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Abstract
The increasing demand for versatile graphene-based materials, incorporating semimetal nanoparticles (NPs), is driving 
contemporary societies towards platforms that harness solar radiation for biocidal activity, de-icing, and photodegradation. 
This study investigates the photoinduced antibacterial activity, de-icing, and photocatalytic properties of Cu-doped TiO2/
Ultraviolet (UV)-Laser-Induced Graphene (LIG). Cu-doped TiO2/UV-LIG exhibits considerable promise when subjected 
to solar radiation, particularly in applications such as de-icing, photodegradation and antibacterial efficacy. Characterized 
by nanopores and a surface area of 396 m2/g, Cu-doped TiO2/UV-LIG achieved a noteworthy temperature of 91.7°C under 
1 SUN irradiance, thus establishing a significant milestone in the field of LIG. Initially, it demonstrated exceptional phenol 
degradation efficiency at 86%, and this efficiency remained noteworthy at 83% even after undergoing five cycles of use, 
thus emphasizing its enduring degradation capacity. Moreover, at 0.5 SUN intensity, it demonstrated remarkable efficacy in 
eradicating over 99.999% of foodborne pathogens.
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1  Introduction

Semiconductor nanoparticles (NPs) hold great promise for 
driving light-induced processes like solar fuel generation, 
photocatalytic pollutant remediation, and converting solar 

energy into electricity [1–3]. Harnessing these materials 
alongside light offers a pathway to reduce reliance on fos-
sil fuels and address pressing environmental challenges [4]. 
However, the persistent challenge of severe recombination of 
photogenerated charge carriers, especially in semiconductors 
with multiple cations, remains a significant bottleneck [4, 5]. 
This issue often results in shortened lifetimes of photoex-
cited electrons and holes, leading to reduced quantum effi-
ciency in various light-driven applications. Conversely, the 
combination of semiconducting oxides with laser-induced 
graphene (LIG) has garnered significant interest recently 
[6–9]. This is partly due to LIG's ability to enhance charge 
separation and transport through its honeycomb sp2 network 
structure. Because of their large surface area and distinctive 
characteristics, these materials are ideal for uses like pho-
tothermal heating and solar-triggered photocatalysis; fur-
thermore, LIG exhibits outstanding anti-biofouling proper-
ties and has been utilized in antibacterial devices activated 
through electrothermal or photothermal means. [10–12]. 
The bactericidal and photothermal heating capabilities of 
LIG can be improved by embedding semimetal NPs in the 
graphene sheets of LIG surface to form an interconnected 
open-cell network [13–15]. Ultraviolet (UV) lasers can be 
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used to create fine and precise graphene patterns with a high 
surface area and form metal oxide nanoparticles (MONPs) 
on the surface. UV-LIGs, as compared with traditional 
LIGs produced using visible or infrared lasers, offer several 
advantages and unique properties, including reduced thermal 
damage to the substrate or target material [16–18].

In this context, high-surface area Cu-doped TiO2/UV-
LIG exhibiting an excellent photo-based antibacterial per-
formance was synthesized using UV-pulsed laser. Titanium 
dioxide (TiO2), a semiconductor material, exhibits photo-
catalytic activity under UV light, and the addition of Cu 
enhances antibacterial and photocatalytic properties. There-
fore, the bimetallic Cu-doped TiO2 materials produced in 
this study exhibited an outstanding photocatalytic perfor-
mance [19, 20]. Furthermore, the incorporation of large 
surface area graphene extends the light absorption range of 
traditional TiO2 photocatalysts, allowing them to respond to 
both UV and visible light [21, 22]. The photodegradation, 
de-icing, and antibacterial efficacy of the prepared Cu-doped 
TiO2/UV-LIGs with different surface areas were thoroughly 
assessed under simulated solar irradiation.

2 � Materials and Methods

2.1 � Materials

All reagents were obtained from commercial suppliers and 
used without further purification. A 125-µm thick commer-
cial PI film was provided by DuPont™ Wilmington (Wilm-
ington, DE, USA). CuCl2 and TiCl4 solutions (1 wt. %) were 
obtained from Sigma-Aldrich (St. Louis, MO, USA). The 
laser beam was delivered using a Galvano scanner (Hur-
rySCAN III 14, SCANLAB, Pucheim, Germany) and an 
F-θ lens with a 105.9 mm focal length (S4LFT4100/075 
Telecentric Scan Lens, Sill Optics GmbH, Wendelstein, Ger-
many). Table S1 (Online Resource 1) provides the Galvano 
scanner specifications.

