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Abstract
A speedy reinforcement learning (RL)-based energy management strategy (EMS) is proposed for fuel cell hybrid vehicles 
(FCHVs) in this research, which approaches near-optimal results with a fast convergence rate based on a pre-initialization 
framework and meanwhile possesses the ability to extend the fuel cell system (FCS) lifetime. In the pre-initialization frame-
work, well-designed power distribution-related rules are used to pre-initialize the Q-table of the RL algorithm to expedite 
its optimization process. Driving cycles are modeled as Markov processes and the FCS power difference between adjacent 
moments is used to evaluate the impact on the FCS lifetime in this research. The proposed RL-based EMS is trained on 
three driving cycles and validated on another driving cycle. Simulation results demonstrate that the average fuel consump-
tion difference between the proposed EMS and the EMS based on dynamic programming is 5.59% on the training driving 
cycles and the validation driving cycle. Additionally, the power fluctuation on the FCS is reduced by at least 13% using the 
proposed EMS compared to the conventional RL-based EMS which does not consider the FCS lifetime. This is significantly 
beneficial for improving the FCS lifetime. Furthermore, compared to the conventional RL-based EMS, the convergence 
speed of the proposed EMS is increased by 69% with the pre-initialization framework, which presents the potential for real-
time applications.

Keywords  Energy management strategy · Fuel cell hybrid vehicle · Lifetime enhancement · Pre-initialization · Speedy 
reinforcement learning

1  Introduction

Increasingly serious energy shortage and environmental 
problems have triggered the revolution and innovation in 
the automotive industry. Fuel cell hybrid vehicles (FCHVs) 

are known as one of the ultimate solutions for transportation 
systems because they possess the renewable fuel, i.e. the 
hydrogen, and also achieve zero emissions compared with 
engine-motor hybrid vehicles [1]. To ensure all hybrid pow-
ertrain components work cooperatively and the fuel econ-
omy can be improved, various energy management strate-
gies (EMSs) have been developed, which can be generally 
categorized into rule-based EMSs and optimization-based 
EMSs [2]. The former strategies can be realized easily, but 
the optimality of the control results cannot be guaranteed 
[3, 4]. The latter strategies are related to optimal control 
theories such as dynamic programming (DP) [5–7], Pontry-
agin’s minimum principle (PMP) [8–11], and model predic-
tive control (MPC) [12–14], most of which are only effective 
for predefined driving cycles (DCs), thus it is impractical to 
apply them online to unknown DCs.

Along with the rapid development of the artificial intel-
ligence, learning-based EMSs such as neural network 
(NN)-based and reinforcement learning (RL)-based EMSs 
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have gained more and more attention recently. NNs have 
been applied to EMSs for the DC classifications [15, 16], 
the speed or route predictions [17, 18], and the parameters 
optimization [19, 20]. Apparently, intelligent algorithms are 
used as tools for the data processing in NN-based EMSs, the 
main disadvantage of which is the lack of the adaptability to 
different DCs. The RL algorithm is based on the data-driven 
and self-learning, which learns from historical data to reach 
the optimal results, thus RL-based EMSs can achieve better 
overall performance compared to other traditional EMSs in 
terms of the optimality and adaptability. An RL-based adap-
tive EMS for a hybrid electric tracked vehicle was proposed 
in [21], and the results showed that the RL-based EMS pre-
sents the strong adaptability, optimality, learning ability, and 
also the effectively reduced computational time compared to 
the stochastic DP (SDP).

