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The Fourth Industrial Revolution incorporates the digital revolution into the physical world, creating a new direction in a number

of fields, including artificial intelligence, quantum computing, nanotechnology, biotechnology, robotics, 3D printing, autonomous

vehicles, and the Internet of Things. The artificial intelligence field has encountered a turning point mainly due to advancements in

machine learning, which allows machines to learn, improve, and perform a specific task through data without being explicitly

programmed. Machine learning can be utilized with machining processes to improve product quality levels and productivity rates, to

monitor the health of systems, and to optimize design and process parameters. This is known as smart machining, referring to a new

machining paradigm in which machine tools are fully connected through a cyber-physical system. This paper reviews and summarizes

machining processes using machine learning algorithms and suggests a perspective on the machining industry.
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1. Introduction

Following the Fourth Industrial Revolution, the global

manufacturing sector is now working on smart factories to prepare for

the decline in the value added in the manufacturing industries and to

improve productivity. Many technologies, such as the Internet of

Things (IoT), cyber-physical systems (CPS), big data, smart sensors,

and 3D printing, have been developed to a level that makes them now

applicable to the manufacturing field. Among these technologies, IoT

and big data are most commonly used because smart factories manage

entire systems based on information gathered from sensors attached to

all machines in the factory.1,2 Through IoT, the manufacturing

ecosystem is established and synchronized with various information

systems for production management purposes.3 CPS is also an essential

element focused on services and applications provided by the cyber

world; it allows production-related data acquisition in the real world

and supports smart production based on software, sensors, and

information processing devices.4-7 

Artificial intelligence refers to the ability of computers to exhibit

characteristics that humans would perceive as being intelligent. Although

the term artificial intelligence has long been used, research in this field

has been flourishing due to recent advancements in information

processing technology. Global companies such as Google, Facebook,

Alibaba, IBM, FANUC and Samsung are constantly strengthening their

artificial intelligence research. There has been a steady increase in the

demand for creating value from the large amounts of data accumulated

by various industries, such as information technology,8 finance,9 food

production,10 chemical industry,11 health care,10 and manufacturing.11

The field of artificial intelligence has reached a turning point mainly

due to advancements in machine learning, which is a subfield of

artificial intelligence that allows machines to learn, improve, and

perform a specific task using data without being explicitly

programmed. Many of the recent achievements in artificial intelligence

are based on machine learning.

The problem solving process using machine learning can be

generally represented through the steps shown in Fig. 1.12 First, the
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problem must be defined and the appropriate machine learning analysis

method must be selected. According to the defined problem and the

analysis method, the necessary data must be collected and preprocessed

into a form that can be directly used for the subsequent analysis. A

model for the data is then developed and evaluated. Finally, the results

are analyzed to obtain the solution for the problem. Several iterations

are typically required in order to obtain the improved results.

Machine learning algorithms can be divided into three categories

based on the learning system and the type of input data. The first is

supervised learning, where the algorithms are trained to map given

inputs to corresponding known outputs (provided by human experts).

The second is unsupervised learning, which involves the process of

developing a model or function without inputting the known outputs.

This method is typically used for finding meaningful patterns or

classifications within a large data set. Finally, there is reinforcement

learning, the process of learning through a predefined reward signal that

enables the machine to be able to quantify its performance. These

algorithms attempt to do two main tasks: classification or clustering, in

which the data is separated into specific classes, and regression, in which

a continuous trend or relationship is sought. The different methods used

to achieve these tasks will determine the type of algorithm used, such as

support vector machines, artificial neural networks, decision trees, naïve

Bayes, k-nearest neighbors, and so on.13-18

Smart machining is a machining process that is able to adjust its

parameters autonomously during the machining process to achieve a

certain objective. During conventional machining processes, the

operation conditions are not always ideal due to the various errors present

during the material removal process, such as geometric errors, thermal

deformation, elastic deformation, and vibration. Smart machining can be

developed through the establishment of interactions with different

systems, including machine tools, sensors and controller networks,

simulation-based designs, big data and cloud-based systems, as well as

smart control algorithms. The smart machining process can be

implemented in order to optimize process parameters automatically in

real time, obtaining optimum processing performance and product

quality. During the machining process, various factors affect the product

quality, such as the workpiece properties, the machines used, the cutting

tools, and the cutting conditions. In addition, the control parameters need

to be optimized during the handling and positioning operations, as these

operations account for more than 50% of the overall processing time.19

In this paper, machining processes using machine learning

techniques and algorithms are reviewed and summarized. A

perspective on the machining industry is also provided.

