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Abstract
Hybrid vehicles (HVs) that equip at least two different energy sources have been proven to be one of effective and promising 
solutions to mitigate the issues of energy crisis and environmental pollution. For HVs, one of the core supervisory control 
problems is the power distribution among multiple power sources, and for this problem, energy management strategies 
(EMSs) have been studied to save energy and extend the service life of HVs. In recent years, with the rapid development 
of artificial intelligence and computer technologies, learning algorithms have been gradually applied to the EMS field and 
shortly become a novel research hotspot. Although there are some brief reviews on the learning-based (LB) EMSs for HVs 
in recent years, a state-of-the-art and thorough review related to the applications of learning algorithms in HV EMSs still 
lacks. In this paper, learning algorithms applied in HV EMSs are categorized and reviewed in terms of the reinforcement 
learning algorithms and deep reinforcement learning algorithms. Apart from presenting the recent progress of learning algo-
rithms applied in HV EMSs, advantages and disadvantages of different learning algorithms and LB EMSs are also discussed. 
Finally, a brief outlook related to the further applications of learning algorithms in HV EMSs, such as the integration towards 
autonomous driving and intelligent transportation system, is presented.

Keywords Hybrid vehicle · Energy management strategy · Reinforcement learning · Deep reinforcement learning · Recent 
progress

Abbreviations
AI  Artificial intelligence
AC  Actor-critic
A3C  Asynchronous advantage AC

AD  Autonomous driving
CV  Computer vision
DDPG  Deep deterministic policy gradient
DP  Dynamic programming
DRL  Deep reinforcement learning
DQN  Deep Q-network
DDQN  Double deep Q-network
ECMS  Equivalent consumption minimization strategy
EMS  Energy management strategy
EREV  Extended-range electric vehicle
FC  Fuel cell
FCHEV  Fuel cell hybrid electric vehicle
FCEV  Fuel cell electric vehicle
GA  Genetic algorithm
HESS  Hybrid energy storage system
HEV  Hybrid electric vehicle
HV  Hybrid vehicle
HETV  Hybrid electric tracked-vehicle
HTV  Hybrid tracked vehicle
HEB  Hybrid electric bus
HIL  Hardware-in-loop
ICE  Internal combustion engine

Online ISSN 2198-0810
Print ISSN 2288-6206

Dezhou Xu and Chunhua Zheng contributed equally to this work.

This paper is an invited paper (Invited Review).

 * Suk Won Cha 
 swcha@snu.ac.kr

1 Shenzhen Institutes of Advanced Technology, Chinese 
Academy of Sciences, Shenzhen 518055, China

2 School of Mechatronic Engineering, China University 
of Mining and Technology, Xuzhou 221116, China

3 School of Mechanical Engineering, Shenyang University 
of Technology, Shenyang 110870, China

4 Department of Mechanical Engineering, Hanyang 
University, 55 Hanyangdeahak-ro, Sangnok-gu, Ansan, 
Gyeonggi-do 15588, South Korea

5 School of Mechanical and Aerospace Engineering, Seoul 
National University, San 56-1, Daehak-dong, Gwanak-gu, 
Seoul 151742, South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s40684-022-00476-2&domain=pdf


246 International Journal of Precision Engineering and Manufacturing-Green Technology (2023) 10:245–267

1 3

ITS  Intelligent transportation system
LB  Learning-based
LSTM  Long short-term memory
MPC  Model predictive control
MDP  Markov decision process
MC  Markov chain
NN  Neural network
NDP  Neuro-dynamic programming
OB  Optimization-based
PHEV  Plug-in hybrid electric vehicle
PHEB  Plug-in hybrid electric bus
PMP  Pontryagin’s minimum principle
PER  Prioritized experience replay
PPO  Proximal policy optimization
RB  Rule-based
RL  Reinforcement learning
SC  Supercapacitor
SDP  Stochastic dynamic programming
SOC  State of charge
SARSA  State-action-reward-state-action
SAC  Soft actor-critic
SPaT  Signal phase and timing
TD  Temporal difference
TD3  Twin delayed DDPG
TPM  Transition probability matrix
V2V  Vehicle to vehicle
V2I  Vehicle to infrastructure

1 Introduction

The energy crisis problem has become increasingly serious 
worldwide, and according to related statistics, the petroleum 
source will be used up within 50 years if there are no effec-
tive solutions [43, 141, 143, 145, 146]. Traditional vehicles 

driven by internal combustion engines (ICEs) consume more 
than 30% of the total energy, especially petroleum sources, 
and exhaust 25–30% of the total greenhouse gas every year 
in the world [97]. The governments around the world plan 
to reduce the number of traditional ICE vehicles gradually 
for the energy conservation and emission reduction. Under 
the background of calling for the sustainable development, 
hybrid vehicles (HVs) are regarded as one of the effective 
ways to cope with the energy crisis and environmental pol-
lution problems, which are able to realize both higher fuel 
economy and lower pollutant emissions. In this paper, HVs 
refer to hybrid electric vehicles (HEVs), plug-in HEVs 
(PHEVs), extended-range EVs (EREVs), fuel cell HEVs 
(FCHEVs), and electric vehicles (EVs) with hybrid energy 
storage systems (HESSs). The common power sources of 
HVs include battery packs, ICEs, fuel cells (FCs), and super-
capacitors (SCs) [21, 35, 97].

One of the key issues in HVs is to design optimal energy 
management strategies (EMSs) to efficiently allocate the 
demand power of vehicles among different power sources, 
which has a significant influence on the fuel economy and 
the lifetime of power sources and further on the populariza-
tion of HVs [110]. EMSs have been studied by many uni-
versities and research institutions for more than 20 years, in 
which the energy management problems can be regarded as 
nonlinear and time-varying optimal control problems. Fig-
ure 1 shows the schematic diagram of the energy manage-
ment problem of HVs. In general, EMSs can be classified 
into rule-based (RB) EMSs, optimization-based (OB) EMSs, 
and learning-based (LB) EMSs. In the early years, RB and 
OB EMSs were commonly adopted, among which RB EMSs 
present the excellent real-time performance but require a 
lot of reliable human expertise and engineering experience 
for better control effects, while OB EMSs obtain outstand-
ing optimization effects but demand the precise future 

Fig. 1  Schematic diagram of 
energy management problem 
of HVs
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driving-related information in advance which hinders the 
real-time implementations [73, 74]. With the rapid devel-
opment of computer technologies and artificial intelligence 
(AI), learning algorithms have been gradually applied to 
the research of HV EMSs in recent years. Besides acquir-
ing satisfactory optimization effects, LB EMSs also have 
huge potential for real-time implementations, which can be 
taken as a trade-off between RB EMSs and OB EMSs. How-
ever, there are some intractable problems to be solved when 
developing LB EMSs, such as the requirement on plenty of 
driving-related training datasets, the tedious training time, 
the instability of training process, and the difficulty in objec-
tive-function settings.

In this paper, learning algorithms are categorized into 
reinforcement learning (RL) algorithms and deep reinforce-
ment learning (DRL) algorithms according to whether deep 
neural networks (NNs) are employed to approximate some 
important factors. For RL algorithms, different types includ-
ing the Q-learning, temporal-difference (TD) learning, and 
Dyna-style have been gradually applied in the EMS field 
since 2014. Especially, the Q-learning is the most commonly 
utilized algorithm among the RL algorithms. DRL algo-
rithms can be further categorized into the deep Q-network 
(DQN), double DQN (DDQN), deep deterministic policy 
gradient (DDPG), twin delayed DDPG (TD3), and soft 
actor-critic (SAC), which are the mainstream algorithms in 
the current research on DRL-based EMSs. To the best of our 
knowledge, [59, 89] are the pioneers of the DRL algorithms’ 
applications in HV EMSs [59, 89]. A detailed classifica-
tion of learning algorithms applied in EMSs is described 
in Fig. 2.