The offline training and online application mode is usu-
ally adopted for the RL algorithm for hybrid vehicle EMS 
applications [22, 23]. In order to improve the RL conver-
gence rate during the offline training, some researchers have 
improved the RL algorithm itself, for example a speedy 
Q-learning (SQL) algorithm [24] and a fast Q-learning 
algorithm [25] were developed to improve the convergence 
rate in the policy generation through adjusting the learning 
rate. In some research, new RL calculation frameworks have 
been developed to make the RL algorithm converges fast 
during training, for example the Dyna-H algorithm [26] and 
Dyna-Q learning algorithm [27] were proposed by combin-
ing the direct learning and indirect learning with a planning 
Dyna architecture while the multi-step learning algorithm 
[28] was also developed with different multi-step learning 
strategies. Refining the RL algorithm using different strate-
gies to achieve the low computational cost is also a good 
idea, for example Equivalent Consumption Minimization 
Strategy was used to improve the RL algorithm to expedite 
the convergence in research [29] and an initialization strat-
egy was introduced by combining the optimal learning with 
a properly selected penalty function in research [30]. For 
the online application, some researchers have proposed new 
methods in order to increase the adaptability of RL-based 
EMSs, in which the control strategy was updated in real-time 
according to the characteristic factors of the state transition 
probability matrix (TPM), such as the Kullback–Leibler 
(KL) divergence rate [22, 25, 27], the induced matrix norm 
(IMN) [24], and the cosine similarity [31].

In addition, in order to solve the curse of dimensionality 
problem which may be occurred in RL-based EMSs, some 
research proposed deep RL (DRL)-based EMSs by using 
deep NNs to fit the high-dimensional state-action spaces of 
the control systems. This method may present good control 
performances, however because of the large number of NN 
parameters, the parameter adjustment is challenging and this 
may lower the control stability accordingly.

Current research on RL-based EMSs commonly targets 
at traditional engine-motor hybrid vehicles and rarely con-
siders FCHVs. In addition, for an FCHV, improving the 
fuel cell system (FCS) lifetime should also be one of the 
requirements for the energy management besides the energy 
saving. In this research, a speedy RL-based FCS lifetime 
enhancement (LE) EMS is proposed for FCHVs aiming at 
real-time applications, in which the convergence speed of the 
RL algorithm during offline training and the adaptability of 
the EMS during the online application are both considered. 
A pre-initialization framework is introduced to speed up the 
convergence of the RL algorithm, in which power distri-
bution-related rules are designed and used to pre-initialize 
the Q-table of the RL algorithm. The FCS power difference 
between adjacent moments is used to evaluate the impact 
on the FCS lifetime. In order to validate the adaptability of 
the proposed strategy, it is trained offline under the Urban 
Dynamometer Driving Schedule (UDDS), Worldwide Har-
monized Light Vehicles Test Cycle (WLTC), and New Euro-
pean Driving Cycle (NEDC) and then applied online to the 
Japan1015 cycle. Simulation results show that the proposed 
RL-based EMS presents good control performance on the 
fuel economy and the FCS lifetime prolonging effect and 
also the feasibility of the real-time application with the fast 
convergence speed and good adaptability.

The main contributions of this research are as follows: 
(1) there have been some different approaches for improv-
ing the convergence performance of the RL algorithm, and 
as a novel approach in the hybrid vehicle EMS area, power 
distribution-related rules are designed and used to pre-ini-
tialize the Q-table of the RL algorithm in order to expedite 
the offline training; (2) the RL-based EMS is proposed tar-
geting at FCHVs in this research while FCHVs are rarely 
considered in the previous RL-based EMS research, and the 
FCS lifetime enhancement is also considered in the proposed 
RL-based EMS.

The remainder of this paper is organized as follows: the 
FCHV model including the FCS relative lifetime model is 
described in Sect. 2; the energy management problem of the 
FCHV is formulated and the proposed RL-based EMS is 
described in detail in Sect. 3; simulation results of the pro-
posed EMS and discussions are provided in Sect. 4; finally, 
the conclusions are summarized in Sect. 5.

2 � FCHV Model

In order to ensure high fidelity of the simulation model, the 
FCHV model and data from Autonomie [32] are used in this 
research, which is a commercial software for the vehicle per-
formance analysis developed by the Argonne National Labo-
ratory in the United States. The powertrain configuration of 
the FCHV is illustrated in Fig. 1, which is mainly composed 
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of the FCS, the DC/DC converter, the battery pack, and the 
motor. The vehicle data are provided in Table 1.

