reported by each hospital in Germany, it is readily

applicable for each German hospital. The pathway-mining approach identifies

similar treatment profiles for each primary diagnosis and creates corresponding

homogenous case groups. Based on these groups, feasible intervals for treatments

and ward stays as well as order constraints are determined. Note that if only a single

case with a certain treatment profile occurs in the database, the mining approach

returns treatment chains without scheduling flexibility for treatments and ward

stays.

In total, the data in the considered month encompass 286 cases (217 male and 69

female patients) with 90 different primary diagnoses and 69 different DRGs.

2 More details about structure and containing data as well as an example dataset can be found at: http://

www.g-drg.de/cms/Datenveroeffentlichung_gem._21_KHEntgG.
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Applying the mining approach to the described dataset resulted in 229 different CP

among which 136 are based on unique treatment profiles and 93 represent profiles

occurring more than once. In total, the cases involve 1088 treatment groups and 302

ward stays; around 6% of all cases involve more than one ward stay.

Figures 4, 5, and 6 show different CP for the primary diagnosis benign neoplasm:

rectum based on a single treatment profile (Fig. 4), prostatic hyperplasia, a profile

occurring three times (Fig. 5) and the most frequent profile (Fig. 6) for the primary

diagnosis of malignant tumors of the prostate. The CP depicted in Fig. 4 exhibits

two ward stays; the first on the department of urology and the second on an ICU

(after the ICU the patient is relocated to a rehabilitation). Figures 5 and 6 exhibit a

single ward stay on the department of urology. Each CP contains a specific set of

treatments based on the OPS-Codes (operations and procedures) documented in the

billing data according to §21KHEntG. Figure 4 shows a unique CP without

scheduling flexibility for the ward stays and treatment groups, Figs. 5 and 6 depict

profiles occurring more than once exhibiting scheduling flexibility for the treatment

groups.

5.2 Resource requirements and availability

In addition to the CP structure discussed so far, information regarding required and

available resources is needed for our approach. To obtain a realistic set of

parameters, we discussed all 259 different OPS-Codes that had occurred during our

planning horizon (March 2011) with the case manager of the department for urology

who provided us with information regarding the required resources and resource

times for each code. Table 2 shows an excerpt of the required time on resource

types needed by a treatment.

Since OPS-Codes are very detailed and surgeries usually involve multiple codes,

considering each individual set of codes would typically result in a unique type of

pathway for each surgery. To avoid this, all surgery codes (starting with a ‘‘5’’)

appearing at the same day of a CP are aggregated to a single artificial code. To

obtain a robust approximation the resource requirements for such a surgery code, we

consider the maximum time a single resource unit was required for any of the OPS-

Codes aggregated to the surgery code.

This approximation is based on the assumption provided by the case manager

that all required resources need to be available for the full surgery duration. This

assumption is reflected by all of her resource requirement estimates for individual

surgery OPS-Codes. Using the maximum duration over all involved OPS-Codes,
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however, tends to overestimate the actual surgery duration: Taking all cases from

March 2011 considered in our study, on average the duration of a surgery is

overestimated by 4.6 min. In accordance with the case manager from the involved

department, we chose this slightly pessimistic estimation procedure for the surgery

duration and resource consumption instead of a more optimistic estimate to make

Fig. 4 Unique CP for benign neoplasm: rectum

Fig. 5 CP for prostatic hyperplasia occurring 3 times

Fig. 6 CP for malignant tumors of the prostate occurring 75 times
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the scheduling results more robust against uncertainty with respect to surgery

durations.

Table 3 shows an excerpt of required resource types and their required time for

some example surgeries; each surgery belongs to a primary diagnosis and a CP

variant. For example, the surgery with the primary diagnosis C61 in variant 1 is

based on the OPS-Codes 557,840 and 560,401. Using our assumptions, the required

capacity for physicians and anesthetists is 8 h (2 physicians working 4 h) and 4 h.

The case study department has a capacity of 88 patients during workdays and 73

at weekends. It has 7 single-, 5 two-, 9 three- and 11 four-bed rooms. We assume

that small rooms are not used for scheduling elective patients because of their

flexibility in handling emergencies. Based on this assumption, we reduced the

amount of available beds to 53 by keeping only the 11 four-bed rooms and 3 three-

bed rooms. With regard to the CP to be scheduled, there are four additional

departments in which beds are needed for ward stays. For these departments, we

assume a bed capacity based on the observed number patient cases available in form

of two-bed rooms.