2.2 � Fabrication of the Cu‑Doped TiO2/UV‑LIG 
Composite Films

Figure 1 schematically depicts the Cu-doped TiO2/UV-LIG 
composite preparation process. Figure S1 (Online Resource 
1) shows photographic images and a diagram of the cus-
tomized pulsed laser system operating at a wavelength of 
355 nm. Table S2 (Online Resource 1) lists the specifications 
of the 355 nm UV pulsed laser. The Cu-doped TiO2/UV-LIG 
composite films were fabricated using a unidirectional laser 
processing strategy, as shown in Fig. 1a. An initial laser 
irradiation, set at a power of 1.2 W and scanning speed of 
60 mm s–1, at room temperature (approximately 23–25 °C) 
was employed to create a hydrophilic and porous pattern 

on the LIG surface, as depicted in Fig. 1b. Subsequently, 
the UV-LIG surface was treated with 2.5 μL of 1 M CuCl2 
and 5 μL of 1 M TiCl4, as illustrated in Fig. 1c. A second 
UV laser irradiation on the metal chloride solution-coated 
UV-LIG substrate can induce the hydrothermal synthesis of 
MONPs [23, 24]. Copper-doped TiO2 NPs were uniformly 
dispersed on the UV-LIG using secondary laser irradiation. 
The dynamic fluence and overlapping factor ( O

f
 ), which 

regulate the UV-LIG shape as well as the distribution and 
size of NPs, can be easily controlled by adjusting the laser 
scanning speed. Table S3 (Online Resource 1) lists the laser 
beam conditions used to fabricate the Cu-doped TiO2 /UV-
LIG samples. To examine the changes in the shape and 
chemistry of the Cu-doped TiO2/UV-LIG influenced by 
the dynamic fluence and O

f
 , the samples were categorized 

into three types according to their corresponding dynamic 
fluence, namely, low fluence (13  J/cm2 at 100 mm  s–1), 
medium fluence (21.66 J/cm2 at 60 mm s–1), and high flu-
ence (65 J/cm2 at 20 mm s–1) samples. Figure 1d shows a 
diagram showing the Cu-doped TiO2 NPs/UV-LIG with 
antimicrobial properties based on synergistic effect includ-
ing graphene edge, photothermal heating and reactive oxy-
gen species (ROS).

2.3 � Characterizations

The morphologies of the Cu-doped TiO2/UV-LIG sam-
ples were examined using field-emission scanning electron 
microscopy (FE-SEM; TESCAN MIRA 3 LMH In-Beam 
detector, Brno, Czech Republic). The compositions and 
chemical bond states of the Cu-doped TiO2/UV-LIG sam-
ples were analyzed using X-ray photoelectron spectros-
copy (XPS; Multilab 2000, THERMO VG SCIENTIFIC, 
Waltham, MA, USA.) A Raman spectrometer (NRS-5100, 
JASCO International Co., Ltd., Tokyo, Japan), employing 
a 532-nm excitation line, was used to further confirm the 
formation of the Cu-doped TiO2/UV-LIG composites and 
characterize their properties. The surface areas and pore 
sizes of the samples were quantified using an Autosorb IQ 
instrument (Quantachrome, Boynton Beach, FL, USA).

2.4 � Photodegradation Experiments

A primary 1000 ppm-concentration solution was carefully 
prepared by dissolving 1 g phenol (Sigma-Aldrich, purity 
99%) in 1 L distilled water. This solution was stored in a 
light-impervious desiccated environment to prevent any 
unintended reactions that could compromise its concen-
tration. Subsequently, a synthetic wastewater solution 
was produced by diluting the phenol stock solution with 
distilled water to achieve the desired concentration. The 
pH of this solution was adjusted using diluted sulfuric 
acid or sodium hydroxide solutions. The resulting solution 
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was introduced into the reactor, where a specific mass of 
the photocatalyst was incorporated. Samples (4 mL) were 
extracted at regular intervals of 30 min for subsequent 
analysis. All samples underwent a 15-min centrifuga-
tion process prior to analysis using a tabletop centrifuge 
(DAIGGER) to separate the suspended catalyst. A 2.5 mL 
aliquot of the centrifuged sample was subjected to fur-
ther analysis. The photodegradation efficacy was further 
assessed using a high-performance liquid chromatogra-
phy (HPLC) system employing a ZORBAX 300SB-C18 
(4.6 mm × 250 mm × 5 μm) column. The phenol removal 