2.1 � Power demand model

On a given DC, the power required for the vehicle Preq can 
be calculated by [13]:

where f  is the rolling resistance coefficient, M is the mass 
of the vehicle, g is the acceleration of gravity, � is the road 
slope which is set to 0 in this research, �a is the air mass 
density, A is the vehicle frontal area, CD is the aerodynamic 
drag coefficient, v is the vehicle velocity, � is the mass fac-
tor which is set to 1 in this research, and a is the vehicle 
acceleration. The power balance relationship of the FCHV 
is as follows:

(1)Preq = (fMg cos � + 0.5�aACDv
2 +Mg sin � + �Ma)v

(2)Preq =
(
Pfcs ⋅ �conv + Pbatt

)
⋅ �mot

where Pfcs and Pbatt represent the FCS power and the bat-
tery power respectively; �conv and �mot represent the DC/DC 
converter efficiency and the motor efficiency, respectively. 
When Preq is known, different EMSs will result in different 
power allocation between the FCS and the battery.

2.2 � FCS model

An FCS is used as the main power source of the FCHV, 
which converts the chemical energy of the hydrogen and 
oxygen into the electrical energy by the electrochemical 
reaction. A physical and empirical FCS model is used in this 
research by considering the physical laws and the operating 
conditions. The hydrogen consumption rate of the fuel cell 
stack can be calculated based on the stack current as follows 
[33, 34]:

where Ncell represents the cell number of the stack, Mh2
 rep-

resents the molar mass of the hydrogen, F is the Faraday 
constant, and � is the hydrogen excess ratio, which is set to 
1.05 in this research. The FCS efficiency is low when the 
FCS operates in the low-power area as the auxiliary compo-
nents require relatively high power in order to start up the 
fuel cell stack. The FCS efficiency also reduces in the high-
power area due to the physical nature of the fuel cell stack. 
The FCS efficiency can be calculated as follows:

where Lhv = 120000 kJ/kg is the lower heating value of the 
hydrogen. Specific relationships for the FCS used in this 
research are illustrated in Fig. 2.

Regarding the FCS lifetime, some researchers have pro-
posed prediction methods [35–37], in which a lot of physical 
experiments are usually required to obtain important param-
eters. In this research, the specific FCS lifetime values are 

(3)ṁ =
Ncell ⋅Mh2

2 ⋅ F
⋅ Istack ⋅ 𝜆

(4)𝜂fcs =
Pfcs

ṁ ⋅ Lhv

DC / DC 
converter Motor

Battery

FCS

Final 
drive

Fig. 1   Powertrain configuration of the FCHV

Table 1   The FCHV data

Items Parameters Value

Vehicle Curb weight (kg) 1763
Rolling resistance coefficient 0.013
Tire radius (m) 0.301
Aerodynamic drag coefficient 0.24
Air mass density (kg/m3) 1.2
Vehicle frontal area (m2) 2.5

FCS Total cell number 400
Max power (kW) 70
Maximum efficiency 0.59

Battery Maximum power (kW) 39
Capacity (Ah) 31

Motor Peak power (kW) 107
Maximum efficiency 0.9
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Fig. 2   Efficiency and hydrogen consumption rate of the FCS
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not considered and the impact on the FCS lifetime is taken 
into account instead. Some research [38, 39] showed that the 
fluctuating load condition and the start-stop condition have 
greatest impacts on the operation of the fuel cell stack and 
further on the FCS lifetime. Considering the above, the aver-
age power difference of the FCS ΔPfcs under a certain DC is 
introduced to measure the impact of power fluctuations on 
the FCS lifetime, which are defined as follows:

where N represents the length of the DC.

2.3 � Battery Model

In the FCHV, a battery is used as an auxiliary power source 
to assist the FCS during acceleration and recover the energy 
during braking. An Ni–MH battery and the partnership for a 
new generation vehicles (PNGV) [40] battery model shown 
in Fig. 3 are selected in this research.