Figure 3 depicts the tendency of the number of published 
literature related to LB EMSs from 2014 to 2022 (until April 
2022). It is evident that LB EMSs have become a research 
hotspot in the HV area with increasing attention in recent 
years. Although some articles already reviewed the RL & 
DRL-based EMSs [20, 41, 98], a more comprehensive and 
original review of the recent progress in learning algorithms 
applied in the HV EMS field still lacks. To fill in this gap, 
a thorough review is carried out meticulously in this paper 
targeting at the time since 2017. Additionally, the advantages 

and disadvantages of each LB EMS are discussed and an 
outlook on the future trends of LB EMSs is also presented, 
which includes integrating with emerging intelligent tech-
nologies, such as the autonomous driving (AD) and intel-
ligent transportation system (ITS).

The remainder of this paper is organized as follows: 
applications of RL & DRL algorithms in HV EMSs are elu-
cidated in Sects. 2 and 3, respectively; a summary of LB 
EMSs, a discussion on the advantages and disadvantages 
of LB EMSs, and an outlook for the future trends of LB 
EMSs are presented in Sect. 4; finally Sect. 5 concludes the 
whole paper.

2  RL in HV EMSs

RL algorithms solve optimal decision-making problems by 
self-learning without prior knowledge, which include three 
key factors: the agent, environment, and reward [102]. The 
goal of RL algorithms is to maximize the cumulative scalar 
reward through continuous interactions between the agent 
and the environment. The agent ultimately learns an optimal 
control strategy through a continuous trial and error search 
process [41, 70–74]. Additionally, the Markov property is a 
distinct characteristic of RL algorithms, where the changes 
of future system states are only relevant to the current system 
states. In that case, the decision process of RL algorithms 

Fig. 2  A classification of the 
learning algorithms applied in 
EMSs

Fig. 3  Statistics of the published papers related to LB EMSs from 
2014 to 2022
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is named the Markov decision process (MDP) [102]. The 
MDP can be described by a tuple{S,A,P,R} , where S and A 
represent the state space and the action space, respectively, 
P ∶ S × A × S → [0, 1] represents the transition probability 
among all states, and R ∶ S × A → ℝ represents the reward. 
The primary objective of RL is to learn an optimal policy � 
that maps state S to optimal actionA , with maximum accu-
mulate rewardR =

∑T

t=0
� t ∙ r(t) , where γ ∈ [1] denotes the 

discount factor [102].
In RL algorithms, the Q-value is utilized to measure and 

evaluate the sum of long-term rewards under the executive 
action, i.e., the larger Q-value means the corresponding 
action is more likely to be adopted. Q-value updates based 
on the Bellman equation, which is shown as follows [102]:

The state value V(s) is defined as follows and it can be 
regarded as the discount sum of numerical rewards:

where rt+1 represents the rewards at the time-step of t + 1 . 
When the value of state s is optimal, the value function V(s) 
can be rewritten as Eq. (2):

where pa
s→st+1

 denotes the probability of shifting from state s 
to state st+1 and ra

s→st+1
 denotes the reward of making a transi-

tion from state s to state st+1.
A step further, the optimal policy is determined accord-

ing to Eq. (3):

The optimal Q-value called the optimal state-action value 
can be deduced by Eqs. (2) and (3) as follows:

(1)V(s) = �

(
T∑

t=0

� t ⋅ rt+1

)

(2)V∗(s) = min
a∈A

∑

st+1∈S

pa
s→st+1

(
ra
s→st+1

+ � ⋅ V∗
(
st+1

))

(3)�∗ = argmin
∑

st+1∈S

pa
s→st+1

(
ra
s→st+1

+ � ⋅ V∗
(
st+1

))

(4)
Q′(st , at

)

← Q
(

st , at
)

+ � ⋅
[

r
(

st , at
)

+ � ⋅maxQ
(

st+1, at+1
)

− Q
(

st , at
)]

where � is the learning rate; Q′
(
st, at

)
 is the Q-value to be 

updated at the next time-step;Q
(
st, at

)
 denotes the calcu-

lated Q-value under the current state st and action at;r
(
st, at

)
 

denotes the current reward under the current state st and 
action at ; Q

(
st+1, at+1

)
 denotes the estimated Q-value for the 

next state st+1 and next action at+1.
RL algorithms applied in the HV EMS field include 

the Q-learning, TD learning, policy iteration, state-action-
reward-state-action (SARSA), and Dyna-style, etc. The 
characteristics of the main RL algorithms are summarized 
in Table 1. On the one hand, according to whether the 
agent needs to learn the state transition probability model 
of the environment, RL algorithms can be classified into 
the model-based and the model-free algorithms. Both the 
Q-learning and TD learning algorithms belong to the model-
free algorithm. On the other hand, according to whether the 
policy that the agent uses for a given state is the same as the 
policy it updates, RL algorithms can be categorized into the 
on-policy and the off-policy algorithms, where the former is 
for the same case. On-policy algorithms include the SARSA, 
and off-policy algorithms include the Q-learning and TD 
learning. The fundamental difference between the SARSA 
and the Q-learning is that the SARSA estimates the action 
value Q�(s, a) , while the Q-learning estimates the state 
value Q(s, a) . In other words, the SARSA selects the action 
according to the current policy, while the Q-learning is more 
greedy and thus chooses the action that corresponds to the 
maximum Q-value. Specifically, the Dyna-style is a frame-
work of RL algorithms, which combines the model-based 
and the model-free algorithms, including the Dyna-H, Dyna-
Q, Dyna-1, and Dyna-2. Different from the Q-learning, the 
Dyna operates by iteratively interacting with the environ-
ment, thus, its training time is longer than the Q-learning. 
Furthermore, the Q-learning is a representative RL algo-
rithm, it is a quasi-optimal decision-making approach while 
it needs to conduct state-action space discretization, and as 
the action-value function of the Q-learning is linked to long-
term returns instead of immediate cost, the agent selects an 
action with minimum action value at every state throughout 
every episode [3, 102].

Table 1  Characteristics of the main RL algorithms

RL algorithm On/Off-policy State-action space 
( S , A)

Estimate value Action space 
exploration

References

Q-learning Off-policy Discrete State value � − greedy [8, 12, 68, 102, 103]
TD learning Off-policy Discrete State value � − greedy

Dyna-style On-policy and Off- policy Discrete State value � − greedy

SARSA On-policy Discrete Action value � − greedy



249International Journal of Precision Engineering and Manufacturing-Green Technology (2023) 10:245–267 

1 3

The common agent-environment interaction process 
of the RL algorithm is depicted in Fig. 4. At every time-
step, the agent chooses an action at randomly based on the 
current state st , and then the environment feedbacks the 
corresponding scalar reward rt to the agent according to 
st and at . Then the state changes to st+1 at next time-step. 
Such a process continues until the training is finished. 
When the RL is applied to the HV EMS field, the particu-
lar vehicle model and the driving conditions can be the 
environment; the vehicle status-related parameters can be 
the states, such as the battery state of charge (SOC), vehi-
cle velocity, vehicle power demand, and torque demand; 
the power split-related parameters can be the actions, 
such as the battery output power, the torque of the ICE 
or the motor. More importantly, the reward function can 
be set based on different optimization objectives, such as 
the minimization of the energy consumption and the lifes-
pan extension of the main energy source, etc. Through 
the continuous interaction with the environment and the 
proper hyperparameter tuning, the agent finally learns 
the optimal EMS.

