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Abstract
Disassembly is an important part of green manufacturing and remanufacturing. The disassembly line is an optimum form 
for mass and automatic disassembly in the industry. To optimize the disassembly system and the use of resources, the disas-
sembly line balancing problem (DLBP) has attracted much attention. Compared with the conventional one-sided straight 
disassembly line, the two-sided disassembly line can use both the left and right sides of a conveyor belt for disassembly 
operation, thereby improving production efficiency, especially for large-sized and complicated products. On the other hand, 
due to the constraints and precedence among parts, it is a challenge to plan the disassembly scheme for a two-sided disas-
sembly line. In this paper, a model is established to solve a two-sided disassembly line balancing problem (TDLBP). First, 
a hybrid graph is utilized to express constraints and precedence relationships, and a novel encoding and decoding method 
is developed for the disassembly scheme planning of a two-sided line for handling the challenge caused by constraints and 
precedence among parts. Then, a multi-objective TDLBP optimization model is proposed including the number of mated-
workstations, idle time, smoothness index, the auxiliary indicator, and a meta-heuristic based on an artificial bee colony 
(ABC) algorithm is designed to solve TDLBP. Finally, the proposed model and method are applied to an automotive engine 
case, and the results are compared with NSGA-II, hybrid artificial bee colony algorithm (HABC), and multi-objective flower 
pollination algorithm (MOFPA) to verify the practicality of the proposed model in solving the TDLBP.

Keywords Two-sided disassembly line balancing · Improved multi-objective artificial bee colony · Multi-objective 
optimization · Sustainable manufacturing

1 Introduction

The rapid development of science and technology has accel-
erated the speed of product updates but also has caused a 
large number of discarded products such as computers, cell 

phones, LCDs, and vehicles. These end-of-life products con-
tain a lot of resources such as metals, glass, and some toxic 
substances. It is essential to recycled these discarded prod-
ucts properly, not only to save resources but also to protect 
the environment. With the improvement of environmental 
protection awareness, there is an increasing interest in recy-
cling, reuse, and remanufacturing technologies. And the 
recycling, reusing, remanufacturing of end-of-life products 
have attracted widespread concern [1]. Disassembly refers 
to a systematic process of extracting each part from a prod-
uct for recycling and reuse and is a critical part of product 
recovery and sustainable manufacturing [2].

Disassembly can be performed in a disassembly cell, a 
single workstation, or a disassembly line. The disassem-
bly line is a flow line designed to disassemble parts from 
a product automatically for subsequent recovery processes 
and remanufacturing, and the conventional disassembly line 
configuration is shown in Fig. 1a. It has many advantages 
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compared with the first two disassembly modes. For exam-
ple, it is the most suitable setting for disassembly of large 
products or small products in large quantities; the disassem-
bly line offers the highest disassembly efficiency, and it is 
widely valued as the best way to automatically disassemble 
parts in remanufacturing especially in industrial mass pro-
duction [3, 4].

To improve the disassembly system and optimize the use 
of resources, the researchers proposed the disassembly line 
balancing problem (DLBP), that is, to reasonably assign dis-
assembly tasks to each workstation, evenly distribute tasks, 
and achieve a balancing state while satisfying the constraint 
and precedence relationship among parts [5]. Recently, 
DLBP has attracted attention in industry and academy.

DLBP is a complicated combinatorial optimization prob-
lem. Different types of disassembly lines are different in 
the disassembly processing method, and the mathematical 
models of evaluation indicators are established based on 
it [6]. In previous studies, such as disassembly efficiency, 
the number of workstations, cost, hazard degree, demand 
index are frequently selected indicators [7, 8]. To reduce 
construction costs and improve disassembly efficiency, the 
number of workstations and the idle time are the preferred 
optimization objectives. Considering the meaning of DLBP 
aforementioned, it is necessary to take the smoothness of 
the workload distribution of each workstation into account, 

namely, the smoothness index [4]. In addition, it is vital to 
minimize the number of direction changes and tool changes 
(called auxiliary operation indicator) to simplify auxiliary 
operations. Therefore, the following four objectives are con-
sidered in this paper: (1) minimize the number of mated-
workstations; (2) minimize the idle time; (3) minimize the 
smoothness index; (4) minimize the auxiliary indicator.

In order to address DLBP, many researchers developed 
some heuristic methods to get optimal or near-optimal 
results of DLBP. For instance, Ren et al. [9] used a 2-opt 
algorithm; Ilgin [10] constructed a DEMATEL-based heu-
ristic. Some researchers have adopted mathematical pro-
gramming methods in DLBP, such as a mixed-integer lin-
ear programming model [11–13]. DLBP is an NP-complete 
problem, so the amount of computation increases exponen-
tially as the structure of a product becomes complex [14]. 
Although mathematical programming is suitable for solving 
simple examples of DLBP, due to its combinatorial nature, 
it will soon fail to solve large-sized products [15]. On the 
contrary, the meta-heuristic methods can get satisfactory 
results within a reasonable time. It has been widely used 
and has become the mainstream method in DLBP, such as 
particle swarm optimization (PSO) [16], ant colony optimi-
zation (ACO) [17, 18], genetic algorithm (GA) [13, 14, 19], 
gravitational search algorithm [20], discrete bee algorithm 
(DBA) [21], fruit-fly optimization algorithm (FOA) [22]. 
When dealing with various objectives, some researchers 
consider each objective lexicographically, i.e., optimize each 
objective one by one [14–17]. But this is essentially a sin-
gle-objective perspective, which cannot fully consider each 
objective [23]. Besides, some studies integrated different 
objectives into one objective by weighting [13, 21, 24, 25]. 
Since the different objective units, it is difficult to remove 
the unit among different objective functions and set weight 
coefficients reasonably. Besides, scoring will bring subjec-
tivity in the optimization process. Once the importance of 
each objective changes, the weights need to be changed and 
re-optimized. In addition, since the objectives may conflict 
with each other, it is hard for each objective to achieve the 
best value at the same time. On the contrary, the Pareto non-
dominated relationship can be used to measure each objec-
tive comprehensively and is widely used in multi-objective 
optimization, and it is used in this paper.