2. Machining Processes Using Machine Learning

Many researchers have studied the use of machine learning in various

types of manufacturing industries.5,20-29 This section focuses on different

cases of smart machining processes using machine learning, as listed in

Table 1. As the working principles of the different types of machine

learning algorithms are readily available, only the implementation details

to the machining processes are summarized.

2.1 Conventional Machining

Conventional machining processes are most commonly studied in

relation to the use of machine-learning algorithms. The purposes vary,

ranging from process parameter optimization to machine health

monitoring and product quality enhancement. Milling and turning were

the most prominent forms of conventional machining processes

studied.

2.1.1 Milling

There have been many studies on the implementation of machine

learning algorithms to milling processes, and a total of 14 cases are

reviewed here. Through the use of machine learning algorithms,

various factors or parameters were monitored and predicted, a task that

would have been difficult to achieve through conventional methods.

The most common purpose has been to monitor the tool condition,

keeping track of its wear and its potential for failure. Since a

classification algorithm is required for this purpose, algorithms such as

support vector machine (SVM),15,30-34 artificial neural network

(ANN),35-43 and decision trees, as well as its subtypes, such as

probabilistic neural network (PNN),13,44 backpropagation neural

network algorithm (BpNN),45,46 and random forest (RF),8 were

commonly used. However, other tasks were also achieved, such as

process parameter optimization for cost reduction through energy

consumption predictions, and product quality enhancements through

predictions of surface roughness, cutting force, and workpiece

deformation. For such purposes, a popular choice was also SVM, but

other algorithms, such as Gaussian process regression (GPR),47,48 Non-

dominated sorting genetic algorithm II (NSGA-II),49 and other

statistical methods were also used.36,50

2.1.2 Turning

Machine learning has also been applied extensively to the turning

process, achieving tasks that are similar to those of the previously

mentioned milling process, specifically tool condition monitoring and

surface roughness predictions. Although ANNs were mostly used for

tool wear predictions, various kinds of regression algorithms, such as

support vector regression (SVR)10 and polynomial regression, were

used for surface roughness predictions. Pontes et al.45 reviewed in

detail the use of ANNs for surface roughness predictions in machining

processes. Additionally, other tasks, such as carbon emission,

microhardness, and grain size predictions, were achieved. For instance,

through a combination of RF and GA,51,52 Arisoy et al.8 studied the

effects of the cutting speed, feed rate, tool edge radius, and tool coating

on certain surface characteristics, specifically the machining-induced

microhardness and grain size. Lin et al.53 predicted carbon emissions

produced during the turning process through regression and Multi-

objective teaching learning based optimization (MOTLBO).

2.1.3 Grinding

Although not many cases for smart grinding processes were found,

similar efforts to predict the finishing quality were observed. Zhang et

Fig. 1 Problem solving process using machine learning
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Table 1 Cases of machining processes using machine learning

Process Purpose Algorithms Input parameters Preprocessing Accuracy*
Ref.

(Year)

Milling

Tool wear monitoring K-NN, SVM Tool images
Shape and contour 

descriptors
90.26%

55

(2017)

Tool breakage detection SVM, SVR
Cutting force and power 

consumption data
N/A 99.38%

56

(2005)

Tool wear prediction RF
Cutting force, vibration, 

acoustic emission

Statistical features (max, 
median, mean, standard 

deviation)
99.20%

57

(2017)

Energy consumption 
prediction

Gaussian process 
regression

Spindle speed, feed rate, 
depth of cut, active tool 

axis, cutting strategy
N/A Above 95%

58

(2015)

Tool wear and 
remaining useful life 

(RUL) prediction
SVR

Vibration, cutting force, 
acoustic emissions

Wavelet packet 
decomposition, 

expectation-
maximization principal 

component analysis 
(PCA), isometric feature 

mapping

98.95% 
(for cutter 3)