With the rapid development of computer technologies 
and AI, the RL can be truly implemented into practi-
cal applications. The energy-management problem can 
be regarded as an MDP, where the vehicle states at the 
next moment are only relevant to the current states and 
independent of the historical state. The RL-based EMSs 
can be deemed as an optimum map from the states to the 
actions. Therefore, RL algorithms have become increas-
ingly popular in the HV EMS field because they not only 
can obtain near-optimal effects, but also are suitable for 
online applications [41]. Nevertheless, there are also a 
few defects in RL-based EMSs, such as the discrete states 
and the difficulty in continuous control, which both lead 
to the problem of the “curse of dimensionality”.

2.1  Q‑learning in HV EMSs

Specific applications of the Q-learning algorithm in HV 
EMSs are depicted in Fig. 5. In general, the application pro-
cess of RL-based EMSs experiences two parts, i.e. the offline 
training and the online application. The offline training is 
executed on the computers to derive ideal EMSs through 
continuous trial and error processes, and after the training, 
the ideal EMSs are put into real controllers. Specially, the 
LB EMSs in the controllers can still retain learning abilities 
to adapt to new driving conditions by collecting new driving 
data during online applications and retraining the EMSs.

In HV EMSs, the Q-learning is usually utilized to obtain 
the optimal control strategy between batteries and ICEs [3, 
10, 49, 49, 50, 50, 76, 126–130, 134, 141, 143, 145, 146]. 
Additionally, to evaluate the optimality of the Q-learning-
based EMSs, OB EMSs, such as the dynamic programming 
(DP) and Pontryagin’s minimum principle (PMP), are often 
served as the benchmarks. For example, Lee et al. applied 
a model-based Q-learning to learn the characteristics of a 
current given driving environment and adaptively changed 
the control policy through learning, the simulation results 
presented the Q-learning-based EMS possessed quasi-
optimal effects compared with the DP-based EMSs [49, 
50]. In addition, the Q-learning is also utilized to optimize 
the power split between the FC and the battery. Hsu et.al 
employed the Q-learning to optimize the dynamic energy 
management between the FC and the battery, and compared 
with a fuzzy logic-based EMS, their proposed EMS reduced 
fuel consumption around 6% and maintained the stability 
of the battery SOC effectively [38]. In addition, consider-
ing the impact of temperature and current on the battery 
aging, Sarvaiya et al. presented a research to analyze the 
battery life optimization effect with different EMSs, includ-
ing the thermostat, fuzzy logic, ECMS, and Q-learning, and 
the comparison results showed that the best fuel economy 
was achieved by the Q-learning-based EMS [92]. Q-learning 
uses the maximum action value as an approximation for the 

Fig. 4  The principle and application of RL algorithms
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maximum expected action value. However, a positive bias 
would be introduced in the conventional Q-learning, in other 
words, the Q-value tends to be overestimated, which does 
harm to the optimality. To cope with this problem, the dou-
ble Q-learning with two Q-functions was proposed by Has-
selt in 2015 [32], and it has been applied to the HV EMS 
field to obtain more satisfied EMSs [9, 95, 117, 121]. For 
instance, aiming at reducing the overestimation of the merit-
function values, Shuai et al. proposed two heuristic action 
execution policies based on the double Q-learning, i.e. the 
max-value-based policy and the random policy, to improve 
the vehicle energy efficiency and maintain the battery SOC. 
The simulation results demonstrated that the proposed EMS 
achieved at least 1.09% higher energy efficiency than the 
conventional double Q-learning [95].

In general, to improve the convergence rate, optimization 
effects, and online application/adaptability of the Q-learn-
ing-based EMSs further, lots of researchers integrated other 
optimization algorithms or some tricks to original Q-learn-
ing algorithms. The tricks for improving performances of 
the Q-learning -based EMSs are summarized in Table 2. 
The optimization effect is the primary focus, thus optimi-
zation algorithms and some tricks are integrated with the 
Q-learning, such as the RB [54, 56, 57], the model predic-
tive control (MPC) [9, 24, 70–74, 82], the GA [107, 129, 
130], the Neuro-DP (NDP) [76], and the ECMS [126, 128]. 
For instance, Li et al. proposed an EMS that combined the 
Q-learning with the RB for a lithium battery and ultraca-
pacitor hybrid energy system. When the car was in a brak-
ing condition or the lithium battery and the ultracapacitor 

Fig. 5  Application process of Q-learning algorithm in HV EMSs

Table 2  Tricks for improving performances of the Q-learning-based EMSs

Performance Tricks Powertrain structure References

Optimization effect MPC HEV, PHEV [9, 24, 70–74, 82]
GA FCHEV,

EV with HESS
[107, 129, 130]

RB EV with HESS [54, 56, 57]
NDP PHEV [66]
ECMS HEV [126, 128]
LSTM HTV [70–74]

Convergence rate MC &TPM PHEB [22, 23]
Speedy Q-learning /fast Q-learning HETV, FCHEV [15, 52, 53]
TL HEV [49, 50, 70–74]

Real-time performance/
adaptability

KL divergence HEV,
EV with HESS

[5, 124, 124, 125]

MC prediction HEV [11, 67, 75, 136, 137]
NNs Plug-in FCEV,

PHEV
[63, 64, 142, 144, 147]

Cosine similarity and forgetting factor PHEV [63, 64]
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energy were not enough, the output power of the lithium 
battery and the ultracapacitor was directly allocated based 
on the rules. Otherwise, the rule and Q-learning strategy 
took over, and the lithium battery output power was obtained 
through the Q-table. Results showed that the energy loss 
of the hybrid energy system reduced from 9 to 7% by the 
proposed EMS compared with the RB EMS [54, 56, 57]. 
Liu et al. combined the MPC and Q-learning to improve 
the powertrain mobility and fuel economy for a group of 
automated vehicles, where the higher-level controller out-
puts the optimal vehicle velocity using the MPC technique 
while the lower-level controller decides the power split, and 
the simulation results showed that the vehicle traveling time 
reduced by 30% through reducing red-light idling and the 
proposed method increased fuel economy by 13% compared 
with different energy efficiency controls [70–74]. In addi-
tion, Bin Xu et al proposed an ensemble RL strategy that is 
the integration of the Q-learning, ECMS, and thermostatic 
methods to improve the fuel economy further, and the simu-
lation result showed that the proposed EMS achieved a 3.2% 
fuel economy improvement compared with the Q-learning 
alone [126, 128]. Moreover, the long short-term memory 
(LSTM) was introduced to improve the Q-learning-based 
EMS for a hybrid tracked vehicle by Liu et al. It contained 
two levels, where the higher level included a parallel system 
that consists of a real powertrain system and an artificial 
system and a bidirectional LSTM network was used to train 
the synthesized data from the parallel system while the lower 
level utilized the trained data to determine the EMS with 
the Q-learning framework. The simulation results showed 
that the proposed EMS improved the energy efficiency sig-
nificantly compared with the conventional RL and DRL 
approaches [70–74]. Particularly, Zhou et al. proposed a 
new model-free Q-learning-based EMS with the capabil-
ity of ‘multi-step’ learning to enable the all-life-long online 
optimization, and the simulation results indicated that the 
proposed model-free EMS reduced the energy consumption 
by at least 7.8% for the same driving conditions compared 
with the model-based one [152]. Moreover, an EMS based 
on a hierarchical Q-learning network was proposed for the 
EV with the HESS by Xu et al. Two independent Q-tables, 
i.e. Q1 and Q2, were allocated in two control layers, where 
the lower layer was utilized to determine the power split 
ratio between the battery and the ultracapacitor based on the 
knowledge stored in Q1, while the upper layer was devel-
oped to trigger the engagement of the ultracapacitor based 
on Q2. The results indicated that the proposed EMS reduced 
the battery capacity loss by 8% and 20% compared with 
the single-layer Q-learning and the no ultracapacitor cases 
respectively, as well as extending the range [131–133].