As one of the most commonly used equivalent circuit 
models, the PNGV model has a clear physical meaning and 
guarantees high accuracy. The output voltage Ubatt and power 
Pbatt of the battery are expressed as follows:

where Voc is the battery open circuit voltage (OCV), Ibatt is 
the battery current, Rint is the battery internal resistance, Ipol 
is the polarization current, Rpol is the polarization resist-
ance, Cb is a capacitance that accounts for the variation in 
the OCV with the time integral of the battery current Ibatt , 

(5)
ΔPfcs =

N∑
t=1

���
�
Pfcs(t) − Pfcs(t − 1)

���
N

(6)

⎧⎪⎨⎪⎩

Ubatt = Voc − IbattRint − IpolRpol −
1

Cb

∫ Ibattdt

Pbatt = UbattIbatt
dIpol

dt
=

(Ibatt−Ipol)
�

which is set to 386F, � is the polarization time constant, 
namely � = CpolRpol , and Cpol is the polarization capacitance 
with a value of 480F. When the battery power is known, 
the battery current can be calculated from the Eq. (4). The 
battery state of charge (SOC) is an important factor, which 
is defined as the ratio of the remaining capacity to the total 
capacity Qcap , as follow:

Ignoring the influence of the temperature on the battery, 
the internal resistance, the polarization resistance, and the 
OCV of the battery are influenced by the battery SOC as 
illustrated in Fig. 4.

2.4 � Motor model

The electric motor is the only driver that converts the elec-
trical energy of the FCS and battery into the mechanical 
energy to drive the FCHV. In the meantime, it can also act 
as a generator during regenerative braking to recover the 
braking energy and charge it into the battery. The maximum 
torque curves and the efficiency map of the motor used in 
this research are illustrated in Fig. 5.

(7)SȮC = −Ibatt∕Qcap

Fig. 3   Equivalent circuit of the PNGV battery model
Fig. 4   Influences of the battery SOC on different battery parameters: 
a on the internal resistance and the polarization resistance; b on the 
OCV
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3 � An EMS Design for the HESS

The RL algorithm is a learning frame structure that includes 
the agent, environment, state, action, and reward signal. To 
derive the optimal control action at a specific state by maxi-
mizing the reward function, the decision-maker called the 
agent continually interacts with the plant constrained by the 
external environment until the control strategy converges.

3.1 � Problem Formulation

In this research, as the environment, the FCHV is modeled 
as a discrete-time dynamic system, which can be generally 
expressed by the following state equation:

where x(t) and u(t) represent the state variable and the con-
trol variable, respectively, at time t  , which are selected 
as follows based on the analysis in Sect. 2, i.e. the power 
required for the vehicle and the battery SOC are the two 
state variables, and the battery power is the control variable.

In the RL algorithm, x and u above are usually named as 
the state and the action respectively. To ensure the FCS and 
battery working in safe and stable areas, the system should 
meet the following restrictions:

where parameters with min and max subscripts mean their 
corresponding minimum and maximum values, respectively. 

(8)x(t + 1) = f (x(t), u(t)) t = 0, 1, 2,… ,N

(9)

{
x(t) =

(
Preq(t), SOC(t)

)T
u(t) =

(
Pbatt(t)

)T

(10)

⎧⎪⎨⎪⎩

SOCmin ≤ SOC ≤ SOCmax

Pmotor_change_max ≤ Pmotor ≤ Pmotor_max

Pbatt_min ≤ Pbatt ≤ Pbatt_max

Pfcs_min ≤ Pfcs ≤ Pfcs_max

The SOC of the battery is maintained in [0.5, 0.75], in 
which the resistance is smaller; Pmotor_max and Pbatt_max are 
presented in Table 1, and Pmotor_change_max , Pbatt_min are the 
opposite values of them, respectively; Pfcs_min represents the 
minimum operating power of the FCS, which is set to 4 kW 
in this research, and Pfcs_max is also presented in Table 1.