10

(2015)

Energy consumption 
prediction

GPR (global and 
collective)

Spindle speed, feed rate, 
active tool cutting 

direction, depth of cut, 
cutting strategy, length 

of tool path

Gaussian mixture model
98.66% 

(global GPR), 98.07% 
(collective GPR)

59

(2014)

Tool breakage detection PNN

Spindle speed, feed rate, 
depth of cut, max peak 

force, max variance 
pack force

N/A 98.60%
44

(2015)

Optimize tool path, tool 
selection, cutting 

parameters and evaluate 
proposed solution

NSGA-II CAD model N/A N/A
60

(2016)

Surface roughness 
prediction

SVM (radial basis 
function kernel)

Spindle speed, depth of 
cut, feed speed

Normalization 86.50%
30

(2016)

Chatter stability lobes 
prediction

SVM (radial basis 
function kernel)

Vibration signal (cutting 
force in x and y 

direction)

Wavelet packet 
transform, wavelet 

energy entropy theory, 
normalization

98.33%
31

(2015)

Tool condition 
monitoring (good, 
midlife, worn-out)

J48 Decision Tree, Feed 
forward BpNN

Vibration signals (from 
accelerometer)

Fast Fourier transform, 
statistical features 

(mean, standard error and 
deviation, kurtosis, etc.)

94.30% (J48), 95.40% 
(NN)

61

(2015)

Determination of 
individual specific 

cutting forces
BpNN

Material, cutting 
material, coating, tool 

diameter, cutting speed, 
feed rate, depth of cut, 

entry/exit angle, average 
chip thickness, etc.

N/A 87.44%
62

(2017)

Prediction of 
deformations in thin-

walled workpiece 
machining processes 
(milling), vibration 

control implementation

Bayesian learning 
method

Historical displacement 
information

N/A N/A
37

(2017)

Turning
Surface roughness 

prediction
Multiple linear 

regression (MLR)

Speed, feed, depth of 
cut, flank wear, 

vibration

Statistical features (mean, 
standard error, median, 

kurtosis, etc.), PCA
80.80%

63

(2015)
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Table 1 Continued

Process Purpose Algorithms Input parameters Preprocessing Accuracy*
Ref.

(Year)

Turning

Prediction of machining 
parameters (surface 

roughness, cutting force, 
tool lifetime)

SVR (linear, 
polynomial, radial basis 

function kernel), 
polynomial regression, 

ANNs

Cutting speed, depth of 
cut, feed rate

Regularization 

92.48%
(Ra with polynomial 
regression), 93.63% 
(cutting force with 

polynomial regression), 
93.15%

(tool life with ANNs)

64

(2016)

Microhardness and grain 
size prediction

RF, GA
 Cutting speed, feed rate, 

tool edge radius, tool 
coating status

N/A 96.50%
8

(2015)

Carbon emission 
quantification and 
prediction, cutting 

parameter optimization

Regression, MOTLBO
Speed, feed, 
depth of cut

Response surface 
method, grey relational 

analysis(GRA)
Above 95%

53

(2015)

Tool wear prediction 
and pattern recognition

Cascade forward BpNN, 
DNA-based computing

Machining time, cutting 
speed, feed rate, depth of 

cut, avg. number of 
white pixels from tool 

image

Image processing 
(Gaussian blur), binary 

image data
75%

65

(2017)

Tool condition 
monitoring (4 

conditions: good, less 
blunt, highly blunt, 

loose)

K-Star algorithm Vibration signals

Statistical features 
(standard error and 
deviation, variance, 

kurtosis, etc.), 
correlation-based 

attribute subset selection

78.69%
66

(2014)

Online Tool Life 
Prediction

Cascade-forward NN, 
Feed-forward NN

6 signal features from 
cutting force, vibration, 
and acoustic emission 

sensor

Wavelet feature 
extraction

N/A
67

(2016)

Tool life estimation
BpNN, Regression 
Analysis Method

Speed, feed, depth of 
cut, temperature

N/A N/A
68

(2002)

Grinding

Monitoring of surface 
roughness (Ra) and 
surface shape peak-

valley (PV)