To improve the convergence rate of the original Q-learn-
ing-based EMSs, the Markov Chain (MC) and transition 
probability matrix (TPM) are usually utilized to accelerate 

the training process [22, 23]. Additionally, the speedy 
Q-learning /fast Q-learning is also employed to acceler-
ate the convergence rate [15, 52, 53]. Guo et al. proposed a 
Q-learning-PMP-based EMS for the plug-in hybrid electric 
bus (PHEB), where the control action was only updated at 
fixed time steps, and the reward was evaluated in the next 
60 s, and the simulation results indicated that the training 
process of the RL-PMP was greatly accelerated [22, 23]. 
Liu et al. proposed an RL-based EMS that utilized a speedy 
Q-learning algorithm in the MC-based control policy com-
putation [67, 75]. Interestingly, the transfer learning (TL) 
is also utilized to improve the convergence performance of 
Q-learning-based EMSs, [49, 50, 70–74]. For example, Liu 
et al. proposed a bi-level transfer RL-based adaptive EMS 
for an HEV, where how to transform the Q-tables in the RL 
framework via driving cycle transformation was solved in 
the upper level, while how to establish the corresponding 
EMS with the transferred Q-tables using the Q-learning was 
decided in the lower level, and comparison results indicated 
that the transferred RL-based EMS converged faster than the 
original RL-based EMS [70–74].

As for the better real-time performance/adaptability, 
some tricks such as the Kullback–Leibler (KL) divergence 
[5, 124, 125, 159], the MC prediction [11, 67, 75, 136, 
137], and the NN [63, 64, 142, 144, 147] are integrated 
with the Q-learning algorithm. For instance, Cao et.al. 
utilized the KL divergence to determine when the TPM to 
be updated to make the proposed Q-learning-based EMS 
adapt to new driving conditions better, and the simulation 
results indicated that the proposed EMS can be employed 
in real-time [5]. A step further, they carried out a hard-
ware-in-loop (HIL) simulation test to confirm the real-time 
control of the Q-learning-based EMS [125]. Chen et.al 
constructed a multi-step Markov velocity prediction model 
and applied it to the stochastic model predictive control 
after the accuracy validation, and the simulation results 
indicated that a single step calculation time of the Q-learn-
ing-based EMS controller was less than 57.15 microsec-
onds, which proved it was real-time implementable [11]. 
Lin et.al proposed an online recursive EMS for FCHEVs 
based on the Q-learning, where the cosine similarity was 
combined with the forgetting factor to update both the 
TPM and the EMS, and the results showed the proposed 
strategy improved the fuel economy by 17.10%, 29.50%, 
and 38.20% at the trip distance of 150 km, 200 km, and 
300 km respectively compared with the RB EMS, which 
indicated the strong adaptability of the proposed Q-learn-
ing-based EMS [63, 64]. Moreover, Liu et.al applied the 
fuzzy encoding and the nearest neighbor methods to real-
ize the velocity prediction for the Q-learning-based pre-
dictive EMS, and the results in a HIL test indicated that 
the predictive controller could be put into the real-time 
application [69]. Zhang et al. put forward a bi-level EMS 
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for PHEVs based on the Q-learning and MPC, in which 
the Q-learning was utilized to generate the SOC reference 
in the upper layer, while the MPC controller was designed 
to allocate the system power flows online with the short-
period velocity predicted by the RBF NN in the lower 
layer. The results presented the ability of great robust-
ness to tackle the inconsistent driving conditions, which 
meant the bi-level EMS could be implemented to the real-
time application [142, 144, 147]. Besides integrating the 
Q-learning with a fuzzy logic controller to form an EMS, 
Wu et al. also employed the multi-time-scale prediction 
method to realize the future short-period driving cycle pre-
diction and to achieve the real-time control [118, 122]. Sun 
et al. proposed an RL-based EMS for FCHEVs by utiliz-
ing the ECMS to tackle the high-dimensional state-action 
spaces and found a trade-off between the global learning 
and the real-time implementation [101]. Du et al. proposed 
a Q-learning-PMP algorithm to cope with the “curse of 
dimensionality” and realized the energy control of a PHEB 
effectively [22, 23]. Li et al. combined the Q-learning with 
deterministic rules for the real-time energy management 
between FCs and SCs [55].

2.2  Other RL Algorithms in HV EMSs

Other RL algorithms here refer to the Dyna-style [16, 68, 
76, 82, 136, 137, 141, 143, 145, 146], the TD learning [8, 
12, 18, 65, 90, 139], the SARSA [47], and the policy itera-
tion [138], which are less implemented to the EMS field but 
achieve satisfactory optimization effects. For instance, the 
Dyna algorithm reached approximately the same fuel con-
sumption as the DP-based global optimal solution, but the 
computational cost of which was substantially lower than 
that of the stochastic DP (SDP) [76]. Liu et al. also applied 
the Dyna agent to establish a heuristic planning energy 
management controller for the real-time fuel-saving opti-
mization [68]. In addition, although the Dyna-H algorithm 
outperformed the Dyna in the convergence rate, it encoun-
tered terrible adaptability owing to the deficient training of 
the state-action pairs [16]. Furthermore, the TD learning 
was also applied to the EMS field. Chen et al. introduced 
a TD algorithm with historical driving cycle data to mini-
mize the fuel consumption of a PHEB, which could achieve 
the real-time running without sacrificing the accuracy of 
the optimization compared with the RB EMS [8, 12]. The 
SARSA algorithm was also applied to design an EMS for an 
FCHEV [47]. Yin et al. applied a policy iteration algorithm 
to obtain the optimal control policy for a super-mild HEV 
[138]. Moreover, a model-based RL was utilized to optimize 
the fuel consumption for an FCEV by LEE et al., and the 
simulation results showed that the proposed EMS realized 
more fuel reduction than the RB EMS by 5.7% [48].

3  DRL in HV EMSs

Although RL algorithms have been widely applied to the 
HV EMS field and can obtain near-optimal control effects, 
there are still some deficiencies: on the one hand, RL algo-
rithms have difficulty in dealing with high dimensional 
state-action spaces, named the “curse of dimensionality”; 
on the other hand, RL algorithms must be learned from a 
scalar reward signal that is frequently sparse, noisy, and 
delayed. Specially, the delay between actions and corre-
sponding rewards can be thousands of time-steps long. To 
cope with the above problems, Mnih et al. tried to integrate 
the deep learning with the RL and then proposed the DQN 
algorithm [81]. A deep NN was utilized to approximate the 
Q-function in DRL algorithms instead of a tabular Q-table 
of Q-learning algorithms, hence the states are fed into the 
NN which outputs the corresponding actions subsequently. 
With the help of deep NNs, DRL algorithms can cope 
with the higher dimensional state and action spaces in the 
actual decision-making processes [108, 109]. In recent 
years, DRL algorithms have been successfully applied to 
a great many complex problems and proven that they even 
outperform human beings in some humanoid tasks (i.e., 
Playing chess and computer games) [88]. Owing to the 
conspicuous advantages that DRL algorithms have, the 
DRL-based EMSs have shortly become an active research 
hotspot after 2017.

