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Abstract
This comprehensive review paper aims to provide an in-depth analysis of the most recent developments in the applications of arti-
ficial intelligence (AI) techniques, with an emphasis on their critical role in the demand side of power distribution systems. This 
paper offers a meticulous examination of various AI models and a pragmatic guide to aid in selecting the suitable techniques for 
three areas: load forecasting, anomaly detection, and demand response in real-world applications. In the realm of load forecast-
ing, the paper presents a thorough guide for choosing the most fitting machine learning and deep learning models, inclusive of 
reinforcement learning, in conjunction with the application of hybrid models and learning optimization strategies. This selection 
process is informed by the properties of load data and the specific scenarios that necessitate forecasting. Concerning anomaly 
detection, this paper provides an overview of the merits and limitations of disparate learning methods, fostering a discussion on 
the optimization strategies that can be harnessed to navigate the issue of imbalanced data, a prevalent concern in power system 
anomaly detection. As for demand response, we delve into the utilization of AI techniques, examining both incentive-based and 
price-based demand response schemes. We take into account various control targets, input sources, and applications that pertain to 
their use and effectiveness. In conclusion, this review paper is structured to offer useful insights into the selection and design of AI 
techniques focusing on the demand-side applications of future energy systems. It provides guidance and future directions for the 
development of sustainable energy systems, aiming to serve as a cornerstone for ongoing research within this swiftly evolving field.

Keywords  Power distribution system · Load forecasting · Anomaly detection · Demand response · Artificial intelligence · 
Machine learning · Deep learning · Reinforcement learning

1  Introduction

The urgent challenge facing our society is the decarboniza-
tion of the energy system to mitigate the impact of climate 
change and achieve a net-zero carbon future. Climate change 
is affecting over 25,000 species, pushing them towards 

extinction, as reported in numerous studies [1–3]. Addi-
tionally, traditional energy sources, such as oil and gas, are 
expected to be depleted by 2050 [2], while the demand for 
energy continues to increase. In fact, non-OECD economic 
growth is expected to increase energy demand by over 30% 
by 2050 [4].

In this context, it is crucial to increase the use of renew-
able energy sources (RESs) in future energy systems to meet 
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the rising energy demand and decarbonize the energy sector. 
Figure 1 illustrates the historical global power consumption 
data from 1800 to 2019 [5], showing that the proportion of 
energy provided by RESs is increasing rapidly, although it 
still remains relatively small [6]. According to the Inter-
national Energy Agency’s Electricity Market Report 2023, 
RESs together with nuclear, will on average meet more than 
90% of the increase in global demand by 2025 [7].

Although RESs are becoming more prevalent, integrat-
ing them directly into current power grids designed for dis-
patching conventional power generation presents two critical 
challenges [8–10].

•	 RESs exhibit intermittency, making it difficult to pre-
dict their generation and manage the associated risks of 
power imbalances and blackouts.

•	 Current energy systems and markets lack adequate 
mechanisms to integrate sustainable renewable energy 
for required emission controls in major decarbonization 
efforts.

Artificial intelligence (AI) has successfully solved many 
real-world problems in computer vision and natural language 

processing, and is promising in addressing energy chal-
lenges. AI can enable a comprehensive framework for 
effective power system control, management, energy mar-
ket pricing, and policy recommendations [11–15]. Machine 
learning (ML) and deep learning (DL) models have been 
widely employed to optimize energy efficiency, conversion, 
distribution, and decarbonization in smart grids, showcas-
ing the potential of data-driven approaches in this field [10, 
11, 13–15]. These models provide timely feedback, enabling 
efficient two-way communication between the grid and cus-
tomers and significantly enhancing the security, reliability, 
and efficiency of the system [4, 16–18]. With AI, a smart 
grid can optimize renewable resource utilization, balance 
electricity production and consumption, improve grid reli-
ability, and ensure security [19]. Smart grid applications 
have grown rapidly in recent years, with a growing market 
share [13]. Figure 2 illustrates a typical smart grid structure.

1.1 � AI Techniques on Demand Side

The demand side, or consumption side, is one of the cru-
cial parts of future smart energy systems. It’s expected to 
facilitate low-carbon and net-zero development as energy 

Fig. 1   Global power consump-
tion and renewable energy usage

Fig. 2   A typical smart grid 
structure includes sustainable 
energy supply, smart energy 
consumption, advanced grid 
analytics, stationary and mobile 
energy storage, and real-time 
control and management
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consumption increases and consumers are empowered by 
AI techniques [20]. Various AI-based technologies have 
been applied to enable smarter power consumption. For 
instance, neural network-based AI methods have been 
widely employed to predict future power consumption in 
smart grids, significantly improving power dispatch, load 
scheduling, and market management [20, 21]. Data-driven 
classification methods have also been utilized for electri-
cal load anomaly detection, primarily aimed at ensuring the 
safe operation of power systems [22]. The research scope of 
anomaly detection ranges from large-scale industrial power 
system monitoring and smart buildings to generic residen-
tial houses. Anomaly detection can also be categorized into 
system security detection and non-invasive residents’ health 
status monitoring based on the type of detection activities 
[20, 22, 23]. Previous works on demand response have pro-
posed methods to manage resources efficiently and provide 
feedback to the energy market [24].

Given the critical role of the consumption side in power 
systems, numerous reviews have recently been conducted 
to summarize the applications of AI-based strategies in 
demand-side management. For instance, Raza et al. pre-
sented a review work on the application of load forecasting 
[25]. The paper discussed the classification of load forecast-
ing, the impact of surrounding environments on predictive 
results, and the performance of the different artificial neural 
network (ANN)-based forecasting approaches. It identi-
fied key parameters that affect the accuracy of ANN-based 
forecast models, such as forecast model architecture, input 
combination, activation functions, and the training algo-
rithm of the network. The review highlighted the potential 
of AI techniques for effective load forecasting to achieve 
the concept of smart grid and buildings, providing valuable 
insights into the importance of accurate load forecasting for 
efficient energy management and better power system plan-
ning. However, the review primarily focused on short-term 
load forecasting techniques, which may limit its applicabil-
ity to long-term planning and decision-making. Addition-
ally, it did not provide a comparative analysis of different 
forecasting techniques or their relative strengths and limita-
tions from the standpoint of real-world applications. Tanveer 
et al. provided a comprehensive overview of data-driven 
and large-scale-based approaches for forecasting building 
energy demand [26]. The review discussed the importance 
of energy consumption models in energy management and 
conservation for buildings, categorizing methods for build-
ing energy simulations into four level classes. However, the 
review did not delve into specific examples or approaches 
of how these AI schemes have been applied in real-world 
situations. Khan et al. conducted a related work investigation 
focusing on load forecasting, dynamic pricing, and demand-
side management (DSM) [27]. The review discussed the role 
of load forecasting in the planning and operation of power 

systems and how future smart grids will utilize load fore-
casting and dynamic pricing-based techniques for effective 
DSM. It also provided a comparative study of forecasting 
techniques and discussed the challenges of load forecasting 
and DSM, covering various techniques such as appliance 
scheduling, dynamic pricing schemes, and optimization of 
energy consumption to manage energy on the consumer side. 
Nevertheless, the review did not provide a detailed analysis 
of the effectiveness or practical implementation issues of 
these techniques. Additionally, the paper primarily focused 
on residential energy management systems and may not be 
directly applicable to other types of smart grid applications. 

Himeur et al. presented a survey on AI-enhanced anom-
aly detection approaches on the consumption side [28]. The 
review provided a comprehensive taxonomy to classify 
existing algorithms based on different modules and param-
eters adopted. It also presented a critical analysis of the 
state-of-the-art, exploring current difficulties, limitations, 
and market barriers associated with the development and 
implementation of anomaly detection systems. The review 
focused on anomaly detection frameworks for building 
energy consumption, but it did not provide a comprehensive 
review of anomaly detection frameworks for other types of 
energy consumption, such as industrial or transportation. 
Antonopoulos et al. conducted a review summarizing the 
applications of ML methods on power consumption [29]. 
They discussed over 160 related papers, 40 companies, com-
mercial initiatives, and 21 large-scale projects. The review 
provides insights into the potential benefits of these tech-
nologies in improving energy efficiency and sustainability. 
It discusses various AI techniques that have been used in this 
field, their advantages and drawbacks, and their real-world 
applications. The review also highlights the challenges and 
opportunities for future research in this area. However, it is 
possible that the work may overlook some real-world chal-
lenges and limitations in implementing AI and ML on the 
demand side. For example, the review may not fully consider 
the cost-effectiveness of these technologies, the availability 
of data and infrastructure required for their implementation, 
and the potential ethical and social implications of their use. 
Additionally, the review may not fully address the practical 
challenges of integrating AI with existing energy systems 
and policies. Wang et al. presented an application-oriented 
review based on smart meter data [30]. The authors begin 
by conducting a literature review of smart meter data ana-
lytics on the demand side, focusing on the newest devel-
opments, particularly over the past five years. They then 
provide a well-designed clustering of smart meter data ana-
lytics applications from the perspective of load analysis, load 
forecasting, load management, and more. The paper also 
discusses open research questions for future research direc-
tions, including big data issues, new ML technologies, new 
business models, the transition of energy systems, and data 
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privacy and security. One major contribution of this paper 
is its comprehensive overview of current research in smart 
meter data analytics. The authors provide a detailed taxon-
omy for different applications of smart meter data analytics 
and discuss various techniques and methodologies adopted 
or developed to address each application. Additionally, they 
identify key research trends such as big data issues and novel 
ML technologies. However, similar to the previous review 
works, while the proposed study does discuss some practical 
challenges facing the implementation of smart meter data 
analytics in the power industry (such as data privacy and 
security), it does not provide much information on how these 
challenges can be addressed in practice.

1.2 � The Motivation of Our Study

Despite the growing application of AI techniques in power 
systems, a significant gap remains between theoretical 
algorithms and their practical implementation. Prior works, 
while evaluating the effectiveness of AI in enhancing perfor-
mance across diverse applications such as load forecasting, 
often fail to provide a comprehensive guide for the selec-
tion, optimization, and construction of various ML models 
that meet the specific requirements of energy systems. For 
instance, Fig. 3 illustrates the three crucial components on 
the demand side of power systems: load forecasting, anom-
aly detection, and demand response. Each of these compo-
nents follows the data-driven approach, which begins with 
data processing to collect input data from various sources 
such as power distribution systems, previous prediction/
detection outputs, markets, and historical datasets. This data 
is then managed, structured, and in some cases, subjected 

to complex processing procedures such as feature extraction 
and normalization before being used to train the selected AI 
model for specific scenarios.