Regarding the treatment resources, we consider scarce and special resources such

as operating rooms and the urography individually. On the one hand, this accurately

Table 2 Resource time required for OPS-Codes (excerpt)

OPS-

code

Required time on resource type (h)

Physician Nurse OR OR-

nurse

Deputy Urographya MRT Anesthetist ..

12750 0.5 0.5 ..

13341 2 2 2 ..

557840 2 9 0.75 0.75 0.75 0.75 ..

560401 2 9 4 4 4 4 4 ..

81372 0.5 1 0.5 0.5 ..

.. .. .. .. .. .. .. .. .. ..

This is a special kind of operating room located in the department of urology

Table 3 Resource time required for surgeries (excerpt)

Diagnosis

(ICD-

code)

CP-

variant

Required Resource Time (h)

Physician Deputy OR-

nurse

OR Anesthetist .

N40 22 2 2 4 2 – ..

N40 24 0,75 0,75 0,75 0,75 – ..

C61 1 8 4 4 4 4 ..

.. .. .. .. .. .. .. ..
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models resource eligibility for treatments requiring special equipment: as an

example, the central OR is eligible for 139 treatments whereas the OR of the

urology department is only eligible for 66 of these treatments. A more complex

example arises in the Urography: There are ten treatments for which both the Uro-1

and the Uro-2 resource is eligible; however, there are 19 treatments for which only

Uro-1 and 13 treatments for which only Uro-2 is eligible.

On the other hand, considering complex resources individually avoids disaggre-

gation issues such as scheduling three 4-h surgeries on a day while there are only

two OR available for 6 h on the same day. In addition, complex resources often

exhibit different daily capacities since they may be shared among different

departments. Other resources such as human resources with identical skills (e.g.,

OR-nurses) are aggregated.

In the considered planning month (March 2011), approximately 60% of all

patients were elective. Based on this observation, we assume that 60% of the total

available time of all treatment resources owned by the urology department can be

scheduled for elective patients. Furthermore, the per-day availability of shared

hospital resources such as central OR, MRT or computer tomography for the

urology department was determined based on interviews with the department case

manager. Table 4 shows an excerpt of the capacity available for scheduling elective

patients per resource type for each weekday.

5.3 Scheduling scenarios considered in the computational experiments

The computational experiments conducted with the data described above are based

on two main scenarios differing with respect to the resource allocation objectives. In

the first scenario referred to as ‘‘smooth allocation’’, the hospital aims at

establishing a smooth resource allocation throughout the planning horizon. As

noted by the case manager at our partner hospital department, a smooth resource

allocation is favored by the staff members and establishes a similar level of

Table 4 Resource capacity for elective patients (excerpt)

Resource type Resource Amount of available time (h)

Mon Tue Wed Thu Fri Sat Sun

Physician 58 58 58 58 58 15 10

OR Central OR 10 10 10 6 10 0 0

OR-HA2200 5 5 5 5 5 5 5

OR-nurse 24 24 24 24 24 5 5

Deputy 20 20 20 20 20 0 0

Urography Uro-1 5 5 5 5 5 5 5

Uro-2 10 10 10 10 10 10 10

Uro-3 8 8 8 8 8 8 8

.. .. .. .. .. .. .. .. ..
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flexibility for reacting to emergency cases on each day of the planning horizon. To

achieve a smooth allocation, the objective function coefficients associated with the

min–max objectives as well as the penalty associated with daily resource overtime

are both ten while the other objectives are smaller (see Table 5). Since extra beds on

rooms are considered as worse than idle time or patient delays, we set extra bed

penalty to five and the delay and idle time penalties to two.