If the state is updated by the “trial and error” randomiza-
tion, there will be too many choices because of the discre-
tization of the system, which will greatly prolong the simula-
tion time. Therefore, the state TPM is introduced to simplify 
the state space in this research, i.e. the driving condition 
of the FCHV is considered as a Markov process, in which 
the next state is only related to the current state. The power 
required for the vehicle Preq can be calculated by Eq. (1), and 
then the TPM of it under various DCs can be obtained by the 
nearest neighbor method as follows:

where ps,s′ represents the transition probability from the state 
s to s′ , ns,s′ represents the occurrence number of the transi-
tion from the state s to s′ in the whole DC, and ns represents 
the total occurrence number of the state s in the whole DC. 
The UDDS, WLTC, and NEDC are selected as training DCs 
and the Japan1015 cycle is used as the validation DC in this 
research. These DCs cover the urban, suburban, and high-
speed conditions and show big differences in the average 
speed, maximum speed, acceleration, and other character-
istics, which will make the training strategy have the better 
adaptability. The corresponding velocity curves are shown 
in Fig. 6. Figure 7 shows the TPM of Preq on each DC, in 
which Pnext represents the required power of the vehicle for 
the next moment. It can be observed that the values are gen-
erally limited to [0.2, 1], and most of them are concentrated 
on the diagonal because the required power of the vehicle 
rarely changes suddenly, which is in accordance with the 
actual situation.

The optimal strategy can be learned by maximizing the 
reward signal in the RL-based EMS. Thus, the form of the 
reward signal is significant for the RL-based EMS. In this 
research, the reward signal is designed by considering the 
control objectives and based on the reward signal forms 
sourced from previous research [41, 42]. To improve the 
fuel economy, maintain the battery SOC, and reduce the 
power fluctuation of the FCS, the reward signal is set as a 
function related to the hydrogen consumption rate ṁ , the 
battery SOC, and the FCS power difference between adja-
cent moments ΔPfcs , as shown in (12), the specific form of 
which is determined based on multiple rounds of simulations 
and careful adjustments.

The reward signal is segmented based on the current bat-
tery SOC and the on–off status of the FCS, details of which 

(11)ps,s� =
ns,s�

ns

Fig. 5   Motor efficiency map and maximum torque curves
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are as follows: (1) when the FCS is working, different seg-
ments are set according to the battery SOC interval, and 

Fig. 6   Velocity curves of different DCs

Fig. 7   TPM of each DC: a 
UDDS; b WLTC; c NEDC; d 
Japan1015

Fig.8   Schematic diagram of the interaction between agent and envi-
ronment
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the reward signal is set to be inversely proportional to the 
instantaneous hydrogen consumption and the FCS power 
difference between adjacent moments (the first and second 
segments); (2) when the FCS is not working and the battery 
SOC is within a reasonable range, the battery should be used 
more to prevent on–off status changes of the FCS, thus the 
reward signal is set to be inversely proportional to the battery 
SOC (the third segment); (3) under the same condition with 
2), if the battery is over-discharged, the reward signal should 
be reduced to prevent the battery from being used again, thus 
the reward signal is set to be inversely proportional to the 
battery power (fourth segment).

(12)

r =

⎧
⎪⎪⎨⎪⎪⎩

1

ṁ+𝜔×�ΔPfcs� ṁ ≠ 0, SOCmin ≤ SOC ≤ SOCmax

1

ṁ+10+𝜔×�ΔPfcs� ṁ ≠ 0, SOC < SOCmin, SOC > SOCmax

1

SOC+1
ṁ = 0, SOC ≥ SOCmin

1

Pbatt

ṁ = 0, SOC < SOCmin

In (12), � is set to 1 as the balance coefficient of the FCS 
power fluctuation after multiple rounds of simulations and 
careful parameter adjustments, and is set to 0 for the case 
where the FCS LE is not considered.

By summing up the above, the interaction process 
between the agent and the environment in the RL-based 
EMS is shown in Fig. 8, in which the strategy is used as the 
agent and the FCHV is the environment. The agent obtains 
the information on the state St and the reward Rt at time t and 
performs the appropriate action at to the environment. And 
then, the environment updates the state to St+1 and feeds back 
the reward Rt+1 at the next moment t+1 to the agent based on 
the current TPM. The interaction process is repeated until 
an optimal control strategy is learned.