 IFSVR
Acoustic emission, 

grinding force, vibration
Identification Model, 

Fast Fourier transform
85.19% (Ra), 75.93% 

(PV)

32

(2015)

Drilling

Evaluation of quality 
and geometric profile 

(circularity, dimensional 
error, delamination, 
surface roughness) 

Logical Analysis of 
Data

Thrust force, cutting 
force, torque

N/A 94.60%
54

(2015)

Boring
Chatter prediction 
(stable, transition, 

chatter)
SVM

Spindle speed, depth of 
cut, feed rate

Discrete wavelet 
transform 

95%
69

(2017)

Machine 
Structure

Self-diagnosis and 
monitoring system

NN, fuzzy logic

Energy (electric power 
consumption of drive 
motor, amplitude of 
amplitude-frequency 
spectrum of power 
signal) and acoustic 

signals

N/A N/A
70

(1996)

Prediction of thermal 
error for compensation

SVR (Gaussian radial 
basis function kernel), 

Least square MLR, 
Least absolute MLR, 

distributed lag

Temperature of sensitive 
points (motor, spindle, 
ambient), deformation 

of spindle

Fuzzy clustering 
analysis, gray 

correlation method
N/A

71

(2013)

Development of self-
optimizing control 
system, parameter 

adjustment (tool wear, 
feed rate)

Fuzzy logic, NN

Cutting force, feed rate, 
depth of cut, processing 

time, cutting speed, 
initial tool wear

N/A N/A
72

(2014)
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al. monitored the surface roughness and the surface shape peak-valley

of the workpiece using interpolation-factor SVM.32 The acoustic

emission, grinding force, and vibration data were used as input

parameters.32

2.1.4 Drilling

Similarly, product quality predictions were also achieved in the

drilling process through monitoring the process parameters, such as

thrust force, cutting force, and torque. The circularity, dimensional

error, delamination, and surface roughness of machined carbon-fiber-

reinforced polymers plates were evaluated using a machine-learning

and pattern-recognition method known as logical analysis of data.54

2.1.5 Boring

For the boring process, the surface finish quality can be enhanced

by preventing chatter. Saravanamurugan et al.69 studied which

parameters, such as the spindle speed, depth of cut and feed rate,

generated chatter. Features were extracted from vibration signals using

the discrete wavelet transform and classified into stable, transition, or

chatter classes using SVM.

2.2 Non-Conventional Machining

Although there have been fewer cases of non-conventional

machining processes, learning algorithms were also implemented to

improve the finish quality through surface roughness predictions.

However, due to the issue of low productivity, one of the main

purposes was process parameter optimization for maximizing the

Table 1 Continued

Process Purpose Algorithms Input parameters Preprocessing Accuracy*
Ref.

(Year)

Laser 
Machining

Predict surface quality, 
dimensional features 

and the productivity of 
laser machined micro-

channels

NN, decision trees, K-
NN, linear regression

Scanning speed, pulse 
intensity, pulse 

frequency
N/A

88.70%
(depth - NN),

76.90%
(Material removal rate 
(MRR) - decision tree)

73

(2015)

Abrasive 
Water Jet

Surface roughness 
prediction

Extreme machine 
learning, ANN, GPR

Cutting speed, material 
thickness, abrasive flow, 
measurement position

N/A 96.65%
74

(2016)

Surface roughness 
prediction

SVM
Traverse speed, water jet 

pressure, abrasive grit 
size, abrasive flow rate

GRA 99%
75

(2013)

Surface roughness 
prediction

Feed-forward BpNN, 
regression model

Traverse speed, water jet 
pressure, stand-off 

distance, abrasive grit 
size, abrasive flow rate

N/A
96.99% (NN), 99% 

(regression)

35

(2008)

Electric 
Discharge 
Machining 

(EDM)

Predict optimum process 
parameter for minimum 

wear ratio and 
maximum MRR

BpNN, particle swarm 
optimization, simulated 

annealing, GA

Pulse current, pulse-on 
time, pulse-off time

N/A N/A
51

(2015)

MRR estimation and 
machining parameter 
optimization for max 

MRR

Feed-forward BpNN, 
GA

Gap voltage, 
capacitance, feed rate, 

speed
N/A 96.06%

14

(2010)