All work mentioned above has made great achieve-
ments in the conventional DLBP which is mainly based 
on the straight disassembly line. The conventional straight 
disassembly line follows a simple linear process mode 
where workers can only disassembly one part at a time, 
and only one side is utilized, and the majority of current 
DLBP researches are based on it [7]. But this layout is 
less productive. There are different types of disassembly 

(a) The layout of conventional straight disassembly line 
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Fig. 1  The layout of two-sided disassembly
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lines. Except for the straight disassembly line, there are 
also line layouts such as two-sided disassembly lines. In 
a two-sided disassembly line, different disassembly tasks 
are performed on the same product in parallel at both sides 
of the line, and a pair of two facing workstations crossing 
the line is called a “mated-workstation” (see Fig. 1b). A 
two-sided production line has some advantages, such as 
higher disassembly efficiency, shorter disassembly line 
length, and lower construction and maintenance cost [26]. 
Similarly, the two-sided disassembly line needs to balance 
various resource utilization, and the DLBP also exists in 
the two-sided disassembly line, namely two-sided DLBP 
(TDLBP), regarded as an extension of conventional DLBP. 
However, due to the constraint relationship among parts, 
it is a bit difficult to coordinate asynchronous disassembly 
operations at both sides. This is the main challenge of two-
sided disassembly scheme planning. Therefore, it is mean-
ingful to research the TDLBP. In terms of optimization 
algorithm, Karaboga and Basturk [27] introduced an opti-
mization algorithm based on bee colony behavior known 
as the artificial bee colony (ABC) algorithm. Due to the 
fewer control parameters, it is easier to implement and has 
an excellent optimization performance [28]. It has already 
been applied to conventional DLBP, and it stands out from 
other algorithms [15, 29]. In recent years, TDLBP has 
started to be studied. Wang et al. [30] first introduced the 
concept of TDLBP and used a multi-objective flower pol-
lination algorithm for optimization. Recently, Kucukkoc 
[13] used an improved genetic algorithm for the optimi-
zation of TDLBP. To date, there are few studies on the 
TDLBP. This paper proposed a model including a novel 
encoding, decoding method, and an improved multi-objec-
tive artificial bee colony (IMOABC) algorithm to solve 
TDLBP.

Compared with the current DLBP researches, the nov-
elty and main contributions of this paper can be summa-
rized as follows.

1. This paper describes the product constraint and connect 
relationships based on the hybrid graph and defines the 
two matrices to digitize the constraint relationships for 
programming.

2. A two-sided line disassembly sequence model and a set 
of coding and decoding methods are proposed.

3. A multi-objective two-sided disassembly line model is 
established to optimize the number of mated-worksta-
tions, idle time, smoothness, and auxiliary processes, 
and the ABC algorithm is adapted and applied to the 
current model.

Compared with Kucukkoc’s work [13], we use a hybrid 
graph model instead of the AND/OR graph model. In the 
optimization process, we based on the Pareto non-domi-
nated relationship instead of weighting, which can avoid 
the conflict of each objective. Once the demand changes, 
we can simply reselect a solution from the obtained Pareto 
set, whereas Kucukkoc’s method requires reconfiguring 
coefficients of the objective function and re-optimizing it.

The rest of the paper is as follows. In Sect. 2, a hybrid graph 
is used to present precedence and connection of product struc-
ture description, as well as a disassembly scheme planning 
method, including the disassembly sequence encoding and 
decoding method. The multi-objective optimization func-
tion and the IMOABC algorithm are represented in Sect. 3. 
The performance of the IMOABC and the practicality of the 
proposed model are verified in Sect. 4. Section 5 introduces 
conclusions and future works.

2  Precedence Model and Disassembly 
Scheme Generation

2.1  Constraints and Precedence Relationship 
Illustration

To illustrate the product structure and determine the order of 
disassembly tasks, some information models are used such 
as the directed graph, AND/OR graph, and Petri net [31, 32]. 
These graph models only represent the disassembly priority 
relationship among parts, but the actual connection relation 
that helps designers to understand complicated structures 
among parts cannot be illustrated [33]. The hybrid graph 
model can compensate for it and express direct and indirect 
precedence relation intuitively [24]. So, the hybrid model is 
proposed for product structure description. A bearing model 
and its hybrid graph are represented in Fig. 2.

Then, the disassembly sequence can be generated by ana-
lyzing these information models, which is important for DLBP. 
To facilitate programming, a connection matrix Mc = [ci,j]n×n 
and a precedence matrix Mp = [pi,j]n×n are introduced to 
describe the connection and precedence relationship of part i 
and j of a product, and the meanings of ci,j and pi,j are shown 
in Eqs. (1) and (2).

(1)ci,j =

{
1 if part i and j connect each other

0 otherwise
,

(2)pi,j =

{
1 if part i constrains part j

0 otherwise
.
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The Mc and Mp of the bearing in Fig. 2 are as follows:

Similarly, the Mc and Mp of any product can be obtained 
by this method of analysis, which possesses generality.

Mc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 1 0

1 0 1 0 1 0 0 1

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0

1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Mp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0

1 1 0 0 0 1 1 0

1 0 0 0 0 1 1 0

1 0 0 1 0 1 1 0

1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

1 1 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Assumptions The disassembly task assignment method 
and following multi-objective models are based on these 
assumptions for problem simplification [14, 34]: (a) The dis-
assembly time of each part is known in advance; (b) Com-
pletely disassemble the product and disassemble a single 
product on the disassembly line; (c) The supply of end-of-
life product is infinite; (d) Each task can only be assigned to 
one station; (e) The total disassembly time of tasks assigned 
to one side of mated-workstation shall not exceed cycle time 
CT; (f) All the parts in a product are available and recycla-
ble, without deletions, additions, modifications, physical or 
functional defects.