From a systemic viewpoint, it is vital to note that load 
forecasting and anomaly detection are intertwined tasks that 
output estimated future power usage information and real-
time diagnosis results for power systems. These tasks are not 
isolated, but mutually dependent. The results of load fore-
casting and anomaly detection provide critical references for 
demand response, which in turn impacts the energy market, 
supply and demand sides, and the environment, ultimately 
influencing future forecasting and detection results. The 
interconnectedness of these components underscores the 
importance of considering their interactions when designing 
data-driven approaches for energy systems. Thus, there is a 
need for a review that considers not just the effects of each 
component, but also provides practical insights into their 
interplay. By synthesizing previous research across domains, 
our study offers a holistic and strategic perspective on future 
sustainable development. While emphasizing the importance 
of each research area, our study bridges these domains and 
underscores the need to address real-world application chal-
lenges, ultimately providing a comprehensive overview of 
the demand side of power systems. Our contributions focus 
on providing practical insights for evaluating, selecting, and 
optimizing various ML and DL models in each component, 
as well as offering a holistic view for better understanding 
and meeting the requirements of energy systems. Some 
practical issues such as energy system sensor/input noises, 
data labeling errors/cost, the resilience of existing energy 
infrastructure, data imbalance, data availabilities, opera-
tional constraints, etc., are analyzed for better application 

Fig. 3   The diagram of this review, including AI-empowered load forecasting, anomaly detection, and demand response
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of different ML/DL models, as these issues can impact the 
implementation of AI methods in power distribution systems 
[22, 31–33].

Figure 4 shows the hierarchical structure of each com-
ponent. In this section, we focus on summarizing the pre-
vious efforts and discussing the current state-of-the-art in 
load forecasting, anomaly detection, and demand response 
using AI techniques. In the load forecasting domain, we 
summarize previous efforts according to different AI tech-
nologies used, discuss promising optimization schemes 
from the perspective of implementation, and compare the 

advantages and limitations of reviewed prediction methods 
for different applications. Next, we review anomaly detection 
approaches that identify abnormal load patterns and con-
sumption behaviors, ensuring the security of power grids 
and reducing unnecessary power usage and CO2 emissions. 
We provide a holistic summary of promising optimization 
schemes for addressing data imbalance issues and discuss 
the associated challenges and trade-offs of these anomaly 
detection approaches. Finally, we introduce advanced 
strategies in demand response to comprehensively assess 
demand-side power usage and facilitate interaction between 

Fig. 4   Taxonomy of load forecasting, anomaly detection, and demand response in the demand side
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the system and consumers. Demand response assists in man-
aging consumption to reduce cost, waste, and risks, ensuring 
the balance between power generation and consumption and 
the reliability of future power systems. Our comprehensive 
review aims to provide a roadmap for researchers and practi-
tioners to better understand the capabilities of AI techniques 
in enhancing power consumption on the demand side. By 
examining the features and challenges of each field and dis-
cussing optimization strategies, this work has the potential 
to drive innovation and inform the development of practical 
solutions that can benefit the power industry and society 
as a whole. The remainder of the paper is organized as fol-
lows: Sect. 2 summarizes load forecasting developments, 
Sect. 3 reviews anomaly detection, Sect. 4 explores demand 
response, and Sect. 5 concludes our work.

2 � Load Forecasting

Load forecasting plays an essential role in energy dispatch 
and grid operations for energy suppliers and system opera-
tors. Effective and accurate load forecasting methods can 
improve system reliability, load scheduling, energy utiliza-
tion, and reduce operating costs and risks. Especially given 
the vulnerability of RESs to environmental factors, the 
ability to estimate future power consumption is essential to 
improve the distribution efficiency of RESs [34–38].

Load forecasting methods can be typically categorized 
based on application scenarios into short-term, medium-
term, and long-term forecasting [34–40].

Short-term forecasting typically refers to predictions up 
to 72 hours ahead, and it is essential for operational plan-
ning, such as unit commitment and economic dispatch. 
Medium-term forecasting, covering a period from one week 
to one year, is often used for maintenance scheduling and 
fuel reserve management. Long-term forecasting methods, 
used for periods exceeding one year, contribute to strate-
gic planning, such as capacity expansion and infrastructure 

development [19, 40, 41]. While there is no universally 
accepted classification based on the predictive horizon, it is 
important to note that different forecasting scenarios present 
their unique challenges and advantages, necessitating differ-
ent modeling strategies [34–36].

Another way to classify load forecasting methods is based 
on the datadriven techniques employed. In general, these 
forecasting approaches can be categorized as ML-based and 
DL-based, each presenting distinct advantages and limita-
tions [42]. In our work, we strive to offer a comprehen-
sive analysis of data-driven model-based load forecasting, 
illustrating the features, benefits, and limitations of each 
approach in real-world applications from an AI perspective. 
To this end, we have classified the previous efforts into three 
categories: ML-based, DL-based, and statistical learning-
based. Given the lack of universally accepted definitions for 
statistical learning and ML, the classification of forecasting 
methods can be somewhat subjective. For clarity and a more 
meaningful analysis, we define the classifications as shown 
in Table 1. Figure 5 effectively visualizes the different clas-
sifications of load forecasting approaches, indicating that 
ML, DL, and statistical learning-based approaches can be 
employed across diverse scenarios based on their respective 
strengths and suitability.

Table 1   Definition of forecasting approaches in this study

Forecasting method Definition

Statistical learning-based This approach operates based on pre-established rules and assumptions, generating a prediction model that character-
izes the relationship between variables [43]. It involves fitting probabilities specific to the project to historical data 
and making load predictions via statistical inference. These methods are often simple, interpretable, and efficient 
[43]

ML-based As a subset of AI, this approach enables computers to learn and adapt automatically from experience [44, 45]. It 
involves training a model on a dataset and using the trained model to make predictions on new data. These methods 
can model complex relationships and patterns, but they require careful feature selection and parameter tuning [45]

DL-based This is an advanced form of ML that employs layered algorithms and neural networks with multiple hidden layers for 
learning and making predictions [44, 45]. DL architectures typically consist of deeply nested networks with more 
than one hidden layer, enabling them to learn complex representations of the data and make accurate predictions 
on large, complex datasets. However, they can be computationally expensive and require large amounts of data for 
training [44, 45]

Fig. 5   Different classifications of load forecasting approaches
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2.1 � Statistical Learning‑Based Load Forecasting

Statistical learning-based forecasting using regression mod-
els is simple to implement and interpret. Energy consump-
tion is often correlated with exogenous factors and historical 
consumption, and a regression model can be fitted using the 
data to predict future loads. Linear regression is one of the 
most classical and popular methods used in load forecast-
ing [46]. For example, Fan et al. proposed a comparison 
between linear and nonlinear techniques and found that 
both have their own best feature set for model development 
[47]. The proposed work showed that linear models might 
be better when raw features are used, and nonlinear meth-
ods can achieve satisfactory performance when the feature 
set is well-processed. Ming et al. and Syed et al. explored 
improved linear models for load forecasting [48, 49]. Com-
pared with typical nonlinear models, the proposed improved 
linear regression models are much more computationally 
efficient, and the simplicity of linear methods makes them 
useful over different time scales [50].

Unlike general regression-based methods that correlate 
various information with energy consumption data, an 
autoregression-based method focuses on data points from 
a time series and correlates the future values of a variable 
with only its past values. Thus, in autoregression models, 
the historical load is the only factor that affects future con-
sumption [23]. One of the most used autoregression models 
is the autoregressive integrated moving average (ARIMA) 
for non-stationary time series forecasting. Many studies 
aimed to improve the standard ARIMA. Lee et al. devel-
oped an improved ARIMA-based short-term load forecast-
ing model [51], outperforming back-propagation neural 
networks (BPNN). To overcome the limitations of ARIMA, 
it is commonly combined with a nonlinear model to yield 
a hybrid load predictor. Zou et al. developed an ARIMA-
based hybrid short-term load predictor [52], in which a 
BPNN is used to reduce the residual error of ARIMA. The 
test results demonstrate that the proposed hybrid framework 
outperforms the original ARIMA. A similar effort was also 
provided by Wang et al. [23]. To improve the accuracy of 
real-time forecasting using ARIMA, Wang et al. proposed a 
method that incorporates an artificial neural network (ANN) 
model to dynamically learn the forecasting errors of ARIMA 
[23]. The proposed approach employs an online learning 
approach, where the final prediction output is a combination 
of the ARIMA predicted result and an estimated error pro-
vided by the ANN model. Comparative results demonstrated 
that the proposed approach outperforms the single ARIMA 
model in terms of accuracy.

While linear models can be effective, they are not well-
suited for highly nonlinear data and may require hybrid 
approaches to improve performance. To address this limita-
tion, more effective nonlinear models are needed. Fan et al. 

developed a data-mining technology-based one-day-ahead 
building load predictor and compared it with multiple linear 
regression (MLR), support vector regression (SVR), multi-
layer perceptron (MLP), binary tree, multivariate adaptive 
regression spline, and k-nearest neighbor (kNN) methods 
[53]. It was found that although MLR requires the least com-
putational time compared to the other models, it still does 
not perform very well because smart building related pro-
cesses are usually nonlinear and complex [53]. Khorsheed 
et al. developed a nonlinear model for long-term peak load 
forecasting and demonstrated that this model is more accu-
rate than the linear model [54]. Fan et al. developed two load 
forecasting models to manage and optimize building cool-
ing and compared them with a few models, such as MLR, 
autoregression, and BPNN [55, 56]. It was found that MLR 
accurately predicts the on-site cooling load while requiring 
minimal training data using simple hardware with low com-
putational complexity. Benefiting from the straightforward 
structure and fast calculation speed of the statistical models, 
statistical learning-based methods are widely applied in load 
forecasting for smart grids. Both linear and nonlinear mod-
els play important roles in different forecasting scenarios 
[57]. Principal component analysis, sensitivity analysis, and 
stepwise regression were introduced by Yildiz et al. [50] to 
further enhance the accuracy of regression methods. Regres-
sion models are also widely employed to monitor energy 
consumption, measure and verify energy efficiency [58–60], 
and identify operation and maintenance problems [60–62].