efficiency under a solar simulator was determined by eval-
uating the phenol peak area obtained from the HPLC data 
using Eq. (1):

where C0 and Ct denote the initial concentration of phenol 
and its concentration after time t during the catalytic reac-
tion, respectively.

(1)Phenol degradation efficiency (%) =

(

1−
Ct

C
0

)

100

Fig. 1   Fabrication process of the Cu-doped TiO2/UV-LIG compos-
ites: a schematic illustrating the laser pulse spot, b first irradiation 
of the PI film to produce porous UV-LIG, c second laser irradiation 

with TiCl4 and CuCl2 solutions on UV-LIG for the fabrication of Cu-
doped TiO2 NPs, and d schematic illustration of the antimicrobial 
UV-LIG composites containing Cu-doped TiO2 NPs



	 International Journal of Precision Engineering and Manufacturing-Green Technology

1 3

2.5 � Bacterial Cultures

E. coli (O157:H7), B. cereus (NCTC 7464), and S. typhimu-
rium (ATCC 14028) were acquired from the National Col-
lection of Type Cultures (Colindale, London, UK) and the 
American Type Culture Collection (Manassas, VA, USA), 
respectively. These strains were stored in 30% (w/v) glyc-
erol (Fisher Scientific, Itasca, IL, USA) at –80 °C. Subse-
quently, the E. coli, B. cereus, and S. typhimurium cultures 
were streaked and incubated for 24 h at 37 °C on tryptic soy 
agar (TSA, Difco, Detroit, MI, USA). Single colonies of 
each bacterium were then transferred to 50 mL tubes con-
taining 30 mL tryptic soy broth (Difco, Detroit, MI, USA) 
and incubated overnight at 37 °C under shaking at 150 rpm. 
Each incubated cultured cell suspension was centrifuged 
at 4000 rpm for 10 min at 4 °C and washed twice using a 
sterile 0.85% saline solution to obtain purified cell pellets. 
The resulting cell pellets were resuspended and diluted to 
approximately 7 log CFU/mL in a sterile 0.85% saline solu-
tion, which served as the inoculum solution for subsequent 
experiments.

2.6 � Treatment of Foodborne Pathogens Using 
the Cu‑Doped UV‑LIG Composite Films

The three Cu-doped UV-LIG composite films were treated 
using an inoculum solution of E. coli, B. cereus, and S. typh-
imurium to evaluate their inactivation effect on foodborne 
pathogens. A 100 μL aliquot of each inoculum solution was 
applied to the prepared LIG film surfaces (1 cm × 1 cm) and 
exposed to 0.5 SUN for durations of 1 min and 5 min. An 
inoculum solution without the Cu-doped TiO2/UV-LIG com-
posite film treatment was used as the control.

2.7 � Microbiological Analysis

After treatment with the MONP-LIG composite films, the 
inoculum was transferred to a sterile glass test tube for recov-
ery. Each recovered inoculum solution was serially diluted 
using sterile 0.85% saline. The microbial counts for E. coli 
and B. cereus and for S. typhimurium were determined using 
mannitol egg yolk polymyxin (MYP; Oxoid, Basingstoke, 
Hampshire, UK) and xylose lysine deoxycholate agar (XLD; 
Difco Laboratories, Detroit, MI, USA), respectively. The 
MYP and XLD plates were incubated at 37 °C for 24 h. Each 
microbial count was performed in triplicate and expressed 
as log CFU/mL.