2.2  Disassembly Sequence Generation of Two‑sided 
Disassembly Line

In order to disassemble a part (such as part g) from a prod-
uct, the following conditions (i.e. constraint condition) 
should be observed: part g is unrestricted by other parts and 
part g connects at most one part. As shown in Eq. (3), this 
constraint condition can be denoted by the elements of Mc 
and Mp:

The connection and constraint relationship of a product 
changed once a part is disassembled. If the part g is dis-
assembled, the g-th row of Mp, and the g-th row and g-th 
column elements of Mc must be cleared, i.e. update Mc and 
Mp. Iterate this procedure, a disassembly sequence can be 
obtained, and it can be used in conventional DLBP. Due to 
the constraints and precedence among parts and the asyn-
chronous process nature of the two-sided disassembly, this 
conventional disassembly sequence cannot contain enough 
information for disassembly scheme planning. So, a modi-
fied disassembly sequence is proposed, which is expressed 
as X = [X1,X2].

X1 = [p1,…,pn] is the same as the conventional disassem-
bly sequence, where pi (pi ∈ P, P is the parts set) corresponds 
to a specific part or task. X2 = [s1,…,sn] is a sub-vector of X 
which indicates the disassembly side assignment result of 
each disassembly task. For example, if si = R (or L), it means 
pi will be disassembled at the right side (or left side) of the 
two-sided line. A feasible disassembly sequence generation 
method is described as follows:

Step 1: Construct the Mc and Mp, and two empty vectors 
X1 and X2;

Step 2: Based on Eq. (3), find all the parts that can be 
disassembled in this stage, and randomly select one;

Step 3: Insert the selected part into the corresponding 
empty position of X1;

(3)
n∑
i=1

ci,g ≤ 1,

n∑
i=1

pi,g = 0.

(a) The exploded view of a bearing  

(b) Hybrid graph 

Fig. 2  The exploded view and hybrid graph of a certain sliding bear-
ing
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Step 4: Update Mc and Mp; If all the parts have been dis-
assembled, go to Step 5, else go to Step 2;

Step 5: Fill X2 up with character ‘R’ or ‘L’ randomly;
Step 6: End.

2.3  Decoding of Two‑sided Disassembly Scheme

The decoding refers to plan a disassembly scheme based on 
the type of the disassembly line and disassembly sequence, 
i.e. assigning each disassembly task to a certain workstation 
and determining its start and end time. It is different from 
the conventional one-sided disassembly line, because the 
disassembly scheme is an asynchronous process of a two-
sided disassembly line, and the constraint relationship must 
be considered for operation coordination, which complicates 
the calculation of work time ST. In the job-shop scheduling 
problem, a job is assigned to a specific workstation depend-
ing on its start and end time [35]. This idea is applied to 
TDLBP for disassembly scheme planning in this paper, and 
three basic equations are proposed for decoding as shown 
in Eqs. (4) to (6).

where, ts,i, and te,i respectively represent the start and end 
time of side i, and te is the end time judging whether to 
open a new workstation, CT is the cycle time (the maxi-
mum disassembly time).td,j is the disassembly time of part 
j. Equation (4) and (5) are used to determine whether the 
part can be disassembled in the current mated-workstation. 
Equation (6) is for computing the actual disassembly time of 
a mated-workstation, where c is the number of parts disas-
sembled at side i of mated-workstation j, ti,j d,v is the part 
v’s disassembly time assigned to side i of mated-workstation 
j. STi,j is the sum disassembled time of side i of mated-work-
station j. Note that i = R (right station) or L (left station). 
Then, the actual work time of a mated-workstation can be 
calculated, and the detailed decoding method is proposed 
in Fig. 3. Where Pm refers to the set of parts disassembled 
at mated-workstation m; pm,L and pm,R refer to the last parts 
disassembled at the left and right side of mated-workstation, 
respectively; m is the number of mated-workstations; k is the 
iteration counter; the symbol “ → ” refers to the constraint, 

(4)te,i = ts,i + td,j, j ∈ P, i =

{
R right side

L left side
,

(5)te = max
i=�L�,�R�

(te,i), te ≤ CT ,

(6)STi,j =

c∑
v=1

t
i,j

d,v
, i =

{
R right side

L left side
,

e.g. if p1 constrains p2, it is denoted as “p1 → p2”. If p1 does 
not constrain p2, it is expressed as “ ”.

Take a feasible solution X of Fig. 2s , X = [X1 = [1–8
],X2 = [R,L,L,R,R,L,R,L]], set cycle time CT = 9  s, and 

Start

Set te,i=0,ts,i=0 

k=1, m=1

Get pk and sk from 

X1
 and X2

Pm  pk?

Find pm,L and pm,R

N

Y

N

te>CT ?

m=(m+1), 

ts,R=0, ts,L=0

te,R=0, te,L=0

k=(k+1)

Y

N

Y

ts,L==0 && ts,R==0 ?
Y

N

te = max{te,L, te,R}

k  n?End
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according to Eq.(4).

te=max{te,L,te,R} te == te,L?
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Fig. 3  The flow chart of the decoding process

(a). The Gantt chart of example sequence X
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(b). The disassembly scheme of example sequence X

Fig. 4  The disassembly assignment scheme and the layout of the two-
sided disassembly line
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disassembly time of each part is known (see Fig. 2b). Fig-
ure 4a is the Gantt chart to illustrate this scheme, and the 
two numbers in each block represent the part number and 
disassembly time. Figure 4b shows the task assignment and 
arrangement of this scheme example.

According to Eqs. (4) and (5) and the decoding method, the 
disassembly scheme can be planned. First, assign part 3 to the 
right side of mated-workstation 1. Since part 8 is not constrained 
by part 3, part 8 can be disassembled at the left side meanwhile. 
As part 3 and 8 both constrain part 2, part 2 can be dismantled 
after part 8 and 3 are removed (in the 4th second). The disassem-
bly plans for part 5 and 4 are similar to the previous planning 
method. However, the mate-workstation 1 cannot have enough 
capacity for part 6’s disassembly, so a new mated-workstation 
will open. As part 6 constrains part 7, part 7 will be disassem-
bled after part 6’s disassembly, i.e., in the 15th second. Since 
ts,2 + tR,2 d,6 > 2 × CT, part 7 must be disassembled at the right 
side of mated-workstation 3. No worker at this side because the 
right side of mated-workstation 2 is empty. According to the 
proposed decoding method, the tasks can be assigned to both 
sides considering constraints but the objective function is not 
determined, and the quality of the scheme cannot be measured.