2.2 � Machine Learning‑Based Load Forecasting

Recently, neural network-based methods have gained sig-
nificant attention and are increasingly being applied for 
load forecasting [63]. Classical ML models are relatively 
simple, readily interpretable, and computationally efficient 
compared to DL models.

2.2.1 � Artificial Neural Network (ANN)‑Based Load 
Forecasting

Among various ML-based load predictors, artificial neu-
ral networks (ANNs) have the advantage of extracting 
features from data to perform accurate regression, making 
them widely used in load forecasting [63–69]. Amber et al. 
proposed a building electric load forecasting method that 
incorporates various environmental data, and compared 
it with other methods such as genetic algorithms, support 
vector machines (SVM), and deep neural networks (DNN) 
[69]. The results indicated that ANN outperforms all the 
other methods while maintaining a reasonable level of 
complexity. Furthermore, the comparison between DNN 
and ANN revealed that the performance of DNN might be 
superior when the training dataset is limited. Davut Solyali 
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proposed an ML-based load forecasting method in their pre-
vious work [63], where they compared different models for 
both long- and short-term predictions. The models included 
SVM, multiple linear regression (MLR), a neuro-fuzzy 
inference system, and an ANN. The results indicated that 
SVM is the best-performing model for long-term forecast-
ing, while ANN showed better performance for short-term 
forecasting.

Some studies have also focused on enhancing the predic-
tion accuracy of ANN by selecting model inputs and fea-
tures. For instance, Ding et al. and Patel et al. developed 
load prediction methods by integrating ANNs and k-nearest 
neighbors (kNN) [64, 70]. These methods considered the 
effects of environmental factors and used kNN to cluster 
input variables. They demonstrated that training ANN on 
the processed data can lead to better outcomes. Ding et al. 
explored the effect of input variables on the cooling load 
prediction accuracy of an office building [64]. The authors 
used two ML models, ANN and SVM, for prediction. The 
clustering method was utilized to optimize the selection of 
input variables for 1-hour-ahead cooling load prediction. 
The comparison aimed to enhance the prediction perfor-
mance of ML-based predictors.

2.2.2 � Other Machine Learning‑Based Load Forecasting

In addition to ANNs, other ML models, such as extreme 
gradient boost (XGBoost), have been utilized for load 
forecasting in smart grids. Al-Rakhami et al. developed 
an XGBoost-based load forecasting model for residen-
tial buildings and revealed that XGBoost can effectively 
address overfitting issues in load forecasting [70]. By com-
paring the results of different forecasting approaches, the 
advantage of XGBoost in avoiding overfitting problems 
is demonstrated. Vantuch et al. studied the computational 
complexities of prediction and training, showing that 
random forest regression (RFR) and XGBoost exhibited 
the lowest complexities, followed by ANN and SVR. The 
flexible neural tree is the most computationally expensive 
model, and its prediction could have been better compared 
to those of RFR and XGBoost [66]. Wang et al. proposed 
a load forecasting framework that employs an XGBoost-
based one-step-ahead forecaster with quantile regression 
[71]. The XGBoost-based quantile regression model is 
used to generate a prediction interval for the next step. The 
proposed strategy dynamically tracks recent prediction 
results to adjust the parameters of the quantile regression 
model to optimize the final results. Notably, the proposed 
approach is compared with various ML/DL models, and 
the comparison results demonstrate that the proposed fore-
casting framework is the most accurate, providing reliable 
and accurate results in real-time. Zhang et al. developed 
improved grey wolf optimization- and extreme learning 

machine-based load predictors hosted in the cloud [72]. 
The improved grey wolf optimization is used to optimize 
the parameters of the extreme learning machine. A com-
parison between the initial extreme learning machine 
model and the model with the selected optimal parameters 
validates the effectiveness of the improved grey wolf opti-
mization- and extreme learning machine-based load pre-
dictors. Fan et al. developed a data mining-based ensemble 
load forecasting method to achieve one-day-ahead fore-
casting [53]. Through introducing the data training and 
feature selection and elimination progress, eight different 
ML models are employed to improve the feasibility of the 
proposed ensemble learning approach. Finally, the study 
concludes that the proposed comprehensive framework 
outperforms the initial eight models and achieves better 
forecasting results.

2.2.3 � Recurrent Neural Network (RNN)‑Based Load 
Forecasting

Among various DL methods, recurrent neural networks 
(RNNs) are commonly used for load forecasting with 
sequential data. Long short-term memory (LSTM) is a typi-
cal RNN-based method widely employed for load forecast-
ing [34, 38, 73–78]. Song et al. and Kumari et al. recently 
developed two different LSTM-based load predictors [76, 
77, 79]. Song et al.’s work focused on verifying the accuracy 
of the LSTM-based forecasting approach using two real-
world datasets and employed model echo state networks for 
comparison. Kumari et al. tested the robustness of LSTM 
for time-series forecasting using different datasets. Both 
LSTM-based approaches demonstrated good performance 
in load forecasting. Zhang et al. studied a hybrid forecast-
ing approach that integrates Fiber Bragg Grating sensors 
with LSTM to forecast electrical load [79]. Compared with 
BPNN, the proposed method reduced the complexity of 
the network, saved running time, and improved forecasting 
accuracy. Bouktif et al. developed an advanced LSTM-based 
load forecasting algorithm [73] using a genetic algorithm 
(GA) to obtain the optimal lag and layer number, providing 
guidelines for optimizing LSTM.

Although RNNs are commonly used for time series 
forecasting, the inherent limitation of the vanishing gra-
dient during training restricts their applications. As a 
result, many authors have attempted to improve RNNs by 
integrating hybrid models [34, 74]. For example, Zhang 
et al. and Cenek et al. developed LSTM/ANN-based pre-
dictors [38, 77]. Zhang et al. trained an LSTM to extract 
features from time-series data, and an ANN was used to 
analyze the relationship between features and the load [38]. 
Cenek et al. developed a grid load predictor that consid-
ered environmental factors [77]. An LSTM was used to 
predict future weather outputs for ANN, which forecasted 
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the final outputs for the load. Both studies found that the 
hybrid methods outperformed individual ANN and LSTM 
models in load forecasting.

2.2.4 � Convolutional Neural Network (CNN)‑Based Load 
Forecasting

Convolutional neural networks (CNNs) are also widely 
used in load forecasting [80]. CNNs leverage the unique 
linear operation called convolution in at least one layer of 
the network to effectively learn representations and extract 
features from time series data [81]. The output layer is typi-
cally placed after the fully connected layers and resembles 
a standard ANN layer.

Kuo et al. and Amarasinghe et al. developed CNN-based 
load predictors [35, 82]. Kuo et al. compared CNN with sev-
eral benchmark models including SVM, decision tree, MLP, 
and LSTM, and found that CNN outperformed all the tested 
models [35]. However, Amarasinghe et al. found that CNN 
did not provide a clear advantage over other models, and 
LSTM showed better outcomes in their comparison results 
[82]. This difference in performance may be due to the com-
plexity and diversity of the building-level power consump-
tion data in the test dataset. As a sequential model, LSTM 
is better equipped to learn features from such time series 
data compared to CNN [82]. Dong et al. developed a hybrid 
load forecasting method that combines CNN with K-means 
clustering [83]. By applying K-means clustering to the data 
before training the CNN, they achieved better predictive 
accuracy compared to other models such as SVR, neural 
network, linear regression + K-means, SVR + K-means, 
and neural network + K-means. Another CNN-based hybrid 
short-term load predictor was presented by Aurangzeb et al. 
who used a novel pyramidal CNN model to reduce the com-
putational complexity of load forecasting [81]. The proposed 
method demonstrated improved forecasting accuracy. How-
ever, it is worth noting that CNN-based hybrid predictors 
may have higher training costs compared to other machine 
learning-based load forecasting approaches. Alhussein 
developed a CNN-LSTM-based load forecasting method that 
enhanced forecasting accuracy and outperformed baseline 
models [84]. While CNN-based hybrid predictors generally 
improve predictive accuracy, it is important to consider their 
training costs compared to other machine learning-based 
load forecasting approaches.

2.3 � Optimization Strategies for Improving 
Learning‑based Load Forecasting

Regardless of the different models employed for load fore-
casting, the forecasting performance is affected by factors 

from real-world applications, such as the predictive horizon, 
feature extraction, and computational resources. In this sec-
tion, we discuss several recent improvement methods [42].

2.3.1 � Forecasting Methods Under Different Horizons

Different models perform differently on short- and long-term 
load forecasting. It is essential to choose the most suitable 
model for various forecasting horizons to maximize predic-
tion accuracy and performance [42]. In this work, we point 
out that:

•	 For short-term load forecasting, it is essential to use mod-
els that can effectively capture the changes and variations 
in time-series load data. Moreover, the running time of 
these models is also a crucial consideration, as real-time 
predictions are often required [42, 67, 84].

•	 For long-term load forecasting, the models should be 
robust against the impact of data noise and overfitting 
or underfitting issues. These models need to have a good 
generalization capability to be able to forecast load accu-
rately for longer periods [42, 66, 67].

Wang et al. in a study of building thermal load forecast-
ing, comprehensively discussed twelve forecasting models, 
including LSTM and XGBoost [84]. The test results of this 
work pointed out that the heuristic load forecasting meth-
ods are recommended for projects with limited budgets and 
resources, and LSTM is proven to be robust against input 
uncertainty and recommended for short-term forecasting. 
For long-term forecasting, XGBoost is found to be more 
accurate and trained with the predicted results to enhance 
the robustness of the model. Yang et al. developed a multi-
step-ahead load predictor using an autoencoder neural net-
work with a pre-recurrent feature layer [85]. This method 
showed satisfactory performance when the forecasting hori-
zon is less than 3 hours. Vantuc et al. compared different 
ML-based approaches under varying forecasting horizons 
from one hour to one week [66]. A comparison of ANN, 
SVR, RFR, XGBoost, and a flexible neural tree showed 
that ANN provides the highest stability when the forecast-
ing horizon changes, which is also consistent with the find-
ings by Sangrody et al. [67]. Due to the significant impact 
of the prediction horizon on results, Wang et al. proposed 
a load forecasting framework that combines an XGBoost-
based one-step-ahead forecaster with an LSTM-based one-
day-ahead predictor [86]. The framework can dynamically 
evaluate the step-by-step LSTM-based one-day-ahead load 
forecasting. If the forecast result is deemed inaccurate, the 
framework can automatically switch to the XGBoost-based 
one-step-ahead load forecasting model to improve predic-
tion accuracy.
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2.3.2 � Decomposition‑Based Feature Extraction

Data decomposition is another widely used strategy for 
enhancing the performance of load forecasting algorithms. 
A non-stationary series, like electrical load, is character-
ized by statistical properties that vary over time. Therefore, 
decomposing a non-stationary time series signal into a set of 
intrinsic mode functions and a residue can facilitate learn-
ing [87].