In the second scenario referred to as ‘‘early allocation’’, the hospital aims at

establishing a high level of resource utilization at the beginning of the planning

horizon. The scenario can be motivated by the observation from the case manager

that the level of uncertainty affecting scheduling-relevant information regarding

patient cases and resource availability increases towards the end of the planning

horizon. This scenario is particularly useful in a setting where our approach is

embedded in a rolling horizon approach. Establishing a high level of resource

utilization at the beginning of the planning period aims at providing more flexibility

for coping with the higher amount of uncertainty towards the end of the planning

period. In addition, freeing future resource capacity can be instrumental for

admitting a higher number of elective patients. The set of objective function

coefficients for this scenario is depicted in the second row of Table 5; note that in

particular, this scenario involves a quadratic decreasing day-dependent penalty for

the idle time of resources and zero penalties for the maximum idle time and for the

deviation from admission day penalties.

6 Experimental results

The real-world data described in the previous section forms the basis of a series of

computational experiments with our hierarchical approach. The first set of

experiments, discussed in Sect. 6.1, aims at assessing the hierarchical approach

proposed in this paper. The second sets of experiments aim at discussing the results

of the two scenarios in detail.

For the experiments, the MILP models presented in Sect. 4 were implemented

AMPL; all treatments exhibiting a duration of more than 30 min (about 50% of the

treatments) were considered to form the set Gres
p of treatment groups to be scheduled

in the first-stage model. The model instances were solved with Gurobi 6.5 on an

Intel i7-3770 CPU with 3.40 GHz and 8.00 GB RAM using 6 threads. For solving

the aggregated first-stage model, the relative MIP gap tolerance was set to 1%, the

Table 5 Objective function weights in the two experimental scenarios

Scenario cmaxDel cdel cad cbedþ cmaxOt cmaxIt cotd citd

Smooth allocation 10 2 1 5 10 10 10 2

Early allocation 10 2 0 5 10 0 10
5þ 31�dð Þ2

100
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time limit was set to 2 h and the MIP search strategy was set to focus on improving

bounds. The second-stage model was solved using default Gurobi parameter

settings.

6.1 Evaluating the hierarchical approach

Compared to approaches presented in the literature, our approach addresses a very

detailed pathway-scheduling problem considering multiple ward stays, gender-

separated room assignment and treatment-specific resource eligibility. In this

section, we first compare the hierarchical two-stage approach to a monolithic MILP

formulation. Next, we evaluate the effect of ignoring the gender separation

requirement on the quality of the solution, and finally, we present experimental

results showing the importance of carefully anticipating the second-stage problem in

the first stage of our hierarchical solution approach.

6.1.1 Monolithic model vs hierarchical approach

The main reason for introducing a hierarchical approach for the pathway-scheduling

problem considered in this paper is that solving a monolithic MILP formulation of

the problem with a standard solver is not possible in a reasonable amount of time for

realistically sized problem instances. Table 6 depicts the results from experiments

with both a monolithic model and the hierarchical approach proposed in Sect. 4 for

the dataset described in Sect. 5. For the computation with the monolithic model, we

allowed for a maximal solution time of 12 h and varied the maximum allowed

deviation �bdevAd of the desired admission from 3 up to 10 days. The monolithic

model instances exhibit 19,500 rows, 112,000 columns and 700,000 nonzeros; the

instances of the first-stage model in the hierarchical approach contain 19,000 rows,

29,000 columns and 530,000 nonzeros; the instances of the second-stage model

contain 2,200 rows, 6,200 columns and 25,000 nonzeros.

The results in Table 6 show that within the desired solution time of 2 h, the

MILP solver was unable to find a feasible solution to any of the instances of the

monolithic model. For instances permitting a higher deviation from the desired

Table 6 Integrated vs. hierarchical approach

Scenario Monolithic Hierarchical Monolithic vs

hierarchical
�bdevAd Integer

(h)

Total

(h)

Gap

(%)

Objective Total

(m)

Objective Objective gap (%)

Smooth

allocation

3 7.25 12 1.03 7856 5,2 8344 6.21

5 11.6 12 4.14 8096 9,1 8299 2.50

10 – 12 ? 72,6 8101 –

Early

allocation

3 3.5 3.9 1 25160 0,6 26,030 3.46

5 – 12 ? 3,2 25,549 –
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admission day, this even holds after 12 h of solution time: it was only possible to

find integer feasible solutions of allowed admission day deviations of up to 5 days

in the smooth allocation scenario and for up to 3 days in the early allocation

scenario. Furthermore, only for a single instance, a solution meeting the predefined

1% optimality gap is found within 12 h. For the hierarchical approach, the solution

time is less than 10 min for all but one instance for which the solution time is less

than 73 min.