DRL algorithms applied in the HV EMS field include 
the DQN and AC-based algorithms (i.e. DDPG, TD3, 
SAC), which have been widely applied to the EMS field so 
far. However, some deficiencies still exist in the DRL algo-
rithms. The characteristics of the main DRL algorithms 
are summarized in Table 3. In the DQN, since the esti-
mated Q-value and the target Q-value are calculated using 
the same NN, it is easy to overestimate the Q-value and 
thereby affect the optimality. Moreover, it cannot achieve 
the continuous control, which may cause control errors. 
Therefore, the DQN is not the optimal solution to handle 
energy-management problems. Given that, actor-critic 
(AC)-based DRL algorithms are proposed to figure out the 
above problems, but they still suffer from some demerits, 
such as the instability of training, the poor convergence, 
the sampling inefficiency, and the hyperparameter sensitiv-
ity [17, 27, 28, 36].

3.1  DQN in HV EMSs

DQN algorithms here refer to the DQN algorithm, the 
DDQN algorithm, and the dueling DQN algorithm, which 
are extensively applied to the HV EMS field. The DQN 
algorithm is one of the representative algorithms in the 
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DRL, the update of which is based on the TD, i.e. the 
Q-network updates on every single step instead of every 
single episode, which improves the learning efficiency sig-
nificantly. In the DQN, the trade-off between the explora-
tion and exploitation needs to be properly addressed, and 
the � − greedy algorithm is widely applied to avoid the 
over exploration and over exploitation, where � denotes the 
degree of the exploration while 1 − � represents the degree 
of the exploitation. Similar to the Q-learning algorithm, 
the DQN also pursues the maximum cumulative reward, 
and the Q-value is calculated based on the Bellman equa-
tion as well, which is shown in Eq. (5). Specially, in the 
DQN, the main Q-network parameterized by � is utilized 
to output actions, and the target Q-network parameterized 
by �′ is introduced to increase the training stability.

In addition, the parameter � is updated through the back-
propagation and the gradient descent method. The network 
loss function is shown in Eq. (6) and the gradient loss func-
tion is calculated by Eq. (7), which is fed into the main 
Q-network during the training process.

(5)Q
(
st, at

)
= E

[
rt+1 + � ⋅max

at+1

Q
(
st+1, at+1;�

�
)]

(6)
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[(
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at+1

Q
(
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�
)
− Q

(
st, at;�

))]2

(7)

∇�L(�)

= E
[(
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at+1
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− Q
(

st, at;�
)

)

∇�Q
(

st, at;�
)
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Table 3  Characteristics of the main DRL algorithms

DRL algorithm On/Off-policy State-action space ( S , A) Neural network Action space exploration References

DQN Off-policy Continuous S
Discrete A

Q-network � − greedy [17, 31, 84, 102]

DDPG Off-policy Continuous (S, A) AC with single
Q-network

Random noise N

TD3 Off-policy Continuous (S, A) AC with two
Q-networks

Random noise N

SAC Off-policy Continuous (S, A) AC with two
Q-networks

Maximum entropy
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Fig. 6  Applications of DQN algorithm in HV EMSs
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Figure 6 describes the principle of the DQN algorithm 
and its application process. For the offline training part, at 
every time step, the agent outputs an action to the environ-
ment to execute based on the current policy; the environment 
turns to the state st+1 and sends the corresponding reward 
to the agent; the learning sample (st, at, rt, st+1) is stored in 
the experience pool. The experience replay is introduced 
to the off-policy DQN algorithm to break the correlation 
of the training samples, and during the learning process, 
the agent selects a mini-batch experience samples from the 
experience pool to improve the learning efficiency. The state 
st and the action at feed into the main Q-network to calcu-
late an estimated Q-value, while the state st+1 feeds into the 
target Q-network to create the target Q-value. The network 
loss is calculated by the reward rt , the target Q-value, and 
the estimated Q-value according to Eq. (6), and the gradi-
ent loss �L∕�� is fed into the main Q-network to update 
the network parameter � . The target Q-network parameter θ' 
is updated every certain steps by copying parameters from 
the main Q-network, which increases the training stability. 
When the DQN algorithm is applied to the EMS field, it is 
also under the offline training first until the optimal polity is 
formulated. As for the policy download, it is similar to the 
Q-learning-based EMSs. For the online application part, the 
trained model simply maps the actual states to the actions 
and thus the calculation time is reduced greatly.

In recent years, the DQN has been widely applied to deal 
with the HV energy-management problems [2, 7, 8, 12, 59, 
87–89, 98, 99]. For example, Chaoui et al. proposed a DQN-
based EMS to derive optimal strategies to balance the SOC 
of all batteries, extend the battery lifespan, and reduce the 
battery frequent maintenance [7]. Some researchers also 
adopted the DQN to optimize the fuel economy of HEVs. 
Song et al. proposed a DQN-based EMS for PHEVs, and the 
results showed that the DQN-based EMS narrowed the fuel 
consumption gap to the DP benchmark to 6% [99]. Moreo-
ver, aiming at minimizing the summation of the hydrogen 

consumption, the FC degradation, and the battery degrada-
tion, Li et al. applied the DQN to develop an EMS for an 
FCHEV, and the simulation results presented that the opti-
mization performance of the DQN-based EMS outperformed 
both the Q-learning-based EMS and the RB EMS [51].

Although the original DQN-based EMSs could attain 
satisfactory control effects, there are still some shortages, 
for example, being prone to overestimate the Q-value due to 
the simplex network and slow convergence rate. Hence, to 
calculate the Q-value and the estimated Q-value separately 
and speed up the convergence rate, the DDQN algorithm was 
proposed by Hasselt et.al [33], which has also been applied 
to the HV EMS field by researchers [1, 14, 30, 39, 42, 46, 
116, 119, 120, 142, 144, 147, 156]. For instance, to improve 
the control performance of the DQL further, a DDQN-based 
EMS was proposed to optimize the fuel consumption per-
formance of a hybrid electric tracked-vehicle (HETV) by 
Han et el., and the comparison results indicated that the 
fuel consumption of the DDQN-based EMS was less than 
that of the conventional DQN-based EMS by 7.1% while it 
reached 93.2% level of the DP benchmark [30]. Zhu et al. 
also applied the DDQN which can automatically develop 
the learning process to optimize the fuel economy of HEVs 
further [156]. In addition, to obtain a better policy evalua-
tion and a faster convergence rate, a DQN with a dueling 
network architecture was proposed by Wang et al. [113], 
which has also been applied to obtain the optimal EMS [58, 
88]. For instance, Qi et al. designed a DQN-based EMS with 
a dueling network structure, and comparison results showed 
that the DQN with the dueling network structure converged 
faster than the original DQN because the dueling network 
structure could learn from more useful driving records [88].