3  Multi‑objective Functions 
and Optimization Method

This section introduces a multi-objective model in Sect. 3.1, 
and Sect. 3.3 to 3.5 introduces an improved multi-objective 
artificial bee colony (IMOABC) algorithm for solving TDLBP. 
In the ABC algorithm, each food source is a feasible solution 
associated with an employed bee. Also, three kinds of bees are 
employed to search for food sources, namely, employed bee, 
onlooker bee, and scout bee. The employed bees search for 
new food sources (new solutions) and share information with 
onlooker bees. One onlooker bee evaluates the quality of food 
sources obtained by employed bees and select one for further 
exploration. If a food source is depleted, it will be abandoned 
and introduced into the scout bee, i.e., a new solution will be 
randomly generated.

3.1  Multi‑objective Functions

According to the available disassembly scheme, the balancing 
state of a disassembly line can be evaluated by the objective 
functions, including the number of mated-workstations (f1), 
idle time (f2), auxiliary operation indicator (f3), smoothness 
index (f4). Converted these objectives into minimization objec-
tives for optimization, as shown in Eq. (7).

(7)minF = [f1, f2, f3, f4].

(1) Number of mated-workstations. The number of worksta-
tions is an important indicator for evaluating the performance 
of the disassembly line. In a two-sided disassembly line, it 
is called “mated-workstation”. Fewer mated-workstations 
can reduce construction costs, workers, equipment, and space 
occupation. This indicator is expressed in Eq. (8).

where m is the number of mated-workstation of a two-sided 
disassembly line, which is determined by the decoding pro-
cess in Sect. 2.4.

(2) Idle time. In order to improve disassembly efficiency, 
the wasted time, i.e., idle time should be considered. The less 
the idle time, the higher the utilization rate of the disassembly 
system.

where STi,j is the disassembly time of mated-workstation j at 
side i, m is the number of mated-workstations.

(3) Auxiliary indicator. Direction and tool change indica-
tor is developed to measure the disassembly scheme’s per-
formance. Too many tool and direction changes will result 
in invalid operation and affect disassembly efficiency. The 
expression of the auxiliary indicator is shown in Eqs. (10) and 
(11).

where l is the number of tasks assigned to the left stations, 
and r is the number of tasks assigned to the right stations. di 
is the disassembly direction of part i, dti is the disassembly 
tool of part i. α and β are direction change operator and tool 
change operator respectively, and their meanings are shown 
in Eq. (11).

(4) Smoothness index. The smoothness index is used to 
measure the balance of workload distribution, which can 
improve disassembly efficiency and reduce the difference in 
workload assignment. Its prototype is proposed in [36] and 
modified to a two-sided line version based on the model pro-
posed in this paper, as shown in Eq. (12).

(8)f1 = m,

(9)f2 =

√√√√
�R�∑
i=L

m∑
j=1

(CT − STi,j)
2 i =

{
L Left side

RRight side
,

(10)f3 =

r−1∑
i=1

(�(di) + �(dti)) +

l−1∑
i=1

(�(di) + �(dti)),

(11)

�(di) =

⎧
⎪⎨⎪⎩

0 no direction change

1 if 90◦ change is required

2 if 180◦ change is required

�(dti) =

�
0 no tool change

1 if tool change is required
,
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(5) Constraints.

Equation (13) is a constraint implying the maximum and 
the minimum number of mated-workstations. According to 
the assumptions in Sect. 2.2, Eq. (14) ensures the maximum 
workload of each workstation. Equation (15) describes the 
minimum and maximum idle time of a mated-workstation.

3.2  Multi‑objective Optimizer and Hypervolume 
Indicator

The multi-objective optimization refers to finding a solu-
tion vector x in decision space S without violating prede-
termined constraints so that the objective function vector 
F(Z) = [f1(Z), f2(Z),…,fu(Z)] can reach the optimal solution. 
The objective vector and constraints are shown in Eq. (16).

(12)f4 = − ln(2 ⋅ m)∕

⎛
⎜⎜⎜⎜⎝

m�
j=1

�L��
i=�R�

⎛
⎜⎜⎜⎜⎝

(CT − STi,j)
2

m∑
i=1

�L�∑
j=�R�

(CT − STi,j)
2

⋅ ln

⎛
⎜⎜⎜⎜⎝

(CT − STi,j)
2

m∑
i=1

�L�∑
j=�R�

(CT − STi,j)
2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠
, i =

�
L Left side

RRight side
.

(13)mmin =

⎡
⎢⎢⎢⎢⎢

0.5 ×

⎡
⎢⎢⎢⎢⎢

n∑
j=1

td,j

CT

⎤
⎥⎥⎥⎥⎥

⎤
⎥⎥⎥⎥⎥

≤ m ≤ n,

(14)STi,j ≤ CT , i ∈ {1, 2}, j ∈ {1,… ,m},

(15)

√√√√
�L�∑

i=�R�

mmin∑
j=1

(CT − STi,j)
2

≤ f2 ≤

√√√√
�L�∑

i=�R�

mmax∑
j=1

(CT − STi,j)
2,

j ∈ {1,… ,m}, i =

{
L Left side

RRight side
.

(16)

minF(Z) = [f1(Z), f2(Z),… , fu(Z)]

s.t

⎧⎪⎨⎪⎩

gi(Z) ≤ 0, i = 1, 2,… , q

hj(Z) = 0, j = 1, 2,… , r

Z ∈ S

,

where, Z = [z1,…,zn] is a solution vector, S is the feasible 
space of Z, F is the multi-objective vector; u is the number 
of objective functions, q is the number of inequality con-
straints, and r is the number of equality constraints.

In multi-objective optimization, the Pareto dominance rela-
tionship is often used for solution comparison. For example, 
Z1 and Z2 are two solution vectors. If they satisfy Eqs. (17) 
and (18), Z1 dominates Z2, denoted as Z1≺Z2. By Pareto domi-
nance relationship, all objectives can be considered, and each 
goal can be balanced in consideration of complicated conflicts.