The last column in Table 6 aims at evaluating the price at which this considerable

decrease in solving time comes: For those instances for which a feasible solution

could be found for the monolithic model, it depicts the percentage objective

function gap between the solution obtained with the hierarchical approach and the

best integer solution found for the monolithic model. It turns out that for this gap is

between 2.5 and 6.2%; the highest gap is observed in the smooth allocation scenario

with the smallest flexibility regarding the deviation from the desired admission day.

The objective function gaps between the monolithic and the hierarchical approach

can mainly be attributed to the fact that the first stage model determining the

cornerstones of the CP schedule is based on an aggregate representation of room

assignments and only considers the resource requirements for complex treatments.

However, as will become clear in the next section, in contrast to the monolithic

model, the hierarchical approach allows obtaining high-quality feasible solutions

with a fully flexible admission date within a time limit of 2 h.

6.1.2 The effect of ignoring gender separation

Compared to other pathway-scheduling approaches, our model operates on a higher

level of detail. With regard to treatments, our model considers the eligibility of

resources based on resource properties (qualifications, available equipment) instead

of characterizing resources using a single resource type (nurse, operating room) and

stating requirements in terms of these resource types. While the advantage of this

more realistic representation for matching treatments and resources cannot be

evaluated experimentally in a straightforward way, in the following, we discuss

results from comparing different levels of detail of representing the allocation of

bed resources. To evaluate the relevance of considering gender-separated rooms, we

compare the solution obtained with our approach (a priori consideration of gender

separation) to a solution obtained by first scheduling pathways ignoring the gender

separation requirement and afterwards determining a gender-separated room

assignment is performed based on these schedules (a posteriori consideration of

gender separation).

Table 7 shows the results from using this comparison for two instances, both

based on the ‘‘early bed allocation’’ scenario, with an increased penalty of 50 for

extra beds: in the first instance, the number of beds and rooms in the department of

urology is as described in Sect. 5 (11 four-bed rooms and 3 three-bed rooms) while

in the second instance, only 10 four-bed rooms are considered. It turns out that in

both instances, the overall solution quality is better and the number of needed extra

beds is smaller when considering gender separation a priori. While the objective
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function differences are comparably small, note that a significant amount of extra

beds typically represents solutions which are not implementable in practice.

6.1.3 The role of anticipation in the hierarchical approach

In our hierarchical approach, we carefully designed the anticipation of the second-

stage problem in the first stage. As an example, we propose to consider all treatment

groups (not only those to be scheduled in the first-stage model) to anticipate the full

set of precedence constraints in the first-stage model. In our experiments, this

anticipation turned out to be crucial: without this anticipation, almost all the second-

stage model instances were infeasible. As depicted in Table 8 showing results from

based on the ‘‘early allocation’’ scenario with the reduced room capacity setting

described above, it is also important to anticipate the gender separation requirement

for patient rooms: if the gender separation anticipation is dropped from the first-

stage model, the final solution obtained from the second-stage model involves

considerably more extra beds.

6.2 Smooth resource allocation scenario: detailed results

In the first scenario to be discussed in detail, the objective structure favors a smooth

allocation of resource utilization over the planning horizon. Table 9 shows the

solution times and objective function values for different settings of the parameter
�bdevAd limiting the deviation from the preferred admission day from 0 to 30. The

results show that the solution time of the first-stage model is very sensitive to the

flexibility regarding the admission day: The model with a flexibility of 5 days is

Table 7 Amount of additional beds respecting and ignoring gender restrictions

Instance Considering gender a priori Considering gender a posteriori

A priori A priori A posteriori

Extra beds Objective Extra beds Objective Extra beds Objective

Given capacity 0 24,284 1 24,194 3 24,294

Reduced capacity 19 25,414 16 25,181 28 25,781

Table 8 Comparing the amount of extra beds

�bdevAd With gender anticipation Without gender anticipation

Extra beds Objective value Extra beds Objective value

10 26 26,019 37 26,577

30 19 25,414 29 26,053
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solved in less than 10 min whereas the model with 10 days needs an eight times

higher solution time. Surprisingly, the solution time of the last instance (30 days) is

shorter than for the 10-day instance. We suspect that that this is due the fact that the

increased admission day flexibility avoids resource bottlenecks. The second-stage

model could easily be solved in less than 20 s in all cases but the first.

