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Abstract
The manufacturing industry has recently been focusing on improving energy efficiency to reduce greenhouse gas emissions 
and achieve sustainable growth. The focus is on combining existing energy technologies with new information and com-
munication technologies as the Fourth Industrial Revolution approaches. Dyeing and finishing shops use the most energy in 
the textile industry and have below-average energy efficiency because of low technology and facility investment. Research 
into increasing the energy efficiency of dyeing and finishing shops has concentrated on developing equipment; however, it 
is difficult for small- and medium-sized factories to benefit from these advances. Thus, research into means of improving 
energy efficiency by improving the process and system efficiency of dyeing and finishing companies, who have difficulties 
with facility investment and operation, is necessary. In this study, a cyber physical energy system that improves the energy 
efficiency of the dyeing process by collecting and analyzing manufacturing big data was developed. Further, the implemented 
system was applied to actual dyeing and finishing shops, and its effects were verified. This research contributes to improving 
the situation of the dyeing process using machine learning techniques and manufacturing big data by adjusting cyber physical 
energy systems without utilizing expensive equipment. Inaccurate process instruction from the laboratory are also replaced 
by the cyber physical energy system, and the invalid and inefficient steps in the traditional process scenario derived from 
operator’s experience are replaced with more valid and usable actions.

Keywords Big data · Cyber physical system · Dyeing process · Energy efficiency · Green manufacturing · Industrial 
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1 Introduction

As part of efforts to realize green manufacturing, the manu-
facturing society has been focusing on developing technolo-
gies to improve energy efficiency and sustainability [1–4] 
Increasing energy efficiency has become a major considera-
tion owing to rising global carbon dioxide emissions and 
energy resource prices and climate change. Companies are 
trying to strengthen their competitiveness through innova-
tions in such technologies [1, 3, 5].

Energy-related research in the manufacturing industry has 
focused on developing new energy sources, purifying fossil 
fuels, and improving process and system efficiency. The first 
two directions have been the traditional focus, but studies on 
improving process and system efficiency have been attract-
ing attention because they should also improve major indi-
cators, such as the productivity of the whole system [1, 6].

Diverse and convergent technologies, such as industrial 
internet of things (IIoT) and big data application, have been 
developed and applied in accordance with manufacturing 
innovation paradigms, such as Industry 4.0 [6, 7]. As an 
example, the cyber physical energy system (CPES) has been 
applied to a wide range of industries because it increases 
energy efficiency through the collection, processing, and 
utilization of information and through the application of 
modeling techniques [7, 8]. The CPES is an eco-friendly 
manufacturing concept because it can reduce fuel use and 
environmental pollution by improving energy efficiency 
through energy use and production process optimization as 
well as process efficiency [7–9].

The textile industry has lower energy efficiency and needs 
much more energy efficiency improvement than other manu-
facturing industries. In the textile industry, dyeing and fin-
ishing shops have the highest energy consumption, account-
ing for 42% of the total energy consumption. It is also an 
industry that has a lot of energy-related expenses compared 
to the total cost. Thus, research has been focused on improv-
ing the energy efficiency of dyeing and finishing shops [10, 
11]. However, such studies mainly focused on the develop-
ment of new equipment; thus, they only benefit factories 
with sufficient capital and not the small- and medium-sized 
factories that are incapable of large-scale investment. In 
addition, because studies to improve the energy efficiency 
of dyeing and finishing shops through process efficiency 
enhancement are insufficient, research is needed on dyeing 
and finishing systems with high usability and advanced pro-
duction methods to enhance the energy efficiency of small- 
and medium-sized companies [4, 11–13]. Deep understand-
ing and sufficient consideration of the actual site are required 
for the effective application of such systems and the develop-
ment of dard production and management methods [12, 14].

In this study, a method that improves the energy effi-
ciency of the dyeing process was developed based on the 
CPES concept. The CPES of this study was implemented by 
assigning the research domain to the dyeing process, which 
is the main energy-consuming process in dyeing and finish-
ing shops. The study was conducted with the aim of identify-
ing and solving the process inefficiencies of the current dye-
ing process and reducing the possibility of repeated-dyeing, 
in which the dyeing process is performed again because of 
defects in the dyeing process. The CPES implemented in 
this study prevents improper use of energy by improving the 
process and system efficiency without the need to invest in 
expensive equipment.

The following tasks will be performed herein: (1) 
problems with increasing the energy efficiency of dyeing 
and finishing are defined; (2) solutions and scenarios for 
the problems are presented (Fig. 1); (3) the design of the 
CPES architecture based on these solutions and scenarios 
is explained; (4) the data model for manufacturing big data 
collected using IIoT devices and retrieved from databases is 
defined and characterized; and (5) modules designed with 
machine learning techniques using manufacturing big data 
are presented and (6) validated through a case study with 
actual dyeing and finishing shops.

