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Abstract
A superhydrophobic surface was successfully realized using fused deposition modeling-type three-dimensional (3D) print-
ing technology. The low printing resolution (400 μm) and various printing angles from 0° to 90° were employed to print 
the mold for casting of polymer surfaces. The polymer surface cast from the mold exhibited waveform microstructures that 
had a tilting angle almost identical to the printing angle. The maximum average water contact angle (WCA) of fabricated 
polymer surfaces was 160°, which is much higher than that of flat (bare) polymer surfaces (up to 52.3% increase in the 
WCA). In particular, water droplets immediately rolled off along 8°-tilted surfaces, cast from the mold printed with printing 
angle of 70°. This demonstrated the superhydrophobic property. The result of this study shows the feasibility of a facile, 
rapid, inexpensive, and effective microfabrication of superhydrophobic surfaces using the current 3D printing technology.
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1  Introduction

The control of the water contact angle (WCA), or wettabil-
ity, of solid surfaces is a core technique in a wide variety of 
applications in fields ranging from the micro- to the macro-
scale [1–4]. For example, the fluid dynamics of two-phase 
flows and the mixing of two laminar flows in microchannels 
highly depend on the wettability [5–8], and a high WCA can 
prevent (or delay) frost formation on surfaces, thus extend-
ing the lifetime of mechanical/electrical systems in cold 
environments [9–12]. Based on the magnitude of the WCA, 
the physical property of an arbitrary surface can be classified 
into four groups, namely superhydrophilicity, hydrophilicity, 
hydrophobicity, and superhydrophobicity [13]. In particular, 
studies regarding superhydrophobic surfaces have emerged 
in various fields including mechanical, electrical, chemical, 
and biomedical engineering, because the superhydrophobic-
ity has multiple functions such as filtration [14–16], delay of 
frost formation [11, 17], self-cleaning [18–20], and fluidic 

drag reduction [21–23]. In general, a solid surface is con-
sidered as a superhydrophobic surface when the surface has 
a static WCA more than 150° and a rolling-off angle less 
than 10° [13, 24]. To fabricate superhydrophobic surfaces, 
various methods including laser ablation [25, 26], plasma 
etching [27, 28], chemical etching [29], coating [30, 31], 
and sol–gel processes [32, 33] have been widely investi-
gated. However, most of methods require complicated pro-
cedures and chemical treatments, which can limit an exten-
sive adoption of superhydrophobic surfaces to large-scale 
applications. The fabrication of superhydrophobic polymer 
surface with hierarchical structures has been developed 
recently using hot imprinting process, but it required a ther-
mal treatment process at a high temperature [34]. In addition 
to superhydrophobicity, icephobicity is another essential sur-
face property that can easily be controlled by surface treat-
ments [35, 36]. Ice formation on solid surfaces can cause 
significant damage to various systems such as degradation 
of thermal transfer efficiency in heat exchangers [37, 38] and 
decrease in sensitivity of optical instruments [39]. Although 
superhydrophobic surfaces are not always icephobic because 
of different mechanisms of water and ice adhesion [40–43], 
the key technique for creating an icephobic surface is to 
lower the ice adhesion strength of the surface by providing 
sufficient voids at the interface, which is closely related to 
the superhydrophobicity [35]. Consequently, a facile, rapid, 
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and high-throughput fabrication of superhydrophobic sur-
faces is highly demanded to overcome drawbacks of con-
ventional manufacturing methods.

In the past decade, three-dimensional (3D) printing tech-
nology has emerged as a facile, cost-effective, and rapid 
prototyping method for various manufacturing applications 
[44–47]. Among a variety of printing methods, the fused 
deposition modeling (FDM) technique is the most com-
mon and user-friendly method, because 3D structures can 
be easily designed using computer-aided design (CAD) 
and directly printed by stacking fused filaments [48–50]. 
However, a critical disadvantage of the FDM-based printing 
method is rough surfaces of the end products, which are typ-
ically caused by low printing resolution and filaments piled 
up in layers [51, 52]. To reduce the degree of roughness, a 
higher printing resolution is required, which increases the 
printing time and cost for manufacturing. In our previous 
study, we demonstrated that this drawback (i.e., rough sur-
face) of 3D-printed molds can be used to fabricate 3D hydro-
phobic polymer surfaces [53]. In this study, we demonstrated 
that this drawback of 3D-printed structures can be further 
effectively used for the microfabrication of superhydropho-
bic surfaces, and investigated the effect of printing angles 
on wettability of surfaces. In other words, superhydrophobic 
surfaces could be realized from the 3D-printed mold by con-
trolling the printing angle as a parameter. When the casting 
mold was printed with the resolution of 400 μm and print-
ing angle of 70°, the surface cast from the mold exhibited 
superhydrophobic properties (i.e., WCA of ~ 154.7° and a 

water droplet sliding angle of 8°). This study supports that 
the superhydrophobic surfaces can be easily and quickly fab-
ricated using an additive manufacturing (3D printing) tech-
nology compared to complicated and multiple procedures in 
conventional microfabrication methods.