To obtain better performance on the basis of the original 
DQN-based EMSs, lots of efforts have been made. The tricks 
for improving the performance of the DQN-based EMSs are 
summarized in Table 4. To obtain better optimization effects, 
some tricks have been integrated to the DQN, such as the 

Table 4  Tricks for improving 
the performance of DQN-based 
EMSs

Performance Tricks Powertrain
structure

References

Optimization effect BO EV
with HESS

[46]

NAF & GA PHEV [157]
Historical trips EREV [111]

Convergence rate PER Series HEV,
PHEV, HEV, FCHEV

[14, 58, 104, 105, 
142, 144, 147, 149, 
158]

Parallel computing EV,
HEV

[34, 106]

AMSGrad optimizer HETV [14, 25]
Real-time performance/

adaptability
DNN HEV [148]
KL-divergence HEV [85, 86]
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Bayesian optimization (BO) [46], the normalized advantage 
function (NAF), and the genetic algorithm (GA) [157]. For 
instance, the hyperparameters of the RL have significant 
influences on the optimal performance [128], therefore Kong 
et al. proposed a DQL-based EMS for the HESS with the 
hyperparameters tuned by the BO, and the simulation results 
indicated that the proposed EMS acquired a better learn-
ing performance than the one using the random search and 
outperformed a near-optimal RB EMS on both the battery 
life-prolonging and the fuel economy [46]. Zou et al. pro-
posed a self-adaptive DQL-based EMS for PHEVs, where 
the NAF and the GA were combined to obtain the optimal 
learning rate, and the simulation results presented that the 
evolved NAF-DQL reached the best fuel economy [157]. 
Moreover, Wang et al. utilized historical trips to train the 
agent of the DDQN-based EMS, and the simulation showed 
that an average of 19.5% in fuel economy improvement in 
miles per gallon gasoline equivalent was achieved on 44 test 
trips [111],

To accelerate the learning process of the DQN, the prior-
itized experience replay (PER) is one of the commonly used 
effective tricks [14, 58, 104, 105, 142, 144, 147, 149, 158], 
which can increase the replay frequency of valuable transi-
tion samples [93]. For example, Li et.al proposed a dueling 
DQN-based EMS, where the PER was introduced for more 
efficient data utilization during training, and the comparison 
results indicated that the proposed EMS achieved the faster 
convergence and the higher reward compared with the DQN-
based EMS [58]. Qi et al. introduced a hierarchical structure 
into the DQL to formulate a DQL-H algorithm, where the 
high level was used to discretize the BSFV curve into sub-
targets so that each sub-driving cycle can move towards the 
best direction of the fuel consumption, while the low level 
was used to solve the problem of the sparse reward, and 
the simulation showed that the DQL-H-based EMS real-
ized better training efficiency than the DQL-based EMS [85, 
86]. In addition, Li et.al. proposed a DQN-based EMS and 
designed a novel reward term to explore the optimal battery 
SOC range, and simulation results indicated that the train-
ing time and the computation time were reduced by 96.5% 
and 55.4% respectively compared with the Q-learning-based 
EMS [52, 53]. Moreover, parallel computing was applied to 
accelerate the training process of the DQN-based EMS as 
well [34, 106]. Besides, the AMSGrad optimizer was uti-
lized to accelerate the training process of the DQN-based 
EMS by Guo et al. the simulation results indicated that the 
DQL with AMSGrad achieved a faster convergence rate than 
the traditional DQL with Adam optimizer [25],

To enhance the real-time performance/adaptability, Zhao 
et al. proposed an EMS composed of an offline deep NN 
construction phase and an online DQL phase, the offline 
DNN was applied to obtain the correlation between each 
state-action pair and its value function [148]. Moreover, 

typical features of the vehicle operation and KL-divergence 
were utilized to enhance the generalization ability and the 
real-time performance of the multi-agent DQN-based EMS 
by Qi [85, 86].

3.2  DDPG in HV EMSs

The DQN solved the “curse of dimensionality” problem of 
the RL successfully by utilizing NNs to approximate the 
Q-function. However, the control errors can be caused as the 
DQN algorithm must conduct the action space discretization, 
and the interval size of the discrete action spaces is another 
problem that needs to be well trade-off due to its great influ-
ence on the training and the optimization effects. Given that, 
an AC network was introduced to the DRL framework by 
Lillicrap et al. from Google DeepMind, thereby formulat-
ing the DDPG algorithm, and the DRL algorithm ultimately 
achieved continuous control [108, 109].

The basic principle of the AC is that an actor represents 
a currently followed policy with continuous action variable 
output, and then the actions are assessed and evaluated by 
the critic [108, 109]. On the one hand, the critic network 
updates its parameters through the TD approach, which 
is the same as the DQN algorithm, on the other hand, the 
actor network is updated with a deterministic policy gradient 
algorithm [96], and the output action is a ← �(s|��) + N . 
The critic network consists of a main network parameter-
ized by �Q and a target network parameterized by �Q′ , the 
actor network comprises a main network parameterized by 
�� and a target network parameterized by ��′ . �Q and �� are 
updated according to the exponential smoothing [108, 109], 
as follows:

where 𝜏 ≪ 1 represents the target smooth factor, it affects 
the update speed of the target networks and the learning 
stability of the agent.

The Q-value function of the DDPG algorithm is also 
learned by the Bellman equation, which is shown in Eq. (4), 
a n d  t h e  T D - e r r o r  i s  c a l c u l a t e d  b y 
y(t) = r + � ∙ max

at+1

Q
(
st+1, at+1

)
− Q(st, at) . Finally, the loss 

function is minimized by the gradient descent method, which 
is shown in Eq. (9).

Based on the AC framework, the DDPG offers an effec-
tive approach for possible implementation in real-world 
vehicle hardware with low computational abilities, it is 
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regarded as one of the most promising algorithms to obtain 
optimal EMS. The framework of the DDPG and its applica-
tions in the HV EMS field is described in Fig. 7, differs from 
the above DQN algorithm, the DDPG agent comprises an 
actor network and a critic network, which are represented 
by �� and �Q respectively. At every time-step, the actor is 
guided to choose the action at fed by the TD error from the 
critic, plus with random noises, such as Ornstein–Uhlenbeck 
(OU) noise and Gaussian noise, for the sake of improving 
the exploration ability. As for the online application process 
of the DDPG-based EMSs, it is similar to the DRL-based 
EMSs.

The DDPG has been widely applied to improve the fuel 
economy of HEVs [62, 91] and prolong the lifetime of the 
batteries and the FCs [154]. For instance, to derive efficient 
operating strategies for HEVs, Liessner et al. adopted the 
DDPG to realize fuel-efficient solutions without the route 
information [62]. Moreover, Zhou et al. proposed a long-
term DDPG-based EMS to prolong the service time of the 
lithium battery and the proton electrolyte membrane FC, 
and the simulation results indicated that the proposed EMS 
reduced the attenuation of the FC and the lithium battery 
effectively [154].

A step further, to derive better performance, some tricks 
were integrated with the DDPG-based EMS framework by 
researchers, such as the computer vision (CV) [112], the 
terrain information [54, 56, 57], and the useful historical 
driving data, [40, 54, 56, 57, 72]. The tricks for improving 

the performance of the DDPG-based EMSs are summarized 
in Table 5. For instance, to obtain better optimization effects, 
Wang et al. developed an EMS that fused the DDPG with 
the CV, where a NN-based object detection algorithm was 
applied to extract the visual information for states input, 
and the simulation results indicated that the proposed EMS 
realized 96.5% fuel economy of the DP-based EMS in an 
urban driving cycle and outperformed the original DDPG 
agent by 8.8% [112]. In addition, Wu et al. integrated the 
expert knowledge with the DDPG-based EMS framework to 
achieve better “cold start” performance and power allocation 
control effect [117, 121].

To improve the convergence rate, the PER [114, 115, 
118, 122], the expert knowledge [60, 70, 71]; [104, 105, 
117, 121], and the TL [26, 60, 61, 131–133, 151, 153] were 
the common tricks that utilized by researchers. Lian et al. 
proposed an EMS that incorporated the expert knowledge 
including battery characteristics and the optimal brake spe-
cific fuel consumption curve with the DDPG to accelerate 
the learning process [60]. Moreover, Lian et al. proposed 
a DDPG-based EMS incorporated with the TL to achieve 
cross-type knowledge transfer, the simulation results showed 
that the proposed method obtained a 70% gap from baseline 
strategy in convergence efficiency and improved the gen-
eralization performance corresponding to the changes in 
vehicle parameters [60, 61].