3.2 � Proposed RL‑Based EMS

The objective function of the RL algorithm is defined as 
the total expectation of the cumulative reward in all future 
states, as follow:

where � is the discount factor set to 0.9 in this research, 
which is useful for guaranteeing the convergence during the 
learning process, E represents the expectation of cumulative 
returns, and V(st) is a value function that satisfies Bellman’s 
equation, as follows:

(13)V(s) = E

(
∞∑
t=0

� trt

)

(14)V(s) = r(s, a) + �
∑
s�∈S

Psa,s�V
(
s�
)

Table 2   Pseudocode of the 
proposed speedy Q-learning 
algorithm

Speedy Q-learning algorithm

Design rules
Pre-initialize the Q-table
Randomly select the initial s, a
Repeat each step:
According to Q(s, a) and current 

state s , choose a
Take action a , observe r(s, a) 

and s′

Q(s, a) ← Q(s, a) + �(r(s, a)
+� max

a�
Q(s�, a�) − Q(s, a)

)
s ← s′

Until s is terminal

Fig. 9   Framework of the pro-
posed RL-based EMS
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where Psa,s′ is the transition probability from the state s to 
s′ with action a , which is the same with Ps,s′ in (9) in this 

research, and r(s, a) is the instant reward in the current state 
s by taking action a.

The Q-learning algorithm is used for the RL-based EMS 
in this research, which is a commonly used RL algorithm 
and in which the maximum expected cumulative discounted 
reward is obtained by maximizing the Q-value function as 
follows:

Eventually, the updating rule of the Q-learning algorithm 
is established as follows:

where � is the learning rate set to 0.001, the larger value of 
which will result in the faster RL convergence speed. How-
ever, too large value is likely to cause the learning oscillation 
and overfitting problems. The convergence and optimization 
of Q-learning algorithm have been widely proved, the opti-
mal control strategy is given as follows [43, 44]:

(15)

⎧⎪⎨⎪⎩

Q(s, a) = r(s, a) + �
�
s�∈S

Psa,s�Q(s
�, a�)

Q∗(s, a) = r(s, a) + �
�
s�∈S

Psa,s� max
a�

Q∗(s�, a�)

(16)
Q(s, a) ← Q(s, a) + �

(
r(s, a) + � max

a�
Q(s�, a�) − Q(s, a)

)

(17)�∗(s) = argmax
a

Q∗(s, a)

Fig. 10   FCS and battery output power of different strategies under 
UDDS: a FCS power; b battery power

Fig. 11   FCS and battery output power of different strategies under 
WLTC: a FCS power; b battery power

Fig. 12   FCS and battery output power of different strategies under 
NEDC: a FCS power; b battery power
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A huge table called Q-table is built to store the Q-value 
for each state-action pair, which is continuously updated 
during the training process. In order to balance the rela-
tionship between exploration and exploitation in RL during 
training, the �-greedy algorithm is used, i.e. the agent ran-
domly chooses actions with a small probability 1 − � while 
selects actions maximizing the Q-function with a probability 
� . Even if the TPM is used, a heavy offline training is still 
required because the Q-table is initialized to 0 in the con-
ventional RL and the agent continually explores the environ-
ment randomly to update the Q-table, which will consume 
a lot of time. In this research, a speedy RL is proposed to 
reduce the offline training burden and accelerate the learn-
ing process. Table 2 shows the pseudocode of the proposed 
speedy Q-learning algorithm.

Rules are designed and utilized to obtain the preliminary 
Q-table, i.e. the preliminary reasonable action intervals are 
acquired according to the designed rules and the Q-val-
ues within these intervals are initialized to non-zero but 
extremely small positive numbers, so that the algorithm will 
have a higher exploration efficiency during offline training.