2  Research Background

2.1  Cyber Physical Energy System

A cyber physical system (CPS) is a physical and engineered 
system that performs monitoring, controlling, and coordinat-
ing using computing technology and ICT. A CPS consists of 
a physical world, which is the actual site, and a cyber world, 
which is constructed using information and knowledge [14]. 
A CPS supports decision making related to the manufac-
turing process by analyzing and reflecting on the complex 
situation of the physical world through data collection, 

Fig. 1  Conceptual diagram of a cyber physical energy system
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processing, and analysis of the cyber world [14, 15]. The 
physical world, which is the actual field of a CPS, consists 
of a process machinery that provides integrated functions 
based on the IIoT convergence technology, devices for data 
collection, and production equipment. As the information 
required for production is collected and a platform for an 
efficient manufacturing environment is created, the entire 
production process of a physical world can be controlled. 
Therefore, it is possible to optimize and affect not only the 
process, but also the subsidiaries [14].

Figure 2 shows the CPS maturity model. The CPS matu-
rity level increases through efforts to improve understanding, 
accumulate data, and improve decision making. Efficiency 
improvement and production process optimization are 
achieved through the application of a CPS [14]. Understand-
ing the physical world is essential for the implementation 
and application of a CPS, and a cyber world can be effective 
if it is constructed based on such an understanding [15].

Among CPSs, the CPES is focused on improving the 
energy efficiency and optimizing processes and production 
using methodologies, such as mathematical modeling, data 
analysis techniques, and simulations based on the energy-
related information of actual factories obtained through data 
collection, processing, and analysis [5, 16].

The components of the cyber world are analyzed based on 
an understanding and an analysis of the site (i.e., the physi-
cal world). The physical world can be understood through 
various data analysis techniques, such as modeling, estima-
tion, and generalization. Data is collected using IIoT devices, 
and this process can be automated. The CPES constructed 
through the proposed method improves the CPS maturity 
level of decision making.

2.2  Energy‑Related Status of Dyeing and Finishing 
Shops

The energy consumption of the textile industry in South 
Korea in 2015 was 1634.1 × 109 kcal, and that of the local 
dyeing and finishing shops was 682.5 × 109 kcal (Fig. 3). 
Thus, these factories represented 42% of the energy con-
sumed by the entire textile industry [10]. When divided by 
the process, dyeing and finishing polyester consumed 96,723 
toe during preprocessing, 204,193 toe during the dyeing pro-
cess, and 161,205 toe during the finishing process. The dye-
ing process consumed as much as 44.2% of the total energy 
required by the dyeing and finishing shops [17].

Energy-related problems in dyeing and finishing shops 
can be divided into policy problems and technical obstacles. 
In the case of policy problems, no means can be used to 
quantitatively predict the potential and effect of improving 
the energy efficiency. Moreover, efforts to develop standard 

Fig. 2  CPS maturity model [14]

Fig. 3  Energy consumption in the textile industry [10]
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energy-saving modules for saving policies without quantita-
tive goals are insufficient. While support policies have been 
focused on developing and deploying new equipment, the 
benefits are limited for small- and medium-sized companies 
because of their incapability to invest [17].

In the case of technical obstacles, the speed of technol-
ogy development is slow for low-energy equipment that can 
shorten processes. For small companies, determining the opti-
mal dyeing conditions considering the characteristics of each 
yarn is difficult, and the results of the work differ in each trial 
because of ad-hoc decisions by a human operator [17, 18]. 
These obstacles cause defective products in the dyeing process, 
and approximately 15–20% of the products require repeated-
dyeing. This process increases energy consumption, lowers 
the product quality, and causes differences in color [17, 19].

This study developed a cyber physical energy system to 
improve the energy efficiency of small- and medium-sized 
companies through the collection and utilization of manu-
facturing big data instead of investing in costly equipment. 
In addition, methods to reduce the energy consumption by 
lowering the repeated-dyeing rate were considered. The 
application and effects of these measures can be predicted 
through a system approach.

2.3  Machine Learning Techniques

2.3.1  Synthetic Minority Over‑Sampling Technique

The synthetic minority over-sampling technique (SMOTE) is 
an over-sampling methodology to bring the ratio between the 
minority and majority classes of an imbalanced dataset to an 
appropriate level. This methodology is applied to successive 
datasets, generates a random number of [0, 1], and multiplies 
it by the difference between the randomly selected data and the 
kth nearest neighbor to replicate a new sample. The populate 
function, which is the most important function of SMOTE, can 
be expressed by the following pseudo code: [20].

Algorithm Populate(N, i, nnarray)
while N ≠ 0

Choose a random number nn between 1 and k. This step chooses 
one of the k nearest neighbors of i.
for attr ← 1 to numattrs

Compute: dif = Sample[nnarray[nn]][attr] − Sample[i][attr]
Compute: gap = random number between 0 and 1
Synthetic[newindex][attr] = Sample[i][attr] + gap ∗ dif

endfor
newindex++
N = N - 1

endwhile
return (∗ End of Populate. ∗)

2.3.2  Artificial Neural Networks

Artificial neural networks (ANNs) are defined as “mas-
sively parallel interconnected networks of simple elements 
and their hierarchical organizations which are intended to 
interact with the objects of the real world in the same way as 
biological nervous system do” [21]. ANNs have outstanding 
speed in processing massive parallelism, excellent learning 
and adaptability, robustness against defects and failures, and 
wide applicability [22, 23].