2.8 � Statistical Analysis

All experiments were conducted thrice using a completely 
randomized factorial experimental design. The results are 
presented as a mean ± standard deviation. One-way analysis 

of variance was conducted using SPSS software (Statisti-
cal Package for the Social Sciences, version 19; SPSS Inc., 
Chicago, IL, USA), and Duncan’s multiple range test was 
employed as a post-hoc test. The level of significance was 
set at p < 0.05.

3 � Results

3.1 � Morphological Characterizations

The SEM images in Fig. 2a show the presence of relatively 
large microscale Cu-doped TiO2 nanoparticles produced 
using a high laser fluence on the outer surface. A higher 
resolution examination revealed the presence of intercon-
nected Cu-doped TiO2 NPs, which contributed to the sub-
stantially porous structure. Figure 2b shows that Cu-doped 
TiO2 fabricated using a medium laser fluence formed on 
the porous structure. The well-developed porous UV-LIG 
shown in Fig. 2c, fabricated using a low laser fluence, exhib-
its interconnected TiO2 NPs on the outer surface. Moreover, 
nanopores (< 1 nm) containing Cu-doped TiO2 nanoparticles 
were formed.

3.2 � Chemical Characterizations

Figure 3 shows the graphitic characteristics of the Cu-doped 
TiO2/UV-LIG composites. Each sample was measured thrice 
to obtain their Raman spectra. The Raman spectrum of Cu-
doped TiO2/UV-LIG exhibits three major peaks. The D peak 
(ID) appears at approximately 1330 cm–1, indicating the pres-
ence of numerous defects or disorders. The G peak (IG) at 
1580 cm–1 represents the in-plane vibrational mode of sp2 
C atoms, whereas the 2D peak (I2D) at 2700 cm–1 indicates 
a double resonance process involving two phonons [25–27]. 
The IG peak broadened and shifted to lower wavenumbers, 
indicating defective graphene sheets with a significant num-
ber of edge sites and structural defects [27]. The I2D peak 
also broadened and split into multiple peaks, suggesting the 
presence of multiple graphene layers [27–29]. The D and 
G peaks intensity ratio (ID/IG) is commonly used to gauge 
the degree of disorder or defects in the graphene lattice [28, 
29]. The I2D/IG ratio also enables the assessment of the qual-
ity and structural properties, number of layers, and stacking 
order of graphene [13–15]. The I2D/IG intensity ratios for 
various graphene layers (> 4, triple, double, and single) were 
0.07, 0.30, 0.8, and 1.6, respectively [30]. Table 1 lists the 
ID/IG and I2D/IG ratios and in-plane crystallite size (La) of 
the LIG samples derived from the Raman peaks. The ID/IG 
ratio and Raman excitation laser energy (λ1 = 532 nm) can 
be used to determine La (Eq. (2)) [31, 32]:
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Fig. 2   FE-SEM images of Cu-doped TiO2/UV-LIG prepared using a high, b medium, and c low laser fluence levels

Fig. 3   Raman spectra of the Cu-doped TiO2/UV-LIG samples fabricated using a high, b medium, and c low laser fluences
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Figure 4a‒c respectively show the XPS C 1 s, Ti 2p, and Cu 
2p spectra. The C 1 s XPS peak of graphene oxide in Fig. 4a 
exhibits distinct components at approximately 284.8  eV 
(C–C), 286 eV (C–O–C), and 288.5 eV (O–C=O), represent-
ing different C environments [13–15, 25]. The C–C peaks 

(2)L
a(nm) =

(

2.4 × 10
−10

)

λ4
1

(

I
D
∕I

G

)−1
.

indicate the presence of sp2-hybridized C atoms within the 
graphene lattice, while the C–O peaks indicate that C atoms 
bonded to O, which is characteristic of epoxide, hydroxyl, and 
carboxyl functional groups [13–15, 25]. The C=O component 
corresponds to carbonyl groups. The Ti 2p XPS spectrum in 
Fig. 4b exhibits the Ti 2p3/2 and Ti 2p1/2 binding energies at 
459.15 and 464.85 eV, respectively, which was attributed to 
Ti4+ in TiO2 [33, 34]. The high-resolution Cu 2p XPS data in 
Fig. 4c shows binding energies corresponding to CuO, with 
a dominant Cu 2p peak at approximately 934.7 eV (Cu 2p3/2 
orbital) [35, 36]. Additionally, the spectrum exhibits a consist-
ent satellite peak at a higher binding energy of approximately 
945 eV. The Cu 2p1/2 peak appears at 954.7 eV [35, 36]. Fig-
ure 4 also presents the results of the Brunauer–Emmett–Teller 
(BET) surface area analyses, including the cumulative surface 
areas (Fig. 4d), cumulative volumes (Fig. 4e), and N2 adsorp-
tion–desorption isotherms of the samples (Fig. 4f). The BET 
specific surface area was normalized and calculated using 
Eq. (3) [37]:

where P/P0 is the relative pressure, Vm is the volume of 
the adsorbed gas (N2), and C is the BET constant used to 

(3)

P

P
0

V
(

1−
P

P
0

) =
1

VmC
+

C−1

Vm
×

P

P
0

Table 1   Parameters obtained from the Raman spectra

I
D
∕I

G
 , I

2D
∕I

G
 , and L

a
 represent the intensity ratio of the D and G 

bands, intensity ratio of the 2D and G bands, and in-plane size of the 
graphitic crystallites, respectively

Samples I
D
∕I

G
I
2D
∕I

G
L
a
(nm)

1. Cu-doped TiO2/UV-LIG (High) 1.03 0.22 18.66
2. Cu-doped TiO2/UV-LIG (High) 0.93 0.18 20.67
3. Cu-doped TiO2/UV-LIG (High) 0.97 0.20 19.82
1. Cu-doped TiO2/UV-LIG (Medium) 1.11 0.51 17.32
2. Cu-doped TiO2/UV-LIG (Medium) 1.05 0.57 18.31
3. Cu-doped TiO2/UV-LIG (Medium) 0.85 0.56 22.62
1. Cu-doped TiO2/UV-LIG (Low) 0.94 0.64 20.45
2. Cu-doped TiO2/UV-LIG (Low) 1.11 0.61 17.32
3. Cu-doped TiO2/UV-LIG (Low) 0.95 0.62 20.24

Fig. 4   XPS spectra of Cu-doped TiO2/UV-LIG (Low): a C 1 s, b Ti 2p, and c Cu 2p. d Cumulative surface area, e cumulative volume, and f N2 
adsorption–desorption isotherms of the samples
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evaluate the volume change of the adsorbed gas relative to 
the pressure change. Table 2 lists the specific surface areas, 
total pore volumes, and average pore radii of the samples. 
The surface area increased with a decreasing dynamic flu-
ence, with Cu-doped TiO2/UV-LIG (Low) exhibiting the 
highest specific surface area of 396 m2 g–1.

3.3 � Application of Cu‑Doped TiO2/UV‑LIG 
for De‑icing and Photodegradation

Graphene absorbs a significant proportion of incoming pho-
tons when exposed to sunlight, which leads to electronic 
excitation and heat generation (Fig. 5a). UV-LIG rapidly 
absorbs and distributes thermal energy when exposed to sun-
light [18, 38]. TiO2 NPs permeate into graphene in the pres-
ence of sunlight, thereby contributing to the photothermal 
effect. TiO2 can also absorb UV light and, to a lesser extent, 

visible light, generating electron–hole pairs [39–41], which 
can be harnessed to prevent ice formation on surfaces. More-
over, TiO2 NPs exhibit photocatalytic properties, allowing 
them to decompose organic contaminants upon exposure to 
light [39, 40, 42–44], as depicted in Fig. 5b. A self-cleaning 
surface is created when TiO2 NPs are used in conjunction 
with UV-LIG. Figure 5c shows the hydrophobic functional-
ity of UV-LIG, highlighting its water-repelling properties.