2 � Experimental Section

2.1 � Materials

To prepare a casting mold for creating superhydrophobic 
surfaces, flat molds with different printing angles were 
first designed using a computer-aided design (CAD) soft-
ware (NX11, Siemens) and printed using a FDM-type 3D 
printer (GUIDER II, FlashForge, China). The printing 
conditions of printing speed, extruder temperature, and 
platform temperature were set to 80 mm/s, 220 °C, and 
50 °C, respectively. The printing density was experimen-
tally determined as 15%, which can minimize printing 
time, but still print sufficient details for the mold. A poly-
lactic acid (PLA) filament with a diameter of 1.75 mm, 
which is a commonly used filament for FDM printing 
methods [54, 55], was employed in this study. Figure 1 
shows the schematic of the overall fabrication process 
for creating a superhydrophobic polymer surface from 
3D-printed mold. As a first step, a casting mold was 
printed with different printing angles from 0° to 90°. The 
main mold part was printed with the support part, which 

Fig. 1   Schematic of overall fabrication process for superhydrophobic 
polymer surfaces using 3D-printed mold: a printing a mold with a 
support parts using different printing angles, b pouring PDMS pre-
polymer onto the mold detached from the support part, c degassing 

process to remove air bubbles, d baking process to cure prepolymer, 
e detaching cured PDMS from the mold, and f finalizing superhydro-
phobic surfaces
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provides the tilted printing angle, as shown in Fig. 1a. 
The molds inclined at 60°, 70°, and 80° could be printed 
without the support part because the threshold overhang 
angle [56] was set at approximately 33.6° from the ver-
tical in the 3D printer used in this study. However, the 
support part was intentionally applied to all molds for a 
consistent printing condition. Although a shape of sup-
port structures can also affect the surface roughness of 
the mold [57, 58], it affects only the bottom of the mold 
where the support part is directly in touch with the mold. 
Based on the printing angle, the stacking direction of PLA 
filament can be intentionally controlled, thus generating 
different shapes of microstructures on the final products. 
After detaching the main mold part from the support part 
(by simply separating them by hand), the PDMS mixture 
(prepolymer: curing agent = 10: 1) was poured onto the 
main mold (Fig. 1b). To remove air bubbles that were 
generated during the pouring process, the degassing pro-
cess was performed in a vacuum chamber at room tem-
perature (Fig. 1c). The PDMS mixture was then baked at 
45 °C for 7 h for the polymerization process (Fig. 1d), and 
a detaching process was followed from the 3D-printed 
main mold (Fig. 1e). The cured PDMS polymer was eas-
ily and cleanly detached from the PLA mold without any 
chemical treatment between the PDMS and PLA mold 
surface (Fig. 1f). The 3D-printed mold can also be used 
repeatedly to generate the same PDMS polymer surface, 
supporting the rapid, cost-effective, and high-throughput 
manufacturing method to create a superhydrophobic sur-
face. Finally, the detached PDMS polymer surface was 
characterized experimentally to demonstrate superhydro-
phobic properties.

2.2 � Testing and Characterization

2.2.1 � Water Contact Angle Analysis

Superhydrophobic properties of the fabricated PDMS 
polymer surfaces were experimentally characterized using 
values of the WCA measured by a water contact angle 
goniometer (Phoenix-MT(A), Surface Electro Optics, 
Korea). To compare the WCA on various PDMS sur-
faces cast from PLA molds printed with different printing 
angles, a static WCA was measured by image-processing 
software (Image Pro 300). At least five measurements of 
WCA were performed, and the average value of WCA 
was determined. To investigate the effect of the printing 
angle on the WCA value, the cross-sectional shape of the 
fabricated PDMS polymer surface was analyzed using 
an optical camera (ViTiny UM12, MicroLinks Technol-
ogy Corp.). The pitch distance and peak-to-valley height 
between microstructures were then measured.

2.2.2 � Water Droplet Roll‑Off Test

To characterize the wettability and adhesive properties of the 
fabricated PDMS surfaces, a water roll-off test was carried 
out using a syringe and video recording software (Camta-
sia 9, TechSmith Corp.). The fabricated PDMS surface was 
placed on 8°- and 10°-tilted substrates, and water droplets 
were repeatedly dropped onto random positions of the fab-
ricated PDMS surface to demonstrate superhydrophobic 
properties. This procedure was repeated at least eight times 
to obtain reliable data for wettability analysis.