Table 10 provides more details regarding the effects of increasing admission day

flexibility: Even a small amount of flexibility considerably improves resource- and

patient-related performance indicators. The total amount of overtime for OR, OR-

nurses and urography is reduced by around 92% in case of allowing the admission

day to deviate from the desired day by 3 days and up to 96% in the 30-day case.

Considering the OR values in detail (two central OR and one ward-owned OR)

shows that the total overtime in the 30-day case is allocated to both central OR with

a maximum overtime of 0.7 h (the maximum overtime in the zero-days-case was

6 h). The ward-owned OR which cannot perform all kinds of surgeries needs no

additional overtime at all in the 30-day case anymore.

With an increasing flexibility, the idle times of the OR are highly reduced. This

contrasts with the comparably small change of idle time for OR-nurses and

urography—we suspect that these resources are not scarce. Taking a closer look, we

can confirm this observation for OR-nurses and for one of the urography resources.

The other urography, however, forms a scarce resource since it is eligible for a

wider range of treatments. With regard to patient-related indicators, the maximum

delay is reduced from 3 to 0 days and the total amount of all delays decreases from

46 to 0 days. On the other hand, the distance to the preferred admission day

increases. Figure 7 depicts the frequencies of the deviations from the desired

admission days for all patients for the last instance: from all 286 patients, 231 can be

admitted at their preferred day; 7% of all patients are admitted before and 11% are

admitted after their preferred admission day.

Figure 8 visualizes the allocation profiles of the resource type physician,

operating room and urography as given by empirical ex-post data (left hand side)

and after the scheduling with an admission day flexibility of 30 days (right hand

side). The blue background depicts the available capacity of treatment time and the

visible area corresponds to the remaining capacity. The black line on top is the goal

Table 9 Solving time, gaps and objectives in the smooth resource allocation scenario

�bdevAd Solution time 1st model

(s)

Gap

(%)

Objective Solving time 2nd model

(s)

Gap

(%)

Objective

0 4 1 9228 20 0 9066

3 310 1 8493 1 0 8212

5 543 1 8435 1 0 8150

10 4352 1 8264 1 0 7919

30 3069 1 8253 1 0 7898
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ratio of 80% capacity allocation. The red and the green areas are the allocated

resource times at each day.

For each resource, the allocation obtained by our approach is very smooth

compared to the empirical data. The resource allocation of the physicians shows an

even workload distribution. Given the large blue area, considering only elective

patients, physicians and OR-nurses obviously do not form scarce resources.

Regarding the combined allocation profiles of all operating rooms, the results

obtained by our approach exhibit a better fit to the available capacity profile with

less overtime occurring during the month compared to the empirical data. Since

there is no idle time for the central OR, the visible available capacity can be

attributed exclusively to the ward-owned OR.

To quantify the smoothing effect obtained by our scheduling approach, let us

consider the standard deviation of the daily allocation of each resource: For

physicians, the standard deviation change from 12.7 to 7.1, for operating rooms

from 7 to 4, for OR-nurses from 8.4 to 5.2 and for the urography from 4.6 to 2.2.

Given these values, it can be summarized that the resource allocation is successfully

smoothed in this scenario. Furthermore, even under consideration of gender

separation, no extra beds are required to hospitalize all 286 elective patients.

Table 10 Key indicators in the smooth resource allocation scenario

Indicator �bdevAd

0 3 10 30

Maximum patient delay 3 5 0 0

Total patient delay 46 23 0 0

Maximum overtime

OR 6 1.8 0.7 0.7

OR-nurse 2 0 0 0

Uro 3.5 0.75 0.2 0

Maximum idle time

OR 12 7.8 4.2 4.7

OR-nurse 19.2 10.2 8.7 7.7

Uro 11.5 10.3 10.5 9.5

Total overtime

OR 36.8 2 0.85 1.75

OR-nurse 3.6 0 0 0

Uro 4.2 1.25 0.23 0

Total idle time

OP 74.9 40.5 39 39.9

OR-nurse 135.7 132.8 132 132

Uro 192.7 189.9 188.8 188.6

Extra male beds 1 0 0 0

Extra female beds 1 0 0 0
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6.3 Early resource allocation scenario: detailed results