Figure 6a presents the temperature distribution of the 
Cu-doped TiO2/UV-LIG samples under a 1 SUN illumina-
tion. Copper-doped TiO2/UV-LIG (Low) exhibited a sur-
face temperature of 93.1 °C at 1.1 SUN, demonstrating its 
remarkable photothermal properties. Figure 6b shows that 
the temperature of all the samples increased linearly from 
0.5 to 1.1 SUN. Notably, UV-LIG exhibited the smallest 
temperature increase, confirming that the incorporation of 
Cu-doped TiO2 NPs into UV-LIG significantly enhanced its 

Table 2   BET surface area, 
total pore volume, micropore 
volume, and average pore radii 
of the samples

Samples Surface area (m2 
g–1)

Total pore volume (mL 
g–1)

Average pore 
radius (Å)

Cu-doped TiO2/UV-LIG (Medium) 226.435 0.438 32.34
Cu-doped TiO2/UV-LIG (Low) 396.071 0.954 31.62
Cu-doped TiO2/UV-LIG (Medium) 226.435 0.438 32.34
UV-LIG 237.648 0.437 34.49

Fig. 5   Schematic diagram illustrating the functionalities of the multifunctional surface of Cu-doped TiO2/UV-LIG in a photothermal heating and 
b self-cleaning, and c as a hydrophobic surface



	 International Journal of Precision Engineering and Manufacturing-Green Technology

1 3

photothermal conversion properties. Copper-doped TiO2/
UV-LIG (Low) exhibited the most substantial tempera-
ture increase, suggesting that the larger surface area of the 
Cu-doped TiO2 NPs on the UV-LIG surface enhanced the 
photothermal conversion. Figure 6c shows the saturation 
temperature of the samples under a 1 SUN illumination. 
UV-LIG exhibits a conductive network with high surface 
area and thermal conductivity, and combining it with Cu-
doped TiO2 forms synergistic composites. Table S4 (Online 
Resource 1) lists the equilibrium temperature of the LIG and 
photothermal materials. Copper-doped TiO2/UV-LIG (Low) 
achieved a temperature of 91.7 °C, representing the highest 
saturation temperature reported for LIG to date under 1 SUN 
irradiance. The heating and cooling times of the samples, 

defined as the time required to reach the maximum tem-
perature at 1 SUN and that required to cool when the solar 
generator is turned off, respectively, were also compared 
(Fig. 6d). Because the temperature gradient changes in the 
samples were similar, comparable heating speeds were 
achieved. This observation indicates that UV-LIG containing 
Cu-doped TiO2 NPs generate heat more efficiently through 
photothermal conversion than UV-LIG. Figure 6e shows the 
thermal response when a 5 mL ice mass was melted on a 
1 cm × 1 cm Cu-doped TiO2/UV-LIG (Low) sample under 1 
SUN. Figure 6f shows the temporal evolution of the de-icing 
process achieved by affixing an ice column to the sample 
and inverting the assembly under a 1 SUN irradiation. Fig-
ure 6g shows the photodegradation of phenol under a 1 SUN 

Fig. 6   a Thermal image showing the temperature gradient of the sam-
ples at 1 SUN, b temperature of the Cu-doped TiO2/UV-LIG samples 
as a function of the solar power, c saturation temperatures at 1 SUN, 
d time required to reach the saturation temperature from the ambi-
ent temperature, e temperature change under 1 SUN with ice placed 

on the Cu-doped TiO2/UV-LIG (Low) sample, f time taken to fully 
melt an ice column, g photodegradation of phenol, h dependence of 
photodegradation on pH, and i durability as a function of the number 
of cycles
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irradiation. Figure 6h shows the degradation behavior of Cu-
doped TiO2/UV-LIG (Low) as a function of pH, revealing 
that the photodegradation efficiency increased proportionally 
with a decreasing pH. Finally, Fig. 6i presents the efficiency 
profile as a function of the number of degradation cycles, 
highlighting the remarkable durability exhibited by the Cu-
doped TiO2/UV-LIG (Low) sample.

Figure 7a shows a thermal image of the excitation of elec-
trons from the valence to the conduction band, generating 
electrons (e–) and holes (h+) as charge carriers. The combi-
nation of graphene with Cu-doped TiO2 exhibits enhanced 
photocatalytic performance [44–46]; therefore, graphene can 
serve as a support material for Cu-doped TiO2 NPs, increas-
ing their stability and offering large surface areas for phenol 
adsorption. Additionally, graphene is an electron acceptor, 
facilitating the separation and transfer of photogenerated 
electrons from Cu-doped TiO2. This prevents the recombi-
nation of electron–hole pairs, leading to an overall improve-
ment in efficiency. Some of the photogenerated electrons 
reduce the O molecules (O2) adsorbed on the Cu-doped TiO2 
surface, forming superoxide radicals (O2