To derive better real-time performance/adaptability, 
Zhang et al. utilized a Bayesian NN-based SOC shortage 

Fig. 7  Applications of DDPG algorithm in HV EMSs
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probability estimator to optimize an adaptive AC-based EMS 
parameterized by a DNN, and a novel advantage function 
was introduced to evaluate the energy-saving performance 
considering the long-term SOC dynamic, the simulation 
results indicated that the proposed EMS possessed both the 
adaptability and robust performance in complex and uncer-
tain driving conditions by the average 4.7% energy saving 
rate [141, 143, 145, 146]. Ma et al. introduced a time-varying 
weighting factor into a DDPG-based EMS to update old net-
work parameters with the experience learned from the most 
recent cycle segments, and the simulation results showed 
that the computational time of the proposed EMS with an 
online updating mechanism was greatly reduced [78]. Wu 
et al. proposed a DDPG-based EMS for a series–parallel 
PHEB, where the agent was trained with a large amount of 
driving cycles that generated from traffic simulation, and the 
experiments on the traffic simulation driving cycles showed 
the DDPG-based EMS presented a great generality to the 
different standard driving cycles [118, 122]. In addition, 
Han et al. proposed a multi-state DDPG-based EMS for a 
series HETV, where the lateral dynamics of the vehicle was 
systematically integrated into the DDPG-based EMS frame-
work and a multidimensional matrix framework was applied 
to extract the parameters of the actor network from a trained 
DDPG-based EMS, and the HIL experiment results showed 
that the proposed DDPG-based EMS possessed the strong 
adaptability to different initial SOC values [29].

3.3  Other DRL algorithms in HV EMSs

Though the DDPG provides sampling-efficient learning and 
achieves continuous control, its applications are still notori-
ously challenging owing to its extreme brittleness and hyper-
parameter sensitivity according to [17] and Henderson [36]. 
In other words, the interplay between the deterministic actor 

networks and the Q-function typically makes it difficult to 
be stabilized and brittle to hyperparameter settings [17, 36]. 
Hence, motivated by the DDPG, some original DRL algo-
rithms were proposed, such as the asynchronous advantage 
AC (A3C) [80], June), the proximal policy optimization 
(PPO) [94], the TD3 [19], and the SAC [27, 28].

These DRL algorithms have been applied to the HV EMS 
field by some researchers since 2019, as follows: the A3C [4, 
150], the PPO [37, 44, 45, 155], the TD3 [13], [114, 115], 
[116, 119, 120, 151, 153], and the SAC [116, 119, 120, 123, 
131–133]. For instance, Hofstetter et al. proposed a PPO-
based EMS to optimize the fuel consumption between the 
ICE and the electric motor [37]. Moreover, The information 
of the vehicle to vehicle (V2V) and the vehicle to infrastruc-
ture (V2I) was employed as a part of state variables for the 
training of the PPO algorithm, and the local controller was 
utilized to improve the learning process by correcting the 
bad actions [44]. Furthermore, LSTM was also integrated 
with the PPO to optimize the fuel economy [155]. Addition-
ally, Biswas et al. made a comparison among the A3C-based 
controller, the ECMS, and the RB controller, the results 
showed that the A3C-based controller possessed the better 
potential for real-time control [4]. In addition, the TD3 is an 
improved DDPG algorithm, it introduced two Q-networks 
to reduce the over estimation of the Q-value, and delayed 
the update of the actor network to increase the training sta-
bility. Zhou et.al integrated a heuristic RB local controller 
with the TD3 to design an EMS for HEVs, where a hybrid 
experience replay method including the offline computed 
optimal experience and the online learned experience was 
adopted to resolve the influence of the environmental distur-
bance, and the simulation results showed that the improved 
TD3-based EMS obtained the best fuel optimality, the fast-
est convergence speed, and the highest robustness compared 
with the DDQN, the Dueling DQN, and the DDPG-based 

Table 5  Tricks of the DDPG-
based EMSs

Performance Tricks Powertrain
structure

References

Optimization effect CV HEV [112]
Terrain information HEB [54, 56, 57]
Historical trip information HEV,

Series HEV,
[40, 54, 56, 57, 72]

Expert knowledge HEB [117, 121]
Convergence rate PER EV,

PHEB
[114, 115, 118, 122]

Expert knowledge HEV [60, 70, 71]; [104, 105, 117, 121]
TL HEV,

HTV,
PHEV

[26, 60, 61, 131–133, 151, 153]

Real-time perfor-
mance/adapt-
ability

DNN PHEV [141, 143, 145, 146]
A time-varying weighting factor HETV [78]
A large amount of driving cycles PHEB [118, 122]
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EMSs [151, 153]. Moreover, the SAC is an AC-based DRL 
algorithm based on the maximum entropy and can realize 
better sampling efficiency and learning stability with fewer 
samples through a smooth policy update [27, 28]. Wu et al. 
applied the SAC to develop an EMS for an HEB considering 
both the thermal safety and degradation of the onboard lith-
ium-ion battery system, and the simulation results indicated 
that the training time was reduced by 87.5% and 96.34% 
respectively compared with the DQL-based EMS and the 
Q-learning-based EMS and the fuel economy was increased 
by 23.3% compared with the DQL-based EMS [116, 119, 
120]. In addition, with the help of the parallel computing 
and the knowledge extracted from the DP-based EMS, Xu 
et al. developed an EMS based on the SAC for an EV with 
the HESS, which not only achieved a faster convergence 
rate by 205.66% compared with the DDPG-based EMS but 
also realized 8.75% and 6.09% improvements in reducing 
the energy loss compared with the DQN-based EMS and 
the DDPG-based EMS respectively and narrowed the gap 
with the DP-based EMS to 5.19% simultaneously [131–133].

4  Issues and Future Trends

4.1  Summary and Issues

Energy sources, optimization objectives, and benchmark 
strategies commonly used in the LB HV EMS field are 
summarized in the Table 6. The performance of LB EMSs 
can be improved from three aspects, i.e. the optimization 
effects, the convergence rate, and the real-time application/
adaptability, by different tricks, details of which are listed 
in the Table 7.

In general, to obtain preferable control effects and 
improve the adaptability of the RL & DRL-based EMSs, 
especially the RL-based EMSs, the TPM of the demand 
power is widely calculated to figure out the demand power 
distribution [10, 11, 22, 23, 49, 50, 63, 64, 67, 70–75], 
[67, 75, 77, 118, 122, 124, 124, 125, 125, 138, 142, 144, 
147, 152, 158, 159]. Specifically, the common calculation 
process of the TPM includes two stages: (1) modeling the 
driving cycles as stationary/finite MC firstly; (2) utilizing 
a recursive algorithm or nearest neighborhood method and 
maximum likelihood estimator to extract the TPM from 
the driving cycles [77].

In addition, the PER trick is also widely utilized to 
accelerate the learning processes of DRL-based EMSs 
[14, 104, 105, 114, 115, 118, 122, 142, 144, 147, 149, 
151, 153, 158]. Its principle is as follows [93]: the core of 
the PER is to measure the importance of each transition 
i ; a transition’s TD error δ indicates how “surprising” or 
unexpected the transition is; the probability of being sam-
pled is monotonic in a transition’s priority while guaran-
teeing a non-zero probability even for the lowest-priority 
transition; then, the probability of sampling transition i is 
defined as

where pi = |�i| + � >0 is the priority of transition i , � is a 
small positive constant that prevents the edge-case of transi-
tions not being revisited once their error is zero. The expo-
nent � determines how much prioritization is used, � = 0 
corresponds to the original experience replay.