3 � Results and Discussion

Figure 2a shows the schematic of the main mold parts on 
support parts designed by CAD software with respect to 
varied printing angles from 0° to 90°. It should be noted 
that the different printing angle creates different staircase-
shaped microstructures on the mold surface owing to the 
varied stacking direction of PLA filament. The printing 
angle eventually affects the wettability and WCA values of 
the PDMS surface cast from the main mold. Figure 2b shows 
the actual image of mold products printed using a 3D printer. 
In this study, the printing resolution of 400 μm and all print-
ing angles (i.e., from 0° to 90°) were tested to print main 
molds for superhydrophobic surfaces. In our previous work, 
because the WCA on the polymer surface cast from the PLA 
mold tended to have higher WCA as the printing resolution 
decreased [53], the lowest printing resolution (400 μm) was 
employed to create superhydrophobic surfaces in this study. 
The printing running durations for printing of the main mold 
(dimensions: 54 mm × 29 mm × 6 mm) were 0.21, 0.33, 0.45, 
0.48, 0.51, 0.53, 0.4, 0.41, 0.33, and 0.21 h for the printing 
angles of 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, 
respectively. This rapid printing running time can realize the 
rapid prototyping and manufacturing method for the reusable 
platform of superhydrophobic surfaces.

To investigate the surface morphology of PDMS polymers 
cast from the 3D-printed PLA molds, the fabricated bulk 
polymer was cut by a razor blade, and the cross-sectional 
image was captured using an optical microscope, as shown 
in Fig. 3a. An array of waveform (or waveshape) micro-
structures were uniformly generated by casting from the 
3D-printed molds. The valley area (i.e., area between indi-
vidual microstructure) represents the region where the PLA 
filament existed. It should also be noted that the direction of 
waveform microstructures varied depending on the printing 
angle (see Figs. 3a and 4 for detail). For example, tips of 
waveform microstructures cast from the PLA mold printed 
with 40° had a tilt to the one (left) side, while those cast 
from the PLA mold printed with 90° were generated in the 
direction perpendicular to the substrate, as shown in Fig. 4. 
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This is primarily because PLA filaments were obliquely 
stacked along with the printing angle (see Fig. 1a), thus cre-
ating the different tilted angles of waveform microstructures. 

Figure 3b shows the pitch distance and height of the indi-
vidual waveform microstructure depending on the printing 
angle. As the printing angle increased, both pitch distance 

Fig. 2   a CAD images of main 3D mold parts on support parts with 
respect to various printing angles and b actual image of mold prod-
ucts printed by a 3D printer. Different printing angles create differ-
ent staircase-shaped microstructures on the mold surface owing to 

the varied stacking direction of PLA filament. Each staircase-shaped 
microstructure generated by different printing angles has different 
roughness as shown in zoomed-in view in a 

Fig. 3   a Optical image of PDMS polymer surface cast from 3D-printed PLA mold (cross-sectional view) and b pitch distance between micro-
structures and height of microstructure as a function of the printing angle from 40° to 90°

Fig. 4   SEM images of waveform microstructures cast from 3D-printed PLA mold (first row: zoomed-out and second row: zoomed-in view). 
Based on the printing angle, the tilted direction of waveform microstructures can be controlled owing to obliquely stacked PLA filaments
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and height of microstructure decreased because of obliquely 
stacked PLA filaments, which depend on the printing angle. 
Figure 5a shows the correlation between the tilted angle of 
waveform microstructures and the printing angle of PLA 
molds. The tilted angle of each surface was experimentally 
measured using the image editing software and cross-sec-
tional optical image of PDMS polymer surfaces, as shown in 
Fig. 5b. As the printing angle increased, the tilted angle of 
microstructure increased linearly. It should also be noted that 
values of the tilted angle are very close to those of printing 
angle. That means the tilted angle of microstructure on sur-
faces can be easily modified without complicated manufac-
turing processes. In other words, the pitch distance, height, 
and tilted angle of waveform microstructures can be easily 
controlled by simply changing the printing angle.  

To characterize the effect of the printing angle on WCA, 
a water droplet was dropped onto each surface through a 
syringe and the WCA value was measured using a water con-
tact angle goniometer. Figure 6 shows the measured WCA 
on each PDMS polymer surfaces cast from the 3D-printed 
PLA molds depending on the printing angle. It should be 
noted that the measured WCA values on surfaces with the 
printing angles larger than 40° exceeded 150°, which meets one of conditions for superhydrophobic surfaces. Compared 

to the WCA of approximately 105° on the flat PDMS sur-
face, the PDMS surface cast from the PLA mold printed 
with the printing angle of 90° formed an average WCA of 
160° (~ 52.3% increase in WCA), as shown in Fig. 6. As the 
printing angle of the PLA mold increased, the value of WCA 
increased simultaneously. This might be because as the tilted 
angle of the waveform microstructures increased from 0° to 
90° (i.e., as the printing angle of the PLA mold increased), 
the surface contact area between the water (liquid) and wave-
form microstructures (solid) continuously reduced, thus 
resulting in higher WCA (nearly spherical water droplet) 
[59]. Consequently, the surfaces with a high WCA were eas-
ily and quickly achieved using a 3D-printed mold compared 
to expensive etching processes and complicated chemical 
treatments in conventional methods, as listed in Table 1. 