Empirical mode decomposition (EMD) is an unsuper-
vised data-driven decomposition method commonly used 
for non-stationary time series data. Qiu et al. and Bedi et al. 
developed load forecasting methods based on EMD and 
compared their results to popular DL models such as DNN 
and LSTM [2, 88]. Both hybrid methods outperformed the 
single DL models, demonstrating the effectiveness of EMD-
based decomposition in improving forecasting performance. 
Another decomposition method, seasonal-trend decomposi-
tion based on Loess (STL), was employed by Fan et al. to 
enhance load forecasting [89]. After STL decomposition, 
the subsequences became more regular and easier to learn, 
leading to improved performance compared to LSTM and 
LSTM- XGBoost models. Park et al. explored complex 
multi-user load prediction by developing a characteristic 
load decomposition-based load predictor [90]. The aggre-
gated load measured at one node was divided using the char-
acteristic load decomposition method to improve forecasting 
performance.

These studies demonstrate that decomposition-based fea-
ture extraction methods can be effective in enhancing the 
learning performance of load forecasting models. Decom-
position provides an alternative way to extract features from 
time-series data. However, it is important to consider the 
training cost, efficiency, and flexibility of these methods to 
determine their practicality for real-world load forecasting 
applications. Further research is needed to investigate these 
aspects.

2.3.3 � Attention Mechanism for Learning‑Based Forecasting 
Approaches

The attention mechanism, developed from cognitive atten-
tion for sequence-to- sequence learning, has proven to be a 
powerful tool for improving DL-based learning models [91]. 
By allowing models to focus on the relationship between 
inputs and outputs during the training process, attention can 
improve interpretability and learning performance.

In recent studies, attention mechanisms have been 
applied to load forecasting models with promising 
results. For example, Li et al. proposed an RNN-based 

load predictor with attention and demonstrated its effec-
tiveness through comparative results [92]. Similarly, Jin 
et al. designed an attention- based encoder-decoder net-
work with Bayesian optimization for load prediction and 
found that the attention-enhanced approach consistently 
provided more accurate results [93]. Wang et al. devel-
oped a bi-LSTM-based predictor with attention and rolling 
update for short-term load forecasting [94]. The rolling 
update is used effectively to update the training dataset in 
the real-time forecasting process. Attention is employed 
to assign the influence weights of different input variables. 
Then a bi-LSTM is used for predicting. Unlike general 
LSTMs that transmit unidirectionally and only focus on 
past information, bi-LSTM provides a two-path training 
method. Both past and future data are taken into account. 
According to their test results, compared to the tradi-
tional bi-LSTM model, the proposed attention and rolling 
update boosted bi-LSTM model can achieve more accurate 
forecasting results. Another method was reported by Wu 
et al. [95], in which a short-term forecasting method is 
presented using an attention-based approach with CNN, 
LSTM, and bi-LSTM. The input dataset includes tem-
perature, cooling load, and gas consumption information 
for the past five days. An attention-based CNN is utilized 
to extract the features of the input. Then, LSTM and bi-
LSTM are combined to forecast the load for the next hour. 
The outputs indicate that the proposed method is more 
accurate than single LSTM, bi-LSTM, BPNN, RFR, SVR, 
and hybrid models: CNN-bi-LSTM, and CNN-LSTM. 
Sehovac et al. proposed a load forecasting method com-
bining Sequence RNN and attention [96]. Given that the 
structure is composed of an encoder and decoder, and 
longer series may increase decoding challenges, attention 
is introduced to prioritize the input series. Compared with 
the other attention-empowered studies, the results showed 
that the proposed method with attention is more accurate. 
At the same time, this work also notes that the forecasting 
accuracy decreases as the forecasting horizon increases; 
moreover, longer input sequences may not always increase 
the accuracy.

As demonstrated in previous works, the attention mecha-
nism is an effective strategy to improve the performance of 
predictors. However, it should be noted that incorporating 
attention mechanisms into models may lead to longer train-
ing times, which may limit the performance of predictors, 
especially for the applications of short-term load forecasting. 
Nonetheless, the potential benefits of attention mechanisms 
in terms of interpretability and improved prediction accuracy 
make it a promising area of research in the field of learning-
based forecasting approaches.
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2.3.4 � Reinforcement Learning (RL)‑Empowered Load 
Forecasting Schemes

Reinforcement learning (RL) is a subset of ML in which 
an agent learns to make decisions by interacting with the 
environment and receiving rewards or penalties based on 
its actions [97]. The agent senses the environment and 
chooses actions that influence it, seeking to find a policy 
that maximizes the accumulated rewards [97]. Compared 
to ML/DL-based load forecasting models that rely solely 
on training data, RL models can adjust their predictions 
dynamically based on new inputs, resulting in more accu-
rate and reliable load forecasts, even in the presence of 
unforeseen events [98–100].

There are two main RL methods: policy-based and 
value-based RL [98]. In policy-based RL, such as policy 
gradient, the agent directly learns and updates the policy 
that maps state to action, repeating the process of “select-
ing the initial policy, finding the value function, and find-
ing the new policy from the value function” until the opti-
mal policy is found. To improve the forecastability of the 
entire electrical load, Xie et al. proposed an RL-based data 
sampling control approach that interacts with smart meter 
data [101]. The proposed approach can be implemented 
both offline and online by interacting with real-time data 
from each household. The test results show that the pro-
posed RL-based algorithm outperforms competing algo-
rithms and delivers superior predictive performance.

In value-based RL, such as Q-learning and Deep Q-Net-
work (DQN), the agent focuses on the action-value function 
and finds the policy through the value function, repeating 
the process of “selecting the initial value function, choosing 
the best action in the state, finding the new value function” 
until the optimal value function is found. Feng and Zhang 
proposed a dynamic predictive model selection mechanism 
based on Q-learning to enhance the accuracy of multi-model 
load forecasting [98]. The approach dynamically selects the 
most accurate forecasting output from multiple ML/DL 
models based on real- time observations, and experimental 
results using two years of data show that it improves accu-
racy by approximately 50% compared to using any single 
ML/DL method alone. Dabbaghjamanesh et al. presented a 
Q-learning-based load forecasting algorithm for hybrid elec-
tric vehicle (EV) charging [102]. The algorithm employs 
both an ANN and an RNN to forecast the load simulta-
neously, and a Q-learning agent is utilized to determine 
which results to use as the final output. The algorithm is 
tested in three different scenarios, each with varying EV 
charging characteristics, and the comparison results dem-
onstrate that the Q-learning-based approach can consist-
ently predict EV charging load with greater accuracy and 
flexibility compared to the ANN and RNN methods. Park 
et al. proposed a novel approach to improve the accuracy 

of short-term load forecasting using a similar day selection 
model based on DQN [100]. The proposed model dynami-
cally selects the most suitable training data, significantly 
boosting the performance of the ML model. The proposed 
method outperforms existing models in terms of accuracy, as 
demonstrated through extensive experiments on real-world 
load and meteorological data from Korea. As demonstrated 
by the aforementioned works, RL technologies have been 
extensively employed in load forecasting and have shown 
remarkable forecasting results. However, it should be noted 
that, at present, most of these advances primarily utilize RL 
to dynamically select the appropriate model, training data, 
sampling rate, and other related parameters. The primary 
prediction models still rely on ML and DL techniques. That 
is the reason the RL-empowered strategies are listed in Sec-
tion 2.4. In line with the OpenAI framework, it is expected 
that more promising RL-based prediction approaches will 
be developed in the future.

2.4 � Discussion of Forecasting Methods

As a review work targeted to discuss each strategy with an 
eye on real-world applications, it is critical to point out that

•	 It is intractable to identify the “most accurate” or “fast-
est” approach [65, 71, 86]. The evaluation of prediction 
results shows different trade-offs depending on how vari-
ous metrics prioritize their performance criteria from dif-
ferent perspectives [86].

For example, a variety of evaluation metrics has been 
proposed to evaluate load forecasting results, such as mean 
absolute error (MAE), root mean square deviation (RMSE), 
mean absolute percentage error (MAPE), symmetric mean 
absolute percent error (SMAPE), R2, and Theil’s inequality 
coefficient (TIC) [27, 103, 104]. However, it is found that 
MAPE offers a multi-dimensional perspective of predic-
tive results evaluation. Sometimes, it may misinterpret the 
results, especially when the length of the data series is not 
specified [65].

•	 Various prediction horizons require different considera-
tions to trade-off accuracy, flexibility, and reliability.

As mentioned before, according to the application scenar-
ios, load forecasting methods can be categorized into short-, 
medium-, and long-term forecasting [34–40]. The short-term 
is generally defined as up to 72 hours, which can help to fix 
the time-lag measurements and provide an immediate impact 
on the operation [37, 38, 40]. However, the implementation 
of this method is always limited by sensing noise, calcu-
lation speed, human behaviors, and over-or-under training 
problems [37]. The Mid-term refers to the prediction period 
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as one week, months, or up to one year, while the long-
term is the prediction period with a prediction period longer 
than one year [40]. These works have greater importance 
for long-term planning, economic growth, policy adjust-
ment, system capacity determination, and maintenance, but 
suffer from the limitation of prediction accuracy [37, 40, 
105]. Although each forecasting approach has its applica-
tion scenarios and advantages, a long-standing problem with 
load forecasting is that no classification criteria based on the 
predictive horizon have yet emerged [34–36]. For example, 
some previous work further divided the short term into very 
short term and short term [35]. Where the very short-term is 
defined as less than one day, short-term is longer than one 
day and less than one week, med-term is less than one year 
and long-term is longer than one year. For a better discussion 
of the applications of each strategy, the predictive horizons 
in this work are classified into short- and long-term, defined 
as less than one day and more than one day, respectively 
[34–36]. In Table 2, this work summarizes the features of 
each forecasting approach.