Machining parameter 
optimization for 

maximum MRR and 
minimum surface 

roughness

GPR, NSGA-II
Mean current, on time, 

off time
N/A N/A

47

(2008)

Machining parameter 
optimization for 

maximum MRR and 
minimum surface 

roughness

GRA

Cutting radius, on/off 
time, arc on/off time, 

servo voltage, wire feed, 
water flow

N/A N/A
76

(2006)

Electroche-
mical 

Discharge 
Machining 
(ECDM), 

Electrochemic
al Machining 

(ECM)

Process parameter 
optimization for 

maximizing MRR and 
minimizing radial 

overcut

TLBO

Electrolyte 
concentration, 

electrolyte flow rate, 
applied voltage, inter-

electrode gap,

N/A
18% improvement in 

MRR

97

(2011)

*Only the accuracies provided by the author/s were included. The accuracy corresponds to the algorithm prediction accuracy compared to the

experimental results.
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MRR.

2.2.1 Laser Machining

Laser processes are increasingly being used in industrial processes.

However, optimized process parameters, especially for sensitive

applications such as micromachining, have yet to be found. Teixidor et

al.78 implemented and compared various machine learning algorithms

(e.g., linear regression, NN, decision trees and K-NN) in order to

predict the surface quality levels, dimensional features, and the

productivity rates of laser-machined micro-channels.

The results indicated that the decision trees were more accurate at

predicting the MRR, whereas NN were more effective at modeling

dimensional features of machined channels.73

2.2.2 Abrasive Water Jet

Abrasive water jet machining focuses mainly on surface roughness

predictions. This has been achieved mostly through the implementation

of various types of NNs, such as feedforward, backpropagation, and

extreme machine learning; however, the highest prediction accuracy of

99% was achieved by Deris et al.75 using a hybrid algorithm that

combines grey relational analysis for feature selection and SVM.

2.2.3 Electric Discharge Machining (EDM)

Although there have been efforts to predict the surface roughness

for EDM, the main purpose for implementing machine-learning

methods was to predict and maximize the MRR. This is mainly due to

the low productivity characterized by this process. This task was

typically achieved through a combination of both ANNs and EAs,79

such as BpNN with particle swarm optimization or feedforward BpNN

with GA; these EAs were mainly used for optimization purposes. 

2.2.4 Electrochemical Machining (ECM)

Due to their similar process characteristics to that of EDM,

learning algorithms were also implemented to ECM to predict and

maximize the MRR. Rao et al.97 was able to improve the MRR for

ECM using TLBO, which outperformed the artificial bee colony

(ABC) algorithm due to the fewer iterations required. TLBO was also

implemented to the hybrid process, electrochemical discharge

machining, realizing an increase in the MRR of 18% compared to that

by the ABC algorithm.

2.3 Machine Structure

Many efforts focused on improving the machining process itself, but

the machine tool structure can also be improved in order to achieve

self-monitoring or diagnosis and self-adjustments to external

disturbances. For instance, Miao et al.71 developed a thermal error

compensation model by studying the relationship between temperatures

at sensitive locations and the thermal error generated. From the various

algorithms implemented in their study, SVM combined with a fuzzy

clustering analysis and the gray correlation method was the most

accurate. Park et al.72 developed a self-optimizing control system that

can autonomously adjust process parameters based on the disturbances.

In this case, fuzzy logic with a NN is used to predict the tool wear and

determine the optimal feed rate.

2.4 Overview and Discussion

As summarized in Table 1, various machine learning algorithms

have been implemented to both conventional and non-conventional

machining processes for diagnostics and prognostics of machine tools,

parameter optimization, and product quality prediction, all of which

lead to a more cost-efficient production. It can be observed that the

most commonly used algorithms were also those that had the best

performances: SVM and ANN. Although these algorithms generally

show great performance, its accuracy will highly depend on the input

parameters used, obtained from the preprocessing and feature

extraction methods. More research focused on these feature extraction

techniques will be crucial for practical implementations. ANN and

SVR were also implemented for enhancing machine structure, thermal,

dynamic characteristics; however, the authors have not provided

enough information on the algorithms’ performances; the results should

be compared with the experimental data in order to determine which

algorithm is more appropriate. The case studies reviewed in this paper

have mostly been published in the past 5 years, following the trend of

the actively researched field of machine learning. Therefore, more

cases of machine learning-based machining process can be expected in

the future.