•–) and hydrogen 
peroxide (H2O2), as depicted in Fig. 7b [43, 47]. These reac-
tive oxygen species (ROS) and hydroxyl radicals (•OH) are 
produced when generated holes (h+) react with water (H2O). 
Hydroxyl radicals, being strong oxidizing agents [45], subse-
quently react with the adsorbed phenol molecules, breaking 
them down into less harmful compounds such as CO2 and 
H2O. Copper-doped TiO2 combined with graphene enhances 
the photocatalytic properties of TiO2 by leveraging the sup-
port and electron transport capabilities of graphene [44, 46]. 
This approach is efficient and environmentally friendly for 
the sunlight-induced degradation of organic pollutants, such 
as phenol, in water.

3.4 � Enhanced Antibacterial Performance 
of Cu‑Doped TiO2/UV‑LIG

The antibacterial efficacy of the Cu-doped TiO2/UV-LIG 
composites produced using different laser fluences were 
compared. Tables 3 and 4 present the impact of Cu-doped 
TiO2/UV-LIG on the foodborne pathogen (B. cereus, S. typh-
imurium, and E. coli) counts in 0.85% saline water. Notably, 
Cu-doped TiO2/UV-LIG (Low) reduced the B. cereus and 
S. typhimurium counts to below the detection limit (1 log 
CFU/mL). The improved antibacterial performance of the 
Cu-doped TiO2/UV-LIG (Low) composite films results from 
a synergistic combination of the factors illustrated in Fig. 8, 
including the sharp edges of graphene (Fig. 8a), photother-
mal heating (Fig. 8b), and photocatalysis for the generation 
of ROSs (Fig. 8c) [11, 12, 48, 49]. Various graphene sheets 
with inherent edges and defects are typically generated 
during the conventional production of LIG. However, our 

Fig. 7   a Schematic diagram illustrating the photodegradation mechanism and b chemical path for the decomposition of phenol by hydroxyl radi-
cals (•OH)

Table 3   Change in the B. cereus counts in 0.85% saline water in 
response to treatments with various Cu-doped TiO2/UV-LIG compos-
ites under 0.5 SUN illumination for 1 and 5 min

Control: No treatment. Values represent the mean ± SD
N.D. not detected or below the detection limit (1 log CFU/mL)
Duncan multiple range tests (p < 0.05) indicated that the mean values 
in the same column (a–c) followed by different letters were signifi-
cantly different

Treatment B. cereus (log CFU/g)

1 min 5 min

Control 8.35 ± 0.06A 8.35 ± 0.06A

Cu-doped TiO2 (High) 8.58 ± 0.03A 7.67 ± 0.21B

Cu-doped TiO2 (Medium) 6.24 ± 0.10D N.D
Cu-doped TiO2 (Low) N.D N.D
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specific manufacturing approach augments the quantity of 
graphene edges and defects on the high-surface area LIG by 
synthesizing Cu-doped TiO2 NPs using a UV pulsed laser [7, 
50]. The integration of Cu-doped TiO2 nanoparticles within 
the graphene sheets increased exfoliation, which yielded 
a notably irregular surface with abundant sharp graphene 
edges. The sharp edges of graphene within the Cu-doped 
TiO2/UV-LIG contributes to its physical interaction with the 
bacterial cells, which damages the bacterial cell membranes, 
compromising their structural integrity and increasing their 
permeability [48, 51–53]. This direct mechanical disruption 

is particularly effective at weakening bacterial cells, making 
them more susceptible to other antimicrobial mechanisms 
[7, 49, 50]. The edges of Cu-doped TiO2/UV-LIG (Low), 
characterized by its extensive surface area, harbor numer-
ous active sites that facilitate interaction with bacteria, thus 
increasing susceptibility to various antimicrobial mecha-
nisms such as photo-induced thermal heating and ROSs. 
This phenomenon is evidenced by its non-detectable (N.D.) 
bacterial count within 1 min, as elucidated in Table 3. In 
contrast, Cu-doped TiO2/UV-LIG (High), possessing a rela-
tively diminished surface area, did not substantially reduce 
the B. cereus count (7.67 ± 0.21 log CFU/g) even after 5 min 
despite the concurrent effects of the photothermal activity 
and ROS generation. The bacterial experiments involving S. 
typhimurium and E. coli exhibited a similar trend. As shown 
in Table 4, Cu-doped TiO2/UV-LIG (Low), distinguished 
by a substantial abundance of edges attributable to its large 
surface area, achieved N.D. levels within 1 min of 0.5 SUN 
irradiation. In contrast, Cu-doped TiO2/UV-LIG (High), 
characterized by a relatively reduced surface area with fewer 
edges, demonstrated a lower reduction, as compared to the 
control group.