The framework of the proposed RL-based EMS is shown 
in Fig. 9, which can be divided into three steps, i.e. the pre-
initialization, the offline training, and the online applica-
tion. In the first step, rules are designed for pre-initializing 

the Q-table, which is helpful for the fast convergence of the 
Q-learning algorithm; the Q-table is continually updated 
according to the historical driving data and TPMs during the 
training process; during the online application, the Q-table 
performs a table lookup operation according to the current 
state and selects the action that can obtain the maximum 

Fig. 13   FCS and battery output power of different strategies under 
Janpan1015: a FCS power; b battery power

Fig. 14   Battery SOC curves of different strategies: a on UDDS; b on 
WLTC; c on NEDC; d on Japan1015
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reward in real-time. If there is a state that is not covered by 
the Q-table, the proposed EMS will stay the same with the 
rules designed in the first step.

4 � Simulation Results and Analysis

The proposed speedy RL-based EMS is implemented in 
the computer simulation environment and also trained and 
tested based on the contents introduced in Sects. 2 and 3. 
The proposed strategy would experience uncertainties in 
unfamiliar driving environments and untrained scenarios, 
as the training and optimization of the strategy are com-
pleted on the limited number of training DCs. In order to 
prove the effectiveness of the proposed strategy on untrained 
DCs, i.e. the adaptability, the UDDS, WLTC, and NEDC 
are selected as training DCs and Japan1015 cycle is used as 
the validation DC in this research. To ensure the duration 
of the validation DC is approximately equal to that of the 
training DC, Japan1015 cycle is continuously looped twice. 
Simulation results mainly focus on the aspects of the fuel 
economy, the battery SOC maintenance, the FCS LE, and 
the RL convergence speed. In order to prove the effective-
ness of the proposed speedy RL-based EMS compared to 
other EMSs, simulation results of the proposed EMS are 
compared to those of the DP-based EMS, the rule-based 
EMS, and the conventional RL-based EMS respectively, 
among them the DP-based EMS is commonly used as the 
optimization benchmark.

4.1 � Fuel Economy

The FCS LE is not considered in this subsection in order to 
compare the fuel economy of different EMSs purely, i.e. the 
weighting factor � is set to 0 in the reward signal (10). The 
results on the FCS power and battery power on different 

DCs for different strategies are shown in Figs. 10, 11, 12 
and 13. Taking the period of [880 s, 920 s] under UDDS as 
an example, the FCS is used as the main power source in 
both the RL-based and DP-based EMSs, while the battery is 
mostly used to drive the vehicle in the rule-based EMS. The 
difference in the power distribution will result in different 
fuel economy.

The corresponding battery SOC curves under different 
DCs are illustrated in Fig. 14. Although the battery SOC 
trajectories are different for each EMS on the training DCs, 
the final SOC values do not deviate much from each other 
due to the battery SOC maintaining function of each EMS. 
On the validation DC (Japan1015 cycle), there are no model 
constraints for the proposed strategy, and it directly looks up 
the table to select the optimal action, thus the final battery 
SOC difference is slightly larger.

Due to the slight difference on the final battery SOC for 
different strategies under the same DC, a final battery SOC 
correction method [45] is adopted for the fair comparison 
of the fuel economy. The equivalent hydrogen consumption 
results are listed in Table 3, in which the last column indi-
cates the deviation from the result of the DP-based EMS. 
It can be observed that the fuel economy of the proposed 
strategy is deviated from that of the DP-based EMS by 
3.58%, 6.35%, 4.71%, and 7.71%, while it is enhanced by 
8.55%, 4.05%, 7.36%, and 6.04% compared to that of the 
rule-based EMS on the three training DCs and the validation 
DC, respectively. On the validation DC, the fuel economy 
of the proposed strategy is still better than that of the rule-
based EMS and close to that of the DP-based EMS, which 
proves that the proposed strategy possesses the adaptability 
to different DCs.

