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Abstract
Flexible pressure sensors, which are employed in robotic arms and electronic skin, are conventionally prepared using meth-
ods such three-dimensional printing, laser scribing, and spray coating. However, they are time-consuming and unsuitable 
for large-scale production. Thus, to overcome these limitations, roll-to-roll (R2R)-based fabrication techniques have been 
employed for low-cost mass production of flexible pressure sensors. Gravure printing is a promising R2R based technique, 
but it faces limitations in terms of ink-flow and printing defects causing short circuit, which may affect the performance of 
printed electronic devices. In this study, we analyzed the effects of printing conditions, web speed, tension, and nip pressure 
on the drag-out tail defects and conductance in the gravel printing process. We statistically optimized the optimal conditions 
to obtain minimum drag-out tail defects and conductance using a Box–Behnken design. We also fabricated two flexible 
pressure capacitive sensors using the conductive patterns to verify optimal conditions. Our results showed that the resist-
ance decreased with increasing web speed, tension, and nip pressure, whereas the drag-out tail increased with increasing 
tension and nip pressure and decreasing web speed. Additionally, under the optimal conditions, the resistance and drag-out 
tail severity were improved by 74% and 53%, respectively, over those of the conventionally printed pattern. Finally, using 
the two flexible pressure capacitive sensors, we showed that the sensor using the conductive pattern had a higher sensitivity 
after optimization.

Keywords Additively manufactured conductive layer · Electrical performance · Optimization · Resistance control · Roll-to-
roll gravure printing · Drag-out tail defect

1 Introduction

Roll-to-Roll (R2R) manufacturing processes have become 
a subject of interest because of their simplicity, low cost, 
and mass production. Because of these advantages, large-
area flexible electronic devices, such as photovoltaics, fuel 
cells, and flexible sensors, have been fabricated using the 
R2R process [1, 2]. Notably, flexible pressure sensors can be 
used in robot arms and electronic skin [3–10]. To date, pres-
sure sensors have been fabricated using three-dimensional 
printing, laser scribing, and spray coating [6, 11, 12]. These 
patterning methods are not adequate for the mass produc-
tion of sensors and have low productivity and high produc-
tion cost. Therefore, the R2R-based fabrication technique 
is essential for the low-cost and mass production of flexible 
pressure sensors. Gravure printing is a good candidate for 
making conductive patterns in the R2R process because of 
the long life of its printing roll and its high compatibility 
with the R2R process [13]. However, the behavior of ink in 
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the printing phase is more complex than that of inkjet print-
ing, spray, and slot-die coating, and several printing factors 
such as web speed and nip pressure have a major interactive 
effect on the printing quality, which significantly affects the 
performance of electronic devices such as thin film transis-
tors and flexible capacitors [14–16]. Several research groups 
have attempted to improve printing quality and resolution. 
Nguyen et al. analyzed the effect of the tension on the sur-
face characteristics of the web and evaluated the printed 
pattern quality using the thickness and surface roughness of 
the pattern [17]. Lee et al. proposed a theoretical model that 
could express the effect of the shear force in the transferred 
ink from an engraved cell to substrate and pattern angle on 
the volume of the printed pattern [18]. Lee et al. developed a 
meta model to determine the variation in the surface rough-
ness according to the tension disturbance [19]. Kang et al. 
developed a method to optimize the tension in a R2R process 
considering the change in the elastic modulus of the plastic 
film and conductance of the printed pattern in a dryer [20].

As mentioned above, most previous studies have focused 
on the ink transfer mechanism in gravure printing and the 
volume of printed pattern, thickness, and surface rough-
ness according to the printing conditions. Considering the 
severity of printing defects that can generate a short circuit 
and the conductance simultaneously is very important. The 
most representative defect that can lead to a short circuit is 
caused by the relative motion between the engraved cell and 
tip of the doctor blade [21]. The drag-out tail area is very 
thin compared to the conventional pattern because the ink 
inside the engraved cell is pushed out by the doctor blade. 
When electrons are concentrated in a very thin pattern, bot-
tlenecks can occur, which in turn leads to an excessive volt-
age increase, resulting in a short circuit. This is because the 
severity of printing defects that can cause a short circuit 
and the conductance significantly affect the performance of 
printed electronic devices. However, few studies have been 
reported on printing defects and conductance with respect 
to the printing conditions [22].