Table 2 compares the advantages and limitations of DL-
based, ML-based, and statistical learning-based methods and 
guides the selection of load forecasting models. A statisti-
cal learning-based approach is recommended for forecasting 
scenarios requiring easy implementation, low computational 
cost, and real-time processing regardless of the prediction 
horizon. However, according to the features of target data, 
additional optimization may be needed to provide accurate 
forecasting outputs [46, 53, 56]. ML-based methods are 
usually recommended for long-term prediction. Although 
ML-based methods generally require a longer training time 
compared to statistical learning- based methods, they still 
offer a reasonable trade-off between computational complex-
ity and prediction accuracy [54, 56].

DL-based methods are recommended for short-term pre-
dictions when accuracy is the priority. The strategy can auto-
matically capture more data features and yield more accurate 
predictions [81]. Though the interpretability of DL has been 
questioned, the recent research efforts in explainable AI and 
attention mechanism shed light on the interpretability of DL, 
which could improve the interpretability of DL-based load 
forecasting methods [38] At the same time, DL methods 
generally require more training data than ML approaches, 
which also can be another limitation [69] Besides, it is also 
worth noting that, given the complexity of electrical load 
data over a long period, the features captured by DL-based 
methods can be less relevant and thus less effective in pre-
diction [84]. To improve the application of DL approaches in 
power systems, some hybrid models using DL-based meth-
ods for extracting data features and ML-based methods for 
prediction also achieve satisfactory results [38].

However, it is important to emphasize that these obser-
vations may not always hold true and may vary depending Ta
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on the data and implementation. For instance, Hosein et al. 
discovered that although DL-based methods often require 
longer computational times than other models, they can still 
be preferable, even with a short epoch [36]. Additionally, RL 
technology also provides a promising strategy to improve 
the performance of ML/DL-based forecasting approaches 
[106]. For load forecasting with large-scale or multi-feature 
training datasets, RL can be used as a step-by-step feature 
extraction mechanism to dynamically improve the forecast-
ing accuracy [100].

3 � Anomaly Detection

Electricity providers aim to meet the electricity demand 
while facing both technical and non-technical electricity 
losses. Technical losses result from the physical limitations 
of a power system, such as resistance, while non-technical 
losses arise from electricity theft and leakage, leading to 
high costs and potential security breaches. It is essential to 

avoid non-technical losses. The differences between techni-
cal and non-technical losses are presented in Table 3, as 
reported in [107].

Anomaly detection is a crucial aspect of smart grid, par-
ticularly on the demand side. To effectively identify abnor-
mal power usage, various data science techniques are uti-
lized to train an anomaly detection algorithm [108]. The 
candidate data can be classified as either “general anoma-
lies” or divided into different types of anomalies, depend-
ing on the feature extraction method used [109]. Anomaly 
detection can provide feedback on energy consumption for 
problem diagnosis, which benefits energy suppliers and eco-
systems [23, 110–112]. Electrical load anomaly detection 
methods can be categorized into two main groups: regres-
sion model-based and classification model-based [22]. Fig-
ure 6 illustrates the detection mechanism of each strategy.

3.1 � Regression‑Model‑Based Anomaly Detection

Regression model-based anomaly detection is a technique 
that relies on the principles of forecasting. It utilizes a fore-
casting model to fit historical data and predict the load for 
future time slots. The predicted values are then compared 
to the realized actual data, and large deviations between the 
two can be identified as anomalies. Zhang et al. used a linear 
regression model to fit and predict electrical load consider-
ing the effects of environmental factors on residential energy 
consumption [68]. A linear regression model outputs predic-
tion as a baseline and any realized data points that deviate 

Table 3   Loss in a power grid

Type of loss Examples Features

Technical Power dissipation, internal electrical 
resistance

Inevitable

Non-technical Energy theft, bill fraud, meter failure, 
illegal power utilization

Evitable

Fig. 6   Detection mechanism of regression-model-based and classification-model-based detection methods
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extensively from the baseline are identified to be anomalous. 
However, from the application perspective, there are two 
concerns as follows. First, individual differences in tempera-
ture sensitivity can restrict the applications of this approach. 
Second, considering the complexity of the residential load 
series, linear regression may only adequately capture some 
essential features, resulting in false detection. Chou et al. 
and Hollingsworth et al. developed hybrid prediction model-
based anomaly detectors capturing the nonlinearity in elec-
trical load series [113, 114]. Both studies employed ARIMA 
to perform linear regression, then incorporated non- linear 
ML models, such as ANN and LSTM, to compensate for 
ARIMA losses. Consistent with previous forecasting mod-
els, the hybrid models facilitate better characterization of 
load time series. Though hybrid methods can improve load 
forecasting performance, there is no guarantee for perfect 
anomaly detection. First, a hybrid model may need to fore-
cast a future load with higher accuracy. Second, considering 
the inaccuracy in predictions, the two-sigma rule may be 
insufficiently effective in detecting all anomalous data.

To address issues with unsatisfactory detection, Luo et al. 
developed a dynamic anomaly detector [115]. No fixed or 
preset threshold is used when exploring differences between 
predictions and real data. Instead, an active adaptive thresh-
old is employed, and the dynamic detection rule ensured that 
the design could adapt to time-varying anomalies. However, 
the dependence on the forecast results remained high. To 
further improve anomaly detection, Fenza et al. developed a 
drift-aware method to detect anomalies in smart grids [116]. 
An LSTM is used to extract historical data features and fore-
cast load. Then the detection algorithm calculated the trend 
in predictive error and detected consumption anomalies. 
Some other novel attempts have been recently proposed by 
Wang et al., Xu et al. and Cui et al. to improve the regres-
sion-based detection [20, 23, 117, 118].

Three improved regression model-based detection meth-
ods were proposed by Wang et al. to overcome the intrinsic 
limitations of the regression-based approaches [20, 23, 71]. 
The Bayes information criterion is employed to avoid over-
or-under-fitting during real-time prediction and improve 
the predictive performance. Then, an independent detection 
mechanism is developed to analyze the estimated next-step 
load and the observed real-time load and screen out anoma-
lies. The proposed test results show that the hybrid approach 
outperformed the introduced alternative ML- and DL-based 
approaches in terms of both prediction and anomaly detec-
tion. Wang et al. also proposed a novel prediction result-
based detection strategy, which outperforms traditional ML/
DL-based detection methods and saves on training costs 
[71]. The approach dynamically evaluates real-time power 
consumption information and identifies if it is consistent 
with the historical power usage habits, using the estimated 

next-step load as a reference. The proposed method offers 
accurate anomaly detection without relying on labeled data 
and can be beneficial in scenarios where labeled data is not 
readily available. Cui et al. also used the outcomes of predic-
tive models as baselines for anomaly detection [117]; how-
ever, the predictive results are not simply replayed. Instead, 
a supervised learning-based classification is employed 
to perform good detection, thus improving accuracy and 
enhancing forecasting robustness. Xu et al. developed an 
RNN-based predictor using quantile regression and Z-scores 
to detect anomalies [118]. These new approaches employed 
ML to improve prediction and detection based on regression-
based methods. However, the simplicity of regression-based 
detection has been compromised as the prediction and detec-
tion structures become more complex.

3.2 � Classification Model‑Based Anomaly Detection

In addition to regression model-based anomaly detectors, 
classification model- based anomaly detectors have also 
been widely used [23]. Classification-based anomaly detec-
tors can be further divided into supervised learning-based, 
unsupervised learning-based, and semi-supervised learning-
based methods.

3.2.1 � Supervised Learning‑Based Methods

Various supervised learning-based models are used for 
anomaly detection, among which SVM has gained popular-
ity due to its good performance in large- scale systems [119]. 
Since each kernel is non-parametric and operates locally, 
it is not necessary to have the same functional form for all 
data, thus reducing computational costs [119, 120]. Nagi 
et al., Jokar et al. and Depuru et al. have designed different 
SVM-based anomaly detectors for smart grids [120–122]. 
Nagi et al. used a feature selection/extraction function to 
process raw data and trained SVM to determine data cor-
rectness, resulting in improved detection accuracy [120]. 
Jokar et al. developed an SVM-based anomaly detector 
to identify electricity theft from a grid with an advanced 
metering infrastructure [122]. They employed K-means to 
cluster the training data into different groups, and the num-
ber of clusters is determined by the Silhouette coefficient. 
The clustered datasets are used to train an SVM to identify 
abnormal samples, resulting in higher accuracy for anomaly 
detection. Depuru et al. developed an SVM-based electric-
ity theft detection algorithm by combining SVM with a rule 
engine that divides customers into genuine electricity users 
and thieves [121]. Although the classification results of the 
original SVM seem to be suboptimal, the hybrid SVM meth-
ods effectively detected smart grid anomalies.
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Supervised learning-based methods, such as SVM, have 
shown good performance in large-scale systems due to their 
ability to handle high-dimensional data and non-linear rela-
tionships (Ozay et al. [119]). However, the performance of 
these models can vary depending on the system size and 
the data’s class distribution. Pinceti et al. [123] compared 
the effectiveness of KNN, SVM, and replicator neural net-
works in detecting anomalies in real-world data and found 
that KNN performed well. However, their test data suffered 
from class imbalance issues, which may have contributed to 
the superior performance of the simple clustering method. 
In contrast, Ozay et al. [119] tested SVM and KNN on 
various systems and found that KNN outperformed SVM 
in small sized systems but performed worse in large-sized 
ones due to its sensitivity to class imbalance. In the context 
of anomaly detection, hidden Markov models have also been 
widely used. Makonin et al. [124] proposed an improved 
non-intrusive load monitoring method using a novel variant 
of the Viterbi algorithm, the sparse Viterbi algorithm, which 
can effectively manage large sparse matrices. The proposed 
method disaggregated a model with many super-states while 
preserving between-load dependencies in real-time, leading 
to better load monitoring.

DL-based anomaly detectors are known to achieve accu-
rate detection compared to ML-based methods. Devlin et al. 
developed a feed-forward neural network-based load moni-
tor that detected anomalies with an average precision of 
76.3% using raw meter data for time series decomposition 
and detection [125]. To discuss the advantages of DL-based 
methods, Buzau et al. and He et al. developed two novel 
electrical load anomaly detectors [126, 127]. Buzau et al. 
used an LSTM and MLP-based classifier that outperformed 
traditional ML-based methods such as SVM, LR, XGBoost 
tree, MLP, and CNN. He et al. developed a conditional 
deep belief network-based electricity theft detector that can 
detect anomalies in real-time, and its performance is better 
than ANN- and SVM-based detectors [127]. Furthermore, 
compared to detection accuracy, another essential aspect of 
detection method evaluation is robustness [128]. A robust 
model should consistently provide accurate results under dif-
ferent circumstances [129]. In this regard, Rolnick et al. sug-
gested that DL-based supervised learning methods are more 
robust to label noise than ML-based supervised learning 
classification methods [128]. To improve the performance of 
DL methods in load forecasting, attention mechanisms have 
been introduced. Javed et al. proposed a new anomaly detec-
tion strategy incorporating a combination of an attention 
mechanism with an LSTM-based CNN to identify erroneous 
and anomalous readings generated through errors or attacks 
in Connected-and-Automated Vehicles [130]. Accord-
ing to the test results, the proposed approach significantly 
improved the detection rate compared to alternative methods 
based on the Kalman filter and CNN-Kalman filter.