Deb et al. [37] combined GA with Pareto grade (PG) 
sorting and crowding distance (CD) in selection. A set of 
solutions can be sorted into different PGs by Eqs. (19) and 
(20). The CD of Zp can be calculated by Eq. (19), where 
k is the number of non-dominated solutions. The CD val-
ues of the non-dominated set boundary are denoted as 
CD(Z1) = CD(Zk) = ∞. if Z1 and Z2 satisfy Eq. (20) or (21), 
Z1 dominates Z2. This mechanism is the core of the tourna-
ment selection based on the Pareto relationship.

But this mechanism cannot compare or evaluate the qual-
ity of Pareto non-dominated front. The hypervolume indica-
tor is used to measure the quality of a non-dominated set, 
which measures how much of the objective space is domi-
nated by an approximation set [38]. This indicator does not 
require information about the real Pareto-front, and it can 
be denoted as [39]:

(17)
fi(Z1) ≤ fi(Z2),∀i ∈ {1,… , u},

Z1 ∈ S,Z2 ∈ S,

(18)
fi(Z1) < fi(Z2),∃i ∈ {1,… , u},

Z1 ∈ S,Z2 ∈ S.

(19)CD(Zp) =

u∑
i=1

f
p+1

i
− f

p−1

i

fmax

i
− fmin

i

, p ∈ {2,… , k − 1},

(20)PG(Z1) < PG(Z2),

(21)PG(Z1) = PG(Z2),CD(Z1) > CD(Z2).

(22)HV(NDS,R0) = Leb

( ⋃
Zi∈NDS

[f1(Zi), f1(R0)]×⋯ × [fu(Zi), fu(R0)]

)
,R0 ∈ S,Zi ≺ R0,
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where HV(NDS, R0) is the size of the space covered by non-
dominated set NDS, R0 is a reference point, Leb is Lebesgue 
measure, and Eq. (23) is the constraint of Eq. (22). Note 
that R0 must be the same when comparing the optimization 
performance of different algorithms. Otherwise, the HV is 
not comparable.

(23)fj(R0) > fj(Zi),∀j ∈ {1,… , u},Zi ∈ NDS,

3.3  Employed Bee Operator

In ABC, each employed bee (a feasible solution) shares 
information, and Kalayci and Gupta [40] applied two 
neighborhood search operators to DLBP, i.e., swap and 
insert operator. Similarly, in their subsequent studies, they 
proposed some operators for neighborhood search, such as 
swap operator, insert operator, one point left operator, one 
point right operator [40]. We adopted it and applied it to 
the modified disassembly sequence. As shown in Fig. 5, a 
feasible solution of Fig. 2 is taken as an example to intro-
duce the mechanism of these operators. To explore solution 
space, a local search loop mechanism combining these four 
operators is proposed as follows for information sharing, 
where the determination of dominated relationship is based 
on Eqs. (17) to (21).

5 4 3 8 2 6 7 1X1

Select two  points randomly

5 4 3 8 2 6 7 1

Select two points randomly

(a) Swap Operator (b) Insert Operator

R L L R R L R L R L L R R L R LX2

X1

X2

5 8 3 4 2 6 7 1X1
5 4 38 2 6 7 1

R R L L R L R L R L LR R L R LX2

X1

X2

5 4 3 8 2 6 7 1X1

 Select a point randomly

5 4 3 8 2 6 7 1

Select a point randomly

R L L R R L R L R L L R R L R LX2

X1

X2

58 3 4 2 6 7 1X1

RR L L R L R LX2

X1

X2

5 4 8 3 2 6 7 1

R L R L R L R L

(c) One Point Left Operator (d) One Point Right Operator

Fig. 5  The mechanism of these neighbor search operators

Fig. 6  Two-point crossover 
operator

5 4 3 8 2 6 7 1

3 8 2 5 4 6 7 1

X1

X2

5 3 8 2 4 6 7 1
X3

Randomly select two  

points for crossover

R L L R R R L L

L L R L R R R L

L L R RR R L L

Table 1  The frame and 
procedure of IMOABC Input: Iteration limit IteLim, the population size PopSize, crossover possibility pc, iteration counter i = 1

Output: Employed bee set {Xj}
Start:
(1) Generated feasible solution set {Xj} (j = 1,…,PopSize) as employed bee set;
(2) NDS({Xj}) = non_dominated_sort({Xj}), Q = NDS({Xj}) ∪ Q;

// NDS({Xj}): non-dominated set of {Xj}, and NDS({Xj}) into Q
(3) While i ≤ IteLim, do
(4) {Xj’} = local_search_loop({Xj});
(5) If Xj≺Xj’, do // Xj’ is the solution obtained from Xj by neighborhood search
(6) Q = {Xj’} ∪ Q; // Append {Xj’} into Q
(7) End if
(8) {Yj} = tournament_selection({Xj’}); // get onlooker bee set {Yj};
(9) Repeat row (4)-(8) on {Yj}, and get {Yj’};
(10) NDS({Yj’}) = non_dominated_sort({Yj’}), Q = NDS{Yj’} ∪ Q;
(11) Q’ = two_point_crossover(Q, pc%);
(12) U = {Xj’} ∪ {Xj’} ∪ {Yj} ∪ {Yj’} ∪ Q, NDS(U) = non_dominated_sort(U);
(13) If size(NDS(U) ∪ Q’) > PopSize, do
(14) {Xj} = non_dominated_sort(NDS(U) ∪ Q’), (j = 1,…,PopSize);
(15) Else
(16) Randomly generate feasible solution set{Sj}; //size({Sj}) =  = PopSize-size(NDS(U) ∪ Q’)
(17) {Xj} = {Sj} ∪ NDS(U) ∪ Q’ ∪ {Xj}, (j = 1,…,PopSize);
(18) End if
(19) i + 1 → i;
(20) End while
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Step 1. Set the counter variable i = 0 and initialize local 
iteration limit tlim;

Step 2. Randomly select one of these four search opera-
tors above;

Step 3. Perform the selected operator on solution X and 
get new solution X’;

Step 4. If i ≤ tlim and X dominates X’, set i = (i + 1) and go 
to Step 3; else go to Step 4;

Step 5. Set X = X’;
Step 6. Place X and X’ in employed bee set and new 

employed bee set respectively. If X≺X’, place X’ in inferior 
set Q.