In this study, we experimentally analyzed the effects of 
printing conditions, web speed, tension, and nip pressure 
on drag-out tail defects and conductance. Considering the 
results, optimal conditions minimizing the drag-out tail 
defect and conductance were statistically optimized using 
a Box–Behnken design. Finally, we fabricated two cases of 
flexible pressure capacitive sensors using the conductive 
patterns before and after optimization and experimentally 
verified that the sensor that uses the conductive pattern after 
the optimization has higher sensitivity than that before the 
optimization.

2  Factors Affecting the Conductance 
of the Printed Patterns and Drag‑Out Tail 
Defect

The gravure printing process consists of four phases: inking, 
doctoring, ink transferring, and ink setting [23, 24]. In the 
inking phase, ink is deposited on the surface of the gravure 
printing roll. In the doctoring phase, the ink is filled in the 
engraved cell, and the ink on the roll surface is wiped out. 
The ink filled in the engraved pattern is transferred to the 
web by the nip roll during ink transferring. The transferred 
ink forms patterns according to the geometric shape of the 
engraved patterns. The volume of ink transferred to the web 
can be different according to the properties of the nip roll, 
such as stiffness, elastic modulus, and nip roll pressure. The 
printed patterns on the web are widened or agglomerated 
according to the difference between the surface tension of 
ink and the surface energy of the substrate in the ink setting. 
The ink transfer ratio at each phase can be calculated using 
Eq. (1)

where,

where �T denotes the ink transfer ratio; �i , �d , and �it denote 
the ink transfer ratios at the inking, doctoring, and ink trans-
ferring phases, respectively; Vbi and Vai denote the volumes 
of the ink filled in the engraved cell before and after the 
inking, respectively; and Vad and Vit denote the volumes of 
the ink in the engraved cell after doctoring and the volume 
of the ink transferred to the web, respectively.

Figure 1 presents the schematics of ink transfer in the 
doctoring and ink transferring. In ink transferring, the ten-
sion changes the surface energy of the web and affects the 
shape of the printed pattern. The web speed could affect Vit 
by changing the shear force of the ink transferred from the 
engraved cell to the web, as shown in the right-side image 
in Fig. 1 [25]. Vit could also be varied according to the nip 
pressure by changing the contact area between the ink in the 
engraved cell and web. Considering that the conductance can 
be changed according to Vit, the tension, web speed, and nip 
pressure were selected as the factors that affect the conduct-
ance. As mentioned earlier, the process variables of gravure 

(1)�T = �i ∙ �d ∙ �it

�i =
Vai

Vbi

�d =
Vad

Vai

�it =
Vit

Vad
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printing affect the ink transfer ratio, which changes the thick-
ness and width of pattern printed on the substrate. In addi-
tion, the change in pattern geometry leads to the change in 
resistance of the printed pattern depending on the process 
variables, even if the same ink is used [22].

The drag-out tail defect occurs because the fraction of 
the ink in the engraved cell is adhered under the tip of the 
doctor blade and drawn out from the cell after doctoring. 
Figure 2 shows the schematics of the doctoring phase and 
drag-out tail defects. Figure 2a–c show the behavior of the 
ink between the tip of the doctor blade and engraved cell (a) 
before the tip enters the engraved cell, (b) after the tip enters 
the engraved cell, and (c) after the doctoring, respectively. 
The doctor blade is fixed, and the gravure roll rotates from 
left to right as shown in the figure; the tip of the doctor blade 
leaves the engraved cell relatively. In Fig. 2a, an ink menis-
cus is formed between the tip and the surface of the roll. 
After the tip enters the engraved cell, the curvature of the 
meniscus is increased because the gap between the tip and 
the ink in the engraved cell increases, as shown in Fig. 2b. 
After doctoring, the fraction of the ink adhered during doc-
toring, shown in Fig. 2b, is drawn out to the roll surface, 
as shown in Fig. 2c. The volume of the drawn ink can be 

changed by changing the web speed [21]. If the volume of 
the drawn ink is excessively large, a drag-out tail defect is 
generated. The ink volume after doctoring is lower than that 
before doctoring by the amount of drawn ink. The drag-out 
tail defect could generate short circuits in multi-line based 
printed devices. Considering the behavior of ink in the doc-
toring, we selected the web speed as the factor affecting the 
severity of the drag-out tail defect.