3.2.2 � Unsupervised Learning‑Based Methods

Supervised learning methods can be effective in anomaly 
detection, but their reliance on high-quality labeled data can 
be expensive and limit their practicality [22]. To address this 
challenge, unsupervised learning methods offer a promis-
ing alternative that does not require labeled data and can be 
more cost-effective [131]. One commonly used approach is 
the autoencoder, which compresses input data into latent 
variables through an encoder, then reconstructs the data 
using a decoder [132, 133]. Anomaly scores are calculated 
for each observation, and the ones exceeding a threshold are 
classified as anomalies.

Several studies have demonstrated the effectiveness of 
unsupervised learning-based anomaly detection. Fan et al. 
proposed a method that combined spectral density estima-
tion with decision tree classification [131]. After feature 
extraction, an autoencoder is used to calculate anomaly 
scores, and observations with scores above a preset thresh-
old are identified as anomalies. Zheng et al. developed an 
autoencoder-based model that used maximum likelihood 
estimation to detect anomalies [111]. By calculating the 
average and correlation variances of the dataset using recon-
struction error vectors, anomalies are detected with reference 
to the distribution of reconstruction errors.

Other studies have used unsupervised learning methods 
for specific applications. For instance, Zhao et al. used graph 
signal processing to process power consumption data for 
low-rate load monitoring purposes [134]. Meanwhile, Hus-
sain et al. developed an electricity theft detection method 
that employed statistical feature extraction, robust principal 
component analysis, and outlier removal clustering [111].

While unsupervised learning-based anomaly detection 
methods can achieve accurate results with low labeling 
costs, they have some limitations. These include low com-
putational efficiency for large datasets, sensitivity to feature 
extraction, lack of ground truth data for evaluating results, 
and weak interpretability [31, 131, 135, 136]. Nonetheless, 
unsupervised learning-based anomaly detection methods 
offer a cost-effective and efficient alternative to supervised 
methods, and their effectiveness has been demonstrated in 
various applications.

3.2.3 � Semi‑Supervised Learning‑Based Methods

Semi-supervised classification is a type of ML that combines 
both supervised and unsupervised learning methods. It aims 
to reduce the labeling cost of the supervised classification 
and improve the interpretability of the unsupervised clas-
sification. This approach is particularly useful when exter-
nal information is scarce [137]. In a training dataset, some 
data are labeled, and the semi-supervised method can iden-
tify unlabeled classes associated with labeled patterns to 
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determine whether the unlabeled data belong to such clusters 
[138, 139].

One of the most commonly used machine learning models 
in semi-supervised learning-based load detectors is SVM. 
Yan et al. developed a semi-SVM-based anomaly detector 
to detect faults in air handling units [140]. The classifier 
iteratively inserts new test samples during semi-supervised 
learning and compares its classification accuracy to the pre-
set confidence level threshold. If the accuracy is higher than 
the threshold, the training data size is increased. Wang et al. 
proposed a hybrid semi-supervised learning framework that 
employs SVM and K-means to achieve detection at low labe-
ling costs [22]. The proposed method first employs K-means 
for data preprocessing. Then, an SVM-based classifier is 
proposed to identify the obtained patterns. Finally, the cross-
entropy loss function is used to evaluate the classification 
results of the SVM. The classification result is determined 
after calculating the loss before and after introducing new 
samples into the dataset. Similar to Yan et al.’s work [140], 
if the classification accuracy is higher than a threshold, the 
test data is adopted into the training pool.

Iwayemi et al. developed a semi-supervised learning-
based residential appliance annotator that created two-
dimensional feature vectors featuring the dynamic time 
warping distance and the step changes in the power con-
sumption of an appliance event [135]. The Mahalanobis 
distance is used to measure these feature vectors and iden-
tify the boundaries of appliance groups. After labeling all 
unlearned data, semi-supervised learning-based algorithms 
completed the training. These hybrid models are shown to 
effectively achieve a good trade-off between model perfor-
mance and labeling costs.

DL methods can enhance anomaly detection in semi-
supervised learning- based approaches. Lu et al. devel-
oped a semi-supervised auto-encoder-based load anomaly 
detector [141]. The semi-supervised auto-encoder genera-
tive model consists of an encoder, decoder, discriminator, 
and classifier. The encoder and decoder are connected in 
the form of an autoencoder that captures the features of the 
data. Yang et al. designed a temporal convolutional network- 
based semi-supervised load monitoring method to evaluate 

classification loss and compared the approach to machine 
learning- and deep learning-based methods [142]. In their 
work, the proposed temporal convolutional network- based 
method is found to be practical and applicable in real-time 
detection tasks when compared with other alternative semi-
supervised detection approaches.

In addition to the advantage of relatively low labeling 
costs, semi- supervised learning is also robust to data spar-
sity, thereby reducing the impact of data imbalance on 
classification [119]. However, from the view of real-world 
application, semi-supervised learning has some limitations. 
It relies on accurate prior knowledge about the relationship 
between labeled and unlabeled data structures [137, 140, 
143]. That limits its applications. Furthermore, introducing 
new unlabeled samples into the training data pool may cause 
performance degradation [144].

3.2.4 � Data Imbalance and Optimization Strategies

The issue of data imbalance is prevalent in real-world power 
consumption datasets, where abnormal events occur at a 
relatively low frequency, resulting in a sparse distribution 
of abnormal data [122, 131]. However, this characteristic 
of sparse anomalies poses a challenge for neural network-
based models, which are a fundamental component of many 
DL approaches [145]. Neural networks learn the features 
of each class by optimizing the weights and activations of 
each node during the learning phase [146]. However, the 
assumption underlying this learning is that the training data 
are uniformly distributed among all classes [131, 145, 146]. 
In other words, if a class is not evenly represented, the neural 
network-based model may not achieve optimal performance.

Figure 7 illustrates a conceptual view of imbalanced clas-
sification, where grey nodes represent training data in Class 
0 (the majority class), and red nodes represent Class 1 (the 
minority class). The ideal classification result is shown in 
Figure 7a. However, due to the significant difference in the 
number of data samples in the two classes, the neural net-
work often fails to learn the features of Class 1, resulting in 
the classification result shown in Figure 7b. To address this 

Fig. 7   Impact of data imbalance 
on classification
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issue, several strategies have been proposed to optimize the 
performance of imbalanced classification models.

a.	 Abnormal data generation

To address the problem of data imbalance, Jokar et al. 
developed an SVM- based anomaly detector that can iden-
tify electricity theft in a grid [122]. This method involves 
generating “fake data”—i.e., abnormal power consumption 
data—from benign data. Specifically, n data samples are 
randomly selected from the benign dataset to establish a 
similarly sized but new benign dataset labeled x. Electric-
ity theft is typically associated with reduced paid power 
consumption, and the electricity theft dataset ‘y’ can be 
represented as ‘y = x * a’, where ‘a’ is a preset parameter 
in [0, 1]. The method used to learn the optimized dataset 
is irrelevant, although the training is identical. However, 
a limitation of this method is that the distributions of all 
malicious samples are assumed to be consistent with the 
distributions of the benign samples, which may not be true 
in all cases.

This method has also been used in Wang et al.’s work 
[23]. Considering the imbalanced nature of real-world 
power consumption datasets, their work introduced this 
method to include some “fake data” in the training data to 
balance the dataset. Their test results show that the model 
with optimized training data effectively screens out anoma-
lies. However, it should be noted that this method requires 
prior knowledge of the types of anomalies that need to be 
detected and may not be applicable in scenarios where the 
types of anomalies are unknown, or new types of anomalies 
are emerging.

b.	 One-class classification

The one-class classification approach is a special case in 
supervised learning- based detection and involves a binary 
rule where data are classified as abnormal if they cannot be 
classified into a benign dataset [109, 117]. This approach 
has been shown to save labeling costs and improve the effi-
ciency of supervised- based detectors [147]. Several studies 
have compared the detection performance of one-class and 
multi-class classification methods in the presence of train-
ing data imbalance. Nguyen et al. and Fu et al. showed that 
one-class classification methods perform better in such cases 
[148, 149]. However, Kokar et al. found the opposite result 
in their study, where an SVM-based one-classification test 
failed to show promising results compared to multi-class-
based classification [122]. Therefore, there is no clear-cut 
conclusion as to which method is better, but several studies 
have demonstrated that the one-class classification approach 

is promising in reducing labeling costs and addressing data 
imbalance.

c.	 Class weights-based optimization

To further address the data imbalance problem, various opti-
mization strategies have been proposed. One such strategy is 
the two-step optimization approach, which assigns optimal 
class weights during learning. This approach has been used 
in many works to improve the performance of classification 
models against data imbalance [150, 151].

The two-step optimization approach involves two main 
steps. In the first step, a data survey is conducted to deter-
mine which class is the minority class and the proportion of 
the minority class. In the second step, a proper class weight 
is set for the minority class, and the classification model 
can weigh the class more heavily during the training phase. 
This way, the impact of data imbalance on training can be 
reduced, and the model can be optimized for better perfor-
mance [145, 151].

Although the two-step optimization approach can effec-
tively address the data imbalance problem, it is important 
to note that the optimization process can lead to extra train-
ing time and computational costs. Therefore, the trade-off 
between the improved performance and increased training 
time and computational costs should be carefully considered 
when applying this approach.

d.	 Over-or-under sampling

This approach for addressing imbalanced data problems 
is based on data sampling techniques [152]. By randomly 
over-sampling or under-sampling the minority or majority 
class, the classification method can manage the number of 
samples in each class to train models in a more balanced way 
[153]. While this approach has not yet been applied to smart 
grid anomaly detection, Huan et al. previously proposed 
an under-sampling-based detection approach for screen-
ing abnormal traffic in network management [154]. Their 
work involved setting the number of clusters in the normal 
class to the number of abnormal data, and retaining samples 
closest to the cluster center to achieve under-sampling. The 
proposed approach uses clustering to avoid oversampling 
issues and provides a novel approach for effectively selecting 
samples from the majority class.