3.4  Onlooker Bee Operator

In traditional ABC, an onlooker bee selects a food source 
depending on the percent of nectar amount of each food 

source among the total nectar amount. Here, the tournament 
selection method is adopted, i.e., choose two solutions and 
compare their PG and CD values, and select a better one 
according to the method introduced in Sect. 3.2. Then, use 
the local search loop mechanism to diversify the popula-
tion. The onlooker bee colonies before and after neighbor 
search are noted as onlook bees set and new onlooker bees 
set respectively. If a solution is dominated by the solution 
before its neighbor search, put this solution into inferior set 
Q.

3.5  Scout Bee Operator

In the neighborhood search, the new solution X’ may be 
dominated by the original solution X, and collect all the X’, 
namely inferior set Q. In this phrase, the two-point crossover 
of GA is adopted to explore solution space and perform a 

Table 2  The name of 
automobile engine parts and 
properties

Number Name Quantity Tool Time/s Direction

1 Camshaft cover bolt 12 T01 5 s  + z
2 Camshaft cover 1 – 3 s  + z
3 Camshaft cover sheet bolt 20 T02 4 s  + z
4 Camshaft cover sheet 8 – 2 s  + z
5 Cranking claw 1 T03 6.5 s  + x
6 Pulley 1 – 20 s  + x
7 Side cylinder head bolt 1 T04 6.5 s  + x
8 Side cylinder head 1 – 5.5 s  + x
9 Chain Constraints mechanism bolt 4 T04 4.5 s  + x
10 Chain Constraints mechanism 2 – 3 s  + x
11 Timing Chain 1 – 10 s  + z
12 Camshaft 1 – 3.2 s  + z
13 Upper cylinder head bolt 8 T05 4 s  + z
14 Upper cylinder head 1 T06 21 s  + z
15 Rocker arm component screw 16 T07 3 s  + z
16 Rocker arm 16 – 3 s  + z
17 Valve component 16 T08 4 s  + z
18 Spark plug 4 T09 22.5 s  + z
19 Cylinder bolt 10 T04 5.5 s  + z
20 Cylinder 1 T06 20 s  + z
21 Connecting rod cap 4 – 7 s  + z
22 Connecting rod component 4 – 10 s  + z
23 Connecting rod bolt 4 T05 7 s  + z
24 Crankshaft bearing cap bolt 10 T10 5 s  + z
25 Crankshaft bearing cap 5 – 3 s  + z
26 Crankshaft 1 – 20 s  + z
27 Upper cylinder 1 T06 23 s  + z
28 Flywheel nut 1 T11 15 s -x
29 Flywheel bolt 6 T01 5.5 s -x
30 Flywheel 1 – 30 s -x
31 Oil cylinder foundation bolt 12 T01 5 s  + z
32 Oil cylinder foundation 1 – 6 s  + z
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two-point crossover on the inferior set. Take two available 
food sources of the bearing of Fig. 2 as an example, and 
Fig. 6 shows the basic procedure of a two-point crossover. 
X1 = [X1

1 = [1–8],X1
2 = [R,L,L,R,R,R,L,L]],X2 = [X2

1 = [1–8]
,X2

2 = [L,L,R,L,R,R,R,L]] are taken as an example. In Fig. 6, 
two points in X1

1 are tasks 4 and 2, keeping sequence frac-
tion [5] and [1, 6, 7] unchanged, [2–4, 8] becomes [2–4, 
8] by X2

1 mapping, and final X3
1 = [1–8]. Similarly, X3

2 is 

Fig. 7  Hybrid graph of the engine

Fig. 8  The exploded view of an automotive engine

Fig. 9  Connection matrix Mc of the engine

Fig. 10  The precedence matrix Mp of the engine

Table 3  Disassembly tools for the automobile engine

Number Name Number Name

T01 Electric wrench1 T07 Bolt turning tool
T02 Electric wrench2 T08 spring removal tool
T03 Hydraulic puller T09 Socket wrench
T04 Electric wrench3 T10 Electric wrench5
T05 Electric wrench4 T11 Club spanner
T06 Electric Sling — No tool
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obtained via this process. Of course, repeat this procedure 
until finding a feasible solution.

Finally, integrate employed bee colony, new employed 
bee colony, onlooker bee colony, new onlooker bee colony, 
and inferior set Q together, and rank them with non-dom-
inated sorting. According to the ranking result, select a 
designated number of bees as the initial group for the next 
iteration until reach the iteration limit. Table 1 shows the 
pseudo-code of an improved multi-objective artificial bee 
colony (IMOABC) algorithm to solve TDLBP.

4  Case Study

In this section, in order to verify the practicality of the pro-
posed two-sided model, including sequence coding, decod-
ing method, and an optimization method, an automotive 
engine composed of 32 parts is taken as a case.

Some parts are simplified for simplification, e.g., belts, 
bearings, and pins are removed, and a group of fasters is 
treated as one part. Some information on the engine parts 

and their attributes, including name, quantity, disassembly 
tool, estimated disassembly time, and direction are shown in 
Table 2. The hybrid graph is shown in Figs. 7, and 8 is the 
explosive view of an engine. The connection matrix Mc and 
precedence matrix Mp are shown in Figs. 9 and 10. Also, 
Table 3 listed the essential disassembly tools. The two-sided 
disassembly schemes can be obtained and each objective is 
evaluated by the method and model introduced in Sects. 2 
and 3.

4.1  Numerical Result and Algorithm Comparison

To test the optimization performance of IMOABC, three 
multi-objective algorithms are introduced for comparison, 
i.e., the famous NSGA-II [37], HABC [15] (an ABC recently 
applied to DLBP), and the multi-objective flower pollina-
tion algorithm (MOFPA) [30] (a recent TDLBP optimization 
method).

The parameters of IMOABC are set as follows: the 
population size PopSize = 50, iteration limit IteLim = 100, 
crossover possibility pc = 0.8, local iteration limit tlim = 5. 
The PopSize of NSGA-II, HABC, and MOFPA is the same 
as IMOABC. The population size of IMOABC, NSGA-II, 
and MOFPA is 50. According to the method introduced 
in Sect. 2, generate the disassembly sequence and two-
sided disassembly scheme, and compute the value of each 
objective function in Sect. 3.1. In order to evaluate the 
solution quality obtained by each algorithm, the hyper-
volume indicator is used, and reference point R0 is set as 
(10,500,50,2).