3  Experiment

We analyzed the effects of the three selected factors on the 
conductance and drag-out tail defect and statically opti-
mized the factors using the Box–Behnken design. Figure 3 
shows (a) the structure of the R2R printing machine, and 
(b) the gravure printing section. Table 1 summarizes the 
properties of the polyethylene terephthalate (PET) film (CD-
901, KOLON Inc., Korea) and silver ink (TEC-CO-030G, 
INKTEC Inc., Korea) [26]. We determined the range of the 
experimental conditions considering the specifications of the 
gravure printer and ink properties. The maximum web speed 
was determined by considering the minimum drying time to 

Fig. 1  Relationship of ink transfer mechanism and process condition in gravure printing process

Fig. 2  Doctoring phase: a before engraved cell b within engraved cell, and c after engraved cell
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fully evaporate the solvent in the printed pattern. The maxi-
mum and minimum web speeds were determined to be 6 and 
2 m/min, considering sufficient drying time and the amount 
of ink which is sufficient for the formation of the printed 
pattern according to the geometric shape of the engraved 
pattern transferred to the web in the ink transferring [27]. 
The range of the tension was set from 2 to 6 kgf considering 
the minimum tension that can be applied to the web in the 
machine and 3% of the tensile stress [28]. Considering the 
minimum nip pressure at which the sufficient ink is trans-
ferred to the substrate during ink transfer, we determined 
the range of the nip pressure from 0.4 to 0.55 MPa, and the 
maximum nip pressure in the R2R machine. Considering the 
poor doctoring quality at low doctoring pressure, we fixed 
the doctoring pressure to 0.6 MPa. The drying temperature 
was set to 150 °C considering the curing temperature of the 

ink according to the drying time, determined by the length 
of the dryer and the maximum web speed in this experiment 
[29, 30]. Figure 4 presents the images of the ink particle at 
(a) room temperature and (b) cured at 150 °C, respectively. 
Table 2 indicates the experimental order determined by the 
Box–Behnken design and the corresponding resistance and 
severity of the drag-out tail defect. The Box–Behnken design 
is generally used to statistically optimize the input condi-
tions. This method has a smaller number of experiments 
and is safer than central composite design [27]. Figure 5 
shows (a) the printed conductive pattern, (b) the resistance 
measurement line of length 54.4 mm and the region where 
the drag-out tail was measured in the same pattern. The rep-
resentative value of the pattern resistance was measured as 
follows. The resistance of each of the 12 samples printed 
under same process conditions was measured, and the aver-
age value excluding the maximum and minimum values was 
taken. The severity of drag-out tail was evaluated by the 
average length of the drag-out tail. The images of the pat-
terns were captured using a microscope (LV100ND, Nikon, 
Japan). The lengths of drag-out tail were measured at each 
point by dividing the distance from the end of the pattern to 
a point 500 µm away 10 equal parts. We measured the length 
of drag-out tail by referring to the study in Subramanian 
et al. [21]. Figure 6 shows the conductive pattern images 
for (a) case 1, (b) 5, (c) 6, and (d) 10, and the corresponding 
severity of the drag-out tail. Remaining cases in between 1 

Fig. 3  a Schematic of gravure printing system and b gravure printing unit

Table 1  Mechanical property of the PET film and Ag ink

Material Property Unit Value

PET film Density kg/m3 1390
Elastic modulus MPa 5500
Poisson’s ratio – 0.33

Ag ink Density kg/m3 1400
Solid content wt% 20
Viscosity cPs 3000

Fig. 4  Surface scanning elec-
tron microscopy (SEM) image 
of printed pattern dried at a 
room temperature and b 150 ℃
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to 13 has been sorted as supplementary data by Figure S1. 
Figure 7 shows the main effects and interaction effects of the 
factors affecting the resistance of the printed patterns. One 
can observe that the resistance decreases with increasing 
web speed, tension, and nip pressure.