3. Future Perspective to Machining Industry

Fig. 2 shows the approximate dates of the major manufacturing

paradigms during the last four decades, followed by the accumulated

list of technologies. During the 1980s, computer-integrated

manufacturing constantly expanded to include flexible manufacturing

systems, robotics, and AI.81

During this Fourth Industrial Revolution era, these paradigms will

increasingly implement machine learning to create a cyber-physical

system.

3.1 Case Study of Present and Future Use

The goals of improvements in manufacturing have consistently been

in the areas of automation, robotics, and complex analytics to improve

efficiency.82

With the development of more advanced artificial intelligence in

recent years, manufacturing has found a means to push through its

limitations. Numerous major corporations in the industry have been

investing heavily in the market of smart manufacturing, which is

expected to grow by more than $70 billion by 2020.4

The implementation of machine learning algorithms to collect and

process data in the manufacturing environment has enabled real-time

monitoring of equipment to reduce unnecessary waste and increase

efficiency at various stages to new heights. For large-scale companies,

an “in-house AI development” strategy is used, where the companies

both develop and utilize the machine learning tools for manufacturing.

This allows for customization of the algorithm to fit the nature of the

equipment used in factories. Smaller companies have utilized the

alternative strategy of importing software tools from an external source,

which requires modification of the programs for integration into the

target equipment. One of the companies in the manufacturing industry

to have benefited from AI is Siemens.
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Siemens has been using deep learning techniques in conjunction

with NN to optimize systems and facilities by analyzing various data

and measurement values during operational processes. MindSphere, a

cloud-based open-IoT operating system, was developed and

distributed by Siemens in 2016 to monitor equipment and enable

predictive maintenance by drawing data from a multitude of

sources.83

The tools were later developed further with the integration of IBM’s

Watson Analytics, which enhanced performance and reduced

downtime.84

Another instance in which the integration of AI and NNs has helped

improve manufacturing aspects of Siemens was the optimization of

nitrous oxide emissions in gas turbines. The AI system in this case was

able to reduce the emissions by an additional 10-15% of the optimized

solution proposed by engineers.85

The latest gas turbines developed by Siemens are equipped with

over 500 sensors to collect real-time data on the pressure, temperature,

stress, and other variables.86

Fig. 3 shows a virtual reality representation of a gas turbine in

which the temperature measurements are represented by different

colors on the surface. Complex sensor data is translated into colors to

give the information meaning. With the installed sensors, real-time data

are collected and processed to adjust fuel valves continuously to realize

optimal conditions for combustion while accounting for weather

conditions and equipment states. In the future, the same technique can

be modified and upgraded to implement micro-sensors into machining

equipment in the industry. One possible example would be the

monitoring and altering of cutting tool parameters based on

temperature and wear data collected in real time.87

Other companies have also significantly improved the

manufacturing processes in their factories by reducing downtime and

increasing efficiency levels. GE developed the Brilliant Manufacturing

Suite in 2015, which takes a preventative approach to detecting

potential problems and inefficiencies by tracking every step of the

manufacturing process.88

FANUC used deep reinforcement learning techniques to enable

industrial robots to train themselves by performing the same task

repetitively until a reasonable level of accuracy is achieved.89

Collaborative work between robots and humans can be organized in

the future to realize adaptive machining, where humans and robots can

modify machining conditions in real time to increase precision and

reduce operation times and energy expenditures. Other companies,

such as Intel, Kuka, NVIDIA and Microsoft, are also making

significant investments in machine-learning-based methodologies to

improve manufacturing processes.

Fig. 2 Major paradigms in manufacturing (modified and updated from reference81)

Fig. 3 Virtual reality representation of gas turbine with color-coded

temperature sensor data
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3.2 Smart Machining

The purpose of smart machining is to automate tasks that humans

have previously performed in the physical world and to self-optimize

the processes of interconnected machines in the cyber world.19,90-100

In order to overcome the current limitation in machining,

technologies related to artificial intelligence, especially machine-

learning techniques, are being implemented.