Each algorithm runs 30 times, and Fig. 11 shows the 
hypervolume values of each run. It can be observed that 
the maximum hypervolume values of these four methods 
are 3991.7, 12,408.6, 11,988.7, 14,396.9, respectively, and 
IMOABC produces the best hypervolume result. To compare 
the stability of each algorithm, the hypervolume value box 
plot of 30 results for four algorithms is shown in Fig. 12. 
After removing the abnormal solution denoted in Fig. 12, 
the maximum hypervolume values of HABC, NSGA-
II, MOFPA, IMOABC are 3279.8, 12,408.6, 11,988.7, 
13,594.6, respectively. The best-known hypervolume result 
is obtained by IMOABC. From a comparison of Figs. 11 and 
12, IMOABC can not only generate better solutions but also 
has better stability. Among these four algorithms, its overall 
performance is the best.

Table 4 and Fig. 13 show the Pareto non-dominated fron-
tiers of the best hypervolume in each method. But due to the 
random assignment of ‘L’ and ‘R’ in X2, it contains many 
different schemes with the same multi-objective value. The 
third column of Table 4 is the number of solutions with 
the same multi-objective value, and it is marked in Fig. 13. 

Fig. 11  The hypervolume values of listed methods for 30 trials

Fig. 12  Box plot of hypervolume value of four methods
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Using the hypervolume indicator and box plot to evaluate 
the optimization results, whether in terms of the stability of 
the solution set or the quality of the solution set, IMOABC 
is the best.

In addition, it is necessary to analyze each objective 
function optimization result of the optimal Pareto front. As 
shown in Table 4 and Fig. 13, HABC, NSGA-II, MOFPA, 
and IMOABC can reach the best-known value of 6 on 
the objective number of mated-workstations, and also the 
objective idle time of four algorithms is 178.835, 145.353, 
144.874 and 145.291. In terms of mated-workstation, com-
pared with MOFPA and IMOABC, all methods can get the 6 
mated-workstations, while HABC and NSGA-II have fewer 
solutions of six mated-workstations. The fewer mated-work-
stations and lower idle time mean less construction cost and 
higher work efficiency, and IMOABC performs well in these 
two objectives optimization.

Table 5 shows the comparison results of the best Pareto 
frontiers of these four methods in Fig. 13, it can be found 
that the number of mated-workstations of IMOABC is 6. 
But some schemes generated by other methods require 7, 
8, or more mated-workstations. In terms of average idle 
time, compared with IMOABC, the disassembly schemes 
obtained by HABC, NSGA-II, and MOPFA increased by 
90.85%, 31.54%, 10.75% respectively. It means that the 
optimization results of the IMOABC’s Pareto solution 
on the idle time objective is significantly better than the 
other three methods, which improves work efficiency sig-
nificantly. Moreover, a similar situation also occurs in the 
auxiliary indicator, which simplifies disassembly opera-
tion. However, its average smooth index is inferior to 
other methods except for HABC. Nevertheless, it is almost 
impossible to get the best solution for all the objectives, 
because the improvement of one objective may worsen 

Table 4  The Pareto frontier of 
the four algorithms

Method Solution Same f1 f2 f3 f4

HABC 1 1 6 178.835 36 1.509
2 1 7 238.179 37 1.338
3 1 7 236.489 40 1.302
4 1 7 249.234 36 1.386
5 1 8 279.548 34 1.212
6 1 8 279.516 33 1.212
7 1 8 278.895 37 1.218
8 1 8 280.207 37 1.211
9 1 8 291.061 32 1.269
10 1 9 331.017 41 1.172
11 1 9 321.377 37 1.175
12 1 9 326.511 31 1.179
13 1 10 356.319 33 1.119

NSGA-II 1 6 6 145.353 28 1.097
2 14 7 200.909 29 1.079
3 30 7 202.060 28 1.087

MOFPA 1 13 6 144.874 37 1.094
2 29 6 156.055 27 1.213
3 7 7 209.933 30 1.139
4 1 8 261.712 30 1.112

IMOABC 1 14 6 145.291 27 1.100
2 7 6 146.525 26 1.118
3 29 6 147.938 24 1.139
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other objectives, and it is necessary to make a compromise 
on each objective.

Anyway, whether it is the quality of the Pareto solution 
set measured by the hypervolume indicator or the overall 
optimization effect of each objective, IMOABC performs 
better than the other three algorithms. In this case, the 
IMOABC has a better performance on two-sided disassem-
bly line scheme optimization compared with these three 
methods.

4.2  Analysis of Two‑sided Disassembly Schemes 
Selection

Take one disassembly sequence from each of the three 
Pareto solutions obtained by IMOABC, as shown in Table 6. 
After decoding, the Gantt charts of these three schemes are 
shown in Fig. 14 to illustrate the disassembly scheme of the 
two-sided disassembly line in detail. The parts disassem-
bled from “ + z”, “-x” and “ + x” directions are represented 

Fig. 13  The Pareto front of four methods
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by yellow, green and cyan color blocks on the Gantt chart 
respectively, and the block length represents the specific dis-
assembly time of the parts.

Note that the part number and tool number are marked 
on each block. It can be observed that the parts with the 
same direction and tool are concentrated, which reduces the 
auxiliary operations significantly.