The surface roughness of the web decreases with increas-
ing tension; accordingly, the surface energy of the web is 
increased. The ink transferred to the web is more widened 
after the ink transfer, and the printed pattern is more uni-
form, which could decrease the resistance [31, 32]. The 
increase in the web speed could increase the shear force 
generated in the ink between the engraved cell and the web 
during ink transfer. If the shear force is increased, more ink 
is transferred to the web; accordingly, the pattern resistance 

is decreased [18]. Figure 8 presents the forces applied at the 
ink in the engraved cell and (b) the conceptual figure of the 
behavior of the web by the increase in the nip pressure in 
the ink transferring. In Fig. 8a, FIS, FIC, and FI are the adhe-
sive forces between the inks, the ink and engraved cell, and 
cohesive force in the ink, respectively. The ink transfer ratio 
increased with increasing FIS and FI. If FIS and FI are larger 
than FIC, the ink filled in the engraved cell is completely 
transferred to the web [22]. FIS is proportional to the prod-
uct of the work of adhesive forces at the interface between 
the ink and web (WIS) and the contact length between the 
web and ink (LIS) [15]. If the nip pressure increases, LIS is 
increased, as shown in Fig. 8b; accordingly, the ink transfer 
ratio is also increased.

Figure 9 shows the main effects and interaction effects of 
the factors on drag-out tail. As shown, drag-out tail increases 
with increasing tension and nip pressure and decreasing web 
speed. As mentioned above, the ink transfer ratio in the ink 
transferring increased with increasing nip pressure. The 
printed pattern is more widened with higher tension. The 
increase in the nip pressure could also increase the trans-
fer ratio of the ink forming the drag-out tail. Moreover, the 
transferred drag-out tail defect could widen in the higher 
tension. If the web speed is increased, the amount of drawn 
ink from the engraved cell in the doctoring is decreased, and 
therefore, the drag-out tail is decreased [21].

4  Optimization of Conductive Layer 
Considering Resistance and Drag‑Out Tail 
Defect

Considering the experimental results shown in Sect. 3, we 
derived the optimal conditions of the factors. The desirabil-
ity function was used to numerically evaluate the printed 

Table 2  Resistance and drag-
out tail length of conductive 
layer because of experimental 
case

Case Web tension 
(kgf)

Web speed 
(mpm)

Nip pressure 
(MPa)

Resistance (Std.) ( Ω) Drag-out tail (μm)

1 2 2 0.475 41.43 (0.15) 107.78
2 2 4 0.4 39.83 (0.16) 75.25
3 2 4 0.55 38.17 (0.16) 78.64
4 2 6 0.475 40.33 (0.21) 51.15
5 4 2 0.4 40.3 (0.08) 102.3
6 4 2 0.55 38.73 (0.14) 118.8
7 4 4 0.475 38.73 (0.13) 89.70
8 4 6 0.4 39.8 (0.14) 73.49
9 4 6 0.55 36.2 (0.04) 119.1
10 6 2 0.475 36.87 (0.16) 121.6
11 6 4 0.4 38.63 (0.15) 81.27
12 6 4 0.55 34.43 (0.11) 85.21
13 6 6 0.475 36.4 (0.13) 66.27

Fig. 5  a Conductive layer pattern manufactured through gravure 
printing process, b measurement section of line resistance and c 
measurement area of drag-out tail defect



822 International Journal of Precision Engineering and Manufacturing-Green Technology (2021) 8:817–828

1 3

pattern quality considering the resistance and drag-out tail 
according to the factors. Equation (3) presents the desir-
ability function used in the optimization [33, 34] as follows:

where dm denotes the desirability value; y the measured 
output value; T and M the target value and the permissible 
maximum value set by a user, respectively; and s the weight 
factor. We set s as 0.5

The overall desirability was calculated as the geometric 
mean of the desirability values of the resistance and drag-out 
tail, as shown in the following Eq. (4) [35]:

where dm,total denotes the overall desirability, and dm,r and 
dm,t denote the desirability values of the resistance and drag-
out tail, respectively.