Cu-doped TiO2 can generate highly reactive ROSs, such 
as •OH and O2

•−, that cause oxidative damage to bacterial 
cell components, including lipids, proteins, and DNA, as 
shown in Fig. 8c [19, 20]. Copper-doped TiO2 NPs, incorpo-
rating Cu2O (with a bandgap of 2.2 eV), TiO2 in its anatase 
phase (with a bandgap of 3.2 eV), TiO2 in its rutile phase 
(with a bandgap of 3 eV), and CuO (with a bandgap of 
1.7 eV), demonstrated considerable potential as an antibac-
terial photocatalyst [54, 55].

Table 4   Change in the B. cereus, S. typhimurium, and E. coli counts 
in 0.85% saline water in response to treatments with UV-LIG in com-
bination with Cu-doped TiO2 under 0.5 SUN illumination for 1 min

Control: No treatment. Values represent the mean ± SD
N.D. not detected or below the detection limit (1 log CFU/mL)
Duncan multiple range tests (p < 0.05) indicated that the mean values 
in the same column (a–c) followed by different letters were signifi-
cantly different

Treatment Foodborne pathogen (log CFU/g)

B. cereus S. typhimurium E. coli

Control 8.19 ± 0.14A 9.15 ± 0.09A 8.97 ± 0.01A

Cu-doped TiO2 
(High)

8.58 ± 0.03A 8.26 ± 0.14B 8.53 ± 0.05BCD

Cu-doped TiO2 
(Medium)

7.34 ± 0.09DE N.D 8.25 ± 0.28E

Cu-doped TiO2 
(Low)

N.D N.D N.D

Fig. 8   Enhanced antibacterial performance obtained through a the sharp edges of graphene, b photothermal heating, and c photocatalytic gen-
eration of antibacterial ROS
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The sharp graphene edges, localized photothermal heat-
ing, and photocatalytic ROS generation of the composite 
film collectively establish an inhospitable setting for bacte-
ria. This multifaceted strategy ensures a more comprehensive 
and effective antibacterial performance than the individual 
mechanisms. This synergy enables the composite film to tar-
get bacteria through both physical disruption and oxidative 
stress, making it a robust and efficient antibacterial material. 
The intricate interplay of antibacterial properties renders 
the exact mechanism of bacterial death elusive. Therefore, 
a thorough investigation into the mechanism of cellular 
demise becomes imperative, particularly in scenarios involv-
ing repeated utilization. Figure 9 shows the loss of viability 
measured for foodborne pathogens, demonstrating that the 
Cu-doped TiO2-UV-LIG coating is bactericidal. Its excel-
lent antibacterial performance shows a 99.999% increase in 
bacteria killing for a variety of foodborne pathogens.

4 � Conclusion

The versatility of Cu-doped TiO2/UV-LIG under solar radia-
tion is under scrutiny for diverse applications such as photo-
degradation and antibacterial efficacy.

(1) With nanopores and a surface area of 396 m2/g, Cu-
doped TiO2/UV-LIG (Low) achieved a groundbreaking 
temperature of 91.7 °C under 1 SUN irradiance, setting a 
new benchmark in LIG.
(2) Initially, it showed outstanding phenol degradation 
efficiency at 86%, maintaining a remarkable 83% even 
after five uses, highlighting its exceptional degradation 
capability.

(3) At 0.5 SUN intensity, it effectively eliminated over 
99.999% of foodborne pathogens including B. cereus and 
S. typhimurium.

These nanocomposites hold substantial promise for 
applications spanning water purification, air filtration, and 
medical devices.
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