In the Pareto front, each solution does not dominate 
each other. The Pareto-based optimization process doesn’t 
need to consider which objective is the most important in 
optimization, but only the dominant relationship between 
the objective vectors. The process is not mixed with 
any subjective factors, and the constraints and conflicts 
between objectives and be avoided. After obtaining the 
Pareto set, the importance of each objective depends on 
the subjective demand of decision-makers, and the solu-
tion that best meets the requirements can be selected from 
it. Analytical hierarchical process (AHP) is a critical 
multicriteria decision-making method that balances the 
interactions among decision criteria and widely used in 
decision making, and it is chosen for scheme selection 
[41]. The main steps of AHP: (1) remove the dimension of 
each objective; (2) compare the importance of each objec-
tive and scoring to get a judgment matrix; (3) transform 
multi-objectives into a single objective [42]. Equation (24) 
denotes the dimensionless equation, where maxfi and minfi 
are the maximum and minimum values of fi components 

Table 5  Comparison of the 
result of Fig. 13

Objective Value HABC NSGA-II MOFPA IMOABC

f1 6 1 6 49 50
7 3 14 0 0
8 5 30 1 0
9 1 0 0 0
10 1 0 0 0

f2 max 356.319 202.0602 261.712 147.938
avg 280.553 193.368 162.804 146.998
min 178.835 145.3527 144.874 145.291

f3 max 40 29 37 27
avg 35.692 28.341 30.08 25.12
min 31 28 27 24

f4 max 1.509 1.097 1.213 1.139
avg 1.254 1.086 1.170 1.125
min 1.119 1.079 1.094 1.100

Number of non-domi-
nated solutions

13 50 50 50

Table 6  Three two-sided 
disassembly sequence

No Part Two-sided disassembly sequence

1 X1 [5,29,6,28,30,1,2,3,18,15,7,8,16,9,10,11,4,12,13,14,19,17,20,24,21,25,
23,26,22,27,31,32]

X2 [L,R,L,L,L,R,L,L,R,R,R,L,L,R,R,L,R,L,R,L,L,R,L,R,L,L,R,L,L,R,R,L]
2 X1 [29,1,28,30,2,5,18,3,15,6,7,8,9,16,10,4,11,12,13,14,19,17,20,24,21,23,

25,26,22,27,31,32]
X2 [R,R,L,L,L,L,R,L,R,L,R,L,R,L,R,R,L,L,R,L,L,R,L,R,L,R,L,L,L,R,R,L]

3 X1 [29,28,1,30,2,18,3,5,15,6,7,8,16,9,10,11,4,13,12,14,17,19,20,21,24,23,
25,26,27,22,31,32]

X2 [R,L,R,L,L,R,L,L,R,L,R,L,L,R,R,L,R,R,L,L,R,L,L,L,R,R,L,L,R,L,R,L]

Table 7  The scale of scoring and description

Value Definition

1 Equal importance
3 i is slightly important than j
5 i is important than j
7 i is stronger important than j
9 i is absolute important than j
2,4,6,8 The median of two adjacent importance values
Reciprocal The comparing result of j and i is the recipro-

cal of comparing i and j
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Fig. 14  Three disassembly 
schemes of engine two-sided 
disassembly line
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in Pareto optimal set, ωi is a weighting index according to 
the importance value shown in Table 7.

By comparison and scoring, the judgment matrix is as 
follows:

Finally, the weighting value ωi can be obtained from the 

judgment matr ix by �i =
1

4
×

4∑
j=1

(ai,j∕
4∑
i=1

ai,j) ,  and 

ω1 = 0.439, ω2 = 0.313, ω3 = 0.124, and ω4 = 0.124. Thus, the 
optimal solution in the Pareto front of IMOABC is the first 
type in Table 6, and the Gantt chart of the best solution 
(solution 1) is shown in Eq. (14), and Fig. 15 illustrates this 
task distribution result.

Through the above analysis, the proposed methodol-
ogy can balance workload distribution, improve disas-
sembly efficiency, reduce the number of workstations for 
cost reduction. For this case study, three kinds of solu-
tions generated by IMOABC are provided for choosing. 
Compared with considering each objective lexicographi-
cally, Pareto non-dominated relationship can consider each 
goal, the results obtained by IMOABC is better than that 
of IMOABC. All solutions consider minimizing the num-
ber of mated-workstations, improving efficiency, ration-
ally distributing workload, and simplifying the auxiliary 
operations. Also, decision-makers can choose a specific 
disassembly scheme based on their actual demands and 
the AHP method.

5  Conclusion and Future Work

The majority of published DLBP works are mainly based on 
a straight one-sided disassembly line, only one part can be 
removed at a time, and this linear production mode leads to 

(24)J =

4∑
i=1

�i ×
fi −min fi

max fi −min fi
.

⎡⎢⎢⎢⎣

1 2 3 3

1∕2 1 3 3

1∕3 1∕3 1 1

1∕3 1∕3 1 1

⎤⎥⎥⎥⎦
.

a long work time. This work studied DLBP based on a two-
sided disassembly line for disassembly efficiency improve-
ment and construction costs reduction. The main research 
contributions and novelties are as follows:

1. In order to describe the constraints among parts, a hybrid 
graph is used, and a connection matrix and a precedence 
matrix are constructed to express the relationship among 
parts in detail. On this basis, an improved disassembly 
sequence encoding method is customized for a two-sided 
disassembly line.

2. In response to the challenge in a two-sided disassembly 
line scheme planning, a decoding method is established 
for task assignment.

3. Aiming to reduce the number of mated-workstations, 
idle time, auxiliary indicator, and smooth index, a multi-
objective two-sided disassembly line balancing model is 
established, and an improved multi-objective artificial 
bee colony algorithm which based on Pareto non-domi-
nated relationship, crossover and mutation operators of 
GA is proposed for disassembly scheme optimization.

To verify the practicality and superiority of the pro-
posed method and model, a case of an automotive engine 
is studied and compared with three typical algorithms. The 
results show that the proposed model and methodology 
can be applied to two-sided disassembly scheme planning 
and improve the scheme optimization performance of a 
two-sided disassembly line by the analysis in Sect. 4.1. 
Besides, the result indicates that the developed methodol-
ogy can guide the disassembly of end-of-life products on 
a two-sided disassembly line.

Although the effectiveness of the proposed methodol-
ogy has been verified, some limitations still exist. In this 
paper, the disassembly line is only designed for a single 
product. It is necessary to introduce a mixed-model for 
a two-sided disassembly line, which can handle various 
products by one line. Also, more uncertainties need to be 
considered, such as disassembly time might be changed, 
and some parts in the end-of-life sample product may be 
lost. Some objectives should be taken into consideration, 
such as profit and energy consumption.
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