Using Eqs. (3) and (4), we obtained the optimal values of 
the web speed, tension, and nip pressure as 6 m/min, 6 kgf, 
and 0.5235 MPa, respectively. Figure 10 presents the overall 
desirability of all experimental cases in Table 3 and the opti-
mal conditions. The number below each overall desirability 
is its experimental number, as shown in Table 3. The red and 

(3)dm =

⎧
⎪⎨⎪⎩

0 if y < T�
y−M

T−M

�s

if T ≤ y ≤ M

1 if y > M

(4)dm,total =

√
dm,r ∙ dm,t

blue boxes represent the ideal desirability 1 and the overall 
desirability of the patterns printed in the optimal condi-
tions, which is 0.8295. Figure 11 shows the conductive pat-
tern obtained under the optimal conditions. The resistance 
and the drag-out tail severity were 30.87 Ω and 74.37 µm, 
respectively. The resistance and the drag-out tail severity 
were improved by 74% and 53%, respectively, compared 
with the conductive pattern printed in the conventional case.

5  Application: Capacitive Pressure Sensor

We fabricated two pressure capacitive sensors using conduc-
tive patterns before and after optimization. Figure 12 pre-
sents (a) the schematics of the pressure capacitive sensor and 
(b) the fabricated sensor. The geometry of the measurement 
section was 6*6 mm. Barium titanate (BaTiO3) was used 
as the dielectric layer of the sensor, which was coated using 
slot-die coating process. Table 3 summarizes the properties 
of the dielectric ink.

Figure 13 presents (a) the ratio of capacitance between 
the capacitance values at each load and at the initial load 
conditions, and (b) their sensitivity. One can observe that 
the sensitivity of the sensor using the conductive pattern 
after the optimization is higher than that before the opti-
mization at 0–35 kgf of load. In particular, the sensitivity 
of the sensor after optimization is much higher than before 

Fig. 6  Length of drag out tail in a case 1, b case 5, c case 6, and d case 10
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optimization in 0–10 kgf of load. When the resistance of 
the conductive layer decreases, more electrons with less 
energy loss can accumulate on the capacitor plate. As a 
result, the polarization of the dielectric layer becomes 

more active, which increases the capacitance. The maxi-
mum capacitance of a capacitor manufactured based on 
the conductive layer before improvement is 187.01 pF and 
that after improvement is 442.5 pF. Thus, the capacitance 

Fig. 7  Main effects and interaction plots for resistance according to process variables

Fig. 8  a Three forces applied 
to ink in an engraved cell and b 
change of contact length under 
nip pressure
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increased by about 236%. Further, the maximum sensitiv-
ity of the capacitor before and after improvement were 
0.21 and 0.41, respectively, which suggests an improve-
ment of about 195%. Moreover, the average sensitivities 
before and after the improvement was 0.021 and 0.041, 
respectively. The results clearly show that the sensor using 
the conductive pattern after the optimization has a much 
higher sensitivity than that before optimization.

Fig. 9  Main effects and interaction plots for drag-out tail according to process variables

Fig. 10  Overall desirability of printed electronic patterns

Table 3  Material properties of dielectric ink

Property Unit Value

Viscosity cPs 80
Solid contents wt% 40
Surface tension mN/m 32
Relative dielectric constant – 20
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6  Conclusion

Herein, the effects of the printing conditions, web speed, 
tension, and nip pressure on the drag-out tail defect and 
conductance were analyzed. It can be observed that the 
resistance decreases with increasing web speed, tension, 
and nip pressure. The drag-out tail increases with increas-
ing tension and nip pressure and decreasing web speed. 
Considering these results, optimal conditions minimizing 
the drag-out tail defect and conductance were optimized 
using the Box–Behnken design. Under the optimal condi-
tions, the resistance and drag-out tail severity are improved 
by 74% and 53%, respectively, compared with the conduc-
tive pattern printed in the conventional case. Finally, we 
fabricated two cases of flexible pressure capacitive sensors 
using the conductive patterns before and after the optimi-
zation, and experimentally verified that the sensor using 
the conductive pattern after the optimization has higher 
sensitivity than before the optimization.

Fig. 11  Microscopic view of electronic pattern printed under the opti-
mal condition

Fig. 12  a Structure of the pressure sensitive capacitor and b fabricated sensor

Fig. 13  a Capacitance ratio and b capacitance variation under increasing load conditions
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