ANNs have been used in product design, process plan-
ning, scheduling, process modeling and control, monitoring, 
and diagnosis. As an algorithm with a wide applicability, 
an ANN has been used at actual manufacturing sites with a 
demonstrated excellence in performance [23]. In this study, 
an ANN was used to provide process parameters for the 
dyeing process as regression models and predict repeated-
dyeing in advance as a binary classification model.

3  Cyber Physical Energy System for Dyeing 
Process

3.1  Problem Description

This section defines the problems of dyeing and finish-
ing shops that are to be addressed with CPES. As noted in 
Sect. 2.1, understanding the actual physical world is essen-
tial, and solution approaches must be set for the implemen-
tation and the application of the CPES. In addition, prob-
lems that can be solved with CPES application and those 
that would not be significantly affected must be clearly 
distinguished.

Dyeing and finishing shops, which are essential elements 
of the textile industry and require a large amount of energy, 
have some large-scale workplaces, but are mostly operated 
in the form of small- and medium-sized enterprises. In this 
case, fabric is provided by the buyer requesting dyeing and 
finishing, and the dyeing and finishing shop does not pay 
any cost related to the fabric purchase. Therefore, the costs 
incurred by the dyeing and finishing shop are mostly energy 
related. Previous studies showed that these costs are usually 
incurred during the dyeing process.

As shown in Fig. 4, the buyer provides the dyeing and 
finishing shop with the fabric and information on the fab-
ric, required dyeing method, and color. Based on the pro-
vided fabric and information, the laboratory of the dyeing 
and finishing shop cuts a small amount of the fabric and 
uses it in experiments. The laboratory transfers the process 
instructions containing various process parameters, such 
as temperature change, reel velocity, and steam, derived 
from the experiment to the onsite operator through a pro-
cess instruction document. The onsite operator adjusts the 
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process instructions based on their empirical information 
and uses these to control the dyeing machine. The operator 
also continuously changes the control for the gap between 
the process instructions and the site work. Repeated-dyeing 
occurs, and the process is performed again if the dyeing 
results of the dyed fabric are not satisfactory.

For the dyeing process, a high repeated-dyeing rate is 
an obstacle to increasing energy efficiency, and inefficient 
processes affect this process. The machines used in the 
actual laboratory differ from the huge dyeing machines 
onsite, which produces a significant difference in perfor-
mance. Therefore, onsite operators must adjust the machines 
based on their empirical information because incorrect pro-
cess parameters may result in repeated-dyeing. Upgrading 
equipment or improving the process efficiency is practically 

difficult because of the high costs, shortage of manpower, 
and other factors.

The temperature data, which are the most important onsite 
information, are controlled in the order of rise–hold–decline 
(Fig. 5). This method is mainly used when a non-continuous 
dyeing machine is used to produce small quantities of vari-
ous products. The dyeing machine is heated to the maximum 
temperature and maintained there for a certain time before 
being cooled again. Field research confirmed that this sec-
tion is a key factor to understanding the dyeing process.

The process efficiency must be increased and the 
repeated-dyeing rate must be reduced to increase the energy 
efficiency of the dyeing process through the construction 
of a CPES that uses IIoT and manufacturing big data. A 
difference in the actual onsite conditions is found when pro-
cess instructions are derived based on an experiment using 
a small amount of fabric in the laboratory. Therefore, the 
big data of the actual site must be used to provide process 
parameters for the dyeing process. Cost reduction and energy 
efficiency improvement must be achieved not according to 
the empirical information of the operators, but through 
understanding the rise–hold–decline of the temperature dur-
ing the dyeing process based on the manufacturing big data.

3.2  CPES Architecture and Data Model

This section describes the architecture based on which com-
ponents are used for the CPES for the dyeing process and 
interactions that are defined between these components. 

Fig. 4  Activity diagram of the traditional dyeing process scenario

Fig. 5  Temperature curve of the dyeing process
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The CPES improves energy efficiency by sharing and using 
information to connect the physical world and cyber world.

The data used in the CPES of the dyeing process are 
defined. The time series data collected by the IIoT devices 
or product data provided by the buyer are defined to apply 
the techniques related to the manufacturing big data in the 
proposed CPES. Factors to be considered for preprocessing 
as variables are also described.

3.2.1  CPES Architecture for the Dyeing Process

The CPES architecture is designed to increase the energy 
efficiency through sharing and utilization of information 
gathered in the actual field (Fig. 6). Information is collected 
through IIoT devices attached to onsite process machines and 
transmitted through controllers. This information is stored 
and indexed in databases, such as the system, manufacturing 
big data, and production databases. The onsite data collected 
through the IIoT devices are stored in the production data-
base. The Product, Process, Resource, Energy (PPRE) data 
model is the abstract data repository that retrieves data from 
three separate databases (i.e., production, reference, and 
product databases) in enterprise resource planning (ERP) 
and indexes them for use within the CPES. Applications in 
the cyber world operate based on the collected data based 
on this PPRE data model.