While the scenario presented in the previous section aimed at obtaining a smooth

allocation of resources, the present section focuses on a scenario in which

scheduling favors a high resource utilization at the beginning of the planning

horizon. As in the first scenario, we vary the maximum allowed deviation from the

preferred admission day by changing the parameter
�bdevAd from 0 to 30 days for the first-stage model. Table 11 shows the objective

function values, solving times and gaps for each considered value of �bdevAd. It turns
out that even the largest possible instance with completely flexible patient admission

days was solved in less than 2 h. We suspect that this considerable decrease in

solving time compared to the first scenario results from the fact that in the second

scenario, the objective function is less symmetric. For all variants, the second model

is solved to optimality in less than 10 min.

Table 12 gives an overview on how selected indicators are affected by increasing

admission date flexibility from 0 up to 30 days. The patient-related indicators

(maximum and individual delay) can be reduced to zero. The resource-related

indicators, however, exhibit a more complex pattern: while the total over- and idle

time is reduced from the 0-day to the 10-day case, these values increase in the

30-day case. The reason for this behavior is patients shifted from the end of the

scheduling horizon to the beginning to avoid most expensive idle times on all

resources.

Figure 9 shows the absolute frequencies of the deviations between scheduled and

the preferred admission days for the case of a fully flexible admission day. The

scheduled admission days deviate up to 28 days from the preferred admission day.

65% (186) of the patients are admitted earlier then preferred; 30% (80 patients) are

admitted more than 10 days earlier. On average, each patient is 4.5 days earlier

admitted.

The effect of the early resource allocation is visualized in Fig. 10 showing the

time-dependent resource allocation profile of physicians, OR, OR-nurses and

urography based on historical ex-post data (left hand side) as well as based on

scheduling with full admission day flexibility (right hand side). The results show

that the goal of establishing a high resource utilization at the beginning of the

planning horizon could be achieved.
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Resource Allocation Given by Data Resource Allocation after Scheduling

Resource Type: Physician

Resource Type: Operating Room

Resource Type: OR-Nurse

Resource Type: Urography

0

20

40

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31U
se

d 
Ca

pa
ci

ty
 (h

)

Day

0

20

40

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31U
se

d 
Ka

pa
ci

ty
 (h

)

Day

0

10

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31U
se

d 
Ca

pa
ci

ty
 (h

)

Day

0

10

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31U
se

d 
Ka

pa
ci

ty
 (h

)
Day

0

10

20

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31U
se

d 
Ca

pa
ci

ty
 (h

)

Day

0

10

20

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31U
se

d 
Ka

pa
ci

ty
 (h

)

Day

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31U
se

d 
Ca

pa
ci

ty
 (h

)

Day

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31U
se

d 
Ka

pa
ci

ty
 (h

)

Day

Fig. 8 Results of smooth resource allocation with 10-day deviation

Table 11 Solving time, gaps and objectives aiming on early high resource allocation

�bdevAd Solving time 1st model

(s)

Gap

(%)

Objective Solving time 2nd model

(s)

Gap

(%)

Objective

0 1 1 27,982 13 0 27,384

3 34 1 26,490 1 0 26,030

5 190 1 26,062 4 0 25,549

10 870 1 25,160 24 0 24,679

30 4488 1 24,726 506 0 24,186
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Since at the beginning of the planning horizon, the penalty for idle time

substantially outweighs the penalties for overtime, the scarce OR resources tend to

exhibit overtime while other resources are highly utilized. Note that an even higher

utilization is prevented by the scarcity of bed resources at the admission ward, see

Fig. 11 for a visualization of the bed allocation over time. At the first weekend

starting at day 5, the OR exhibits a high amount of idle time: in this case, physicians

and OR-nurses form the scarce resources, and reducing OR idle time would induce

overtime for several resources at once. Interestingly, the scheduling results on the

first weekend also reflect the fact that in contrast to OR, the urography resources do

not require the presence of OR-nurses: their utilization does not decrease as heavily

as the OR utilization; furthermore, given the reduced physician availability on

Sundays, the urography utilization is lowest on Sunday.