(10)P(i) =
p�
i∑
p�
i

Table 6  Summary of the scope of LB HV EMSs

Energy source Optimization objective Benchmark

Battery + ICE
Battery + FC + ICE
FC + Battery
Battery + SC
FC + Battery + SC
High-energy and high-power battery pack

Fuel economy/Energy consumption
Lifetime extension
Efficiency improving
SOC maintaining

RB EMSs
Charge-depleting and charge-sustaining, fuzzy logic, deter-

ministic rule, state machine
OB EMSs
DP, ECMS, PMP
LB EMSs
Original Q-learning, DQN, and DDPG-based EMSs, etc

Table 7  Summary of means of LB EMS performance improvement

Optimization effect Convergence rate Adaptability/Real-time performance

Combined with conventional algorithms;
- RB, ECMS, PMP;
Combined with other machine learning algorithms;
- NN-based;
Historical driving datasets of experienced drivers

Transfer learning;
trained with DP/ECMS/PMP results;
PER (DRL);
Parallel computing

MC + TPM + KL divergence, induced matrix norm/ 
recursive algorithm, forgetting factor, cosine 
similarity;

MPC/NN for velocity prediction;
Integrate with ITS, cloud/edge computing
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Furthermore, to enhance the real-time application/adapt-
ability of the LB EMSs, the KL divergence, the induced 
matrix norm, and the forgetting factor have been widely uti-
lized to determine whether to update the TPM based on the 
threshold value of the difference between the old TPM and 
the new TPM during the online application process [5, 15, 
63, 64, 67, 75, 124, 124, 125, 125, 159].

However, some issues still exist in the LB HV EMSs. For 
example, RL-based HV EMSs could derive quasi-optimal 
effects and converge well in specific driving conditions, but 
their adaptability turns poor rapidly when the driving envi-
ronment and conditions change. Additionally, the discretiza-
tion on the state and action spaces in conventional RL algo-
rithms inevitably brings discretization errors, which make 
the RL-based EMSs fail to obtain accurate solutions. More-
over, the required calculation time and the storage space 
increase exponentially as the discrete accuracy increases 
[141, 143, 145, 146], which would lead to a bad conver-
gence ability during the training process due to the “curse 
of dimensionality” [127, 134]. As for the DRL-based HV 
EMSs, on the one hand, though the DQN-related algorithms 
could derive excellent optimization effects, they cannot 
achieve continuous control and affect the control accuracy, 
which is similar to the RL-based EMSs. On the other hand, 
the AC-based DRL algorithms can realize continuous con-
trol and derive satisfactory optimization effects, but some 
key problems, such as the hyperparameter sensitivity, the 
instability of training, the brittle convergence performance, 

the sampling inefficiency, and the tedious training time, 
remain to be resolved [27]. Finally, the advantages and dis-
advantages of LB EMSs are summarized in Table 8.

4.2  Future Trends

The future trends of LB EMSs might be divided into two 
aspects: the development of learning algorithms and the on-
board implementation of LB EMSs. Firstly, as the current 
learning algorithms still face the challenges of the tedious 
training time, the difficulty in objective-function settings, 
and the difficulty in hyperparameter tuning, more efficient 
and practical learning algorithms will be put forward. In 
addition, the inverse RL algorithms can be explored to find 
the optimal objective-function, and the auto machine learn-
ing can be employed to search the optimal hyperparameter 
set, and the transfer learning can also be integrated with the 
learning algorithms more deeply to enhance the generaliza-
tion ability. As for the further implementation of LB EMSs, 
with the rapid development of the AD and the ITS, learning 
algorithms can be coordinated with the above technologies 
to form integrated EMSs (iEMSs) [110]. In addition, LB 
EMSs will become more intelligent and powerful with the 
help of the high performance chip, the cellular network, 
and the over-the-air update technology, which means LB 
EMSs can adapt to different driving conditions with high 
drivability and low energy cost. The AD technologies have 
been an active research hotspot since 2014, and a great many 

Table 8  Summary of advantages and disadvantages of the LB EMSs

Algorithm Advantages Disadvantages References

RL
Q-learning Quasi-optimal effect Discrete state spaces and action spaces

Tabular Q-table
Curse of dimensionality
Tedious training time

[81]
TD learning Better optimization performance than Q-learning [8, 12, 139]

Dyna-style Better optimization performance than Q-learning Tedious training time [68, 76]
DRL
DQN Fast convergence rate

Continuous state spaces
Approximate Q-function with a deep NN

Discrete action spaces
Discretization errors
Overestimated Q-value

[36, 102]

DDQN More efficient and more stable training performance, faster con-
vergence rate, and better optimization effects than DQN

Discrete action spaces
Discretization errors

[36, 102]

DDPG Continuous state and action spaces
Can handle high dimensional state-action spaces

Tedious training time
Training instability
Hyperparameter sensitivity
Low sampling efficiency

[17, 19, 36]

TD3 Excellent optimization effect
Easier hyperparameter tuning than DDPG

Tedious training time
Training instability

[19, 36]

SAC Stable training
Soft update
Easy hyperparameter tuning
Random strategy
High sampling efficiency

Tedious training time [28, 36]
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researchers and startups are devoting themselves to the level 
3-level 4 autopilot at present. The ITS emerged with the 
pursuit of the smart city, and Yang et al. also reviewed the 
recent progress of HV EMSs based on the ITS [135]. Moreo-
ver, the V2X (vehicle to everything) technologies, including 
V2V, V2I, V2H (vehicle to house), and V2G (vehicle to 
grid), etc., are another hotspot under the trends of automo-
bile intellectualization [79, 100]. By integrating with the 
above technologies, full-scale and instant information that 
affects the decision-making can be acquired by HV energy-
management controllers, such as the velocity of the other 
vehicles, traffic conditions, and weather conditions. Moreo-
ver, cloud computing can be utilized to accelerate the learn-
ing processes. The global positioning system (GPS) and the 
geographic information system (GIS) can be also employed 
to access the road and terrain information, which is benefi-
cial for forming a highly accurate and real-time LB EMS [6, 
83]. The framework of HV LB EMSs with the AD and the 
ITS is demonstrated in Fig. 8 [140].

5  Conclusions

This paper presents a thorough review of the literature 
related to the LB EMSs of HVs. Detailed applications of RL 
& DRL algorithms in HV EMSs are described and the merits 
and the demerits of the LB EMSs are summarized and a 

preview for the future applications of the learning algorithms 
in HV EMSs is also carried out. On the one hand, this paper 
provides the developing trends of the applications of learn-
ing algorithms in HV EMSs for the researchers in the EMS 
field, as the LB EMSs have become an increasingly active 
research hotspot. On the other hand, this paper contributes 
to improving the current situation that there are fewer review 
papers targeting at the learning algorithms applied in the 
HV EMS field.

With the upcoming big data and AI era, the future trends 
of the learning algorithms applied in the HV EMS field will 
be highly data-driven, and the edge computing and cloud 
computing can be brought to the LB EMS field to decrease 
the computational burden and enhance the real-time capa-
bility. In addition, other novel learning algorithms such as 
the multi-agent learning and distributed learning can also 
be applied to the HV EMS field. Furthermore, conventional 
RB and OB approaches can also be explored to be more 
deeply merged with the learning algorithms to formulate 
highly robust and efficient EMSs. A step further, the TL 
can be explored to be integrated with the LB EMSs as well, 
which is able to significantly reduce the cost of developing 
new EMSs among similar powertrain structure HVs.
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