The cyber world consists of a feature extraction mod-
ule that extracts variables based on the PPRE data model, 
buyer order information, and product property information; 
a process instruction module that uses these variables and 

provides process parameters; and a repeated-dyeing predic-
tion module that determines the repeated-dyeing possibil-
ity for the onsite dyeing process. The module, sensor, and 
information repository in the CPES perform processes, such 
as collecting, indexing, sharing, processing, and utilizing 
information, and provide onsite operators with information 
on improving the energy efficiency.

Unlike the existing approach of process parameters 
through experiments, the variables are extracted using the 
manufacturing big data collected from the site. The learn-
ing model is then used to instruct the process parameters. 
Once the buyer inputs the required order and fabric infor-
mation into the learning model through the user interface, 
the process instruction module derives the process param-
eters for the dyeing process, and the process parameters are 
transmitted to the onsite operators controlling the dyeing 
machines. In this case, the onsite operators need not continu-
ously adjust the process parameters based on their empirical 
information because the process parameters are derived from 
the information of the actual site instead of the information 
obtained from the experiments in the laboratory. Figure 7 
illustrates the activity diagram showing the advanced sce-
nario of the dyeing process when using the CPES to improve 
the energy efficiency.

During the process, the repeated-dyeing prediction mod-
ule derives the repeated-dyeing possibility for each section 
of the rise–hold–decline of the temperature in the dyeing 
process with the binary classification algorithm and sends 
the information to the onsite operators. Even if the repeated-
dyeing possibility increases because of process parameter 

Fig. 6  Cyber physical energy system architecture of the dyeing process
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Fig. 7  Activity diagram of the advanced scenario of the dyeing process with the cyber physical energy system

Fig. 8  View of PPRE data model
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errors or process problems, the operators can handle the dye-
ing process based on the repeated-dyeing possibility accord-
ing to the manufacturing big data instead of their uncertain 
own experience.

3.2.2  PPRE Data Model for the CPES

An abstract data model is needed to retrieve and use data 
from three different databases in the architecture described 
in Sect. 3.2.1. The model is summarized in this section based 
on the keyword PPRE. The entire model view is shown, 
and the schemas of each component are described. Figure 8 
shows the PPRE data model for the CPES of the dyeing 
process used herein.

The PPRE data model consists of five entities, each refer-
ring to data retrieved from the three databases through query 
statements. The product entity retrieves the texture and order 
data from the ERP database. The resource entity is obtained 
from the reference database with specific data of the dye-
ing method. The other three entities are taken from the pro-
duction database for the manufacturing big data collected 
through the IIoT environment.

Table 1 presents the schema of the product entity. These 
elements are data that can be collected when the dyeing and 
finishing shop receives a dyeing order from a buyer and are 
retrieved from the ERP database. Lot_Number is used as 
the ID of the schema and to divide the data samples. Data, 
such as Filament, Segment, and Weaving, which significantly 
affect the dyeing quality, are also collected. These data are so 
varied that they make it difficult to provide process param-
eters through experiments.

Table 2 presents the resource schema in the PPRE data 
model. The elements in Table 2 can be corresponded when 
a dyeing order is received from a buyer. These elements 
are retrieved from the reference database of the company 
itself. The data are mainly corresponded when the order is 
received; hence, they usually cannot be modified according 
to the needs of the site. These data include information that 
do not affect the actual work results along with the order data 
requested by the buyer, including the Color and the Dye-
ing_Method, and the material property data of the fabric to 
be dyed, including the Segment and the Quantity.

Table  3 presents the schema in the process_general 
schema, while Table 4 presents the schema in the process_
mfg schema. These data are related to the onsite processes 

Table 1  Schema of product 
entity in PPRE data model [9]

Element Unit Type Definition

Lot_Number Code Characters Lot number of fabric to be dyed
Diameter Inches Integer Diameter of yarn of fabric to be dyed
Material Code String Name of fabric to be dyed
Filament Inches Integer Density level of fabric to be dyed
Quantity Kilograms Double Weight of fabric to be dyed
Segment Number Integer Number of segments of fabric to be dyed
Weaving Number String Pattern type of fabric to be dyed
Weight_Per_Yard Grams per yard Double Weight per yard of fabric to be dyed
Yard Yard Double Yard of fabric to be dyed

Table 2  Schema of resource 
entity in PPRE data model [9]

Element Unit Type Definition

Color Code String Color of fabric after dyeing that has been requested by the buyer
Color_Type Code String Type of color of fabric after dyeing that has been requested by 

the buyer (dark, light, white, etc.)
Dye Grams Double Amount of dye to be input to the dyeing process
Dyeing_Method Code Integer Dyeing method to be used in the dyeing process that has been 

requested by the buyer

Table 3  Schema of process_
general entity in PPRE data 
model [9]

Element Unit Type Definition

Date Date String Date on which the process is conducted
Repeated_Dyeing True or False Boolean Occurrence of repeated-dyeing during 

the dyeing process
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collected through IIoT devices, such as watt-hour meters, 
water meters, and temperature sensors, during the actual 
dyeing process. These data represent the actual onsite 
operation based on the process parameters derived from the 
experiments in a laboratory using data, such as the mate-
rial properties in Table 1 and order requests. As noted in 
Sect. 3.1, onsite operators use their empirical information to 
adjust the operation instead of following the exact process 
parameters provided by the laboratory.