Fig. 5   a Correlation between microstructure angle (i.e., tilted angle of 
waveform microstructures) of PDMS polymer surfaces and printing 
angle of PLA main molds. b Optically measured values of tilted angle 
of waveform microstructures with respect to printing angle (values 
in parentheses). It should be noted that the microstructure angle is 
approximately matched with the printing angle

Fig. 6   WCA values on each PDMS polymer surfaces cast from the 
3D-printed PLA molds depending on the printing angle. It should be 
noted that WCA on surfaces with the printing angles larger than 40° 
exceed 150°. Inset: optical image of the water droplet on each surface

Table 1   Comparison of fabrication methods and maximum WCA​

Material Method Max. WCA​ References

PDMS Laser ablation 154.5° [25]
PDMS Laser ablation 171° [26]
Wood Plasma etching + chemical 

coating
161.2 [27]

PDMS Plasma etching + chemical 
coating

169° [28]

Aluminum Chemical etching + coating 163.7° [29]
Glass Sol–gel 169° [32]
PDMS Cast from 3D-printed mold 160° This work
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To demonstrate the superhydrophobic property, a roll-
off test on each PDMS polymer surface was performed to 
characterize the wettability. Figure 7a, b show the sequen-
tial images of the water droplet rolled off on the 10°-tilted 
PDMS polymer surface cast from the PLA mold printed 
with the printing angle of 60° (WCA of ~ 154.2°) and 70° 
(WCA of ~ 154.7°), respectively. The direction of the wave-
form microstructure tips was set to the left side. The water 
droplets on both polymer surfaces immediately rolled off 
when the titling angle of surface reached 10°. However, 
water droplets on PDMS polymer surfaces cast from the 
mold printed with 40°, 50°, 80°, and 90° were not continu-
ously rolled off along the surface. This might be because 
surfaces cast from molds printed at a printing angle of 60° 
and 70° showed the highest aspect ratio value (a ratio of the 
height of microstructures to the pitch distance), as shown 
in Fig. 8. This high aspect ratio provides the most suffi-
cient air gaps at the liquid/solid interface and helps water 
droplets slide readily [60]. To further investigate the most 
superhydrophobic surface, the roll-off test was performed 
on 8°-tilted surface. As a result, the water droplets rolled off 
on the polymer surface cast from the PLA mold printed at a 
printing angle of 70° only, as shown in Fig. 7c. This implied 
that the optimal tilted angle of waveform microstructure for 
the superhydrophobic surface was 70°. In conclusion, the 
facile and rapid fabrication of the superhydrophobic polymer 
surface (i.e., WCA of ~ 154.7° and sliding at tilted angle of 
8°) was realized using the 3D printing technology without 
the use of complicated micromachining and chemical sur-
face treatments. To further develop the method for achieving 

superhydrophobic surfaces from hydrophilic materials, fur-
ther studies will be required to optimize the angle and shape 
of microstructures. 

4 � Conclusions

In summary, the superhydrophobic surface was successfully 
realized using a 3D printing technology. To cast the PDMS 
polymer surface from the 3D-printed mold, an FDM-type 

Fig. 7   Sequential images of a water droplet rolled off on the 10°-tilted PDMS polymer surface cast from PLA mold printed with printing angle 
of a 60° and b 70°. c Roll-off test on the 8°-tilted PDMS polymer surface cast from PLA mold printed with printing angle of 70°

Fig. 8   Aspect ratio (= structure height/pitch distance) of microstruc-
tures as a function of printing angle from 40° to 90°
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3D printer was employed with PLA filaments as the print-
ing material. The PDMS polymer surface cast from the 
3D-printed PLA mold showed an array of waveform micro-
structures, and the tilted angle of those structures varied 
by the printing angle. The value of tilted angle of wave-
form microstructures was almost identical to the printing 
angle, indicating that the tilted angle of microstructures on 
the surface can be easily controlled by the setting of the 3D 
printer. The fabricated polymer surfaces showed a maximum 
52.3% increase in WCA compared to that on flat PDMS 
polymer surface. In particular, water droplets were imme-
diately rolled off on 8°-tilted surface cast from the PLA 
molds printed with the printing angle of 70°, indicating the 
superhydrophobic surface. This work supports the use of 
3D printing technology, which can be employed to rapidly 
manufacture the superhydrophobic polymer surface without 
complex micromachining and chemical surface treatment. 
This demonstrates a facile, cost-effective, rapid, and reliable 
microfabrication technique for creating the superhydropho-
bic surface.
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