Table 12 Key indicators in the high early allocation scenario

Indicators �bdevAd

0 3 10 30

Maximum patient delay 6 1 0 0

Total patient delay 45 2 0 0

Maximum overtime

OP 7 3.8 2.4 4.7

OR-nurse 1.3 0.4 0.1 0.3

Uro 3.5 0.2 0.4 0.7

Total overtime

OP 39.1 13.1 8.6 14.8

OR-nurse 3.6 0.8 0.1 0.3

Uro 4.5 0.3 0.2 0.3

Total idle time

OP 77.2 51.3 46.9 52.9

OR-nurse 135.7 132.8 132.2 132.4

Uro 193.2 189 189.6 190

Extra male beds 1 0 4 2

Extra female beds 1 3 1 0
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Summarizing the results of this scenario, the desired maximization of the

resource allocation at the beginning of the planning horizon can be achieved.

However, putting the described results into practice may turn out to be risky since in

Resource Allocation Given by Data Resource Allocation after Scheduling

Resource Type: Physician
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case of a rate of arriving emergency patients higher than the expected ratio of 40%,

capacity bottlenecks will arise at least during the first week. Nevertheless, our

scheduling approach can be used to identify such bottlenecks and to take measures

to avoid them or to mitigate their consequences. In the current case, operating rooms

and OR-nurses seem to be the scarcest resource types. This becomes particularly

obvious after scheduling, showing noticeable available capacity only during the last

days of the planning horizon.

7 Conclusion

This paper presents a hierarchical MILP approach for CP scheduling aiming at

practical applicability in several ways. The CP information including the pathway

constraints can be automatically extracted from standardized hospital billing data.

The data-driven character of our approach substantially reduces the amount of work

to be performed to obtain the CP information needed for scheduling. Moreover, the

CP scheduling approach considers all relevant resources on an adequate level of

detail; in particular, it models bed assignment on the level of rooms and allows

considering treatment resources individually to avoid disaggregation problems of

complex resources such as operating rooms. Furthermore, it considers several

practically relevant aspects such as multiple ward stays per hospitalization, gender-

separated rooms and eligibility of resources for treatments (e.g., special equipment

in operating rooms needed for a certain surgery or special qualifications of nurses).

To support a broad range of application scenarios and hospital-specific objective

structures, our approach employs a multi-criteria objective function accounting for

both patient- and hospital-related objectives. Since the detailed representation of

practically relevant aspects yields complex large-scale model instances, we propose

a carefully designed hierarchical two-stage approach involving anticipation

components aligning the first-stage solution with aspects relevant to the second-

stage problem.

The experimental results based a case study with real-world data involving a

planning horizon of 30 days, 1088 treatments and 302 ward stays of 286 patients

show that our approach is capable of obtaining high-quality solutions within a

reasonable amount of time: even the most complex instances in which the admission

days of the patients can be freely chosen can be solved within less than 90 min.

Furthermore, the detailed evaluation shows that our model is capable of considering

different scenarios such as achieving a smooth allocation of resources over the

planning horizon and establishing a high resource allocation in the beginning of the

horizon.

The results presented in this paper offer multiple opportunities for future

research: The robustness of the schedules obtained with our approach could be

assessed by a simulation study accounting for sources of uncertainty such as such as

emergency patients, stochastic treatment times and short-term resource unavail-

ability. Moreover, evaluating our approach in additional settings would be

instrumental for understanding in how far the results presented in this paper can

be generalized. From a practical perspective, the main goal of our efforts is to
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embed our model into the information systems of our partner university hospital to

provide decision support for hospital-wide scheduling of clinical pathways. While

we are aware that this goal is presently out of reach mainly due to the present

organizational structure in hospitals and due to a lack of integrated information

systems, we believe that providing an approach that is data-driven and considers

many practically relevant aspects is a step in the right direction.
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surgical case sequencing problem. International Journal of Production Economics 119: 354–366.

Cardoen, Brecht, Erik Demeulemeester, and Jeroen Beliën. 2009b. Sequencing surgical cases in a day-
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Pfade. Der Orthopäde 36: 516–522. https://doi.org/10.1007/s00132-007-1098-z.
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