Table 5 presents a schema of the energy entity containing 
information related to the energy used in the dyeing pro-
cess. Steam and electric energy are the main energy sources 
required by the dyeing process. Such information is collected 
from steam meters and watt meters.

3.3  Cyber World Configuration of the CPES

This section describes the modules that constitute the cyber 
world of the CPES. Each module replaces the existing labo-
ratory experiments and experience of onsite operators by 
applying machine learning techniques to the IIoT-based 
manufacturing big data and reference data.

3.3.1  Feature Extraction Module

After various data are collected and stored in the CPES sce-
nario, the feature extraction module preprocesses the data 

for use in the analysis modules (Fig. 9). Various data, such 
as onsite data, order information, and product information, 
cannot be directly used; hence, they must be converted into 
variables based on the understanding of the dyeing process 
for utilization.

The rise–hold–decline sections need to be considered 
separately in the dyeing process that uses non-continuous 
dyeing machines; thus, the feature extraction module divides 
those three sections and extracts variables for consideration.

The extracted variables are stored and used as a training 
set for other modules or when variables are preprocessed 
to instruct process parameters and determine the repeated-
dyeing possibility with the constructed learning model. As 
the first step of the procedure of the feature extraction mod-
ule, the module checks if the data are interrupted because of 
communication problems.

The Product and Resource data are replaced by nominal 
variables if the data are normally collected. At this step, 
continuous variables, such as diameter in the Product data 
and dye in the Resource data, are used as variables with-
out additional preprocessing. These variables are used only 
in the regression model of the process instruction module; 
therefore, they are replaced by dummy variables.

In contrast, in the case of the Process and Energy data, the 
module divides the section as shown in Fig. 10 and extracts 
the feature based on it. Table 6 presents the extraction of the 
feature using the value for each data. The nozzle pressure 

Table 4  Schema of process_
mfg entity in PPRE data model 
[9]

Element Unit Type Definition

Cold_Water L Integer Cold water used in the dyeing process
Input_Temp  °C Integer Input temperature to operate the dyeing machine
IIoT_Device_Temp  °C Integer Temperature collected from the IIoT devices
Left_Nozzle kgf/cm3 Double Injection pressure of the left nozzle that injects the dye
Left_Reel rpm Integer Velocity of the left reel
Main_Pump rpm Integer Velocity of the main pump used in the dyeing process
Nozzle kgf/cm3 Double Injection pressure of the left and right nozzles that inject dye
Reel rpm Integer Velocity of the left and right reels
Right_Nozzle kgf/cm3 Double Injection pressure of the right nozzle that injects the dye
Right_Reel rpm Integer Velocity of the right reel
Steam kg/h Double Steam used in the dyeing process
Warm_Water L Integer Warm water used in the dyeing process
Water L Integer Room-temperature water used in the dyeing process

Table 5  Schema of energy 
entity in PPRE data model [9]

Element Unit Type Definition

Electricity kw/h Double Electrical power used in the dyeing process
Electricity_Toe toe Double Amount of electrical energy used in the dyeing process
Energy toe Double Total amount of energy used in the dyeing process
Steam_Energy kg/h Double Amount of steam energy used in the dyeing process
Steam_Toe toe Double Steam used in the dyeing process
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and the reel velocity are excluded because the sum of the left 
and right data forms an integrated value.

The temperature data of dyeing machines have complex 
patterns that are difficult to formulate; hence, additional 
preprocessing for variable extraction is required. The least-
squares method is used as a preprocessing rule. The rising 
and declining accelerations are estimated as variables based 
on the slope of the regression line, which is represented by 
the dotted line in Fig. 10 [12]. Table 7 presents the dyeing 
curve preprocessing method. 

The complex temperature rising and declining patterns 
are generalized using one variable estimated through pre-
processing. In addition, the variables in the process_mfg 
entity are extracted according to this section, and the product 
and resource data are converted into nominal data to become 
dummy variables. The manufacturing big data are general-
ized as parameters for each section using the cumulative, 
maximum, and average values.

The dataset is preprocessed if the process parameters for 
the dyeing process and the repeated-dyeing possibility must 
be determined. The data that did not cause repeated-dyeing 

are extracted and preprocessed as a training set upon the 
request of the process instruction module.

3.3.2  Process Instruction Module

The process instruction module instructs the process param-
eters based on a multiple regression model. Figure 11 shows 
the procedure employed by the process instruction module.

The first step of the procedure is a request for training 
samples from the feature extraction module. The module 
performs normalization after receiving the training sam-
ple, in which all variables are normalized to adjust biased 
data for instructing process parameters using the regression 
models. Thus, the corresponding variable is prevented from 
controlling the result.