The conceptual architecture for smart machining is structured as

shown in Fig. 4(a) represents the process for establishing a connection

between the cyber and physical worlds. Machine-to-machine and

machine-to-server communications are enabled through an integrated

protocol. In Fig. 4(b), a single machining process composed of

machining, sensing, monitoring, and diagnosis is shown. The data

obtained from these processes is sent to a cloud server through the

integrated protocol.

The core technologies for smart machining are as follows:

· Enhancement of sensor analysis technology and sensor networks

· Development and integration of communication protocols for

smart machines

· Application and development of machine learning algorithm and

preprocessing methods for machining processes

· Operation and management know-how accumulation 

· Data acquisition of machine structures, machining processes,

products, and related parameters - big data

Fig. 5 shows a concept of smart hybrid manufacturing system that

performs various subtractive and additive manufacturing processes on

a single platform. Various sensors, such as force, vibration,

displacement, temperature, humidity, acceleration, and energy

consumption sensors, are embedded in the system, obtaining these data

in real-time. By dispersing the artificial intelligence authority based on

the environment and communication, optimized data on various levels

can be provided. Level 1 is the lowest level that consists of sensor

Fig. 4 Conceptual diagram for smart machining (a) outer loop and (b) inner loop
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based control and emergency shutdown. In level 2, data is collected on

a cloud server, creating a big data environment. Based on the data,

artificial intelligence and machine learning can be used for diagnosis,

prediction, and process optimization, providing the solutions to the user

or operator. Level 3 is the highest level of authority. Based on the

solutions provided in the level 2, the machine can make final decisions

on purchasing, scheduling, and maintenance, while also having the

overall authority for controlling and operating the machine.

3.3 Challenges in Practice

With advances in sensing, communication and computing

technologies, machine learning has a great potential to dramatically

improve the efficiency of various machining processes as previously

mentioned. However, the integration of physical processes, computing,

and networking in manufacturing systems presents unique challenges

about safety and security, among others. Thus, there is a strong need for

new machine learning algorithms, which are specific to manufacturing

systems and machining processes to address these issues.

Guaranteeing safety is a fundamentally important factor in any

machining process, particularly when humans are involved. However, a

naive application of several machine learning algorithms threatens safety

because the obtained results often have no performance guarantees.101

Thus, it is not unlikely that the decision made based on learning

methods drives a machining process into an unsafe range of operation.

Such a safety issue is particularly serious when using reinforcement

learning, which induces a machine or tool to explore to improve its

decision quality or performance; the machine can encounter unsafe

situations in the process of exploration. To resolve this issue, several

safe learning methods have recently been proposed by using

constrained-optimization,102,103 reachability,104 and Lyapunov

stability.105 It is an important future research to develop safe learning

algorithms specific to machining processes based on the domain

knowledge of machining.

Security is another critical issue in smart machining processes. As

machines and tools are connected through communication networks,

external malicious attacks, such as hacking, can disrupt whole

manufacturing processes, for example, by injecting corrupted sensor

data. Furthermore, it has recently been demonstrated that many popular

machine learning methods, such as deep learning, are vulnerable to a

negligible modification of input data, which could be conducted by an

attacker.106,107 To address the security issue at the infrastructure level,

smart manufacturing systems must be equipped with a proper

countermeasure, which is an active area of research in cyber-physical

systems community.108 More importantly, at the algorithmic level, secure

machine learning methods are desirable to fundamentally alleviate the

impact of manipulated input data on smart machining processes.109

4. Conclusions

Machine learning algorithms applied to machining processes were

classified according to the machining type and process characteristics

in this paper. Different cases of smart machining processes were

summarized and reviewed. The core technologies for smart machining

were also suggested. As mentioned above, many industries are

researching and using machine learning to enhance their current

processes. The efficiency of the machining industry will greatly

improve as they shift towards smart machining processes, ultimately

achieving self-optimization and adaptation to uncontrollable variables.

However, it is important to consider the safety and security issues that

come with the implementation of such smart processes and thus the

countermeasures must be taken into account.

Fig. 5 Smart hybrid manufacturing system
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