3.3 � Discussion of Anomaly Detection Methods

We have presented many anomaly detection methods in the 
previous sections. Each comes with its unique advantages 
and limitations, making them suitable for different scenarios. 
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To assist in selecting the appropriate anomaly detection 
method for smart grid implementation, we summarize the 
advantages and limitations of these methods in Table 4.

It should be noted that various evaluation metrics have 
been proposed for assessing the performance of anomaly 
detection methods, similar to load forecasting strategies 
[155]. However, due to the imbalanced nature of anomalies 
in real-world datasets, there is ongoing debate regarding the 
most appropriate evaluation metric. Some research suggests 
that the G-mean score provides a more balanced interpreta-
tion of classification performance, while others claim that 
the Matthew correlation coefficient (MCC) is more suitable 
[156]. The choice of metric depends on the specific applica-
tion and priorities of the stakeholders involved [65].

•	 Therefore, pointing out the “best” metric for anomaly 
detection is impractical [155].

In this work, we aim to evaluate the performance of each 
detection strategy from the perspectives of both ML/DL and 
real-world implementation.

The regression-based approach is a useful method as it 
can provide both load forecasting and anomaly detection 
within a single framework. However, while it can save train-
ing data and has a simple detection mechanism, its detec-
tion accuracy is limited. This is because the method lacks 
an independent abnormal data determination design, which 
causes it to rely too heavily on the prediction outcomes [23]. 

Moreover, this method may not be suitable for complex 
power systems with unpredictable loads.

Classification-based detection strategies offer a promis-
ing approach for effectively identifying anomalies. How-
ever, each approach has its own limitations. The supervised 
learning-based method, for instance, can provide high detec-
tion accuracy but is limited by its data labeling cost [22]. 
Additionally, defining an anomaly in the context of daily 
electricity usage variability can be challenging, which makes 
data labeling quality a potential issue. Moreover, customer 
privacy concerns must be taken into account as a prelimi-
nary data exploration phase is required.

Unsupervised learning-based approaches provide a 
labeling-free scheme and are robust to input noise [157, 
158]. However, their applications are limited due to their 
high computational cost and weak interpretability [31, 131, 
135, 136]. The semi-supervised learning approach strikes 
a balance between supervised and unsupervised learning 
approaches. However, it is important to note that the under-
lying assumption of semi-supervised learning is that all 
classes are separated clearly, which may make this approach 
unsuitable for some unknown datasets [137, 140, 143]. 
Additionally, as with supervised learning-based strategies, 
customer privacy issues are also involved in this approach.

Hyperspace Dimensional Computing (HDC) is a novel 
data-driven classification strategy recently introduced to 
the energy domain [155]. By mapping the data into a high-
dimensional space, the features of each class can be learned 

Fig. 8   Classification of demand response strategies
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more efficiently. Additionally, HDC is hardware-friendly and 
can be implemented on a wide range of platforms, including 
low-power and embedded devices. Wang et al. proposed an 
HDC-based anomaly detection method, which is the first 
attempt to introduce this approach in the energy domain 
[155]. The proposed HDC-based method is compared with 
various approaches, including ML models such as SVM, 
KNN, AND, and DL models such as LSTM, DNN, and their 
class-weight optimized detectors. The test results show that 
the HDC-based detection method not only provides accurate 
detection results but also saves model optimization cost and 
pre-training costs. More importantly, this approach is train-
ing time-efficient, saving more time on large-scale dataset- 
based training. However, it should be noted that the HDC-
based approach is based on supervised learning, which may 
be limited in its application in some cases due to the high 
data labeling costs.

4 � Demand Response

Demand response has gained significant attention and has 
become an essential component of smart grids [159]. It is an 
effective way to manage demand by reducing system peak 
loads, enhancing system reliability, and delaying system 
upgrades [160, 161]. AI and data science technologies have 
provided an affordable solution for demand response, which 
has further propelled the development of power grids [159]. 
By learning from human power usage behavior, demand 
response can efficiently control the use of individual appli-
ances, minimize user discomfort, increase the utilization of 
renewable energy, and reduce energy costs [162].

Demand response can be categorized into two types: 
incentive-based demand response and price-based demand 
response, as shown in Figure 8 [8, 160, 161, 163–165]. The 
incentive-based demand response suggests that users adjust 
their load profile or adopt some control over their appli-
ances. This approach includes direct load control, interrupt-
ible service, demand bidding, capacity services, emergency 
protection, and ancillary service markets, according to dif-
ferent planning periods [8]. On the other hand, price-based 
demand response adjusts hourly electricity prices to reflect 
supply and demand balance or mismatch in real-time, such 
that users can respond to prices and adjust their load. This 
approach includes critical-peak pricing, time-of-use pric-
ing, real-time pricing, and peak load reduction credits [8, 
166, 167].

Demand response plays an essential role in improving 
energy efficiency, utilization of renewable energy sources, 
and reducing emissions from the power consumption side 
[163, 168].

4.1 � AI for Incentive‑Based Demand Response

Incentive-based demand response strategies aim to moti-
vate users to adjust their energy consumption behavior to 
optimize demand. AI-based techniques have been devel-
oped to support such strategies. Noor et  al. proposed a 
demand response strategy that aimed to reduce peak load, 
thus improving grid stability and reducing customer costs 
[32]. Sharma et al. used a whale optimization algorithm-
based demand response approach to adjust the load curve 
and reshape it through strategic conservation, peak clipping, 
and load shifting [169]. The method is simple to implement 
and avoided local minima. Tutkun et al. proposed a load-
shifting and valley-filling-based demand response scheme 
that optimized the daily energy cost for customers in an off-
grid microgrid [170]. Werminski et al. developed a Decen-
tralized Active Demand Response (DADR)-based demand 
response strategy that effectively reduced peak loads without 
requiring communication with other appliance components 
[171]. Li et al. proposed a multi-objective demand response 
optimization scheme that included an upper-layer utility, a 
middle-layer demand response aggregator, and lower-layer 
customers [8]. They employed an artificial immune system 
algorithm to solve the multi-objective problem and showed 
that all participants could benefit. Finally, Yang and Wang 
developed a virtual power plant (VPP) using AI techniques 
to manage residential energy resources and participate in the 
power system market to provide demand response, feed-in 
energy, and grid services [172].

Game theory has emerged as a powerful tool for devel-
oping demand response methods for intelligent customer 
agents. Jo et al. proposed an energy trading and opera-
tion game for storage charging and discharging to enhance 
energy efficiency [173]. The simulation results demonstrated 
a reduction in both the total energy cost and the peak-to-
average energy ratio. Zhao et al. investigated the duopoly 
competition of renewable energy to determine the optimal 
sizing and operation of energy storage serving consumers in 
power systems [174]. They developed a three-stage game-
theoretic model to model the interactions between suppliers 
and consumers and studied the equilibrium decisions of stor-
age investment. The use of game theory in demand response 
optimization is expected to increase as it enables agents to 
make informed decisions based on strategic reasoning and 
considerations.

Compared with directly controlling the power systems, 
ML and DL approaches also play a critical role in under-
standing consumers’ energy consumption patterns for devel-
oping more effective and fair demand response programs. 
Kwac and Rajagopal developed a data-driven method for 
selecting customers for demand response programs [175]. 
They propose a scalable method leveraging load data from 
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individual-level smart meters, and the proposed method is 
tested using real smart meter data in more than 58k resi-
dential households. Wang et al. developed a framework 
by leveraging ML for consumer activity detection using 
residential smart meter data, which can inform demand 
response design to provide customized programs for differ-
ent consumer activities [176]. In addition to the efficiency of 
demand response programs, energy equity and fairness have 
attracted greater attention. Tang et al. identified the drivers 
of residential energy consumption patterns using both socio-
economic and load data [177]. Different ML methods are 
used to capture the relationship between load patterns and 
socioeconomic factors, providing insights into how different 
consumers use energy differently. Wei and Wang adopted 
the symbolic aggregate approximation method to process 
load data and used the K-Means method to extract key load 
patterns. A DNN is designed to analyze the relationship 
between users’ load patterns and their demographic features, 
which can help operators develop fair demand response pro-
grams for different social groups [178]. Wang developed a 
methodology to study seasonal variations in load patterns 
and to identify the relationship between seasonal varia-
tions in load and the socioeconomic factors of consumers. 
This can help operators and utilities develop better demand 
response programs for different seasons [179]. Babar et al. 
proposed an ML-based demand response strategy to be 
applied in an IoT-enabled grid, considering the security 
issue in power systems [180]. The Naive Bayes algorithm is 
used to classify the current power usage into different safety 
levels. Then, the effectiveness of IoT in power grids is exhib-
ited. It is pointed out that many factors, such as communica-
tion distance requirements, should be comprehensively con-
sidered in choosing the communication method for power 
systems. Zhou et al. presented a predictive results-based 
demand response approach, in which the building power 
consumption is forecasted, and four advanced power usage 
control strategies are compared, including a rule-based con-
troller, predictive controller, interactive feedback control-
ler, and hybrid controller [181]. The proposed forecasting 
approach is a surrogate model with neural networks, which 
provides accurate outcomes by effectively discarding the 
unnecessary connections with small weights, thus overcom-
ing the over-fitting issue and improving the training speed.

RL has been widely used to develop effective strategies 
for demand response, particularly under uncertain conditions 
[162]. For example, Qiu et al. proposed an RL-based bat-
tery storage scheduling strategy that controls the charge and 
discharge of batteries to optimize energy use [182]. Simi-
larly, Xiong et al. used a Q-learning algorithm to develop a 
real-time control strategy for reducing energy loss in electric 
vehicles (EVs) [183]. By comparing the RL-based approach 
with traditional rule-based methods, they showed that RL 
could effectively minimize energy loss.

In addition, Kofinas et al. developed a fuzzy Q-learning 
algorithm to optimize a standalone microgrid system [184]. 
The RL approach is modified to ensure supply quality and 
reliability in the face of uncertainties in renewable energy 
sources and user demand. Mathew et al. developed a deep 
RL-based demand response strategy for optimizing home 
energy use by shifting loads to minimize the aggregate peak 
load [185]. Their method employed a deep RL algorithm for 
each agent, which received feedback from the environment 
after every action.