The steps for training the multiple regression model in 
the procedure are designed to extract a meaningful output 
through a repetitive experiment. A regression model is con-
structed for each output variable based on the normalized 
preprocessed variables. Such multiple regression models 
derive process parameter variables one by one according 

Table 6  Feature extraction method by data

Source Data Type Method

Product Diameter Continuous Extract data itself as a variable without preprocessing
Material Continuous Extract data itself as a variable without preprocessing
Filament Category Extract dummy variable after nominal variable conversion
Quantity Continuous Extract data itself as a variable without preprocessing
Segment Continuous Extract data itself as a variable without preprocessing
Weaving Continuous Extract data itself as a variable without preprocessing
Weight_Per_Yard Continuous Extract data itself as a variable without preprocessing
Yard Continuous Extract data itself as a variable without preprocessing

Resource Color Category Extract dummy variable after nominal variable conversion
Color_Type Category Extract dummy variable after nominal variable conversion
Dye Continuous Extract data itself as a variable without preprocessing
Dyeing_Method Category Extract dummy variable after nominal variable conversion

Process_general Repeated_Dyeing Category Notate binary class as 0 and 1
Process_mfg Cold_Water Continuous Extract cumulative value as a variable

Left_Nozzle Continuous Extract cumulative value as a variable
Left_Reel Continuous Extract average value as a variable
Main_Pump Continuous Extract average value as a variable
Right_Nozzle Continuous Extract average value as a variable
Right_Reel Continuous Extract cumulative value as a variable
Steam Continuous Extract cumulative value as a variable
Warm_Water Continuous Extract cumulative value as a variable
Water Continuous Extract cumulative value as a variable

Energy Electricity Continuous Extract cumulative value as a variable
Electricity_Toe Continuous Extract cumulative value as a variable
Energy Continuous Extract cumulative value as a variable
Steam_Energy Continuous Extract cumulative value as a variable
Steam_Toe Continuous Extract cumulative value as a variable
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to the input variables. Multiple models are trained because 
they are more efficient for selecting each input based on a 

correlation analysis and for adjusting epoch to avoid over-
fitting compared to the multivariate model. The multivari-
ate model also requires a considerable learning time from 
the large number of change types and has a low prediction 
accuracy.

The input variables of these models are derived from the 
data and can be collected before work, product, and resource 
extracted as dummy variables. The output variables are 
derived from the data and can be collected during the pro-
cess, process, and energy data extracted in every interval.

The set of outputs derived by inputting new order infor-
mation into the learned regression model is inverted using 
the normalization in the opposite manner. A combination 
of process parameter values is then derived. The process 
instructions are set based on this derived combination.

3.3.3  Repeated‑Dyeing Prediction Module

The repeated-dyeing prediction module collects the data 
of the dyeing process currently in operation and predicts 
the repeated-dyeing possibility for each section of the 
rise–hold–decline process of the temperature. Figure 12 
shows the procedure of the repeated-dyeing prediction mod-
ule. For prior detection, this module uses binary classifica-
tion models constructed for each section.

After the existing data are preprocessed using the feature 
extraction module and the preprocessed data are imported 
as the first step of the procedure, the module sorts variables 
by each section for training the classification models. These 
variables are features extracted from the process data, which 
are continuous values.

The next step is to oversample the negative class of the 
feature to the positive class and normalize the elements in 
both classes. These two steps are preprocessing steps to 
reduce the effects of certain values and improve the accuracy 
of the classification models.

Next, binary classification models are constructed 
using the adjusted samples. The input variables of these 

Fig. 9  Procedure employed by the feature extraction module

Fig. 10  Variable extraction on the temperature curve [12]

Table 7  Preprocessing method for dyeing curve

Data Notation Method

Increasing_Slope x̂(1,1)
∑

section1

�

tmpi − tmp)(timei − time

�

∑

section1

�

timei − time

�

Increasing_Time x(1,2) Time of Section 1
Maximum_Temperature x(2,1) Max (Section 2)
Max_Temper_Time x(2,2) Time of Section 2
Decreasing_Slope x̂(3,1)

∑

Section 3 (tmpi−tmp)
�

timei−time

�

∑

Section 3

�

timei−time

�2

Decreasing_Time x(3,2) Time of Section 3
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classification models are process variables, while the out-
put variables are the binary class of the Repeated_Dyeing 
variable.

During the actual dyeing process, a classification model 
is used for each section. The operators should be notified if 
a negative class with a high repeated-dyeing possibility is 
determined. The operators are aware of the high repeated-
dyeing possibility before work is completed; hence, they can 
prepare for it. The operators at the actual site must continu-
ously check whether repeated-dyeing will occur or not. Such 
waste can be prevented by improving the process efficiency.

4  Case Study

4.1  Constitution of Environment

The development environment of the modules constitut-
ing the cyber world of the CPES and the configuration 
environment of the IIoT gateway are as described earlier. 
A rapid machine (SIDC-8200) was selected as the target 
dyeing machine (Fig. 13). This dyeing machine is non-con-
tinuous and goes through the rise–hold–decline process for 

Fig. 11  Procedure employed by the process instruction module
Fig. 12  Procedure employed by the repeated-dyeing prediction mod-
ule
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temperature during the dyeing process. Table 8 presents the 
test environment for this case study.