Table 3   Equivalent hydrogen 
consumption results

DC Strategy Final SOC Equivalent hydrogen con-
sumption (kg/100 km)

Deviation from DP

UDDS DP-based 0.5065 0.9000 –
rule-based 0.4975 1.0119 12.43%
RL-based 0.5101 0.9322 3.58%

WLTC DP-based 0.5183 1.3824 –
rule-based 0.5113 1.5322 10.84%
RL-based 0.5112 1.4702 6.35%

NEDC DP-based 0.5768 1.2095 –
rule-based 0.5846 1.3671 13.03%
RL-based 0.5737 1.2665 4.71%

Japan1015 DP-based 0.5291 1.0030 –
rule-based 0.5283 1.1498 14.64%
RL-based 0.5115 1.0803 7.71%
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4.2 � FCS LE

The consideration of the term ΔPfcs in the reward signal 
makes the FCS output power smoother and helps to improve 
the FCS lifetime. To be consistent with 4.1, the strategy in 
which the weighting factor �   is set to 0 in the reward signal 
is named the RL-based EMS while the one in which � is 
set to nonzero is named the RL-based EMS (with LE). The 
results on the adjacent power difference of the FCS ΔPfcs 
on each DC for different EMSs are shown in Fig. 15. The 
ΔPfcs and the equivalent hydrogen consumption are shown 
in Table 4. It can be observed that the fuel economy of the 
RL-based EMS (with LE) is slightly reduced, however the 
power fluctuation on the FCS is reduced by more than 13% 
compared to the RL-based EMS, which is significantly ben-
eficial for improving the FCS lifetime.

4.3 � Convergence Speed

The TPM is adopted in the conventional RL-based EMS 
to simplify the calculation and greatly improve the train-
ing speed, but it is still difficult to meet the requirement for 
quickly updating parameters. The proposed speedy RL-based 
EMS, in which well-designed rules are used to pre-initialize 
the Q-table, further expedites the convergence speed on the 
basis of the conventional RL-based EMS. The above two 
EMSs are run separately on the UDDS and the corresponding 
mean square error (MSE) curves are shown in Fig. 16. It can 
be observed that the proposed speedy RL reaches the con-
vergence with around 650 rounds while the conventional RL 
starts to converge with around 900 rounds, which means that 
the performance of the proposed speedy RL regarding to the 
convergence round is improved by 28% compared to the con-
ventional RL. In addition, because the speedy RL consumes 
less calculation time per DC, its average time consumption is 
reduced by about 69% compared with the conventional RL.

5 � Conclusion

The speedy RL-based FCS LE EMS is proposed for FCHVs 
in this research, which learns the optimized Q-table with a 
fast convergence rate during offline training on the train-
ing DCs by the pre-initialization framework. Simulation 
results show that the proposed strategy achieves good con-
trol results with respect to the fuel economy and the FCS 
LE and also presents the fast convergence speed and good 
adaptability. The following conclusions can be obtained 
from this research:

(1)	 The proposed strategy presents good fuel economy 
on the training DCs and the validation DC. The fuel 
economy difference between the proposed strategy and 

Fig. 15   FCS adjacent power differences for the RL-based EMS and 
RL-based EMS (with LE): a on UDDS; b in time interval 1; c on 
WLTC; d on NEDC; e on Japan1015
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the DP-based EMS is 3.58%, 6.35%, 4.71%, and 7.71% 
meanwhile the fuel economy of the proposed strategy 
is enhanced by 8.55%, 4.05%, 7.36%, and 6.04% com-
pared to the rule-based EMS under the three training 
DCs and the validation DC, respectively.

(2)	 The FCS power fluctuation is reduced by more than 
13% using the proposed strategy compared to the RL-
based EMS which does not consider the FCS LE, and 
this is significantly beneficial for improving the FCS 
lifetime.

(3)	 The convergence speed of the proposed speedy RL-
based EMS is increased by 69% with the pre-initial-
ization framework compared to the conventional RL-
based EMS, which presents the potential for real-time 
applications.

In learning-based EMSs, how to ensure sufficient data to 
make the strategy better adaptive to different driving cycles 
is a common problem to be explored. In the practical appli-
cation, the proposed strategy needs more sufficient training 
and adjustment, which is a common challenge of learning-
based methods. In addition, the curse of dimensionality 
problem may be occurred due to the discrete state space 
in the RL-based EMSs. From this perspective, DRL-based 
EMSs should also be developed at the same time, in which 
deep NNs are used to fit the high-dimensional state-action 

spaces of the control systems. This will be one of our future 
works in the hybrid vehicle EMS area.
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