4.2 � AI for Price‑Based Demand Response

Price-based demand response methods adjust prices to 
change users’ energy consumption behaviors to improve 
energy efficiency or reduce peak load. Herter and Song 
et al. developed demand response schemes to investigate 
how critical- peak pricing affected power usage [166, 186]. 
Herter studied the response of different users when critical-
peak pricing is applied and found that high-power consum-
ers respond more than low-power customers. Low-income 
users do not pay more on average when critical-peak pric-
ing is in effect, and there is no significant difference in sav-
ings among users with different incomes. Ma et al. used an 
enhanced Arrow-d’Aspremont-Gerard-Varet (AGV) mech-
anism to solve the truth-telling problems associated with 
dynamic pricing in a smart grid [187]. This work proves 
that the enhanced AGV mechanism could realize the basic 
conditions of incentive compatibility, individual rationality, 
and budget balance [188, 189].

Leveraging RL technology, Liu et al. used an RL-based 
demand response to reduce the energy costs of a passive 
thermal storage inventory [178]. O’Neill developed an 
improved Q-learning-based demand response to reduce resi-
dents’ energy costs [190]. The developed Q-learning algo-
rithm learns the behaviors of users and automatically adapts 
to changes in behaviors to reschedule energy use. Zhou et al. 
employed a demand response for peer-to-peer trading of 
energy storage in a residential community [191]. A Markov 
decision process is employed to model energy trading, and 
a fuzzy Q-learning algorithm is used to optimize energy-
trading decisions. The developed method facilitates peer-
to- peer trading, enabling residents to enjoy cheap renew-
able energy and reduce energy costs. Lu et al. proposed a 
deep RL-based demand response method to assist service 
providers in purchasing energy resources from customers 
to off- set energy fluctuations and improve grid reliability 
[192]. DNN is utilized to forecast future power prices and 
demands to schedule the load. Then, RL is adopted to pro-
vide optimal incentive rates for different users, considering 
the profitability of both service providers and customers. 
The simulation results suggest that this proposed strategy 
can yield demand-side participation, benefit both service 
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providers and customers, and improve system reliability by 
balancing different resources.

Hamed and Kazemi proposed a multi-objective mixed-
integer linear programming-based demand response method 
to reduce the cost of home power usage [193]. The power 
consumption activities are divided into three categories: 
time-shiftable appliances, power-shiftable appliances, and 
non-shiftable appliances. Their simulation results suggest 
that by considering different patterns of home power usage, 
the proposed method can take advantage of lower-cost pric-
ing during mid-peak and off-peak periods, thereby reducing 
households’ peak demand. Zhao et al. [194] designed ToU 
pricing to incentivize end-users energy storage deployment 
to help shave the system peak load and reduce the system 
cost. The proposed ToU pricing can reduce the system cost 
by over 30% compared to the benchmark with no storage 
investment. When there is no historical data about consum-
ers, it becomes more challenging to develop an effective 
demand response algorithm because the consumers’ behav-
iors are uncertain and unknown to the operator. Li et al. 
developed a joint online learning and pricing algorithm 
for demand response in [195]. In each time slot, the util-
ity can estimate the cost functions of consumers based on 
their noisy responses. The proposed work assesses the per-
formance of the algorithm leveraging regret analysis. The 
results indicate that the proposed method achieves logarith-
mic regret with respect to the operating horizon.

4.3 � Applications of Demand Response in Different 
Premises

Demand response strategies have been developed for various 
applications, such as residential home energy usage, build-
ing energy consumption, and regional energy management 
[196–199].

For residential home energy usage, Nadeem et al. pro-
posed a smart home load management and control strategy 
that integrates the usage of RESs with intelligent optimi-
zation algorithms [197]. Their proposed method utilizes 
a genetic algorithm, binary particle swarm optimization, 
and wind-driven optimization to achieve a trade-off among 
power usage reduction, price, and user comfort. The method 
distinguishes between scheduled and unscheduled power 
usage activities and adjusts them accordingly. Rocha et al. 
conducted a similar study on energy demand planning for 
smart homes, using three AI algorithms [198]. They devel-
oped an SVR-based model to forecast day-ahead distrib-
uted generations, and used an elitist non-dominated sorting 
genetic algorithm II to solve a multi-objective optimization 
problem, balancing user comfort and energy cost.

For building energy consumption, Tronchin et al. pro-
posed a critical analysis of possible paths of renewable 
energy integration from the perspective of the built envi-
ronment [196]. The authors suggested that a cross-sectorial 
data- driven model is necessary in the energy field, and 
emphasized the importance of investigating the spatial and 
temporal scalability of modeling techniques utilizing trans-
parent metrics and key performance indicators (KPI). They 
demonstrated the scalability of inverse modeling techniques 
for model calibration targeting energy management and the 
extensibility of techniques for techno-economic optimiza-
tion. Wang et al. proposed a demand response strategy to 
improve sustainable development in a living community in 
Africa, where only solar power is available [24]. The study 
integrated customer power usage habits and usage time to 
reduce blackouts even when the total energy consumption 
from users increases. Finally, Cai et al. presented a realistic 
case study on a demand response strategy in urban district 
heating networks [199]. They developed a day-ahead hourly 
schedule optimization for district heating substations, taking 
into account circulating pumps, distribution network, build-
ing space heating, and domestic hot water demand. Their 
experimental results indicate that by improving urban dis-
trict heating operations, an energy cost saving of up to 11% 
is possible. The authors proposed a sensitivity analysis to 
quantify the sensitivity of the method to energy cost, com-
fort cost, and pumping power.

Demand response strategies have been widely applied in 
different premises, with various approaches and optimiza-
tion techniques employed to achieve energy efficiency, cost 
reduction, and user comfort.

Table 5   Comparison of demand response approaches

Methods type Advantages Limitations

Incentive-based 1. Results directly 
execute on power 
systems;

2. Better flexibility and 
analytical results are 
enhanced by AI;

3. Support smart grid 
integration with 
renewable energy 
sources

Effectiveness is 
limited by the infra-
structure of power 
systems, etc

Price-based 1. Easy implementation;
2. Low hardware restric-

tions;
3. Good planning possi-

bilities for customers;
4. Support smart grid 

integration with 
renewable energy 
sources

1. Customer sensitive;
2. Affected by local 

development level, 
environment, etc
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4.4 � Discussion of Demand Response

The utilization of AI in demand response has facilitated the 
learning and optimization of intricate power systems that 
exhibit diverse user and environmental behaviors. This has 
paved the way for the development of more effective and 
efficient demand response techniques [200]. These advance-
ments are expected to maintain the balance between supply 
and demand sides, enhance system reliability, and mitigate 
supply constraints [32, 33, 201].

Table 5 presents a comparison of the advantages and chal-
lenges of two AI- empowered demand response strategies 
based on control mechanisms. As AI technology advances, 
both approaches offer better integration of power systems 
with renewable energy sources [202].

The incentive-based demand response approach provides 
an efficient way to manage power consumption through an 
intuitive feedback mechanism [160, 161]. Some AI tech-
niques, such as online learning and RL, further enhance the 
effectiveness of this method by providing a comprehensive 
understanding of customers’ features and better demand 
management [162]. However, from the perspective of real-
world applications, this approach is still limited by the 
infrastructure of power systems, among other factors [159, 
203–205].

In contrast, the price-based demand response approach 
proposes flexible solutions that are hardware-friendly, 
thereby increasing the utilization of renewable energy and 
addressing climate change [200, 202, 206]. The introduc-
tion of AI methods improves the performance of price-based 
demand response strategies by providing a more comprehen-
sive and strategic approach to assist customers in schedul-
ing their power usage [178]. However, the implementation 
of this approach needs to consider various factors that may 
affect its application, such as the environment, local develop-
ment, and customer sensitivity to prices [206].

In conclusion, the choice of demand response strategy 
should consider trade-offs such as hardware limitations, 
software algorithm complexity, and local government poli-
cies and regulations. Incentive-based strategies are recom-
mended for advanced power systems without hardware 
limitations, while price-based strategies provide a prom-
ising solution in real-world implementations but require a 
considerable amount of data sources to ensure its holistic 
performance.

5 � Conclusion

Traditional energy sources are becoming exhausted, and 
the world is facing numerous unprecedented challenges, 
such as climate change. There is a growing need to bridge 
the gap between theoretical algorithms and their practical 

implementation in power systems. This paper presents a 
comprehensive overview of the demand side of power sys-
tems, emphasizes the importance of considering real-world 
application challenges, and focuses on three crucial com-
ponents: load forecasting, anomaly detection, and demand 
response. Our main contributions are as follows:

•	 We provide practical insights for evaluating, select-
ing, and optimizing various machine learning and deep 
learning models in each component, as well as offering 
a holistic view for better understanding and meeting the 
requirements of energy systems. At the same time, we 
analyze practical issues such as energy system sensor/
input noises, data labeling errors/costs, the resilience of 
existing energy infrastructure, data imbalance, data avail-
ability, and operational constraints for better applications 
of different machine learning and deep learning models 
in power systems.

•	 In the load forecasting domain, we summarize previous 
efforts according to different data-driven technologies 
used, discuss promising optimization schemes consid-
ering implementation, and compare the advantages and 
limitations of reviewed prediction methods for different 
applications.

•	 We review anomaly detection approaches, provide a 
holistic summary of promising optimization schemes for 
addressing data imbalance issues, and discuss the associ-
ated challenges and trade-offs of these anomaly detection 
approaches.

•	 We introduce advanced strategies in demand response to 
comprehensively assess demand-side power usage and 
facilitate interaction between the system and consum-
ers, ensuring the balance between power generation and 
consumption and the reliability of future power systems.

By integrating previous research in these domains, we 
offer a more comprehensive and strategic view of future sus-
tainable development, elucidating the significance of each 
research area. We highlight the interconnected nature of 
these components through a feedback loop, emphasizing the 
importance of considering their interactions when designing 
data-driven approaches for energy systems. Our comprehen-
sive review aims to serve as a roadmap for researchers and 
practitioners to better understand the capabilities of AI tech-
niques in enhancing power consumption on the demand side. 
By examining the features and challenges of each field and 
discussing optimization strategies, this work could poten-
tially drive innovation and inform the development of more 
sustainable and efficient power systems, ultimately benefit-
ing the environment and society as a whole.
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