Scenarios are constructed to verify the validity of the 
three major parts of the architecture proposed herein. The 
three parts of the scenario are the main elements that would 
be considered in an actual application of the CPES and must 
also be considered before expansion.

In the physical world (i.e., the actual dyeing and finishing 
shop), IIoT devices are attached to the dyeing machine, and 
data are collected through the IIoT gateway. Figure 14 shows 
the process by which IIoT devices are installed in the dyeing 
machine and data are collected through the IIoT gateway for 
this case study.

The data from the IIoT devices installed in the physical 
world are transmitted through transmitters and receivers, 
converted into digital information, and recorded. Figure 15 
shows a screen for recording the temperature curve and the 
energy consumption in the controller applied to the actual 
factory.

Table 9 lists the machine learning techniques chosen 
to implement and verify the procedures and functions of 
the modules mentioned in Sect. 3.3. An ANN is a machine 
learning technique with adequate performance when mod-
eling using various inputs. Collecting many samples is dif-
ficult because the dyeing and finishing shops process only 
a small number of products per unit time because of their 
industrial characteristics and factory size. Therefore, over-
sampling must be performed to balance the binary class 
through SMOTE instead of utilizing the under-sampling 
method.

4.2  Implementation of the CPES Architecture

An abstract database was implemented by querying the col-
lected data from three different databases according to the 
proposed PPRE data model. The benchmark samples for 
the process parameters of the dyeing process and the prior 

Fig. 13  Dyeing machines in the dyeing and finishing shop

Fig. 14  Industrial internet of things gateway diagram for the case 
study of the cyber physical energy system

Fig. 15  Human machine interface of the controller of the dyeing machine
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detection of the repeated-dyeing possibility were prepared 
using sample files from the databases, which were preproc-
essed and balanced with the feature extraction module. 
Training and testing were performed using the benchmark 
samples, and the modules were validated.

Figure 16 shows a client that can access the abstract 
database containing the data according to PPRE data model 
of the CPES architecture. The manufacturing big data can 
be accessed if the data collection site and the period are 
selected. The product and resource data as well as process 
and energy data of the corresponding case were included. 
Such data were preprocessed and analyzed through various 
modules of the cyber world.

Figure 17 shows the class diagram for the actual imple-
mentation. The three modules that constituted the cyber 
world of the CPES architecture were implemented by modu-
lar design, and each of these modules can be run indepen-
dently. In addition, an ANN library was added to construct 
both regression and classification models.

Figure 18 shows the scatter plots of the features of the 
benchmark samples for this case study. The dots represent 
the variables derived by the feature extraction module. The 
blue diamond dots represent the regular products. The red 
rectangular dots represent the cases requiring repeated-dye-
ing. The good product cases were confirmed to form sig-
nificant areas. Some cases with repeated-dyeing exhibited 
significant differences that can be considered as outliers.

The general information of the benchmark samples were 
data extracted from a total of 384 lots and had 82 repeated-
dyeing data. This result indicated that the repeated-dyeing 
rate in these samples was approximately 21.35%. The 
energy of the dyeing process can be confirmed to be saved 
if repeated-dyeing did not occur or was detected beforehand.

The process instruction module of the CPES in the case 
study utilized the ANN technique for the regression model 
and instructed the process parameters based on such man-
ufacturing big data. The product and resource data of the 
data model were used as the input variables of the multi-
ple regression models using the ANN methodology in the 
process instruction module based on the data preprocessed 

Table 8  Test environment for the case study

Item Contents

CPES module Window 10 OS 64 bit
Visual Studio 2015 C#.Net Framework 3.5
Intel® Core™ i7-6500U CPU @ 2.50 GHz

Dyeing machine Samil SIDC-8200
IIoT gateway Broadcom BCM2837 64bit

ARM Coretex-A53
1 GB LPDDR2
Linux/Windows Embedded

IIoT network RESTful API

Fig. 16  Implementation of the web-client according to the PPRE data model
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through the feature extraction module. The information 
related to the process were output.

Table 10 presents the information used to validate the 
process instruction module. A total of 384 samples were 
used, and 82 samples were found to undergo repeated-dye-
ing. Only 302 good product samples were selected to match 
the solution area of the regression model to that of the good 
products. Learning was also provided. In this instance, the 
numbers of samples for learning and validation were fixed 
at 7:3.

The models were set to two hidden layers, and the inputs 
were defined by selecting variables with a high correlation 
for each variable. These variables were from the product and 

resource data retrieved from the reference and ERP data-
bases. As noted in Sect. 3.3.2, 30 outputs were obtained; 
hence, 30 regression models with a single output were con-
structed instead of a multivariate regression model. The 
results of the prediction accuracy experiment in Table 11 
demonstrated that the fitting of the regression model can be 
performed well.

The possibility of energy reduction was validated based 
on the product and resource features of the repeated-dye-
ing samples. Table 12 presents the results. The sum of the 
energy consumption (toe) with the process parameter that 
previously caused repeated-dyeing and when the fabric was 
repeated-dyed was compared with the predicted energy 
consumption with the process parameter according to the 
process instruction module.

The ratio of the energy consumption expected with the 
process instruction module to the total amount of energy 
involved in repeated-dyeing was calculated for 82 repeated-
dyeing samples (Table 12). The average energy consumption 
was 0.0207391 toe. Therefore, the process parameter from 
the process instruction module consumed energy, which was 
only 89.31% of the traditional process. The energy efficiency 
was improved by approximately 10.69%.

Table 9  Machine learning techniques selected in the case study

Item Contents

Regression modeling technique Artificial neural network
Binary classification modeling technique Artificial neural network
Binary class balancing technique Synthetic minority over-

sampling technique

Fig. 18  Scatterplot of features for the case study

Table 10  Experimental information of regression model used to vali-
date the process instruction module

Item Contents

Number of training sets 211
Number of test sets 91

Table 11  Results of the 
prediction accuracy experiment 
for the process instruction 
module

Item Error rate (%)

Average 0.8687
Maximum 14.3242
Minimum 0.0352
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Table 13 presents the experimental information for the 
validation of the repeated-dyeing prediction module. The 
ratio of the training set to the test set was 7:3. Stratified sam-
pling was performed according to the class of the Repeated_
Dyeing variable; hence, the repeated-dyeing rates of the 
training set and the test set were identical. Repeated_Dyeing 
was set as the dependent variable, with 13 variables utilized 
for each section as inputs. The inputs were variables from 
the process and energy data. The sum of the other values, 
such as Reel, Nozzle, and Energy, was excluded because the 
dependencies were too large to utilize in the modeling.

By balancing the binary class step using SMOTE, the 
number of negative class samples was adjusted to be similar 
to the number of positive class samples. The binary classi-
fication modes were also constructed for each section based 
on the over-sampled variable samples. Figure 19 shows the 
results of the experiments for validating the repeated-dye-
ing prediction module. The receiver-operating characteris-
tic (ROC) curves of each section were drawn in the figure. 
The area under the curve (AUC) value was confirmed based 
on these curves (Table 12). The binary classification model 
in Sect. 1, which was considered the most important sec-
tion in the actual field, had the largest difference between 
both classes (Table 13). Through this experiment, it was 
confirmed that the field operator should be instructed in 
advance of the repeated-dyeing, which requires 15–20% of 
the total product from the dyeing process (Table 14). It also 
confirmed that the performance of the binary classification 
models using the ANN was of a very high quality, and that 
the scenario defined can be implemented. 

Table 12  Energy consumption comparison between process instruc-
tion module and cases with repeated-dyeing

Item Average energy 
consumption 
(toe)

Traditional dyeing process 0.0232215
Process instruction module 0.0207391

Table 13  Experimental information of binary classification model 
used to validate the repeated-dyeing prediction module

Item Contents

Number of training sets
Positive 211
Negative 91
Number of test sets
Positive 57
Negative 25

Fig. 19  ROC curves of binary classification models of repeated-dye-
ing prediction module
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5  Conclusions

This paper considered the design, structure, and flow of a 
CPES to improve the energy efficiency of the dyeing pro-
cess. A PPRE data model for retrieving data from several 
databases was proposed to store data related to the energy 
efficiency of the dyeing process. In addition, definitions were 
provided for the manufacturing big data to be collected for 
the CPES construction based on understanding of the site. 
Process parameters for the dyeing process based on the 
manufacturing big data and predicting repeated-dyeing in 
advance were derived to improve the energy efficiency.

The preprocessing, utilization, and application of the 
manufacturing big data collected through the IIoT devices, 
gateway, and network were examined. Moreover, the proce-
dures employed by the feature extraction module, process 
instruction module, and repeated-dyeing prediction module 
were determined. A case study was conducted in which data 
were collected by installing IIoT devices, a gateway, and a 
network in an actual dyeing and finishing shop. The validity 
of the modules was evaluated based on the collected data. 
A comparison with the benchmark data confirmed that the 
energy efficiency was improved and can be further enhanced 
by improving the process efficiency.

The main contributions of this study are as follows. The 
dyeing process was parameterized based on research and 
advanced automatic configuration using several machine 
learning techniques. Inaccurate process instruction from the 
experiment in the laboratory were replaced by the CPES 
utilizing manufacturing big data, and invalid and ineffective 
steps in the traditional work process derived from operator’s 
experience removed. The energy consumption of the dyeing 
process can be reduced by utilizing the CPES instead of pur-
chasing expensive machines. As a result of application of the 
CPES, it was found that the energy consumption decreased 
by approximately 10.69% compared to the existing dyeing 
process. In addition, field operators will be able to cope with 
the possibility of repeated-dyeing (15–20% in the existing 
process) in advance through the CPES.

In the future, when further manufacturing big data are 
accumulated and sufficient data are available, the accuracy 
of the model could be improved by applying ensemble learn-
ing. We plan to extend the knowledge gained in this research 
to entire manufacturing processes in dyeing and finishing 
shops. In addition, we plan to improve the maturity level of 

the CPES to a self-optimizing level through application of 
an automatic dyeing machine controller.
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